___ ____ ____ ____ ____ tm /__ / ____/ / ____/ ___/ / /___/ / /___/ 5.0 Copyright 1984-1997 Statistics/Data Analysis Stata Corporation . * program to illustrate effects of ill-conditioning on OLS . * x1 is a trend; x2 is a trend + eps, where eps(0,sigma^2). . * Note the regression results as sigma -> 0. . * . * CFB ec761 Fall 1997 . * . set obs 100 obs was 0, now 100 . gen x1=_n/100.0 . program define conditio 1. local i = 0 2. while `i'<`1' { 3. scalar sigma=10.0^-`i' 4. dis " " 5. dis "*** sigma = " sigma " ***" 6. gen eps=sigma*invnorm(uniform()) 7. gen eps2=invnorm(uniform()) 8. gen x2=x1+eps 9. gen y=2.0+10.0*x1+10.0*x2+eps2 10. correlate x1 x2 11. regress y x1 x2 12. local i=`i'+1 13. drop eps 14. drop eps2 15. drop x2 16. drop y 17. } 18. end . conditio 5 *** sigma = 1 *** (obs=100) | x1 x2 --------+------------------ x1| 1.0000 x2| 0.3241 1.0000 Source | SS df MS Number of obs = 100 ---------+------------------------------ F( 2, 97) = 5784.99 Model | 11960.0944 2 5980.04718 Prob > F = 0.0000 Residual | 100.270545 97 1.03371696 R-squared = 0.9917 ---------+------------------------------ Adj R-squared = 0.9915 Total | 12060.3649 99 121.821868 Root MSE = 1.0167 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- x1 | 10.12255 .3723146 27.188 0.000 9.383608 10.86149 x2 | 10.01934 .1117699 89.643 0.000 9.797503 10.24117 _cons | 1.921866 .2052406 9.364 0.000 1.51452 2.329212 ------------------------------------------------------------------------------ *** sigma = .1 *** (obs=100) | x1 x2 --------+------------------ x1| 1.0000 x2| 0.9467 1.0000 Source | SS df MS Number of obs = 100 ---------+------------------------------ F( 2, 97) = 1956.23 Model | 3426.83467 2 1713.41733 Prob > F = 0.0000 Residual | 84.9599842 97 .875876126 R-squared = 0.9758 ---------+------------------------------ Adj R-squared = 0.9753 Total | 3511.79465 99 35.4726732 Root MSE = .93588 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- x1 | 10.39441 1.006406 10.328 0.000 8.396975 12.39185 x2 | 9.781533 .9688272 10.096 0.000 7.858679 11.70439 _cons | 1.864677 .1889523 9.869 0.000 1.489659 2.239695 ------------------------------------------------------------------------------ *** sigma = .01 *** (obs=100) | x1 x2 --------+------------------ x1| 1.0000 x2| 0.9993 1.0000 Source | SS df MS Number of obs = 100 ---------+------------------------------ F( 2, 97) = 1504.37 Model | 3507.75671 2 1753.87836 Prob > F = 0.0000 Residual | 113.087978 97 1.16585544 R-squared = 0.9688 ---------+------------------------------ Adj R-squared = 0.9681 Total | 3620.84469 99 36.5741888 Root MSE = 1.0797 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- x1 | -2.91624 10.26391 -0.284 0.777 -23.28726 17.45478 x2 | 23.46838 10.28 2.283 0.025 3.065425 43.87133 _cons | 1.669024 .2183565 7.644 0.000 1.235646 2.102401 ------------------------------------------------------------------------------ *** sigma = .001 *** (obs=100) | x1 x2 --------+------------------ x1| 1.0000 x2| 1.0000 1.0000 Source | SS df MS Number of obs = 100 ---------+------------------------------ F( 2, 97) = 2002.94 Model | 3392.66099 2 1696.33049 Prob > F = 0.0000 Residual | 82.1511384 97 .846918953 R-squared = 0.9764 ---------+------------------------------ Adj R-squared = 0.9759 Total | 3474.81213 99 35.0991124 Root MSE = .92028 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- x1 | 196.9501 89.33464 2.205 0.030 19.64554 374.2546 x2 | -176.8903 89.38894 -1.979 0.051 -354.3026 .5219925 _cons | 1.907223 .1871233 10.192 0.000 1.535835 2.278611 ------------------------------------------------------------------------------ *** sigma = .0001 *** (obs=100) | x1 x2 --------+------------------ x1| 1.0000 x2| 1.0000 1.0000 Source | SS df MS Number of obs = 100 ---------+------------------------------ F( 2, 97) = 1496.37 Model | 3420.77919 2 1710.3896 Prob > F = 0.0000 Residual | 110.87328 97 1.1430235 R-squared = 0.9686 ---------+------------------------------ Adj R-squared = 0.9680 Total | 3531.65247 99 35.6732573 Root MSE = 1.0691 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- x1 | -54.96045 1065.972 -0.052 0.959 -2170.619 2060.698 x2 | 75.22354 1065.992 0.071 0.944 -2040.476 2190.923 _cons | 1.839889 .2174912 8.460 0.000 1.408229 2.271548 ------------------------------------------------------------------------------ . exit,clear