BOSTON COLLEGE
Department of Economics
EC 362
Financial Markets
Prof. Baum
Fall 1998
PROBLEM SET TWO
Due Wednesday, 21 October 1998, at classtime
Enclosed are monthly data for 1986-1990 on the CME British Pound contract. Using these data, answer the following questions. You may use any appropriate software (StataQuest, Excel, StatView, etc.).
These data may be accessed via Netscape from the course home page,
http://fmwww.bc.edu/EC-C/F98/EC362.F98.html
Click on the " Data for PS2" link and "Save As..." to place in a file.
1) What is the variance in the spot price of £ for the 1986-1990 period?
(2) What is the variance of the futures price of £ for this period?
(3) What is the simple correlation between the two series? Does it appear to be large enough to generate a reliable hedge?
(4) Calculate the optimal hedge ratio for this period using ordinary least squares (OLS) regression. What is the coefficient of determination (R-squared) of this regression? What does it tell you?
(5) Calculate your gains or losses (in US $) from a spot position of £ 625,000, using the appropriate (integer) number of futures contracts over the period. (Ignore the fact that this would be a rolling hedge).
(6) How would the optimal hedge ratio change if you used only the data from 1989 to calculate the OHR? How reliable is this estimate?
These are beginning-of-month quotes, derived from daily data. The Yr Mo Da refer to the quote date. W is the weekday (1=Monday). The "Con" is the contract used to provide the futures quotation (generally the near contract). Spot £ and Fut £ are quotations in $/£.
Yr Mo Da W Con Spot £ Fut £
86 1 2 4 8606 1.447700 1.425000
86 2 3 1 8606 1.390200 1.362000
86 3 3 1 8609 1.434000 1.401500
86 4 1 2 8609 1.470800 1.443500
86 5 1 4 8609 1.530500 1.516000
86 6 2 1 8612 1.475500 1.457500
86 7 1 2 8612 1.543600 1.520500
86 8 1 5 8612 1.489800 1.476500
86 9 2 2 8703 1.491200 1.457500
86 10 1 3 8703 1.443000 1.415000
86 11 3 1 8703 1.412700 1.388000
86 12 1 1 8706 1.435500 1.397000
87 1 2 5 8706 1.492500 1.467500
87 2 2 1 8706 1.517500 1.493500
87 3 2 1 8709 1.556000 1.527000
87 4 1 3 8709 1.603000 1.583000
87 5 1 5 8709 1.671500 1.656500
87 6 1 1 8712 1.625000 1.611500
87 7 1 3 8712 1.619500 1.610000
87 8 3 1 8712 1.591300 1.582500
87 9 1 2 8803 1.638000 1.620000
87 10 1 4 8803 1.620000 1.609500
87 11 2 1 8803 1.730000 1.720000
87 12 1 2 8806 1.811500 1.805000
88 1 4 1 8806 1.873500 1.861000
88 2 1 1 8806 1.756300 1.747000
88 3 1 2 8809 1.773000 1.754000
88 4 5 2 8809 1.881000 1.873000
88 5 3 2 8809 1.871700 1.864000
88 6 1 3 8812 1.824000 1.821000
88 7 1 5 8812 1.701200 1.686000
88 8 1 1 8812 1.712300 1.697800
88 9 1 4 8903 1.680000 1.652000
88 10 3 1 8903 1.696000 1.673200
88 11 1 2 8903 1.766000 1.746400
88 12 1 4 8906 1.845800 1.822000
89 1 3 2 8906 1.824000 1.800000
89 2 1 3 8906 1.750000 1.726600
89 3 1 3 8909 1.723000 1.704000
89 4 3 1 8909 1.680300 1.666000
89 5 2 2 8909 1.682700 1.662400
89 6 1 4 8912 1.576000 1.533000
89 7 3 1 8912 1.572000 1.538000
89 8 1 2 8912 1.655500 1.627000
89 9 1 5 9003 1.565300 1.525200
89 10 2 1 9003 1.617500 1.579000
89 11 1 3 9003 1.582000 1.542000
89 12 1 5 9006 1.565500 1.512000
90 1 2 2 9006 1.610500 1.575000
90 2 1 4 9006 1.683000 1.644000
90 3 1 4 9009 1.664500 1.612000
90 4 2 1 9009 1.629800 1.575000
90 5 1 2 9009 1.638000 1.600600
90 6 1 5 9012 1.683000 1.628400
90 7 2 1 9012 1.760500 1.709000
90 8 1 3 9012 1.854500 1.808600
90 9 4 0 9103 1.876000 1.818000
90 10 1 1 9103 1.888000 1.839000
90 11 1 4 9103 1.951500 1.898000
90 12 3 1 9106 1.917800 1.867000