Problem Set 1

Chp2 #2

- a) Nominal GDP in 1998=(100*\$10)+(200*\$1)+(500*\$0.50)=\$1450
- b) Nominal GDP in 1999=(110*\$10)+(200*\$1.50)+(450*\$1)=\$1850
- c) Real GDP in 1998 is \$1450 (same as nominal GDP, since 1998 is base year) Real GDP in 1999=(110*\$10)+(200*\$1)+(450*\$0.50)=\$1525 Percentage change in real GDP=(\$1525-\$1450)/\$1450=0.01517, an increase of 5.2 %
- d) Real GDP in 1998=(100*\$10)+(200*\$1.50)+(500*\$1)=\$1800 Real GDP in 1999 is \$1850 (same as nominal GDP, since 1999 is base year) Percentage change in real GDP=(\$1850-\$1800)/\$1800=0.0278, an increase of 2.8 %
- e) The statement is true. In this problem, we have obtained two different growth rates by using two different base periods

Chp3 #1

- a) Y=C+I+G=100+0.6(Y-100)+50+250=310+0.6Y Y=*50
- b) $Y_d = Y T = 850 100 = 750$
- c) $C=100+0.6Y_d=100+0.6(750)=550$
- d) $S = Y_d C = 750 550 = 200$
- e) Public Saving = Budget Surplus(T-G)=(100-250)=-150
- f) Multiplier=1/(1-marginal propensity to consume)=2.5

Chp3 #2

- a) In equilibrium Production=850 Demand=C+I+G=850
- b) Total saving = Private Saving + Public Saving=200+(-150)=50

Chp3 #3

- a) The multiplier is 1/(1-0.6)=2.5 $\Delta GDP=2.5\Delta G$ we want $\Delta GDP=100$, therefore $\Delta G=40$
- b) We need autonomous spending to change by 40. A tax cut will increase the consumption component of autonomous spending. But, since only 60 percent of the tax cut will be spent, we need a tax cut of 40/0.6=66.67

Chp3 #4

- a) $Y=C+I+G=C_0+C_1(Y-T)+I+G=C_0+C_1(Y-T_0-t_1Y)+I+G=C_0-C_1(T_0)+I+G+C_1Y-C_1t_1Y$ $Y=\{C_0-C_1(T_0)+I+G\}/[1-C_1(1-t_1)$
- b) The multiplier is $1/[1-C_1(1-t_1)]$
- c) Thgis multiplier is smaller than the one obtained with exogenous taxes.

Chp4 #1

a) In equilibrium with constant Y,Y_{t+1} is the same as Y_t , so we can ignore the time subscripts and solve this model.

b)

t	t+1	t+2
$\Delta C = 0$	$\Delta C = -75$	$\Delta C = -56.25$
$\Delta Z = -100$	$\Delta Z = -75$	$\Delta Z = -56.25$
$\Delta Y = 0$	$\Delta Y = -100$	$\Delta C = -75$

- d) i) The multiplier is 1/(1-0.75)=4, so the fall in G should cause a 400 drop in equilibrium Y, to 200
 - ii) In equilibrium $Y_t = Z_t$, so demand will also be 200
 - iii) $C=50+0.75(Y_t-Y) =50+0.75(200-100)=125$
- e) The change in output in the first five periods is -100 -75 -56.25 -42.19 -31.64