Problem Set II

Chapter 4 \#4

a) In equilibrium, $Y_{t}=Y_{t+1}$, so we can ignore time subscripts:

$$
Y=C+I+G=100+0.5(Y-100)+200+0,25 Y+100=350+0.75 Y=1,400
$$

b) This model has a particular dynamic pattern

	$\Delta \mathrm{C}_{\mathrm{t}}$	$\Delta \mathrm{I}_{\mathrm{t}}$	$\Delta \mathrm{Z}_{\mathrm{t}}$	$\Delta \mathrm{Y}_{\mathrm{t}}$
Period 2	0	0	100	0
Period 3	0	0	0	100
Period 4	50	25	75	0
Period 5	0	0	0	75

Output rises every other period.
c) The geometric series will be

$$
100+75+56,25+\ldots \ldots=100\left(1+0.75+0.75^{2}+\ldots .\right)=100(1 /(1-0.75))=400
$$

d) The multiplier (from part c) is 4 . If investment were exogenous, we would have a multiplier of $1 /(1-0.5)=2$. Thus, making investment endogenous has made the multiplier larger.

Chapter 4 \#5

a) Marginal propensity to consume in model A is $0.25+0.15=0.40$

Marginal propensity to consume in model B is $0.20+0.15+0.05=0.40$
b) In both models, the multiplier is $1 /(1-0.40)=1.66$
c) A policy maker would still need to know which of these models is the better description, since the period-to- period changes in GDP will be different under these two different lag structures. In particular, after a change in autonomous spending, GDP will reach its equilibrium more slowly in model B than in model A

Chapter 5 \#2

a) At 5 percent, $M^{d}=\$ 50,000(0.5-0.05)=\$ 22,500$

At 10 percent, $M^{d}=\$ 50,000(0.5-0.1)=\$ 20,000$
b) $\quad B^{d}=\$$ Wealth $-M^{d}$ In this example wealth is $\$ 25,000$

At 5 percent, $B^{d}=\$ 25,000-\$ 22,500=\$ 2,500$

At 10 percent, $B^{d}=\$ 25,000-\$ 20,000=\$ 5,000$
c) A rise in the interest rate (from 5 percent to 10 percent in our example) causes the demand for money to decrease, and the demand for bonds to increase.

Chapter 5 \#3

Velocity is the ratio of nominal income to money. With money market equilibrium, $M^{d}=M$, so we can substitute for M the money demand equation from problem 2, to obtain : Velocity $=\$ Y /[\$ Y(0.5-i)]=1 /(0.5-i)$. A rise in the interest rate from 5 percent to 10 percent causes the denominator to fall, which causes the whole fraction-velocity- to rise from 2.22 to 2.5

Chapter 5 \#5

a) With $\mathrm{c}=0$, the money supply is $(1 / \theta) H=(1.02) \$ 100$ billion $=\$ 500$ billion
d) $(\$ 5000$ billion $)(0.2-0.8 i)=\$ 500$ billion $\rightarrow i=0.125$ or 12.5 percent
e) The money supply is now $(1 / \theta) H=(1 / 0.2) \$ 150$ billion $=\$ 750$ billion Equilibrium in money market now requires:
$(\$ 5,000$ billion $)(0.2-0.8 i)=\$ 750$ billion $\rightarrow i=0.0625$ or 6.25 percent
f) Equilibrium in the money market now requires:
$(\$ 6,250$ billion $)(0.2-0.8 i)=\$ 500$ billion $\rightarrow i=0.15$ or 15 percent

