PROBLEM SET 5

CHP 8, \#4

The machine should be bought if the present value of profits is greater than the cost of a machine. The formula for the present value, given the depreciation rate of 10% and an interest rate equal to r is given by:
$10,000\left[1+\frac{09}{(l+r)}+\frac{09}{(l+r)^{2}}+\ldots\right.$
a) 70,000: buy
b) 55,000 : buy
c) 46,000 : do not buy

CHP 8, \#5

a) Human wealth is the present discounted value of expected future labor income (after taxes). In this problem:
$V\left(Y_{L t}^{e}-T_{t}^{e}\right)=0.6(\$ 50,000)\left[1+1.05+(1.05)^{2}\right]=\$ 94,575$
b) Summing human wealth and non human wealth gives total wealth of \$19,457.5
c) To consume an equal amount in each of the ten next years, yearly consumption should be : $\$ 19,457.5$
d) Now, human wealth becomes:
$V\left(Y_{L t}^{e}-T_{t}^{e}\right)=0.6(\$ 70,000)+0.6(\$ 50,000)(1.05)$
$+0.6(50,000)(1.05)^{2}=\$ 106,575$
Total human wealth becomes $\$ 206,575$
Consumption each year will be now $\$ 20,657.58$
Current consumption rises by $\$ 1,200$

CHP 8, \#7

Since the salary is frozen in nominal terms, the nominal interest rate should be used. The nominal interest rate is 8 percent. Thus the approximate present discounted value of the 3 -year salary is:
$\$ 40,000\left[1+1 / 1.08+1 /(1.08)^{2}\right]=\$ 111,322$

Alternatively we can find the real salary each year using the real interest rate:
$\$ 40,000+[\$ 40,000 /(1.05)] /(1.03)+\left[\$ 40,000 /(1.05)^{2} /(1.03)^{2}=\$ 111,184\right.$

CHP 9, \#1

A discount bound offers just one payment maturity. The general formula relating discount bond's price ($\& \mathrm{P}$), face value ($\$ \mathrm{~F}$) and yield (i) is :

$$
\$ \mathrm{P}=\$ \mathrm{~F} /(\mathrm{l}+\mathrm{i})^{\mathrm{n}}
$$

a) $\quad 11.8$ percent
b) 5,4 percent
c) $\quad 3.6$ percent
d) Comparing the answers to a and b we see that the price of a bond decreases by $\$ 100$, the yield to maturity drops from 11.8 percent to 5.4 percent.

CHP 9, \#5

The formula for solving the problem is:

$$
\$ Q_{t}=\$ D_{t+1}^{e} /\left(l+i_{1 t}\right)+\$ Q_{t+1}^{e} /\left(l+i_{1 t}\right)
$$

a) \quad With $i(1 t)=0.05, \$ Q(t)=\$ 1,407.62$
b) With $\mathrm{i}(1 \mathrm{t})=0.10, \$ \mathrm{Q}(\mathrm{t})=\$ 1,000.00$

CHP 9, \#6

Use equation (9.10) in text, substituting a constant real interest rate r. The price of the stock will be equal to the present value of all future real dividend payments The first dividend payment has a present value of $\$ 100 /(1+\mathrm{r})$, the second dividend payment has a present value of $\$ 100(1.03) /(1+\mathrm{r})^{2}$ and the third a present value of $\$ 100(1.03)^{2} /(1+\mathrm{r})^{3}$, and so on...
When $r=0.5$, the price of the stock will be $\$ 5,000$
When $\mathrm{r}=0.10$, the price of the stock will be $\$ 1,429$

