Models for Count Data
and Categorical Response Data

Christopher F Baum

Boston College and DIW Berlin

June 2010

Christopher F Baum (BC / DIW) Count & Categorical Data June 2010 1/66




Poisson regression

In statistical analyses, dependent variables may be limited by being
count data, only taking on nonnegative (or only positive) integer
values. This is a natural form for data such as the number of children
per family, the number of jobs an individual has held or the number of
countries in which a company operates manufacturing facilities.

Just as with the other limited dependent variable models we have
discussed, linear regression is not an appropriate estimation technique
for count data, as it fails to take into account the limited number of

possible values of the response variable.
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Poisson and negative binomial regression Poisson regression

The most common technique employed to model count data is Poisson
regression, so named because the error process is assumed to follow
the Poisson distribution. As an aside, you may notice that the insignia
(colophon) of Stata Press appears to be a soldier with a horse. The
Poisson distribution was first applied to data on the number of

Prussian cavalrymen who died after being kicked by a horse, and the
colophon refers to that historical detail.
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Poisson and negative binomial regression Poisson regression

The technique is implemented in Stata by the poisson command,
which has the same format as other estimation commands, where the
depvar is a nonnegative count variable; that is, it may be zero. Itis a
maximum likelihood estimation technique.

In some contexts, the Poisson distribution describes the number of
events that occur in a given time period where its mean p is the
average number of events per period. It has the unusual feature that its
mean equals its variance. Its probability density function is

Pr(Y =y) = (e_;!“y), y=0,1,2,...where e is the base of the natural

logarithms and y! is the factorial of y.

The skewness of the Poisson distribution is (1/,/1:) and the kurtosis is
(83+ 1/u), so that for large p, the distribution approaches the Normal
N(u, 1) with skewness of zero and kurtosis of three.
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Poisson and negative binomial regression Poisson regression

We illustrate count data techniques using a dataset from the U.S.
Medical Expenditure Panel Survey (MEPS) containing information on
the number of doctor visits in 2003 (docvis) for a number of elderly
patients as well as a number of patient characteristics.

private is an indicator of private insurance coverage, supplemental
to Medicare. medicaid indicates the patient is eligible for low-income
Medicaid coverage. act1lim indicates the presence of activity
limitations, while totchr is the number of chronic conditions. educyr
indicates the number of years of education attained.
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Poisson and negative binomial regression Poisson regression

summarize docvis private medicaid age age2 educyr actlim totchr

Variable Obs Mean Std. Dev. Min Max
docvis 3677 ©6.822682 7.394937 0 144
private 3677 .4966005 .5000564 0 1
medicaid 3677 .166712 .3727692 0 1
age 3677 74.24476 ©6.376638 65 90

age?2 3677 5552.936 958.9996 4225 8100
educyr 3677 11.18031 3.827676 0 17
actlim 3677 .333152 .4714045 0 1
totchr 3677 1.843351 1.350026 0 8
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Poisson and negative binomial regression Poisson regression

The default parameterization of the Poisson model, in which the
conditional mean of observation i depends on a number of covariates,
IS the exponential mean:

pi=exp(xi3), i=1,..,.N

This model may be estimated by maximum likelihood (ML), where the
parameter estimates are the solutions to the first order conditions

N
> (vi —exp(xiB))x; = 0
=1

The likelihood function is globally concave and the estimation
converges rapidly.
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Poisson and negative binomial regression

Poisson regression

poisson docvis private medicaid age age2 educyr actlim totchr, nolog

Poisson regression Number of obs = 3677

LR chi2 (7) = 4477.98

Prob > chi?2 0.0000

Log likelihood = -15019.64 Pseudo R2 0.1297

docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

private .1422324 .0143311 9.92 0.000 .114144 .1703208

medicaid .0970005 .0189307 5.12 0.000 .0598969 .134104

age .2936722 .0259563 11.31 0.000 .24277988 .3445457

age2 -.0019311 .0001724 -11.20 0.000 .00226091 .0015931

educyr .0295562 .001882 15.70 0.000 .0258676 .0332449

actlim .1864213 .014566 12.80 0.000 .1578726 .2149701

totchr .2483898 .0046447 53.48 0.000 .2392864 .2574933

_cons -10.18221 .9720115 -10.48 0.000 -12.08732 -8.277101
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Poisson and negative binomial regression

Poisson regression

If the model is correctly specified, but the distribution of errors is not
Poisson (as we will discuss next) one approach is to estimate the
model with pseudo-ML, generating robust standard errors:

poisson docvis private medicaid age age2 educyr actlim totchr, ///
> vce (robust) nolog
Poisson regression Number of obs = 3677
Wald chi2 (7) 720.43
Prob > chi?2 = 0.0000
Log pseudolikelihood = -15019.64 Pseudo R2 = 0.1297
Robust
docvis Coef. Std. Err. Z P>|z| [95% Conf. Interval]
private .1422324 .036356 3.91 0.000 .070976 .2134889
medicaid .0970005 .0568264 1.71 0.088 -.0143773 .2083783
age .2936722 .0629776 4.66 0.000 .1702383 .4171061
age2 -.0019311 .0004166 -4.64 0.000 -.0027475 -.0011147
educyr .0295562 .0048454 6.10 0.000 .0200594 .039053
actlim .1864213 .0396569 4.70 0.000 .1086953 .2641474
totchr .2483898 .0125786 19.75 0.000 .2237361 .2730435
_cons -10.18221 2.369212 -4.30 0.000 -14.82578 -5.538638
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Poisson and negative binomial regression Poisson regression

Although all parameters (except medicaid) are still highly significant,
the standard errors and z-statistics are much smaller, indicating that
the errors may not be distributed as Poisson.

The coefficients may be interpreted as semielasticities. A coefficient of
0.029 on educyr indicates that a patient with one more year of
education is expected to have 2.9% more doctor visits.
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Poisson and negative binomial regression Poisson regression

The average marginal effects (AMEs) may be calculated with
margins.

margins, dydx(_all)

Average marginal effects Number of obs = 3677
Model VCE : Robust
Expression : Predicted number of events, predict ()
dy/dx w.r.t. : l.private 1l.medicaid age age2 educyr l.actlim totchr
Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]
l.private .9701906 .2473149 3.92 0.000 .4854622 1.454919
1.medicaid .6830664 .4153252 1.64 0.100 -.130956 1.497089
age 2.003632 .4303207 4.66 0.000 1.160219 2.847045
age?2 -.0131753 .0028473 -4.63 0.000 -.0187559 —-.0075947
educyr .2016526 .0337805 5.97 0.000 .1354441 .2678612
l.actlim 1.295942 .2850588 4.55 0.000 .7372367 1.854647
totchr 1.694685 .0908883 18.65 0.000 1.516547 1.872823

Note: dy/dx for factor levels is the discrete change from the base level.

An individual with one more year of education is predicted to have 0.2
more visits, other things equal.
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Negative binormial regressior
Negative binomial regression

A limitation of the Poisson distribution is the equality of its mean and
variance. We may often observe count data processes where this
equality is not reasonable: in particular, where the conditional variance
Is larger than the conditional mean. This is termed overdispersion, and
its presence renders the assumption of a Poisson distribution for the
error process untenable. It is particularly likely to occur in the case of
unobserved heterogeneity.

In this circumstance, a reasonable alternative is negative binomial
regression. This model allows the variance to differ from the mean. In
its Stata implementation as nbreg, a Poisson model is also estimated
and a test of overdispersion is provided. If the dispersion parameter is
zero, it is appropriate to fit a Poisson regression model.
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Poisson and negative binomial regression Negative binomial regression

The negative binomial (NB) distribution is a two-parameter distribution.
For positive integer n, it is the distribution of the number of failures that
occur in a sequence of trials before n successes have occurred, where
the probability of success in each trial is p. The distribution is defined
for any positive n. The negative binomial distribution is a mixture of the
Poisson distribution and the Gamma distribution, or generalized
factorial function.

Unlike the Poisson, which is fully characterized by its mean u, the NB
distribution is a function of both 1 and «. Its mean is still u, but its
conditional variance is (1 + au). As is evident, as a — 0, the
distribution becomes the Poisson distribution.
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Poisson and negative binomial regression

We reestimate the model with Stata’s nbreg:

Negative binomial regression

nbreg docvis private medicaid age age2 educyr actlim totchr, nolog

Negative binomial regression Number of obs = 3677
LR chi2 (7) = 773.44
Dispersion = mean Prob > chi?2 = 0.0000
Log likelihood -10589.339 Pseudo R2 = 0.0352
docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]
private .1640928 .0332186 4.94 0.000 .0989856 .2292001
medicaid .100337 .0454209 2.21 0.027 .0113137 .1893603
age .2941294 .0601588 4.89 0.000 .1762203 .4120384
age?2 -.0019282 .0004004 -4.82 0.000 -.0027129 -.0011434
educyr .0286947 .0042241 6.79 0.000 .0204157 .0369737
actlim .1895376 .0347601 5.45 0.000 .121409 .2576662
totchr .2776441 .0121463 22 .86 0.000 .2538378 .3014505
__cons -10.29749 2.247436 -4.58 0.000 -14.70238 -5.892595
/1lnalpha —-.4452773 .0306758 -.5054007 -.3851539
alpha .6406466 .0196523 .6032638 .6803459
Likelihood-ratio test of alpha=0: chibar2(01) 8860.60 Prob>=chibar2 = 0.000
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Poisson and negative binomial regression Negative binomial regression

The likelihood ratio test of a = 0 strongly rejects the null hypothesis
that the errors do not exhibit overdispersion. Thus, the Poisson
regression model is rejected in favor of its generalized version, the NB
regression model. The coefficients are similar between the two

models, and the NB estimates are comparable to those from poisson
with robust standard errors.
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Extended count data models

In many social science datasets, count data may include a large
number of zero values. If the data were dichotomized into zero and
non-zero subsets so that a probit or logit model could be fit, the
unconditional probability of zero would be sizable: larger than that
arising in a Poisson or negative binomial distribution. For instance, we
might have a random sample from the population in which the number
of postgraduate degrees is recorded. For many individuals, the count
will be zero. For many professionals, it will be one, and for most
academics, it will be two (or more).
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Extended count data models zero-inflated models

To model data with these characteristics, we may employ the
zero-inflated variants of Poisson regression (zip) or negative binomial
regression (zinb). In these commands, there is an auxiliary logit
model specified inthe inflate ()) option that determines whether
the observed count is zero. This model could contain only a constant
or additional covariates.

With the vuong option, a test of the ZIP versus standard Poisson
regression model is computed. For zinb, the zip option computes a
test of the zinb model versus the zero-inflated Poisson model which is
nested within.
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Extended count data models zero-inflated models

To illustrate these models, we consider a different dependent variable:
the number of emergency room (ER) visits, which is small for most
patients, with 80% of the sample recording no ER visits in 2003. The
sample mean of er is 0.2774. We could choose to ignore the high
prevalence of zeros and fit a nbreg model:

. nbreg er age actlim totchr, nolog

Negative binomial regression Number of obs = 3677
LR chi2 (3) - 225.15

Dispersion = mean Prob > chi?2 = 0.0000
Log likelihood = —-2314.4927 Pseudo R2 = 0.0464
er Coef. std. Err. z P>|z]| [95% Conf. Interval]

age .0088528 .0061341 1.44 0.149 -.0031697 .0208754

actlim .6859572 .0848127 8.09 0.000 .5197274 .8521869
totchr .2514885 .0292559 8.60 0.000 .1941481 .308829

_cons -2.799848 .4593974 -6.09 0.000 -3.700251 -1.89944¢6
/1lnalpha .4464685 .1091535 .2325315 .6604055
alpha 1.562783 .1705834 1.26179 1.935577
Likelihood-ratio test of alpha=0: chibar2 (01) = 237.98 Prob>=chibar?2 = 0.000
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Extended count data models zero-inflated models

The likelinood ratio test rejects the Poisson distribution. But should
these data be treated as zero-inflated? To use zinb, we must specify
the inflate () option, listing the variable or variables that are
expected to influence whether the count is zero or not.
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Extended count data models zero-inflated models

zinb er age actlim totchr, inflate(totchr) wvuong nolog

Zero—inflated negative binomial regression Number of obs = 3677
Nonzero obs = 710
Zero obs = 2967
Inflation model = logit LR chi?2 (3) 98.06
Log likelihood -2310.65 Prob > chi?2 0.0000
Coef. Std. Err. z P>|z| [95% Conf. Interval]
er

age .0076908 .006134 1.25 0.210 -.0043317 .0197133
actlim .6761249 .0849168 7.96 0.000 .509691 .8425588
totchr .1600338 .0461155 3.47 0.001 .0696492 .2504185
_cons 2.333669 .501506 -4.65 0.000 -3.316603 -1.350736

inflate
totchr .8182987 .3673752 -2.23 0.026 -1.538341 -.0982565
_cons .3149276 .4843635 -0.65 0.516 -1.264263 .6344074
/1lnalpha .2305631 .2038915 1.13 0.258 -.169057 .6301832
alpha 1.259309 .2567625 .8444608 1.877955
Vuong test of zinb vs. standard negative binomial: =z 1.35 Pr>z = 0.0885
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Extended count data models zero-inflated models

The results show that t ot chr is significant in the logit estimation of er
as zero or nonzero. It is also significant, along with act1im, in the
estimated equation.

The Vuong test weakly rejects the standard negative binomial model in
favor of the zero-inflated NB model.
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Extended count data models zero-truncated models

A second variant of the count data model appears when we only
record positive integer values for the response variable, although zero
values appear in the population. This is a form of truncation, as
discussed earlier. This could occur, for example, if we collected data
from an elementary school from each pupil on how many children
under 18 were in their family. This would only capture information from
households containing children: a subset of households in the
population.

To make appropriate inferences on the population, we must take into
account the truncated nature of the data. In Stata, this technique is
implemented as zero-truncated Poisson regression (ztp) or negative
binomial regression (ztnb).
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Extended count data models zero-truncated models

We illustrate by fitting a zero-truncated Poisson regression model on
the nonzero observations of er:
ztp er age actlim totchr if er>0, nolog
Zero—truncated Poilisson regression Number of obs = 710
LR chi2 (3) - 196.31
Prob > chi?2 = 0.0000
Log likelihood = -642.72434 Pseudo R2 = 0.1325
er Coef. Std. Err. z P>|z| [95% Conf. Interval]
age .0013535 .0082979 0.16 0.870 -.01491 .0176171
actlim .2402127 .1218004 1.97 0.049 .0014884 .4789371
totchr .1370198 .0384868 3.56 0.000 .061587 .2124525
_cons -.8600034 .6309487 -1.36 0.173 -2.09664 .3766333
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Multinomial logit models

Categorical data often fall into one of several mutually exclusive
categories: e.g., different ways of commuting to work, or different
categories of self-assessed health status. In the latter case, where the
categories are ordered, we may utilize ordered probit or ordered logit
techniques, as we have discussed. But in the case where the choices
are underordered, we have multinomial data, with the most common
technique being that of multinomial logit.

The outcome, y;, is one of m alternatives. We set y; = J if the outcome
is the ji alternative. The probability that individual i chooses
alternative J, conditional on regressors x;, is:

o =Pr(y; =J) = F(X;,0), j=1,....m, i=1,...,N

with different functional forms F;(-) corresponding to different
multinomial models.
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Multinomial logit models

Only m — 1 of the probabilities can be freely specified, as they must
sum to unity. Multinomial models require a normalization. Their
parameters are generally not directly interpretable: for instance, a
positive coefficient on x, does not imply that an increase in x
iIncreases the probability that the alternative is selected.

Instead, marginal effects are computed for individual /, alternative j,
and regressor K:

- OPr(yi =)  OFj(x;,0)
MEUK B 8x,-k B 8X,’k

For each regressor, there will be m marginal effects corresponding to
the m probabilities, and the marginal effects must sum to zero. As with
other nonlinear models, the marginal effects vary with the point at
which they are evaluated, x;.
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Multinomial logit models Regressors for multinomial logit

Some regressors, such as gender, do not vary across alternatives and
are termed case-specific regressors. Other regressors, such as price
or time, may vary across alternatives and are termed
alternative-specific regressors. For instance, we may record the price
charged by different vendors from which an individual could buy the
good, or the time required for each commuting mode.

The Stata commands used to estimate multinomial logit models vary
according to the form of regressors. In the simplest case, all
regressors are case-specific, and we may use the mlogit command.
In more complicated specifications, some or all of the regressors are
alternative-specific, and we could use the asclogit command. Other
choices exist, including nested logit (n1ogit) and stereotype logit
(slogit).
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Multinomial logit models multinomial logit with case-specific regressors

We illustrate with a dataset on individuals choosing one of four fishing
modes: from the beach, the pier, a private boat or a charter boat.
Selected characteristics of the dataset are:

. summarize mode price crate dx income, sep(0)

Variable Obs Mean Std. Dev. Min Max
mode 1182 3.005076 .9936162 1 4
price 1182 52.08197 53.82997 1.29 666.11
crate 1182 .3893684 .5605964 .0002 2.3101
dbeach 1182 .1133672 .3171753 0 1
dpier 1182 .1505922 .3578023 0 1
dprivate 1182 .3536379 .4783008 0 1
dcharter 1182 .3824027 .4861799 0 1
income 1182 4.099337 2.4619064 .4166667 12.5

mode IS the choice of fishing mode; the d variables are indicators of
each choice. price and crate are the price and catch rate for the
chosen mode. income is monthly income in thousands of USD.
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Multinomial logit models multinomial logit with case-specific regressors

We may examine how income varies across fishing mode:

. table mode, contents (N income mean income sd i1ncome)

Fishing
mode N (income) mean (income) sd (income)
beach 134 4.051617 2.50542
pier 178 3.387172 2.340324
private 418 4.654107 2.777898
charter 452 3.880899 2.050029

We see that the highest-income anglers use a private boat, and that
the lowest-income individuals fish from the pier.
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Multinomial logit models multinomial logit with case-specific regressors

We now fit a multinomial logit, using the only case-specific regressor,
and mode 1 (beach) as the base outcome:

mlogit mode income, baseoutcome (l) nolog
Multinomial logistic regression Number of obs = 1182
LR chi2 (3) = 41.14
Prob > chi?2 - 0.0000
Log likelihood = -1477.1506 Pseudo R2 0.0137
mode Coef. Std. Err. z P>|z| [95% Conf. Interval]
beach (base outcome)
pier
income -.1434029 .0532884 -2.69 0.007 —.2478463 -.0389595
_cons .8141503 .228632 3.56 0.000 .3660399 1.262261
private
income .0919064 .0406637 2.26 0.024 .0122069 .1716058
_cons .7389208 .1967309 3.76 0.000 .3533352 1.124506
charter
income -.0316399 .0418463 -0.76 0.450 -.1136571 .0503774
_cons 1.341291 .1945167 6.90 0.000 .9600457 1.722537
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Multinomial logit models multinomial logit with case-specific regressors

Although the overall fit (as judged by Pseudo R2) is poor, the x? test
against the null model is highly significant. We test whether income Is
an important determinant with a joint (Wald) test on the three
coefficients:

. test income

(1) [beach]income = 0

( 2) [pier]income = 0

( 3) [private]income = 0
( 4) [charter]income = 0

Constraint 1 dropped

chi2 ( 3)
Prob > chi?2

37.70
0.0000
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Multinomial logit models multinomial logit with case-specific regressors

The multinomial logit model is equivalent to a series of pairwise logit
models comparing each category with the base category. A positive
coefficient thus indicates that as xj increases, we are more likely to

choose alternative j than the base category, number 1. The

coefficients may also be expressed as proportional odds or
relative-risk ratios,

Pr(y; = J)
Pr(y; = 1)

= exp(Xx;5;)
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Multinomial logit models multinomial logit with case-specific regressors

mlogit mode income, rr baseoutcome(l) nolog

Multinomial logistic regression Number of obs = 1182
LR chi2 (3) = 41.14
Prob > chi?2 = 0.0000
Log likelihood = -1477.1506 Pseudo R2 = 0.0137
mode RRR Std. Err. z P>|z]| [95% Conf. Interval]
beach (base outcome)
pler
income .8664049 .0461693 -2.69 0.007 .7804799 .9617896
private
income 1.096262 .0445781 2.26 0.024 1.012282 1.18721
charter
income .9688554 .040543 -0.76 0.450 .8925639 1.051668
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Multinomial logit models multinomial logit with case-specific regressors

A one thousand dollar increase in income leads to relative odds of
choosing to fish from a pier (rather than the beach) of 0.866 times what
they were at the original level of income, so the relative odds (pier vs.
beach) have declined.

We may also create predictions for each alternative and individual.
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Multinomial logit models multinomial logit with case-specific regressors

. predict pmll pml2 pml3 pmlé4, pr

. summarilize pmlx*

Variable Obs Mean Std. Dev. Min Max
pmll 1182 .1133672 .0036716 .0947395 .1153659
pml2 1182 .1505922 .0444575 .0356142 .2342903
pml3 1182 .3536379 .0797714 .2396973 .625706
pml4 1182 .3824027 .0346281 .2439403 .4158273

These predicted values have the same means as the observed data,
by construction. As the predicted values for beach fishing (pm11) vary
only between 0.094 and 0.115, the model using only income performs
very poorly. Ideally, it would produce predictions of 1.0 for the 134
iIndividuals that chose beach fishing, and 0 for the rest.
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Multinomial logit models multinomial logit with case-specific regressors

We may calculate marginal effects:

8,0,'1'
(‘9x,-

= p;i(B; — Bi)

where (3, is a probability-weighted average of the estimated 3
coefficients. The marginal effects vary with the point in regressor
space as pj; varies with x;.

The signs of the coefficients do not give the signs of the marginal
effects, as the sign of the marginal effect is positive if 5; > 3.
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Multinomial logit models multinomial logit with case-specific regressors

. margins, predict (pr outcome (3)) dydx(income)
Average marginal effects Number of obs = 1182
Model VCE : OIM
Expression : Pr (mode==private), predict (pr outcome (3))
dy/dx w.r.t. : income
Delta—-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]
income .0317562 .0052589 6.04 0.000 .021449 .0420633

A one-unit change (thousand-dollar increase) in income increases the
probability of choosing to fish from a private boat by 0.032, or 3.2%.
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multinomial logit with alternative-specific regressors
Alternative-specific multinomial logit

When alternative-specific data are available, they must be transformed
into the long form by reshape so that each individual has one record
per alternative. The asclogit command can then be employed. The
case () option is used to identify the individual, alternatives ()
specifies the choices and casevars () may be used to give a varlist
of case-specific regressors.

In the long form fishing data, d indicates the mode choice, p indicates
the choice-specific price and g gives the choice-specific catch rate. We
also use the case-specific variable income.
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Multinomial logit models multinomial logit with alternative-specific regressors

asclogit d p g, case(id) alternatives (fishmode) ///

> casevars (income) basealternative (beach) nolog
Alternative-specific conditional logit Number of obs = 4728
Case variable: id Number of cases = 1182
Alternative variable: fishmode Alts per case: min = 4
avg = 4.0
max = 4
Wald chiZ2 (5) = 252.98
Log likelihood = -1215.1376 Prob > chi? = 0.0000
d Coef. Std. Err. z P>|z| [95% Conf. Interval]

fishmode

P -.0251166 .0017317 -14.50 0.000 -.0285106 -.0217225
q .357782 .1097733 3.26 0.001 .1426302 .5729337

Christopher F Baum (BC / DIW) Count & Categorical Data June 2010 38 /66




Multinomial logit models multinomial logit with alternative-specific regressors

beach (base alternative)
charter
income -.0332917 .0503409 -0.66 .508 -.131958 .0653745
_cons 1.694366 .2240506 7.56 .000 1.255235 2.133497
pler
income -.1275771 .0506395 -2.52 .012 -.2268288 -.0283255
_cons .7779593 .2204939 3.53 .000 .3457992 1.210119
private
income .0894398 .0500671 1.79 .074 -.0086898 .1875694
_cons .5272788 .2227927 2.37 .018 .0906132 .9639444
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Multinomial logit models multinomial logit with alternative-specific regressors

In the alternative-specific regression, we may readily interpret the
coefficients for the r" regressor:

opjj :{ pi(1 —py)Br j=k
OX ik —PiiPik Br J £k

It 3, > 0, then the own-effect is positive, and the cross-effect is
negative. A positive coefficent indicates that category j is chosen more
frequently and other categories are chosen less frequently, and vice
versa.

In our example, the negative price coefficient (p) indicates that an
iIncrease in the price of choice j causes it to be chosen less often. The
positive coefficient on the catch rate, g, indicates that an increase
causes choice j to be choisen more often. An increase in income
reduces the probability of charter boat fishing and pier fishing, and
iIncreases the probability of private boat fishing, relative to beach
fishing.
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Multinomial logit models Nested logit

Another alternative specification of this model could be made
employing the nested logit (in Stata, nl1ogit) technique. In this
framework, we assume that individuals make a sequence of choices.
For instance, they choose a fishing mode of shore or boat, perhaps
depending how much they like being out on the water. After choosing a
mode, they then choose among the alternatives in that branch of the
decision tree. For instance, for fishing from shore, they then choose
beach or pier. This model may be relevant for a number of outcomes
that can be considered as sequential choices. We do not discuss it
further.
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Discriminant analysis

Limited-dependent-variable techniques such as binomial logit or probit
may be used to model decisions, such as a lender’s willingness to
extend credit to an applicant or a consumer’s willingness to purchase a
product. Another body of statistical methodology that may be used to
analyze data of that nature is discriminant analysis, also known in
some contexts as classification.

Discriminant analysis describes the difference between groups in order
to exploit those differences in allocating of classifying observations of
unknown group membership to the groups.
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Dlscriminant analysis

These techniques, as implemented in Stata by subcommands of the
discrim command, include linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), logistic discriminant analysis
and k-nearest-neighbor discriminant analysis (KNN). These
techniqgues may be both predictive and descriptive, depending on
whether the researcher is seeking to classify unknown observations or
to merely analyze the determinants of group membership.

As an example, consider a dataset in which 12 riding-lawnmower
owners and 12 nonowners appear, with their family income and lot
size. Using predictive analysis, do these variables adequately classity
observations into owner/nonowner status? We apply linear
discriminant analysis (LDA) with discrim 1lda:

Christopher F Baum (BC / DIW) Count & Categorical Data June 2010 43/ 66




Dlscriminant analysis

discrim lda lotsize income,

Linear discriminant analysis
Resubstitution classification summary

group (owner)

Key
Number
Percent
Classified
True owner nonowner owner Total
nonowner 10 2 12
83.33 16.067 100.00
owner 1 11 12
8.33 91.67 100.00
Total 11 13 24
45.83 54.17 100.00
Priors 0.5000 0.5000
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Dlscriminant analysis

This classification table shows that 10 of the nonowners and 11 of the
owners are correctly classified, with three being misclassified. A
leave-one-out analysis provides a more robust approach, using a sort
of jackknife strategy to build the LDA model, and using it to classify
each omitted observation in turn.
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Dlscriminant analysis
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Dlscriminant analysis

estat classtable, loo nopriors

Leave—-one—-out classification table

Key
Number
Percent
LOO Classified
True owner nonowner owner Total
nonowner 9 3 12
75.00 25.00 100.00
owner 2 10 12
16.067 83.33 100.00
Total 11 13 24
45.83 54 .17 100.00

With leave-one-out (1o0) classification, we see that 5 (rather than 3) of
the 24 observations are misclassified.
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Dlscriminant analysis

We may use predictive discriminant analysis to explore how the groups
are separated. The postestimation command estat loadings
allows us to view the discriminant function coefficients, or loadings.

. estat loadings, unstandardized

Canonical discriminant function coefficients

functionl

lotsize .3795228
income .04844068
_cons -10.50754

These coefficients may be expressed as the equation

lotsize = —0.1277income + 27.6862

which provides the separating line between riding-lawnmower owners
and nonowners.
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Dlscriminant analysis

The difference between the discrim techniques involves the choice
of density function for each group. The LDA technique assumes that
the groups are multivariate normal with equal covariance matrices.
The QDA technique assumes that they are multivariate normal with
potentially unequal covariance matrices. The k' nearest neighbor
(KNN) technique is a nonparametric alternative, similar to kernel
density estimation.
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Linear discriminant analysis
Linear discriminant analysis

Linear discriminant analysis (LDA) is based on seeking the linear
combination of the discriminating variables that provides maximal
separation between the groups. It is based on an eigensystem analysis
of matrices formed from the between-group and within-group matrices
of sums of squares and cross products. The first linear discriminant
function is the eigenvector associated with the largest eigenvalue.
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Dlscriminant analysis Linear discriminant analysis

We illustrate with the dataset twogroup from the Stata website which
contains 30 observations on {x, y} pairs. We fit the LDA and retrieve
the unstandardized coefficients, which may then be expressed in
standard y = mx + b form, as illustrated in the following figure.

. discrim lda y x, group (group) notable
. estat loadings, unstandardized

Canonical discriminant function coefficients

functionl

% .0862145

X .0994392
_cons -6.35128
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Dlscriminant analysis Linear discriminant analysis
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Dlscriminant analysis Linear discriminant analysis

Another approach, predictive LDA, is based on the assumption that the
observations are multivariate normal with equal covariance matrices,
but different locations, or means, for different groups. LDA then uses
the Mahalanobis distance for classification, grouping by observations
by their smallest Mahalanobis distance from the group mean. This
approach can be viewed as a transformation of the data, and then
calculation of Euclidian distance measures. Group membership is
based on Euclidian distance in the transformed space.

To illustrate, we use dataset threegroup from the Stata website. This
dataset contains 300 {y, x} pairs, 100 from each of three groups. A
scatterplot of the raw data shows significant overlap between the
groups’ observations.
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Dlscriminant analysis Linear discriminant analysis
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Dlscriminant analysis Linear discriminant analysis

Predictive LDA transforms the data into Mahalanobis distances:

Mahalanobis-transformed data
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Dlscriminant analysis Linear discriminant analysis

In the transformed space, the groups are more distinct.

discrim lda y X, group(group)

Linear discriminant analysis
Resubstitution classification summary

Key
Number
Percent
Classified

True group 1 2 3 Total

1 93 4 3 100

93.00 4.00 3.00 100.00

2 3 97 0 100

3.00 97.00 0.00 100.00

3 3 0 97 100

3.00 0.00 97.00 100.00

Total 99 101 100 300

33.00 33.67 33.33 100.00

Priors 0.3333 0.3333 0.3333
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Dlscriminant analysis Linear discriminant analysis

Classification was quite successful, with 93, 97 and 97 observations
correctly classified into groups 1, 2 and 3, respectively. We could also
examine the misclassified observations’ characteristics with

estat list, varlist misclassifed and use several options of
the predict command to generate additional insight into the results
of this predictive LDA analysis.
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kth nearest neighbor discriminant analysis
k" nearest neighbor discriminant analysis

k™" nearest neighbor (KNN) discriminant analysis, unlike LDA or QDA,
IS @ nonparametric technique that is based on the k nearest neighbors
of each observation. We illustrate with a dataset, head, from the Stata
website produced to study a possible link between American football
helmet design and neck injuries. The three groups of 30 observations
iInclude high school football players, college football players, and
nonfootball players. The discriminating variables we employ include
wdim, head width; circum, head circumference; and fbeye,
front-to-back measurement at eye level.
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Dlscriminant analysis

kfh

We first produce a LDA for these variables:

discrim lda wdim circum fbeye,

Linear discriminant analysis
Resubstitution classification summary

group (group)

nearest neighbor discriminant analysis

Key
Number
Percent
Classified
True group high school college nonplayer Total
high school 17 6 7 30
56.67 20.00 23.33 100.00
college 6 17 7 30
20.00 56.67 23.33 100.00
nonplayer 4 12 14 30
13.33 40.00 46.67 100.00
Total 277 35 28 90
30.00 38.89 31.11 100.00
Priors 0.3333 0.3333 0.3333
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kth nearest neighbor discriminant analysis
We now produce a KNN analysis, using three nearest neighbors in the

k () option:

discrim knn wdim circum fbeye, group(group) k(3) mahalanobis

Kth-nearest—-neighbor discriminant analysis
Resubstitution classification summary

|

Key |

Number |

Percent |

| Classified
True group | high school college nonplayer Unclassified | Total
high school | 17 4 3 6 | 30
| 56.67 13.33 10.00 20.00 | 100.00
| |
college | 3 13 7 7 | 30
| 10.00 43,33 23.33 23.33 | 100.00
| |
nonplayer | 4 5 19 2 | 30
| 13.33 16.67 63.33 6.67 | 100.00
Total | 24 22 29 15 | 90
| 26.67 24.44 32.22 16.67 | 100.00
| |
Priors | 0.3333 0.3333 0.3333
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Dlscriminant analysis kth nearest neighbor discriminant analysis

The results will be sensitive to the choice of k, the number of nearest
neighbors to be considered. The “Unclassified" observations are those
for which the method resulted in ties. The ties () option may be used
to break ties by one of several methods. Using the ties (nearest)
option results in all observations being classified.
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DIESIMIENEUENSE 7 nearest neighbor discriminant analysis

discrim knn wdim circum fbeye, group(group) k(3) mahalanobis ties (nearest)

Kth-nearest—-neighbor discriminant analysis
Resubstitution classification summary

|
[ wey |
1 ]
| |
| Number |
| Percent |
L 1
| Classified
True group | high school college nonplayer | Total
high school | 23 4 3 | 30
| 76.67 13.33 10.00 | 100.00
| |
college | 3 20 7 | 30
| 10.00 66.67 23.33 | 100.00
| |
nonplayer | 4 5 21 | 30
| 13.33 16.67 70.00 | 100.00
Total | 30 29 31 | 90
| 33.33 32.22 34.44 | 100.00
| |
Priors | 0.3333 0.3333 0.3333 |
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Dlscriminant analysis kth nearest neighbor discriminant analysis

We see that the KNN classification with this option of handling tied
scores is considerably more successful than LDA. LDA correctly
classified 17, 17 and 14 of the observations in each 30-person group.
The KNN analysis correctly classified 23, 20 and 21 observations.

This discussion of discriminant analysis only scratches the surface of
Stata’s capabilities in multivariate statistics. Other available techniques
include correspondence analysis (help ca), cluster analysis (help
cluster), factor analysis (help factor), multivariate analysis of
variance (help manova), multiple classification analysis (help mca),
multidimensional scaling (help mds), and principal component
analysis (help pca).
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Case study: Analyzing health status

Case study: Analyzing health status

use and describe the mus18dataH.dta dataset:

use musl8dataH, clear

describe

tabulate the health status variable:
tabulate hlthstat

summarize the explanatory variables:

summarize hlthstat age linc ndisease num

evaluate how (log) income differs across health status: tabie
hlthstat, contents (N linc mean linc p50 linc)
Are individuals from wealthier families more healthy?

evaluate how age differs across health status:
table hlthstat, contents (N age mean age p50 age)
Are younger individuals more healthy?
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Case study: Analyzing health status

Case study: Analyzing health status

@ analyze as a multinomial logit, using poor_fair as the base
outcome:

mlogit hlthstat age linc ndisease num, nolog base (1)

@ perform Wald tests for each of the explanatory variables:
test age (etc.)

@ estimate the model in terms of proportional odds or relative risk
ratios:

mlogit hlthstat age linc ndisease num, nolog base(l) rr

@ calculate marginal effects for each outcome:
margins, predict (pr outcome (1)) dydx(_all) (etc.)
Which of the explanatory factors have the greatest effect for each
outcome?
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Case study: Analyzing health status

Case study: Analyzing health status

@ fit the model as an ordered logistic regression, taking the ordered
nature of hlthstat into account:

ologit hlthstat age linc ndisease num, nolog

@ calculate marginal effects for each outcome from the ologit:

margins, predict (pr outcome (1)) dydx(_all) (etc.)
Which of the explanatory factors have the greatest effect for each

outcome?

@ Compare and contrast the marginal effects from the m1ogit and
ologit forms of the model. Which do you prefer? Why?
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