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Problem 13.5 (10 points)

(i) (10 pts) No, we cannot include age as an explanatory variable in the
original model. Each person in the panel data set is exactly two years
older on January 31, 1992 than on January 31, 1990. This means that
∆agei = 2 for all i. But the equation we would estimate is of the
form ∆savingi = δ0 + β1∆agei + ε, where δ0 is the coefficient the year
dummy for 1992 in the original model. As we know, when we have an
intercept in the model we cannot include an explanatory variable that
is constant across i; this violates Assumption MLR.3. Intuitively, since
age changes by the same amount for everyone, we cannot distinguish
the effect of age from the aggregate time effect.

Problem 13.6 (25 points)

(i) (10 points) Let FL be a binary variable equal to one if a person lives
in Florida, and zero otherwise. Let y90 be a year dummy variable
for 1990. Then, from equation (13.10), we have the linear probability
model

arrest = β0 + δ0y90 + β1FL + δ1y90 ∗ FL

The effect of the law is measured by δ1, which is the change in the
probability of drunk driving arrest due to the new law in Florida. In-
cluding y90 allows for aggregate trends in drunk driving arrests that
would affect both states; including FL allows for systematic differences
between Florida and Georgia in either drunk driving behavior or law
enforcement.
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(ii) (5 points) It could be that the populations of drivers in the two states
change in different ways over time. For example, age, race, or gender
distributions may have changed. The levels of education across the
two states may have changed. As these factors might affect whether
someone is arrested for drunk driving, it could be important to control
for them. At a minimum, there is the possibility of obtaining a more
precise estimator of δ1 by reducing the error variance. Essentially, any
explanatory variable that affects arrest can be used for this purpose.
(See Section 6.3 for discussion.)

(iii) (10 points) Now the dependent variable is:

arrestit = #drivers arrested in county i and year t / # drivers licenced
in county i and year t

so that the data structure now has one observation per county and year
rather than one observation per driver. You could use the individual
fixed effects estimator (or the first differences estimator) on this model,
but if you did so, you could not include a FL dummy or interaction,
as it would be collinear with the FL-county observations. Thus you
might want to stick with pooled OLS and include a FL dummy, a 1990
dummy and the interaction that allows you to estimate the difference-
in-differences model.

Problem C13.1 (25 points)

(i) (5 points) The F statistic (with 4 and 1,111 df) is about 1.16 and p-
value ≈ .328, which shows that the living environment variables are
jointly insignificant.

(ii) (5 points) The F statistic (with 3 and 1,111 df) is about 3.01 and p-
value ≈ .029, and so the region dummy variables are jointly significant
at the 5% level.

(iii) (10 points) After obtaining the OLS residuals, û , from estimating the
model in Table 13.1, we run the regression on y74, y76, , y84 using all
1,129 observations. The null hypothesis of homoskedasticity is H0 :
γ1 = 0, γ2 = 0, , γ6 = 0. So we just use the usual F statistic for
joint significance of the year dummies. The R-squared is about .0153
and F ≈ 2.90; with 6 and 1,122 df, the p-value is about .0082. So
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there is evidence of heteroskedasticity that is a function of time at the
1% significance level. This suggests that, at a minimum, we should
compute heteroskedasticity-robust standard errors, t statistics, and F
statistics. We could also use weighted least squares (although the form
of heteroskedasticity used here may not be sufficient; it does not depend
on educ, age, and so on).

(iv) (5 points) Adding y74 · educ, y84 · educ allows the relationship between
fertility and education to be different in each year; remember, the co-
efficient on the interaction gets added to the coefficient on educ to get
the slope for the appropriate year. When these interaction terms are
added to the equation, R2 ≈.137. The F statistic for joint significance
(with 6 and 1,105 df) is about 1.48 with p-value≈.18. Thus, the inter-
actions are not jointly significant at even the 0.1 level. This is a bit
misleading, however. An abbreviated equation (which just shows the
coefficients on the terms involving educ) is

k̂ids = −8.48− .023educ+ ...− .056y74 · educ− .092y76 · educ

−.152y78 · educ− .098y80 · educ− .139y82 · educ− .176y84 · educ.

Three of the interaction terms, y78 · educ, y82 · educ, and y84 · educ are
statistically significant at the 0.05 level against a two-sided alternative,
with the p-value on the latter being about .012. The coefficients are
large in magnitude as well. The coefficient on educ which is for the base
year, 1972 is small and insignificant, suggesting little if any relationship
between fertility and education in the early seventies. The estimates
above are consistent with fertility becoming more linked to education
as the years pass. The F statistic is insignificant because we are testing
some insignificant coefficients along with some significant ones.

Problem C13.2 (40 points)

(i) (5 points) The coefficient on y85 is roughly the proportionate change
in wage for a male (female = 0) with zero years of education (educ =
0). This is not especially useful because the U.S. working population
without any education is a small group; such people are in no way
typical.
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(ii) (10 points) What we want to estimate is θ0 = δ0 + 12δ1; this is the
change in the intercept for a male with 12 years of education, where
we also hold other factors fixed. Write δ0 = θ0 − 12δ1 to get

log(wage) = β0 + θ0y85 + β1educ+ δ1y85 · (educ− 12)+

+β2expr + β3exper
2 + β4union+ β5female+ δ5y85 · female+ u.

Therefore, we simply replace y85 · educ with y85 · (educ−12), and then
the coefficient and standard error we want is on y85. These turn out
to be θ̂0 = .339 and se(θ̂0) = .034. Roughly, the nominal increase in
wage is 33.9 %, and the 95% confidence interval is 33.9 ± 1.96(3.4), or
about 27.2 % to 40.6 %.
This can also be easily done in Stata using the lincom command:

g y85ed12 = y85*(educ-12)

reg lwage y85 educ y85ed12 exper expersq union female y85fem

qui reg lwage y85 educ y85educ exper expersq union female y85fem

lincom y85+12*y85educ

The coefficient displayed by lincom is identical to that constructed by
the method described above.

(iii) (5 points) Only the coefficient on y85 differs from equation (13.2). The
new coefficient is about .383 (se ≈ .124). This shows that real wages
have fallen over the seven year period, although less so for the more
educated. For example, the proportionate change for a male with 12
years of education is −.383 + .0185(12) = −.161, or a fall of about
16.1%. For a male with 20 years of education there has been almost no
change [-.383 + .0185(20) = .013].

(iv) (5 points) The R-squared when log(rwage) is the dependent variable is
.356, as compared with .426 when log(wage) is the dependent variable.
If the SSRs from the regressions are the same, but the R-squareds are
not, then the total sum of squares must be different. This is the case,
as the dependent variables in the two equations are different.

(v) (5 points) In 1978, about 30.6% of workers in the sample belonged to a
union. In 1985, only about 18% belonged to a union. Therefore, over
the seven-year period, there was a notable fall in union membership.
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(vi) (5 points) When y85 ∗ union is added to the equation, its coefficient
and standard error are about ?.00040 (se ≈ .06104). This is practically
very small and the t statistic is almost zero. There has been no change
in the union wage premium over time.

(vii) (5 points)Parts (v) and (vi) are not at odds. They imply that while the
economic return to union membership has not changed (assuming we
think we have estimated a causal effect), the fraction of people reaping
those benefits has fallen.

Problem C13.4 (20 points)

(i) (5 points) In addition to male and married, we add the variables head, neck,
upextr, trunk, lowback, lowextr, and occdis for injury type, and manuf
and construc for industry. The coefficient on afchnge ∗ highearn be-
comes .231 (se ≈ .070), and so the estimated effect and t statistic are
now larger than when we omitted the control variables. The estimate
.231 implies a substantial response of durat to the change in the cap
for high-earnings workers.

(ii) (5 points) The R-squared is about .041, which means we are explaining
only a 4.1% of the variation in log(durat). This means that there
are some very important factors that affect log(durat) that we are not
controlling for. While this means that predicting log(durat) would be
very difficult for a particular individual, it does not mean that there is
anything biased about δ̂1: it could still be an unbiased estimator of the
causal effect of changing the earnings cap for workers compensation.

(iii) (10 points) The estimated equation using the Michigan data is

̂log(durat) = 1.413 + .097afchnge + .169highearn + .192afchnge ∗ highearn
(.057) (.085) (.106) (.154)

n = 1524, R2 = .012

The estimate of δ1, .192, is remarkably close to the estimate obtained
for Kentucky (.191). However, the standard error for the Michigan
estimate is much higher (.154 compared with .069). The estimate for
Michigan is not statistically significant at even the 10% level against
δ1 > 0. Even though we have over 1,500 observations, we cannot get a
very precise estimate. (For Kentucky, we have over 5,600 observations.)
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Problem C13.5 (30 points)

(i) (10 points) Using pooled OLS we obtain

̂log(rent) = −.569+.262d90+.041log(pop)+.571log(avginc)+.0050pctstu

n = 128, R2 = .861.

The positive and very significant coefficient on d90 simply means that,
other things in the equation fixed, nominal rents grew by over 26%
over the 10 year period. The coefficient on pctstu means that a one
percentage point increase in pctstu increases rent by half a percent
(.5%).
The t statistic of five shows that, at least based on the usual analysis,
pctstu is very statistically significant.

(ii) (5 points) The standard errors from part (i) are not valid, unless we
think ai does not really appear in the equation. If ai is in the error
term, the errors across the two time periods for each city are positively
correlated, and this invalidates the usual OLS standard errors and t
statistics.

(iii) (10 points) The equation estimated in differences is:

∆log(rent) = .386 + .072∆log(pop) + .310log(avginc) + .0112∆pctstu

n = 64, R2 = .322.

Interestingly, the effect of pctstu is over twice as large as we estimated
in the pooled OLS equation. Now, a one percentage point increase
in pctstu is estimated to increase rental rates by about 1.1%. Not
surprisingly, we obtain a much less precise estimate when we difference
(although the OLS standard errors from part (i) are likely to be much
too small because of the positive serial correlation in the errors within
each city). While we have differenced away ai, there may be other
unobservables that change over time and are correlated with ∆pctstu.

(iv) (5 points) The heteroskedasticity-robust standard error on ∆pctstu is
about .0028, which is actually much smaller than the usual OLS stan-
dard error. This only makes pctstu even more significant (robust t
statistic ≈ 4). Note that serial correlation is no longer an issue because
we have no time component in the first-differenced equation.
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Problem C13.7 (35 points)

(i) (10 points) Pooling across semesters and using OLS gives

̂trmgpa = −1.75−.058spring+.00170sat−.0087hsperc+.350female−.254black−

−.023white− .035frstsem− .00034tothrs+ 1.048crsgpa− .027season

n = 732, R2 = .478, R
2

= .470.

The coefficient on season implies that, other things fixed, an athlete’s
term GPA is about .027 points lower when his/her sport is in season.
On a four point scale, this a modest effect (although it accumulates
over four years of athletic eligibility). However, the estimate is not
statistically significant (t statistic≈.55).

(ii) (10 points) The quick answer is that if omitted ability is correlated
with season then, as we know from Chapters 3 and 5, OLS is biased
and inconsistent. The fact that we are pooling across two semesters
does not change that basic point.
If we think harder, the direction of the bias is not clear, and this is
where pooling across semesters plays a role. First, suppose we used
only the fall term, when football is in season. Then the error term
and season would be negatively correlated, which produces a down-
ward bias in the OLS estimator of βseason. Because βseason is hypoth-
esized to be negative, an OLS regression using only the fall data pro-
duces a downward biased estimator. [When just the fall data are used,

β̂season = −.116(se = .084), which is in the direction of more bias.]
However, if we use just the spring semester, the bias is in the opposite
direction because ability and season would be positive correlated (more
academically able athletes are in season in the spring). In fact, using

just the spring semester gives β̂season = .00089(se = .06480), which
is practically and statistically equal to zero. When we pool the two
semesters we cannot, with a much more detailed analysis, determine
which bias will dominate.

(iii) (10 points)The variables sat, hsperc, female, black, and white all drop
out because they do not vary by semester. The intercept in the first-
differenced equation is the intercept for the spring. We have:

̂∆trmgpa = −.237+.019∆frstsem+.012∆tothrs+1.136∆crsgpa−.065season.
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n = 366, R2 = .208, R
2

= .199.

Interestingly, the in-season effect is larger now: term GPA is estimated
to be about .065 points lower in a semester that the sport is in-season.
The t statistic is about 1.51, which gives a onesided p-value of about
.065.

(iv) (5 points) One possibility is a measure of course load. If some fraction of
student-athletes take a lighter load during the season (for those sports
that have a true season), then term GPAs may tend to be higher, other
things equal. This would bias the results away from finding an effect
of season on term GPA.

Problem C13.8 (25 points)

(i) (10 points) The estimated equation using differences is:

∆̂vote = −2.56− 1.29∆log(inexp)− .599∆log(chexp) + .156∆incshr

n = 157, R2 = .244, R
2

= .229.

Only ∆incshr is statistically significant at the 5% level (t statistic ≈
2.44, p-value ≈ .016). The other two independent variables have t
statistics less than one in absolute value.

(ii) (5 points) The F statistic (with 2 and 153 df) is about 1.51 with p-value
≈ .224. Therefore, ∆log(inexp) and ∆log(chexp) are jointly insignifi-
cant at even the 20% level.

(iii) (5 points) The simple regression equation is

∆̂vote = −2.68 + 0.218 ∆incshr
(.63) (.032)

n = 157, R2 = .229

This equation implies that a 10 percentage point increase in the incum-
bent’s share of total spending increases the percent of the incumbent’s
vote by about 2.2 percentage points.
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(iv) (5 points) Using the 33 elections with repeat challengers we obtain

∆̂vote = −2.25 + 0.092 ∆incshr
(1.00) (.085)

n = 33, R2 = .037

The estimated effect is notably smaller and, not surprisingly, the stan-
dard error is much larger than in part (iii). While the direction of
the effect is the same, it is not statistically significant (p-value ≈ .14
against a one-sided alternative).
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