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Introduction to generalized linear models

Introduction to generalized linear models

The generalized linear model (GLM) framework of McCullaugh and
Nelder (1989) is common in applied work in biostatistics, but has not
been widely applied in econometrics. It offers many advantages, and
should be more widely known.

GLM estimators are maximum likelihood estimators that are based on
a density in the linear exponential family (LEF). These include the
normal (Gaussian) and inverse Gaussian for continuous data, Poisson
and negative binomial for count data, Bernoulli for binary data
(including logit and probit) and Gamma for duration data.
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Introduction to generalized linear models

GLM estimators are essentially generalizations of nonlinear least
squares, and as such are optimal for a nonlinear regression model with
homoskedastic additive errors. They are also appropriate for other
types of data which exhibit intrinsic heteroskedasticity where there is a
rationale for modeling the heteroskedasticity.

The GLM estimator θ̂ maximizes the log-likelihood

Q(θ) =
N∑

i=1

[a (m(xi , β)) + b(yi) + c (m(xi , β))]

where m(x , β) = E(y |x) is the conditional mean of y , a(·) and c(·)
correspond to different members of the LEF, and b(·) is a normalizing
constant.
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Introduction to generalized linear models

For instance, for the Poisson, where the mean equals the variance,
a(µ) = −µ and c(µ) = log(µ). Given definitions of these two functions,
the mean and variance are E(y) = µ = −a′(µ)/c′(µ) and
Var(y) = 1/c′(µ). For the Poisson, a′(µ) = 1, c′(µ) = 1/µ, so
E(y) = Var(y) = µ.

GLM estimators are consistent provided that the conditional mean
function is correctly specified: that E(yi |xi) = m(xi , β). If the variance
function is not correctly specified, a robust estimate of the VCE should
be used.
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Introduction to generalized linear models

To use the GLM estimator, you must specify two options: the
family(), which defines the member of the LEF to be employed, and
the link(), which is the inverse of the conditional mean function. The
family option may be chosen as gaussian, igaussian,
binomial, poisson, binomial, gamma.

The link function essentially expresses the transformation to be applied
to the dependent variable. Each family has a canonical link, which is
chosen if not specified: for instance, family(gaussian) has default
link(identity), so that a GLM with those two options would
essentially be linear regression via maximum likelihood.

The binomial family has a default link(logit), while the
poisson and binomial families share link(log). However, a
number of other combinations of family and link are valid: for
instance, link(power n) is valid for all distributional families.
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Some applications Fractional logit model

Some applications

As an illustration of the GLM methodology, consider a model in which
we seek to explain a ratio variable, such as a firm’s ratio of R&D
expenditures to total assets. In micro data, we find that many firms
report a zero value for this ratio. A linear regression model would
ignore the zero lower bound, and would not take account of managers’
decision not to engage in R&D activity.

Much of the empirical research in this area has made use of a Tobit
model, which combines the Probit likelihood that a zero value will be
observed with the linear regression likelihood to explain non-zero
values, and a Tobit approach certainly improves upon standard linear
regression by taking account of the mass point at zero.
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Some applications Fractional logit model

However, some researchers (e.g., Papke and Wooldridge, J. Appl.
Econometrics, 1996) have argued that the Tobit model, a censored
regression technique, is not applicable where values beyond the
censoring point are infeasible.

The motivation for Tobit is often that of an underlying latent variable,
such as consumer utility, which is observed only in a limited range: for
instance, those deriving positive expected utility from a purchase are
observed spending that amount, while those with negative expected
utility do not purchase the item. That latent variable interpretation is
difficult to motivate in the R&D expenditure setting.
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Some applications Fractional logit model

Papke and Wooldridge suggest that a GLM with a binomial distribution
and a logit link function, which they term the ‘fractional logit’ model,
may be appropriate even in the case where the observed variable is
continuous. To model the ratio y as a function of covariates x , we may
write

g{E(y)} = xβ, y ∼ F

where g(·) is the link function and F is the distributional family. In our
case, this becomes

logit{E(y)} = xβ, y ∼ Bernoulli

which should be estimated with a robust VCE.
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Some applications Fractional logit model

We illustrate with proportions data in which both 0 and 1 are observed,
first fitting with a Tobit specification:

. use http://stata-press.com/data/hh3/warsaw, clear

. g proportion = menarche/total

. tobit proportion age, ll(0) ul(1) vsquish

Tobit regression Number of obs = 25
LR chi2(1) = 81.83
Prob > chi2 = 0.0000

Log likelihood = 23.393423 Pseudo R2 = 2.3352

proportion Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .2336978 .0108854 21.47 0.000 .2112314 .2561642
_cons -2.554451 .1454744 -17.56 0.000 -2.854696 -2.254207

/sigma .0780817 .0119052 .0535105 .1026528

Obs. summary: 3 left-censored observations at proportion<=0
21 uncensored observations
1 right-censored observation at proportion>=1
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Some applications Fractional logit model

As Papke and Wooldridge’s critique centers on the interpretation of the
dependent variable, we might want to make use of Stata’s linktest,
a specification test that considers whether the ‘link’ is appropriate. In
the link test, we regress the dependent variable on the predicted
values and their squares. If the model is specified correctly, the
squares of the predicted values will have no power.
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Some applications Fractional logit model

. linktest, ll(0) ul(1) vsquish

Tobit regression Number of obs = 25
LR chi2(2) = 90.81
Prob > chi2 = 0.0000

Log likelihood = 27.886535 Pseudo R2 = 2.5917

proportion Coef. Std. Err. t P>|t| [95% Conf. Interval]

_hat 1.452772 .1440383 10.09 0.000 1.154806 1.750738
_hatsq -.4089519 .123241 -3.32 0.003 -.6638952 -.1540085
_cons -.0729681 .0351176 -2.08 0.049 -.1456144 -.0003218

/sigma .0640866 .0098612 .0436872 .0844859

Obs. summary: 3 left-censored observations at proportion<=0
21 uncensored observations
1 right-censored observation at proportion>=1

As is evident, the link test rejects its null, and casts doubt on the Tobit
specification.
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Some applications Fractional logit model

Let us reestimate the model with a fractional logit GLM:
. glm proportion age, family(binomial) link(logit) robust nolog
note: proportion has noninteger values

Generalized linear models No. of obs = 25
Optimization : ML Residual df = 23

Scale parameter = 1
Deviance = .221432 (1/df) Deviance = .0096275
Pearson = .1874651097 (1/df) Pearson = .0081507

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = .5990425
Log pseudolikelihood = -5.488031244 BIC = -73.81271

Robust
proportion Coef. Std. Err. z P>|z| [95% Conf. Interval]

age 1.608169 .0541201 29.71 0.000 1.502095 1.714242
_cons -20.91168 .7047346 -29.67 0.000 -22.29294 -19.53043

. qui margins, at(age=(10(1)18))

. marginsplot, addplot(scatter proportion age, msize(small) ylab(,angle(0))) //
> /
> ti("Proportion reaching menarche") legend(off)

Variables that uniquely identify margins: age
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Some applications Fractional logit model

The link function now is satisfied with the specification:
. linktest, robust vsquish

Iteration 0: log pseudolikelihood = 17.299744

Generalized linear models No. of obs = 25
Optimization : ML Residual df = 22

Scale parameter = .016672
Deviance = .3667845044 (1/df) Deviance = .016672
Pearson = .3667845044 (1/df) Pearson = .016672

Variance function: V(u) = 1 [Gaussian]
Link function : g(u) = u [Identity]

AIC = -1.14398
Log pseudolikelihood = 17.29974429 BIC = -70.44848

Robust
proportion Coef. Std. Err. z P>|z| [95% Conf. Interval]

_hat .1173394 .0114055 10.29 0.000 .0949851 .1396938
_hatsq -.0030241 .0036441 -0.83 0.407 -.0101665 .0041182
_cons .524775 .0337826 15.53 0.000 .4585623 .5909878
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Some applications Fractional logit model

We may also plot the predictions of the GLM model against the actual
proportions data:
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Some applications Log-gamma model

Log-gamma model

Consider a situation where a GLM approach might be useful in
simplifying the interpretation of an estimated model. Say that an
outcome variable is strictly positive, and we want to model it in a
nonlinear form. A common approach would be to transform the
outcome variable with logarithms.

This raises the issue that the predictions of the model in levels are
biased, even when adjustments are made for the ‘retransformation
bias’ (see sec describe levpredict).
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Some applications Log-gamma model

Alternatively, we can address this problem by using a log-gamma
GLM, with the family chosen as gamma and the link function specified
as the log. The predictions, residuals and other regression diagnostics
of the model are then kept in the natural units of measurement, which
may make estimation of the model in this context more attractive than
estimating the log-linear regression model.
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Some applications Log-gamma model

. sysuse cancer
(Patient Survival in Drug Trial)

. glm studytime age i.drug, family(gamma) link(log) nolog vsquish

Generalized linear models No. of obs = 48
Optimization : ML Residual df = 44

Scale parameter = .3180529
Deviance = 16.17463553 (1/df) Deviance = .3676054
Pearson = 13.99432897 (1/df) Pearson = .3180529

Variance function: V(u) = u^2 [Gamma]
Link function : g(u) = ln(u) [Log]

AIC = 7.403608
Log likelihood = -173.6866032 BIC = -154.1582

OIM
studytime Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.0447789 .015112 -2.96 0.003 -.0743979 -.01516
drug
2 .5743689 .1986342 2.89 0.004 .185053 .9636847
3 1.0521 .1965822 5.35 0.000 .6668056 1.437394

_cons 4.646108 .8440093 5.50 0.000 2.99188 6.300336
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Some applications Log-gamma model

. predict stimehat
(option mu assumed; predicted mean studytime)

. su studytime stimehat

Variable Obs Mean Std. Dev. Min Max

studytime 48 15.5 10.25629 1 39
stimehat 48 15.73706 8.412216 5.185771 34.77219

. corr studytime stimehat
(obs=48)

studyt~e stimehat

studytime 1.0000
stimehat 0.6820 1.0000

. di _n "R^2: `=r(rho)^2´"

R^2: .4650907146848232
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Some applications Poisson on panel data

Poisson on panel data

GLM estimators can be applied to panel or repeated-measures data.
In the following example from McCullagh and Nelder, we have data on
ships’ accidents, with records of the periods the ships were in service,
the periods in which they were constructed, and a measure of
exposure: how many months they were in service.

As these are discrete (count) data, we model them with a Poisson
distribution and a log link. First we consider a pooled estimator with a
cluster-robust covariance matrix.
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Some applications Poisson on panel data

. webuse ships, clear

. // cluster by repeated observations on ship type

. glm accident op_75_79 co_65_69 co_70_74 co_75_79, family(poisson) ///
> link(log) vce(cluster ship) exposure(service) nolog vsquish

Generalized linear models No. of obs = 34
Optimization : ML Residual df = 30

Scale parameter = 1
Deviance = 62.36534078 (1/df) Deviance = 2.078845
Pearson = 82.73714004 (1/df) Pearson = 2.757905

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 4.947995
Log pseudolikelihood = -80.11591605 BIC = -43.42547

(Std. Err. adjusted for 5 clusters in ship)

Robust
accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 .3874638 .0873609 4.44 0.000 .2162395 .5586881
co_65_69 .7542017 .134085 5.62 0.000 .4914 1.017003
co_70_74 1.05087 .217247 4.84 0.000 .6250737 1.476666
co_75_79 .7040507 .2109515 3.34 0.001 .2905933 1.117508

_cons -6.94765 .0288689 -240.66 0.000 -7.004232 -6.891068
ln(service) 1 (exposure)
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Some applications Poisson on panel data

. margins, by(ship) vsquish

Predictive margins Number of obs = 34
Model VCE : Robust

Expression : Predicted mean accident, predict()
over : ship

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

ship
1 4.271097 .6324781 6.75 0.000 3.031463 5.510731
2 40.00104 3.886872 10.29 0.000 32.38291 47.61916
3 2.338215 .3196475 7.31 0.000 1.711718 2.964713
4 1.896671 .2694686 7.04 0.000 1.368522 2.42482
5 2.741811 .4428016 6.19 0.000 1.873936 3.609686
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Some applications Poisson on panel data

We may also fit an unconditional fixed-effects estimator, appropriate for
the case where there are a finite number of panels in the population. A
conditional fixed-effects model can be fit with Stata’s xtpoisson
command, as may random-effects alternatives.
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Some applications Poisson on panel data

. // unconditional fixed effects for ship type
. glm accident op_75_79 co_65_69 co_70_74 co_75_79 i.ship, family(poisson) ///
> link(log) exposure(service) nolog vsquish

Generalized linear models No. of obs = 34
Optimization : ML Residual df = 25

Scale parameter = 1
Deviance = 38.69505154 (1/df) Deviance = 1.547802
Pearson = 42.27525312 (1/df) Pearson = 1.69101

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 4.545928
Log likelihood = -68.28077143 BIC = -49.46396

OIM
accident Coef. Std. Err. z P>|z| [95% Conf. Interval]

op_75_79 .384467 .1182722 3.25 0.001 .1526578 .6162761
co_65_69 .6971404 .1496414 4.66 0.000 .4038487 .9904322
co_70_74 .8184266 .1697736 4.82 0.000 .4856763 1.151177
co_75_79 .4534266 .2331705 1.94 0.052 -.0035791 .9104324

ship
2 -.5433443 .1775899 -3.06 0.002 -.8914141 -.1952745
3 -.6874016 .3290472 -2.09 0.037 -1.332322 -.042481
4 -.0759614 .2905787 -0.26 0.794 -.6454851 .4935623
5 .3255795 .2358794 1.38 0.168 -.1367357 .7878946

_cons -6.405902 .2174441 -29.46 0.000 -6.832084 -5.979719
ln(service) 1 (exposure)

Christopher F Baum (BC / DIW) Generalized linear models Boston College, Spring 2013 23 / 25



Some applications Poisson on panel data

. margins, by(ship) vsquish

Predictive margins Number of obs = 34
Model VCE : OIM

Expression : Predicted mean accident, predict()
over : ship

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

ship
1 6 .9258201 6.48 0.000 4.185426 7.814574
2 36.14286 2.272282 15.91 0.000 31.68927 40.59645
3 1.714286 .4948717 3.46 0.001 .7443551 2.684216
4 2.428571 .5890151 4.12 0.000 1.274123 3.58302
5 5.333333 .942809 5.66 0.000 3.485462 7.181205
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Some applications Poisson on panel data

For more information, see Generalized Linear Models and Extensions,
3d ed., JW Hardin and JM Hilbe, Stata Press, 2012.
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