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State-space models

State-space models

Many linear time-series models can be written as linear state-space
models, including vector autoregressive moving-average (VARMA)
models, dynamic-factor (DF) models, and structural time series (STS)
models. The solutions to some stochastic dynamic-programming
problems can also be written in the form of linear state-space models.

We can estimate the parameters of a linear state-space model by
maximum likelihood (ML). The Kalman filter or a diffuse Kalman filter is
used to write the likelihood function in prediction-error form, assuming
normally distributed errors. The quasi-maximum likelihood (QML)
estimator, which drops the normality assumption, is consistent and
asymptotically normal when the model is stationary.
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State-space models

The Stata sspace command estimates linear state-space models with
time-invariant coefficients, which include the models just listed and a
number of others. These can be expressed as

zt = Azt−1 + Bxt + Cεt
yt = Dzt + Fwt + Gνt

where zt is a m-vector of unobserved state variables, yt is a n-vector of
observed endogenous variables, xt and wt are kx and kw vectors of
exogenous variables, εt is a q-vector of state-error terms, νt is a
r -vector of observation-error terms, and A,B,C,D,F ,G are parameter
matrices.
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State-space models

In this framework, the equations for zt are known as the state
equations, and the equations for yt are known as the observation
equations. The error terms are assumed to be zero mean, normally
distributed, serially uncorrelated and independent of one another:

εt ∼ N(0,Q)

νt ∼ N(0,R)

The state-space form is used to derive the log-likelihood of the
observed endogenous variables conditional on their own past and any
exogenous variables. When the model is stationary, a method for
recursively predicting the current values of the states and the
endogenous variables, known as the Kalman filter, is used to obtain
the prediction error form of the log-likelihood function. When the model
is nonstationary, a diffuse Kalman filter is used.
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State-space models Example: a stationary state-space model

Example: a stationary state-space model

Following Hamilton’s text (1994, pp. 372–374), we can write a standard
AR(1) model

yt − µ = α(yt−1 − µ) + εt

as a state-space model with state and observation equations

ut = αut−1 + εt

yt = µ+ ut

where the unobserved state is ut = yt − µ.
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State-space models Example: a stationary state-space model

To implement this model on a univariate time series (in this case, the
growth rate of the US manufacturing sector’s capacity utilization rate),
we specify the state and observation equations’ components, imposing
the constraint that ut enters the observation equation with a unit
coefficient.
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State-space models Example: a stationary state-space model

. webuse manufac
(St. Louis Fed (FRED) manufacturing data)

. constraint 1 [D.lncaputil]u = 1

. sspace (u L.u, state noconstant) (D.lncaputil u, noerror), const(1) nolog vsq
> uish

State-space model

Sample: 1972m2 - 2008m12 Number of obs = 443
Wald chi2(1) = 61.73

Log likelihood = 1516.44 Prob > chi2 = 0.0000
( 1) [D.lncaputil]u = 1

OIM
lncaputil Coef. Std. Err. z P>|z| [95% Conf. Interval]

u
u

L1. .3523983 .0448539 7.86 0.000 .2644862 .4403104

D.lncaputil
u 1 (constrained)

_cons -.0003558 .0005781 -0.62 0.538 -.001489 .0007773

Variance
u .0000622 4.18e-06 14.88 0.000 .000054 .0000704

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

Christopher F Baum (BC / DIW) Additional time series models Boston College, Spring 2013 7 / 86



State-space models Example: a stationary state-space model

The estimated autoregressive coefficient of 0.353 indicates that there
is persistence in the growth rate of the CU rate series. The estimated
mean of the differenced series is not distinguishable from zero,
indicating the absence of a deterministic linear trend in the CU series.

As Hamilton shows, any univariate AR(p) process can be placed in
state-space form, with the number of state equations equal to p, the
order of the autoregression, and a single observation equation for the
contemporaneous level of the process. Likewise, any univariate MA(q)
process can be written as a set of (q + 1) state equations in the errors
and a single observation equation.
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State-space models Example: a stationary state-space model

As a logical extension, any linear ARMA(p,q) process can be written
in state-space form by defining r = max(p,q + 1), which then gives
rise to r state equations and a single observation equation. For
example, consider a zero-mean ARMA(1,1) model:

yt = αyt−1 + θεt−1 + εt

with state equations(
u1t
u2t

)
=

(
yt
θεt

)
=

(
α 1
0 0

)(
yt−1
θεt−1

)
+

(
1
θ

)
εt

and observation equation

yt =
(

1 0
)( yt

θεt

)
with u1t and u2t as the unobserved states.
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State-space models Example: a stationary state-space model

We may estimate this model by writing down the state and observation
equations, providing constraints for those coefficients which should be
unity. As the previous example has shown that there is no deterministic
trend in the level series, we set the mean of the differenced series to
zero by excluding the constant from the observation equation.
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State-space models Example: a stationary state-space model

. constraint 2 [u1]L.u2 = 1

. constraint 3 [u1]e.u1 = 1

. constraint 4 [D.lncaputil]u1 = 1

. sspace (u1 L.u1 L.u2 e.u1, state noconstant) (u2 e.u1, state noconstant) ///
> (D.lncaputil u1, noconstant), constraints(2/4) covstate(diagonal) nolog vsquish

State-space model

Sample: 1972m2 - 2008m12 Number of obs = 443
Wald chi2(2) = 333.84

Log likelihood = 1531.255 Prob > chi2 = 0.0000
( 1) [u1]L.u2 = 1
( 2) [u1]e.u1 = 1
( 3) [D.lncaputil]u1 = 1

OIM
lncaputil Coef. Std. Err. z P>|z| [95% Conf. Interval]

u1
u1
L1. .8056815 .0522661 15.41 0.000 .7032418 .9081212
u2
L1. 1 (constrained)
e.u1 1 (constrained)

u2
e.u1 -.5188453 .0701985 -7.39 0.000 -.6564317 -.3812588

...
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State-space models Example: a stationary state-space model

...
D.lncaputil

u1 1 (constrained)

Variance
u1 .0000582 3.91e-06 14.88 0.000 .0000505 .0000659

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

In this ‘error-form’ representation, the coefficient on L1.u1 in the u1
equation is our estimate of α, and the coefficient on e.u1 in the u2
equation is our estimate of θ.
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State-space models Example: a bivariate state-space model

Example: a bivariate state-space model

In the manufac dataset, the lnhours variable represents the log of
manufacturing hours per week, which we treat as stationary in first
differences. If we hypothesize that the process driving the growth rate
in capacity utilization affects the growth rate of hours worked, but not
vice versa, then we want to express the comovements of these
variables in a triangular linear system: essentially a VAR(1) subject to
constraints.
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State-space models Example: a bivariate state-space model

(
∆lncaputilt
∆lnhourst

)
=

(
α1 0
α2 α3

)(
∆lncaputilt−1
∆lnhourst−1

)
+

(
ε1t
ε2t

)

We can write this in state-space form with state equations(
u1t
u2t

)
=

(
α1 0
α2 α3

)(
u1,t−1
u2,t−1

)
+

(
ε1t
ε2t

)
with Var(ε) = Σ and observation equations(

∆lncaputilt
∆lnhourst

)
=

(
u1t
u2t

)
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State-space models Example: a bivariate state-space model

To estimate the model, we specify each of the state equations and
observation equations, keeping in mind that the latter are trivial
identities. The covstate(unstructured) option specifies that the
covariance structure for the state errors (ε in this example) should be
symmetric and positive definite, with parameters for all variances and
covariances to be estimated.
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State-space models Example: a bivariate state-space model

. constraint 5 [D.lncaputil]u1 = 1

. constraint 6 [D.lnhours]u2 = 1

. sspace (u1 L.u1, state noconstant) ///
> (u2 L.u1 L.u2, state noconstant) ///
> (D.lncaputil u1, noconstant noerror) ///
> (D.lnhours u2, noconstant noerror), ///
> constraints(5/6) covstate(unstructured) nolog vsquish

State-space model

Sample: 1972m2 - 2008m12 Number of obs = 443
Wald chi2(3) = 166.87

Log likelihood = 3211.7532 Prob > chi2 = 0.0000
( 1) [D.lncaputil]u1 = 1
( 2) [D.lnhours]u2 = 1

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

u1
u1
L1. .353257 .0448456 7.88 0.000 .2653612 .4411528

u2
u1
L1. .1286218 .0394742 3.26 0.001 .0512537 .2059899
u2
L1. -.3707083 .0434255 -8.54 0.000 -.4558208 -.2855959

...
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State-space models Example: a bivariate state-space model

...
D.lncaputil

u1 1 (constrained)

D.lnhours
u2 1 (constrained)

Variance
u1 .0000623 4.19e-06 14.88 0.000 .0000541 .0000705

Covariance
u1

u2 .000026 2.67e-06 9.75 0.000 .0000208 .0000312

Variance
u2 .0000386 2.61e-06 14.76 0.000 .0000335 .0000437

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.
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State-space models Example: a bivariate state-space model

The estimated parameter in the u1 equation is α1. The estimated
parameters in the u2 equation are α2, α3 respectively. The estimated
autoregressive coefficient α1 is similar to that produced in the
univariate model for D.lncaputil in the earlier example. Both the
effect of D.lncaputil on D.lnhours and the autoregressive
coefficient for D.lnhours are statistically significant.

We could also impose constraints on the covariance matrix of state
errors, such as restricting the covariance of the errors to zero with an
additional constraint command.
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State-space models Example: a bivariate state-space model

We may add additional structure to this bivariate example by allowing
the error process to be non-i .i .d .. While still maintaining the triangular
structure of the system, we add a MA(1) component to the CU
equation, but continue to model D.lnhours as an autoregressive
process:

(
∆lncaputilt
∆lnhourst

)
=

(
α1 0
α2 α3

)(
∆lncaputilt−1

∆lnhourst−1

)
+

(
θ1 0
0 0

)(
ε1,t−1

ε2,t−1

)
+

(
ε1t

ε2t

)

A vector autoregressive moving-average, or VARMA(1,1), process.
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State-space models Example: a bivariate state-space model

This can be written in state-space form with state equations

 s1t
s2t
s3t

 =

 α1 1 0
0 0 0
α2 0 α3

 s1,t−1
s2,t−1
s3,t−1

+

 1 0
θ1 0
0 1

( ε1t
ε2t

)

with states  s1t
s2t
s3t

 =

 ∆lncaputilt
θ1ε1t

∆lnhourst


We assume the VCE of the state errors is diagonal, so that only the
two variances are to be estimated.
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State-space models Example: a bivariate state-space model

To estimate this VARMA(1,1) process, we spell out each of the state
equations and observation equations, with the latter as trivial identities.
Note that in this expanded form of the model, we have three state
equations, but still have only two observation equations. The
covstate(diagonal) option allows us to specify that only the
variances in the state errors’ VCE are to be estimated.
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State-space models Example: a bivariate state-space model

. constraint 7 [u1]L.u2 = 1

. constraint 8 [u1]e.u1 = 1

. constraint 9 [u3]e.u3 = 1

. constraint 10 [D.lncaputil]u1 = 1

. constraint 11 [D.lnhours]u3 = 1

. sspace (u1 L.u1 L.u2 e.u1, state noconstant) ///
> (u2 e.u1, state noconstant) ///
> (u3 L.u1 L.u3 e.u3, state noconstant) ///
> (D.lncaputil u1, noconstant) (D.lnhours u3, noconstant), ///
> constraints(7/11) technique(nr) covstate(diagonal) nolog vsquish

State-space model

Sample: 1972m2 - 2008m12 Number of obs = 443
Wald chi2(4) = 427.55

Log likelihood = 3156.0564 Prob > chi2 = 0.0000
( 1) [u1]L.u2 = 1
( 2) [u1]e.u1 = 1
( 3) [u3]e.u3 = 1
( 4) [D.lncaputil]u1 = 1
( 5) [D.lnhours]u3 = 1

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

u1
u1
L1. .8058031 .0522493 15.42 0.000 .7033964 .9082098

...
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State-space models Example: a bivariate state-space model

...
u2
L1. 1 (constrained)
e.u1 1 (constrained)

u2
e.u1 -.518907 .0701848 -7.39 0.000 -.6564667 -.3813474

u3
u1
L1. .1734868 .0405156 4.28 0.000 .0940776 .252896
u3
L1. -.4809376 .0498574 -9.65 0.000 -.5786563 -.3832188
e.u3 1 (constrained)

D.lncaputil
u1 1 (constrained)

D.lnhours
u3 1 (constrained)

Variance
u1 .0000582 3.91e-06 14.88 0.000 .0000505 .0000659
u3 .0000382 2.56e-06 14.88 0.000 .0000331 .0000432

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.
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State-space models Example: a bivariate state-space model

Not surprisingly, the D.lnhours equation indicates that the lagged
value of D.lncaputil has a positive effect (0.173) on hours worked.
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State-space models Example: a latent factor state-space model

Example: a latent factor state-space model

Following Stock and Watson (NBER Macro Annual, 1989), we estimate
the parameters of a latent factor model, using four observed series: an
industrial production index, aggregate weekly hours, aggregate
unemployment and real disposable income. We consider that these
variables are jointly driven by a latent factor, ft , that follows an AR(2)
process. In state-space form, the model becomes(

ft
ft−1

)
=

(
θ1 θ2
1 0

)(
ft−1
ft−2

)
+

(
νt
0

)


∆IPt
∆Incomet
∆hourst

∆unempt

 =


γ1
γ2
γ3
γ4

 ft +


ε1t
ε2t
ε3t
ε4t
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State-space models Example: a latent factor state-space model

Assuming a diagonal covariance matrix, we specify the state equations
for ft and its lag, with each observation equation depending linearly on
the latent factor ft .
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State-space models Example: a latent factor state-space model

. webuse dfex, clear
(St. Louis Fed (FRED) macro data)

. constraint 12 [lf]L.f = 1

. sspace (f L.f L.lf, state noconstant) (lf L.f, state noconstant noerror) ///
> (D.ipman f, noconstant) (D.income f, noconstant) (D.hours f, noconstant) //
> /
> (D.unemp f, noconstant), covstate(identity) constraints(12) nolog vsquish

State-space model

Sample: 1972m2 - 2008m11 Number of obs = 442
Wald chi2(6) = 751.95

Log likelihood = -662.09507 Prob > chi2 = 0.0000
( 1) [lf]L.f = 1

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

f
f

L1. .2651932 .0568663 4.66 0.000 .1537372 .3766491
lf
L1. .4820398 .0624635 7.72 0.000 .3596136 .604466

lf
f

L1. 1 (constrained)

...

Christopher F Baum (BC / DIW) Additional time series models Boston College, Spring 2013 27 / 86



State-space models Example: a latent factor state-space model

...
D.ipman

f .3502249 .0287389 12.19 0.000 .2938976 .4065522

D.income
f .0746338 .0217319 3.43 0.001 .0320401 .1172276

D.hours
f .2177469 .0186769 11.66 0.000 .1811407 .254353

D.unemp
f -.0676016 .0071022 -9.52 0.000 -.0815217 -.0536816

Variance
D.ipman .1383158 .0167086 8.28 0.000 .1055675 .1710641
D.income .2773808 .0188302 14.73 0.000 .2404743 .3142873
D.hours .0911446 .0080847 11.27 0.000 .0752988 .1069903
D.unemp .0237232 .0017932 13.23 0.000 .0202086 .0272378

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.
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State-space models Example: a latent factor state-space model

The sizable autoregressive coefficients (0.265, 0.482) on the latent
factor indicate that it is quite persistent. The IP, income and hours
variables all load positively on the factor, while the unemployment rate
variable has a significant negative coefficient. The unobserved factor
has predictive power for each of the observed variables.

After estimating the model, we can obtain the one-step predictions for
each of the four observed variables, and plot them against their actual
values.

. predict dep*
(option xb assumed; fitted values)

. tsline D.ipman dep1, lcolor(gs10) xtitle("") legend(rows(2)) ylab(,angle(0))

. gr export 82311-6.pdf, replace
(file /Users/cfbaum/Dropbox/baum/EC823 S2013/82311-6.pdf written in PDF format)
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State-space models Example: a latent factor state-space model

-4

-2

0

2

1970m1 1980m1 1990m1 2000m1 2010m1

Industrial production; manufacturing (NAICS), D
xb prediction, D.ipman, onestep
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State-space models Example: a latent factor state-space model

We may also estimate the unobserved (latent) factor, specifying
method(smooth) in the predict command to produce this series.
We graph the f̂t series along with the change in hours worked, one of
the observed series used in the model. Dynamic (out-of-sample)
forecasts can also be made from an estimated state-space model.

. predict fac if e(sample), states smethod(smooth) equation(f)

. tsline D.hours fac, xtitle("") legend(rows(2)) ylab(,angle(0))

. gr export 82311-7.pdf, replace
(file /Users/cfbaum/Dropbox/baum/EC823 S2013/82311-7.pdf written in PDF format)
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State-space models Example: a latent factor state-space model
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Aggregate weekly hours worked index: total private industries, D
states, f, smooth
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State-space models Nonstationary state-space models

Nonstationary state-space models

State-space models can also be applied to nonstationary time series,
as proposed by Andrew Harvey. These models parameterize the trend
and seasonal components of a set of time series. For instance, the
local-level model:

yt = µt + εt

µt = µt−1 + νt

Here the level of the series is modeled as a random walk plus
idiosyncratic noise. It is thus nonstationary. If the variance of ε is zero
and the variance of ν is positive, the model reduces to a pure random
walk. In the opposite case, we have a simple regression with a
constant mean.
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State-space models Nonstationary state-space models

We fit this model to weekly closing values of S&P 500 Index.
. webuse sp500w, clear

. constraint 13 [z]L.z = 1

. constraint 14 [close]z = 1

. sspace (z L.z, state nocons) (close z, nocons), const(13 14) nolog vsquish

State-space model

Sample: 1 - 3093 Number of obs = 3093
Log likelihood = -12576.99
( 1) [z]L.z = 1
( 2) [close]z = 1

OIM
close Coef. Std. Err. z P>|z| [95% Conf. Interval]

z
z

L1. 1 (constrained)

close
z 1 (constrained)

Variance
z 170.3456 7.584909 22.46 0.000 155.4794 185.2117
close 15.24858 3.392457 4.49 0.000 8.599486 21.89767

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.
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State-space models Nonstationary state-space models

As both components have nonzero variances, the model is
nonstationary.

An extension of this model is the local linear-trend model, in which
both the level and slope of a linear time trend are assumed to follow a
random walk. (

µt
βt

)
=

(
1 1
0 1

)(
µt−1
βt−1

)
+

(
ν1t
ν2t

)
where yt = µt + εt is the observation equation.

We may fit this model to the industrial production series:
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State-space models Nonstationary state-space models

. webuse dfex, clear
(St. Louis Fed (FRED) macro data)

. constraint 15 [f1]L.f1 = 1

. constraint 16 [f1]L.f2 = 1

. constraint 17 [f2]L.f2 = 1

. constraint 18 [ipman]f1 = 1

. sspace (f1 L.f1 L.f2, state noconstant) (f2 L.f2, state noconstant) ///
> (ipman f1, noconstant), constraints(15/18) nolog vsquish

State-space model

Sample: 1972m1 - 2008m11 Number of obs = 443
Log likelihood = -359.1266
( 1) [f1]L.f1 = 1
( 2) [f1]L.f2 = 1
( 3) [f2]L.f2 = 1
( 4) [ipman]f1 = 1

OIM
ipman Coef. Std. Err. z P>|z| [95% Conf. Interval]

f1
f1
L1. 1 (constrained)
f2
L1. 1 (constrained)

...
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State-space models Nonstationary state-space models

...
f2

f2
L1. 1 (constrained)

ipman
f1 1 (constrained)

Variance
f1 .1473071 .0407156 3.62 0.000 .067506 .2271082
f2 .0178752 .0065743 2.72 0.003 .0049898 .0307606
ipman .0354429 .0148186 2.39 0.008 .0063989 .0644868

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

The estimation results suggest that both of the variance parameters
are nonzero, providing support for the local linear-trend model.
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Unobserved components models

Unobserved components models

A specification that is closely related to the nonstationary state-space
model is the unobserved component model (UCM). These models
decompose a time series into trend, seasonal, cyclical, and
idiosyncratic components, allowing for exogenous factors as well:

yt = τt + γt + ψt + βxt + εt

where τt , γt , and ψt are the trend, seasonal and cyclical components,
respectively. β is a vector of fixed parameters. These models can be
expressed in the state-space framework and estimated via maximum
likelihood.
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Unobserved components models

To parameterize the UCM, a specification must be made for the trend
and idiosyncratic components. Additional factors: a cyclical
component, seasonal component, or exogenous variables, may also
be added.

Harvey (1989) defines 11 flexible models that jointly specify τt and εt .
These models are constructed from a common set of building blocks:
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Unobserved components models

1 No trend or idiosyncratic component (for other components)
2 No trend: yt = εt (for other components)
3 Deterministic constant: yt = µ+ εt
4 Local level: yt = µt + εt , µt = µt−1 + ηt

5 Random walk: yt = µt , µt = µt−1 + ηt

6 Deterministic trend: yt = µt + εt , µt = µt−1 + β

7 Local level / det. trend: yt = µt + εt , µt = µt−1 + β + ηt

8 Random walk with drift: yt = µt , µt = µt−1 + β + ηt

9 Local linear trend: yt = µt + εt , µt = µt−1 +βt−1 +ηt , βt = βt−1 + ξt

10 Smooth trend: yt = µt + εt , µt = µt−1 + βt−1, βt = βt−1 + ξt

11 Random trend: yt = µt , µt = µt−1 + βt−1, βt = βt−1 + ξt
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Unobserved components models

Many of these models are designed to handle nonstationary time
series. The local-level, random-walk, local-level with deterministic
trend and random-walk-with-drift models incorporate first-order
stochastic trends. The local-linear-trend, smooth-trend and
random-trend models are used for series with second-order stochastic
trends, which would have to be differenced twice to render them
stationary.

A seasonal component models cyclical behavior that occurs at known
seasonal periodicities. Modeled in the time domain, the period of the
cycle is specified as the number of time periods required for the cycle
to complete: e.g., four for quarterly seasonality, twelve for monthly
seasonality. Seasonal components may be either deterministic or
stochastic. If stochastic, one models the variance of the seasonal
component, analogous to random effects in a panel context.
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Unobserved components models A random walk model

As a starting point, consider the default UCM of a random walk
process, fit to monthly data on the US civilian unemployment rate.
. webuse unrate, clear

. ucm unrate, nolog vsquish

Unobserved-components model
Components: random walk

Sample: 1948m1 - 2011m1 Number of obs = 757
Log likelihood = 84.401307

OIM
unrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

Variance
level .0467196 .002403 19.44 0.000 .0420098 .0514294

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.

The estimated variance relates to the underlying ηt process.
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Unobserved components models Random walk with stationary cycles

Following Harvey (1989), we expand upon the simple random walk
model to incorporate a stationary cyclical component that produces
serially correlated shocks around the random-walk trend. This
stochastic-cycle model has three parameters:

1 the frequency at which the random components are centered
2 a damping factor describing the dispersion of the random

components around that frequency
3 the variance of the stochastic-cycle process, which acts as a scale

factor.
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Unobserved components models Random walk with stationary cycles

. ucm unrate, cycle(1) nolog vsquish

Unobserved-components model
Components: random walk, order 1 cycle

Sample: 1948m1 - 2011m1 Number of obs = 757
Wald chi2(2) = 26650.81

Log likelihood = 118.88421 Prob > chi2 = 0.0000

OIM
unrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

frequency .0933466 .0103609 9.01 0.000 .0730397 .1136535
damping .9820003 .0061121 160.66 0.000 .9700207 .9939798

Variance
level .0143786 .0051392 2.80 0.003 .004306 .0244511
cycle1 .0270339 .0054343 4.97 0.000 .0163829 .0376848

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.
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Unobserved components models Random walk with stationary cycles

The estimated frequency is small, implying that cycles are centered
around low-frequency components. The sizable damping factor
indicates that cyclical components are close to this frequency. The
estimated variance of the cyclical component is significantly different
from zero.

The estimated central frequency may be converted to an estimated
central period:
. estat period

cycle1 Coef. Std. Err. [95% Conf. Interval]

period 67.31029 7.471004 52.66739 81.95319
frequency .0933466 .0103609 .0730397 .1136535

damping .9820003 .0061121 .9700207 .9939798

Note: Cycle time unit is monthly.

The period of 67 months implies a cyclical component with periodicity
of about 5.6 years, within conventional business-cycle periodicities.
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Unobserved components models Interpreting cycles in the frequency domain

Interpreting cycles in the frequency domain

To understand the stochastic-cycle model, consider that any stationary
process may be decomposed into random components occurring at
frequencies in the [0, π] interval. The autocovariances γj ,
j ∈ (0,1, . . . , ,∞) of a covariance stationary process specify its
variance and dependence structure.

In the frequency domain, the spectral density describes the
importance of the random components that occur at frequency ω
relative to the components at other frequencies. The spectral density
can be written as a weighted average of the autocorrelations of yt ,
normalized by γ0 = Var(y). Multiplying the spectral density by γ0
defines the power spectrum of yt .
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Unobserved components models Interpreting cycles in the frequency domain

In an i .i .d . process, the components of all frequencies are equally
represented, and the spectral density is a flat line over (0, π). This
represents ‘white noise’. High-frequency components will raise the
spectral density nearing π, while low-frequency components will raise
the spectral density nearing 0.

For instance, yt = φyt−1 + εt will have a spectral density (SD)
dominated by low-frequency components as φ→ 1, whereas
high-frequency components will be most important as φ→ −1. Given
the simple structure of this process, the SD with φ > 0 will be
monotonically declining, and the SD with φ < 0 monotonically
increasing, over the (0, π) interval.
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Unobserved components models Interpreting cycles in the frequency domain

Autoregressive moving-average (ARMA) models parameterize the
autocorrelation in a time series by allowing today’s value to be a
weighted average of past values and a weighted average of past i .i .d .
shocks. This allows us to rewrite the ARMA model as a weighted
average of past i.i.d. shocks to trace how a shock feeds through the
system, as in the context of the impulse response function of a VAR.

In contrast, the parameters of the stochastic-cycle parameterization of
autocorrelation in a time series directly provide information about the
underlying spectral density. The parameter ω0 is the central frequency
around which the random components are clustered.
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Unobserved components models Interpreting cycles in the frequency domain

If ω0 is small, then the model is centered around low-frequency
components. If ω0 is close to π, then the model is centered around
high-frequency components.

The parameter ρ is the damping factor that indicates how tightly
clustered the random components are around the central frequency
ω0. If ρ is close to zero, there is no clustering of the random
components. If ρ is close to one, the random components are tightly
clustered around the central frequency ω0.
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Unobserved components models The stochastic-cycle model

Returning to our example, where we estimated a period of 5.6 years
with a very large damping factor, we may view the spectral density
implied by this model.
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Unobserved components models The stochastic-cycle model

We may now extend the previous stochastic-cycle model to investigate
the possible presence of a high-frequency component in addition to
the low-frequency component in the US unemployment rate series. We
specify suboptions to cycle() to assist in identifying the two
components, which can be problematic. The frequency of 0.09 is that
estimated in the prior example. A frequency of 2.9, close to π, will be
the high-frequency component.
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Unobserved components models The stochastic-cycle model

. ucm unrate, cycle(1, freq(2.9)) cycle(2, freq(0.09)) nolog vsquish

Unobserved-components model
Components: random walk, 2 cycles of order 1 2

Sample: 1948m1 - 2011m1 Number of obs = 757
Wald chi2(4) = 7681.33

Log likelihood = 146.28326 Prob > chi2 = 0.0000

OIM
unrate Coef. Std. Err. z P>|z| [95% Conf. Interval]

cycle1
frequency 2.882382 .0668017 43.15 0.000 2.751453 3.013311

damping .7004295 .1251571 5.60 0.000 .4551261 .9457329

cycle2
frequency .0667929 .0206849 3.23 0.001 .0262513 .1073345

damping .9074708 .0142273 63.78 0.000 .8795858 .9353559

Variance
level .0207704 .0039669 5.24 0.000 .0129953 .0285454
cycle1 .0027886 .0014363 1.94 0.026 0 .0056037
cycle2 .002714 .001028 2.64 0.004 .0006991 .0047289

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.
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Unobserved components models The stochastic-cycle model

The output provides some support for the existence of a second,
high-frequency cycle. The high-frequency components are centered
around 2.88, whereas the low-frequency components are centered
around 0.067. That the estimated damping factor is 0.70 for the
high-frequency cycle whereas the estimated damping factor for the
low-frequency cycle is 0.91 indicates that the high-frequency
components are more diffusely distributed around 2.88 than the
low-frequency components are around 0.067.
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Unobserved components models The stochastic-cycle model

The distinct spectral densities support the conclusion of two cycles in
the data.
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Unobserved components models The local-level model

The local-level model

We now consider the weekly unemployment claims series (additions to
the unemployment rolls). This series appears to be a random walk plus
noise, or as often termed the local-level model.

yt = µt + εt

µt = µt−1 + ηt

where εt ∼ N(0, σ2
ε ) and N(0, σ2

η) are mutually independent.
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Unobserved components models The local-level model

. webuse icsa1, clear

. ucm icsa, model(llevel) nolog vsquish

Unobserved-components model
Components: local level

Sample: 07jan1967 - 19feb2011 Number of obs = 2303
Log likelihood = -9893.2469

OIM
icsa Coef. Std. Err. z P>|z| [95% Conf. Interval]

Variance
level 116.558 8.806587 13.24 0.000 99.29745 133.8186
icsa 124.2715 7.615506 16.32 0.000 109.3454 139.1976

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.
Note: Time units are in 7 days.

The estimation results indicate that both of the stochastic components
are statistically significant.
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Unobserved components models The local-level model

We might suspect that there is some serial correlation in the
idiosyncratic shock. Alternatively, we could include a cyclical
component to model the stationary time-dependence in the series. In
the example below, we add a stochastic-cycle model for the stationary
cyclical process, but we drop the idiosyncratic term and use a
random-walk model instead of the local-level model. We change the
model because it is difficult to estimate the variance of the idiosyncratic
term along with the parameters of a stationary cyclical component.
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Unobserved components models The local-level model

. ucm icsa, model(rwalk) cycle(1) nolog vsquish

Unobserved-components model
Components: random walk, order 1 cycle

Sample: 07jan1967 - 19feb2011 Number of obs = 2303
Wald chi2(2) = 23.04

Log likelihood = -9881.4441 Prob > chi2 = 0.0000

OIM
icsa Coef. Std. Err. z P>|z| [95% Conf. Interval]

frequency 1.469633 .3855657 3.81 0.000 .7139385 2.225328
damping .1644576 .0349537 4.71 0.000 .0959495 .2329656

Variance
level 97.90982 8.320047 11.77 0.000 81.60282 114.2168
cycle1 149.7323 9.980798 15.00 0.000 130.1703 169.2943

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.
Note: Time units are in 7 days.
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Unobserved components models The local-level model

. estat period

cycle1 Coef. Std. Err. [95% Conf. Interval]

period 4.275342 1.121657 2.076934 6.47375
frequency 1.469633 .3855657 .7139385 2.225328

damping .1644576 .0349537 .0959495 .2329656

Note: Time units are in 7 days.

. psdensity sdensity3 omega3

. line sdensity3 omega3, ylab(,angle(0))

Although the output indicates that the model fits well, the small
estimate of the damping parameter indicates that the random
components are widely distributed around the central frequency.
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Unobserved components models The local-level model
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Unobserved components models Modeling seasonality

Modeling seasonality

Consider a series with a seasonal effect, such as this monthly record
of new cases of mumps in New York City, 1928–1972.
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Unobserved components models Modeling seasonality

This could be modeled as a stochastic-seasonal model, allowing for a
random walk in the series and a stationary cyclical component.

. ucm mumps, seasonal(12) cycle(1) nolog vsquish

Unobserved-components model
Components: random walk, seasonal(12), order 1 cycle

Sample: 1928m1 - 1972m6 Number of obs = 534
Wald chi2(2) = 2141.69

Log likelihood = -3248.7138 Prob > chi2 = 0.0000

OIM
mumps Coef. Std. Err. z P>|z| [95% Conf. Interval]

frequency .3863607 .0282037 13.70 0.000 .3310824 .4416389
damping .8405622 .0197933 42.47 0.000 .8017681 .8793563

Variance
level 221.2131 140.5179 1.57 0.058 0 496.6231
seasonal 4.151639 4.383442 0.95 0.172 0 12.74303
cycle1 12228.17 813.8394 15.03 0.000 10633.08 13823.27

Note: Model is not stationary.
Note: Tests of variances against zero are one sided, and the two-sided

confidence intervals are truncated at zero.
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Unobserved components models Modeling seasonality

These results suggest that the seasonal variation may not be
important, and the trend variation (captured by the level variance) is
borderline. If the variance of the stochastic seasonal is zero, the
seasonal component becomes deterministic, and can be modeled with
seasonal dummies. We drop the trend variance, retaining only the
cyclical component.
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Unobserved components models Modeling seasonality

. ucm mumps ibn.month, model(none) cycle(1) nolog vsquish

Unobserved-components model
Components: order 1 cycle

Sample: 1928m1 - 1972m6 Number of obs = 534
Wald chi2(14) = 3404.29

Log likelihood = -3283.0284 Prob > chi2 = 0.0000

OIM
mumps Coef. Std. Err. z P>|z| [95% Conf. Interval]

cycle1
frequency .3272754 .0262922 12.45 0.000 .2757436 .3788071

damping .844874 .0184994 45.67 0.000 .8086157 .8811322

mumps
month

1 480.5095 32.67128 14.71 0.000 416.475 544.544
2 561.9174 32.66999 17.20 0.000 497.8854 625.9494
3 832.8666 32.67696 25.49 0.000 768.8209 896.9122
4 894.0747 32.64568 27.39 0.000 830.0904 958.0591
5 869.6568 32.56282 26.71 0.000 805.8348 933.4787
6 770.1562 32.48587 23.71 0.000 706.4851 833.8274
7 433.839 32.50165 13.35 0.000 370.1369 497.541
8 218.2394 32.56712 6.70 0.000 154.409 282.0698
9 140.686 32.64138 4.31 0.000 76.7101 204.662
10 148.5876 32.69067 4.55 0.000 84.51508 212.6601
11 215.0958 32.70311 6.58 0.000 150.9989 279.1927
12 330.2232 32.68906 10.10 0.000 266.1538 394.2926

...
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Unobserved components models Modeling seasonality

...
Variance

cycle1 13031.53 798.2719 16.32 0.000 11466.95 14596.11

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

. estat period

cycle1 Coef. Std. Err. [95% Conf. Interval]

period 19.19847 1.54234 16.17554 22.2214
frequency .3272754 .0262922 .2757436 .3788071

damping .844874 .0184994 .8086157 .8811322

Note: Cycle time unit is monthly.

The cyclical variance is an important element. Analysis of its
periodicity shows a 19-month cycle, suggesting that new mumps cases
peak about every 1.5 years.
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Dynamic factor models

Dynamic factor models

Dynamic factor models (DFM) are flexible models for multivariate time
series in which unobserved factors have a vector autoregressive
structure, exogenous covariates are permitted in both the equations for
the latent factors and the equations for observable dependent
variables, and the disturbances in the equations for the dependent
variables may be autocorrelated.

A DFM contains k endogenous variables, expressed as linear
functions of nf < k unobserved factors and exogenous covariates.
Constraints must be imposed for identification of the parameters.
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Dynamic factor models

A DFM can be written as

yt = Pft + Qxt + ut

ft = Rwt + A1ft−1 + ... · · ·+ At−pft−p + νt

ut = c1ut−1 + ... · · ·+ Ct−qut−q + εt

where yt ,ut and εt are k × 1, ft and νt are nf × 1, x is nx × 1, and wt is
nw × 1. In this specification, there are p lags on the factors and q lags
on the u error processes.
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Dynamic factor models

Several variations of the model may be specified:

Model nf p q
Static factors SF >0 0 0
Static factors with vector AR errors SFAR >0 0 >0
Dynamic factors DF >0 >0 0
Dynamic factors with vector AR errors DFAR >0 >0 >0
Seemingly unrelated regression SUR 0 0 0
VAR with vector AR errors VAR 0 0 >0

The last two are not DFM specifications, but may be estimated to allow
for constraints on their error VCE, which cannot be imposed in the
standard sureg or var framework.

Christopher F Baum (BC / DIW) Additional time series models Boston College, Spring 2013 68 / 86



Dynamic factor models

These models are estimated by placing them in state-space form. We
have already seen an example of a DFM, in which a single unobserved
factor, modeled as an AR(2) process, was related to four observable
macro variables. In that example, we used space to specify and
estimate the model. We could have generated the same results using
Stata’s dfactor command, a bit more parsimoniously:

dfactor (D.(ipman income hours unemp) = , nocons) (f =, ar(1/2))

We could extend this example to allow for the errors in the observables
to be autocorrelated.
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Dynamic factor models

. webuse dfex, clear
(St. Louis Fed (FRED) macro data)

. dfactor (D.(ipman income hours unemp)=, nocons ar(1)) (f=, ar(1/2)), nolog vs
> quish

Dynamic-factor model

Sample: 1972m2 - 2008m11 Number of obs = 442
Wald chi2(10) = 990.91

Log likelihood = -610.28846 Prob > chi2 = 0.0000

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

f
f

L1. .4058457 .0906183 4.48 0.000 .2282371 .5834544
L2. .3663499 .0849584 4.31 0.000 .1998344 .5328654

De.ipman
e.ipman

LD. -.2772149 .068808 -4.03 0.000 -.4120761 -.1423538

De.income
e.income

LD. -.2213824 .0470578 -4.70 0.000 -.3136141 -.1291508

De.hours
e.hours

LD. -.3969317 .0504256 -7.87 0.000 -.495764 -.2980994

...
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Dynamic factor models

...
De.unemp

e.unemp
LD. -.1736835 .0532071 -3.26 0.001 -.2779675 -.0693995

D.ipman
f .3214972 .027982 11.49 0.000 .2666535 .3763408

D.income
f .0760412 .0173844 4.37 0.000 .0419684 .110114

D.hours
f .1933165 .0172969 11.18 0.000 .1594151 .2272179

D.unemp
f -.0711994 .0066553 -10.70 0.000 -.0842435 -.0581553

Variance
De.ipman .1387909 .0154558 8.98 0.000 .1084981 .1690837
De.income .2636239 .0179043 14.72 0.000 .2285322 .2987157
De.hours .0822919 .0071096 11.57 0.000 .0683574 .0962265
De.unemp .0218056 .0016658 13.09 0.000 .0185407 .0250704

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.
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Dynamic factor models

The sizable negative coefficients on each of the De. terms imply that
incorporating AR(1) errors improves the earlier model. The default for
the vector AR structure (the A matrices) is a diagonal VCE, with no
cross-equation autocorrelations. This can be relaxed by the
arstructure() option. Allowing for a general matrix, we now
estimate a full set of cross-equation autocorrelations.
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Dynamic factor models

. dfactor (D.(ipman income hours unemp)=, nocons ar(1) arstructure(gen)) ///
> (f=, ar(1/2)), nolog vsquish

Dynamic-factor model

Sample: 1972m2 - 2008m11 Number of obs = 442
Wald chi2(22) = 1886.33

Log likelihood = -577.02661 Prob > chi2 = 0.0000

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

f
f

L1. -.5931147 .0704447 -8.42 0.000 -.7311838 -.4550455
L2. -.3082691 .0622398 -4.95 0.000 -.4302569 -.1862813

De.ipman
e.ipman

LD. .0188223 .0646137 0.29 0.771 -.1078182 .1454628
e.income

LD. .2121594 .0483115 4.39 0.000 .1174707 .3068482
e.hours

LD. 1.02509 .161006 6.37 0.000 .7095238 1.340656
e.unemp

LD. -.59724 .16283 -3.67 0.000 -.916381 -.278099

...
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Dynamic factor models

De.income
e.ipman

LD. .0775566 .0544958 1.42 0.155 -.0292532 .1843664
e.income

LD. -.1927469 .0473582 -4.07 0.000 -.2855673 -.0999266
e.hours

LD. .2332803 .1295888 1.80 0.072 -.0207091 .4872696
e.unemp

LD. .0349881 .1558053 0.22 0.822 -.2703848 .3403609

De.hours
e.ipman

LD. .175513 .041344 4.25 0.000 .0944801 .2565458
e.income

LD. .0662514 .0301777 2.20 0.028 .0071041 .1253986
e.hours

LD. .3987403 .1063789 3.75 0.000 .1902415 .6072391
e.unemp

LD. -.4004179 .1054703 -3.80 0.000 -.607136 -.1936998

De.unemp
e.ipman

LD. -.0531289 .0194429 -2.73 0.006 -.0912363 -.0150215
e.income

LD. -.018593 .0153895 -1.21 0.227 -.0487558 .0115698
e.hours

LD. -.2859971 .0510751 -5.60 0.000 -.3861024 -.1858918
e.unemp

LD. -.0827445 .0519692 -1.59 0.111 -.1846022 .0191132
...
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Dynamic factor models

...
D.ipman

f .1889032 .0228953 8.25 0.000 .1440293 .2337772

D.income
f .0687882 .0264256 2.60 0.009 .0169949 .1205814

D.hours
f .2729581 .0177138 15.41 0.000 .2382396 .3076765

D.unemp
f -.0190063 .0075799 -2.51 0.012 -.0338627 -.0041499

Variance
De.ipman .1756275 .0144128 12.19 0.000 .1473789 .2038762
De.income .2642305 .0178817 14.78 0.000 .229183 .299278
De.hours .022353 .0065214 3.43 0.000 .0095713 .0351346
De.unemp .023182 .0016716 13.87 0.000 .0199058 .0264582

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.
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Dynamic factor models

We may also estimate a static factor model, in which the factors do not
have an autoregressive structure. We illustrate with a dataset of
monthly unemployment rates across the four US Census regions.
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Dynamic factor models

. webuse urate, clear
(Monthly unemployment rates in US Census regions)

. dfactor (D.(west south ne midwest) = , noconstant) (z = ), nolog vsquish

Dynamic-factor model

Sample: 1990m2 - 2008m12 Number of obs = 227
Wald chi2(4) = 342.56

Log likelihood = 873.0755 Prob > chi2 = 0.0000

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

D.west
z .0978324 .0065644 14.90 0.000 .0849664 .1106983

D.south
z .0859494 .0061762 13.92 0.000 .0738442 .0980546

D.ne
z .0918607 .0072814 12.62 0.000 .0775893 .106132

D.midwest
z .0861102 .0074652 11.53 0.000 .0714787 .1007417

Variance
De.west .0036887 .0005834 6.32 0.000 .0025453 .0048322
De.south .0038902 .0005228 7.44 0.000 .0028656 .0049149
De.ne .0064074 .0007558 8.48 0.000 .0049261 .0078887
De.midwest .0074749 .0008271 9.04 0.000 .0058538 .009096

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.
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Dynamic factor models

We might want to test whether changes in the latent factor have the
same effect on all regional unemployment rates.

. test [D.west]z = [D.south]z = [D.ne]z = [D.midwest]z

( 1) [D.west]z - [D.south]z = 0
( 2) [D.west]z - [D.ne]z = 0
( 3) [D.west]z - [D.midwest]z = 0

chi2( 3) = 3.58
Prob > chi2 = 0.3109

The hypothesis of equality cannot be rejected. We may thus impose
those constraints and allow for dynamics in the variables by allowing
their errors to follow an AR(1) process.
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Dynamic factor models

. constraint 2 [D.west]z = [D.south]z

. constraint 3 [D.west]z = [D.ne]z

. constraint 4 [D.west]z = [D.midwest]z

. dfactor (D.(west south ne midwest) = , noconstant ar(1)) (z = ), ///
> constraints(2/4) nolog vsquish

Dynamic-factor model

Sample: 1990m2 - 2008m12 Number of obs = 227
Wald chi2(5) = 363.34

Log likelihood = 880.97488 Prob > chi2 = 0.0000
( 1) [D.west]z - [D.south]z = 0
( 2) [D.west]z - [D.ne]z = 0
( 3) [D.west]z - [D.midwest]z = 0

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

De.west
e.west

LD. .1297198 .0992663 1.31 0.191 -.0648386 .3242781

De.south
e.south

LD. -.2829014 .0909205 -3.11 0.002 -.4611023 -.1047004

De.ne
e.ne
LD. .2866958 .0847851 3.38 0.001 .12052 .4528715

...
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Dynamic factor models

...
De.midwest

e.midwest
LD. .0049427 .0782188 0.06 0.950 -.1483634 .1582488

D.west
z .0904724 .0049326 18.34 0.000 .0808047 .1001401

D.south
z .0904724 .0049326 18.34 0.000 .0808047 .1001401

D.ne
z .0904724 .0049326 18.34 0.000 .0808047 .1001401

D.midwest
z .0904724 .0049326 18.34 0.000 .0808047 .1001401

Variance
De.west .0038959 .0005111 7.62 0.000 .0028941 .0048977
De.south .0035518 .0005097 6.97 0.000 .0025528 .0045507
De.ne .0058173 .0006983 8.33 0.000 .0044488 .0071859
De.midwest .0075444 .0008268 9.12 0.000 .0059239 .009165

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.
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Dynamic factor models

The AR(1) parameters are not very precisely estimated, with two of the
four not significantly different from zero. A dynamic factor specification
might be more appropriate. We drop the AR(1) structure on the
observed variables’ errors and add two lags to the factor equation
(p = 2).
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Dynamic factor models

. dfactor (D.(west south ne midwest) = , noconstant) (z =, ar(1/2)), ///
> constraints(2/4) nolog vsquish

Dynamic-factor model

Sample: 1990m2 - 2008m12 Number of obs = 227
Wald chi2(3) = 1077.41

Log likelihood = 959.26145 Prob > chi2 = 0.0000
( 1) [D.west]z - [D.south]z = 0
( 2) [D.west]z - [D.ne]z = 0
( 3) [D.west]z - [D.midwest]z = 0

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

z
z

L1. .2280112 .0577456 3.95 0.000 .1148319 .3411904
L2. .7332268 .0602479 12.17 0.000 .615143 .8513105

D.west
z .0513222 .0038618 13.29 0.000 .0437532 .0588913

D.south
z .0513222 .0038618 13.29 0.000 .0437532 .0588913

D.ne
z .0513222 .0038618 13.29 0.000 .0437532 .0588913

D.midwest
z .0513222 .0038618 13.29 0.000 .0437532 .0588913

...
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Dynamic factor models

...

Variance
De.west .0033756 .00043 7.85 0.000 .0025328 .0042183
De.south .0038912 .0004611 8.44 0.000 .0029874 .004795
De.ne .0061826 .0006749 9.16 0.000 .0048599 .0075053
De.midwest .0084143 .0008768 9.60 0.000 .0066958 .0101328

Note: Tests of variances against zero are one sided, and the two-sided
confidence intervals are truncated at zero.

This specification is more appealing, with the coefficients on the latent
factor summing to nearly unity. We can revisit the issue of using a
single coefficient by reestimating without constraints and performing a
likelihood ratio test.

Christopher F Baum (BC / DIW) Additional time series models Boston College, Spring 2013 83 / 86



Dynamic factor models

. qui dfactor (D.(west south ne midwest) = , nocons) (z =, ar(1/2)), nolog vsqu
> ish

. lrtest singlecoef .

Likelihood-ratio test LR chi2(3) = 11.74
(Assumption: singlecoef nested in .) Prob > chi2 = 0.0083

The test rejects its null, implying that the model allowing for
region-specific coefficients is preferred. The predict command can
be used to compute the estimated factor, which we can graph versus
the NBER recession dates.
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Dynamic factor models

. predict fac29 if e(sample), factor

. nbercycles fac29 if e(sample), file(fac29.do) replace

Code to graph NBER recession dates written to fac29.do

. * append your graph command to this file: e.g.

. * tsline timeseriesvar, xlabel(,format(%tm)) legend(order(4 1 "Recession"))

. twoway function y=6.801925840377808,range(366 374) recast(area) color(gs12) b
> ase(-1.975977147817612) || ///
> function y=6.801925840377808,range(494 502) recast(area) color(gs12) base(-1.
> 975977147817612) || ///
> function y=6.801925840377808,range(575 593) recast(area) color(gs12) base(-1.
> 975977147817612) || ///
> tsline fac29 if e(sample), xlabel(,format(%tm)) legend(order(4 1 "Recession")
> )

.
end of do-file
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Dynamic factor models
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