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Propensity score matching

Propensity score matching

Policy evaluation seeks to determine the effectiveness of a particular
intervention. In economic policy analysis, we rarely can work with
experimental data generated by purely random assignment of subjects
to the treatment and control groups. Random assignment, analogous
to the ’randomized clinical trial’ in medicine, seeks to ensure that
participation in the intervention, or treatment, is the only differentiating
factor between treatment and control units.

In non-experimental economic data, we observe whether subjects
were treated or not, but in the absence of random assignment, must be
concerned with differences between the treated and non-treated. For
instance, do those individuals with higher aptitude self-select into a job
training program? If so, they are not similar to corresponding
individuals along that dimension, even though they may be similar in
other aspects.
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Propensity score matching

The key concern is that of similarity. How can we find individuals who
are similar on all observable characteristics in order to match treated
and non-treated individuals (or plants, or firms...) With a single
measure, we can readily compute a measure of distance between a
treated unit and each candidate match. With multiple measures
defining similarity, how are we to balance similarity along each of those
dimensions?

The method of propensity score matching (PSM) allows this matching
problem to be reduced to a single dimension: that of the propensity
score. That score is defined as the probability that a unit in the full
sample receives the treatment, given a set of observed variables. If all
information relevant to participation and outcomes is observable to the
researcher, the propensity score will produce valid matches for
estimating the impact of an intervention. Thus, rather than matching on
all values of the variables, individual units can be compared on the
basis of their propensity scores alone.
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Propensity score matching

An important attribute of PSM methods is that they do not require the
functional form to be correctly specified. If we used OLS methods such
as

y = Xβ + Dγ + ε

where y is the outcome, X are covariates and D is the treatment
indicator, we would be assuming that the effects of treatment are
constant across individuals. We need not make this assumption to
employ PSM. As we will see, a crucial assumption is made on the
contents of X , which should include all variables that can influence the
probability of treatment.
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Propensity score matching Why use matching methods?

Why use matching methods?

The greatest challenge in evaluating a policy intervention is obtaining a
credible estimate of the counterfactual: what would have happened to
participants (treated units) had they not participated? Without a
credible answer, we cannot rule out that whatever successes have
occurred among participants could have happened anyway. This
relates to the fundamental problem of causal inference: it is impossible
to observe the outcomes of the same unit in both treatment conditions
at the same time.

The impact of a treatment on individual i , δi , is the difference between
potential outcomes with and without treatment:

δi = Y1i − Y0i

where states 0 and 1 corrrespond to non-treatment and treatment,
respectively.
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Propensity score matching Why use matching methods?

To evaluate the impact of a program over the population, we may
compute the average treatment effect (ATE):

ATE = E [δi ] = E(Y1 − Y0)

Most often, we want to compute the average treatment effect on the
treated (ATT):

ATT = E(Y1 − Y0|D = 1)

where D = 1 refers to the treatment.
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Propensity score matching Why use matching methods?

The problem is that not all of these parameters are observable, as they
rely on counterfactual outcomes. For instance, we can rewrite ATT as

ATT = E(Y1|D = 1)− E(Y0|D = 1)

The second term is the average outcome of treated individuals had
they not received the treatment. We cannot observe that, but we do
observe a corresponding quantity for the untreated, and can compute

∆ = E(Y1|D = 1)− E(Y0|D = 0)

The difference between ATT and ∆ can be defined as

∆ = ATT + SB

where SB is the selection bias term: the difference between the
counterfactual for treated units and observed outcomes for untreated
units.
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Propensity score matching Why use matching methods?

For the computable quantity ∆ to be useful, the SB term must be zero.
But selection bias in a non-experimental context is often sizable. For
instance, those who voluntarily sign up for a teacher-training program
may be the more motivated teachers, who might be more likely to do
well (in terms of student test scores) even in the absence of treatment.

In other cases, the bias may not arise due to individuals self-selecting
into treatment, but being selected for treatment on the basis of an
interview or evaluation of their willingness to cooperate with the
program. This gives rise to administrative selection bias or program
placement bias.

Even in the case of a randomized experiment, participants selected for
treatment may choose not to be treated, or may not comply with all
aspects of the treatment regime. In this sense, even a randomized trial
may involve bias in evaluating the effects of treatment, and
nonexperimental methods may be required to adjust for that bias.
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Propensity score matching Requirements for PSM validity

Requirements for PSM validity

Two key assumptions underly the use of matching methods, and PSM
in particular:

1 Conditional independence: there exists a set X of observable
covariates such that after controlling for these covariates, the
potential outcomes are independent of treatment status:

(Y1,Y0) ⊥ D|X

2 Common support: for each value fo X , there is a positive
probability of being both treated and untreated:

0 < P(D = 1|X ) < 1
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Propensity score matching Requirements for PSM validity

The conditional independence assumption

(Y1,Y0) ⊥ D|X

implies that after controlling for X , the assignment of units to treatment
is ‘as good as random.’ This assumption is also known as selection on
observables, and it requires that all variables relevant to the probability
of receiving treatment may be observed and included in X . This allows
the untreated units to be used to construct an unbiased counterfactual
for the treatment group.
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Propensity score matching Requirements for PSM validity

The common support assumption

0 < P(D = 1|X ) < 1

implies that the probability of receiving treatment for each possible
value of the vector X is strictly within the unit interval: as is the
probability of not receiving treatment. This assumption of common
support ensures that there is sufficient overlap in the characteristics of
treated and untreated units to find adequate matches.

When these assumptions are satisfied, the treatment assignment is
said to be strongly ignorable in the terminology of Rosenbaum and
Rubin (Biometrika, 1983).
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Propensity score matching Basic mechanics of matching

Basic mechanics of matching

The procedure for estimating the impact of a program can be divided
into three steps:

1 Estimate the propensity score
2 Choose a matching algorithm that will use the estimated

propensity scores to match untreated units to treated units
3 Estimate the impact of the intervention with the matched sample

and calculate standard errors
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Propensity score matching Basic mechanics of matching

To estimate the propensity score, a logit or probit model is usually
employed. It is essential that a flexible functional form be used to allow
for possible nonlinearities in the participation model. This may involve
the introduction of higher-order terms in the covariates as well as
interaction terms.

There will usually be no comprehensive list of the clearly relevant
variables that would assure that the matched comparison group will
provide an unbiased estimate of program impact. Obviously explicit
criteria that govern project or program eligibility should be included, as
well as factors thought to influence self-selection and administrative
selection.
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Propensity score matching Basic mechanics of matching

In choosing a matching algorithm, you must consider whether
matching is to be performed with or without replacement. Without
replacement, a given untreated unit can only be matched with one
treated unit. A criterion for assessing the quality of the match must
also be defined. The number of untreated units to be matched with
each treated unit must also be chosen.

Early matching estimators paired each treated unit with one unit from
the control group, judged most similar. Researchers have found that
estimators are more stable if a number of comparison cases are
considered for each treated case, usually implying that the matching
will be done with replacement.
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Propensity score matching Basic mechanics of matching

The matching criterion could be as simple as the absolute difference in
the propensity score for treated vs. non-treated units. However, when
the sampling design oversamples treated units, it has been found that
matching on the log odds of the propensity score (p/(1− p)) is a
superior criterion.

The nearest neighbor matching algorithm merely evaluates absolute
differences between propensity scores (or their log odds), where you
may choose to use 1, 2, ... K nearest neighbors in the match. A
variation, radius matching, specifies a ‘caliper’ or maximum propensity
score difference. Larger differences will not result in matches, and all
units whose differences lie within the caliper’s radius will be chosen.
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Propensity score matching Basic mechanics of matching

In many-to-one radius matching with replacement, the estimator of
program impact may be written as

E(∆Y ) =
1
N

N∑
i=1

[
Y1i − Ȳ0j(i)

]
where Ȳ0j(i) is the average outcome for all comparison individuals
matched with case i , Y1i is the outcome for treated case i , and N is the
number of treated cases.
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Propensity score matching Basic mechanics of matching

As an alternative to radius matching, which rules out matches beyond
the threshold of the caliper, the kernel and local-linear methods are
nonparametric methods that compare each treated unit to a weighted
average of the outcomes of all untreated units, with higher weights
being placed on the untreated units with scores closer to that of the
treated individual. These methods exhibit lower variance, but may
suffer from the inclusion of information from poor matches. To use
these methods, a kernel function must be chosen, and its bandwidth
parameter must be specified.

The usual tradeoff between bias and efficiency arises in selecting a
matching algorithm. By choosing only one nearest neighbor, we
minimize bias by using the most similar observation. However, this
ignores a great deal of information, and thus may yield less efficient
estimates.
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Propensity score matching Evaluating the validity of matching assumptions

Evaluating the validity of matching assumptions

The conditional independence assumption cannot be directly tested,
but several guidelines for model specification should be considered.
The more transparent and well-controlled is the selection process, the
more confidence you may have in arguing that all relevant variables
have been included. Measures included in the PSM model should be
stable over time, or deterministic (e.g., age), or measured before
participation, so that they are not confounded with outcomes or the
anticipation of treatment. The specification should allow for nonlinear
covariate effects and potential interactions in order to avoid
inappropriate constraints on the functional form.
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Propensity score matching Evaluating the validity of matching assumptions

Balancing tests consider whether the estimated propensity score
adequately balances characteristics between the treatment and control
group units. The assumption

D ⊥ X |p(X )

is testable. If it is supported by the data, then after conditioning on the
estimated propensity score p(X ), there should be no other variable
that could be added to the conditioning set X that would improve the
estimation, and after the application of matching, there should be no
statistically significant differences between covariate means of the
treated and comparison units. These mean comparisons can be
contrasted with the unconditional means of the treatment and control
groups, which are likely to be statistically significant in most
applications.
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Propensity score matching Evaluating the validity of matching assumptions

Finally, the common support or overlap condition

0 < P(D = 1|X ) < 1

should be tested. This can be done by visual inspection of the
densities of propensity scores of treated and non-treated groups, or
more formally via a comparison test such as the Kolmogorov–Smirnov
nonparametric test. If there are sizable differences between the
maxima and minima of the density distributions, it may be advisable to
remove cases that lie outside the support of the other distribution.
However, as with any trimming algorithm, this implies that results of the
analysis are strictly valid only for the region of common support.
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Propensity score matching An empirical example

An empirical example

As an example of propensity score matching techniques, we follow
Sianesi’s 2010 presentation at the German Stata Users Group
meetings (http://ideas.repec.org/p/boc/dsug10/02.html)
and employ the nsw_psid dataset that has been used in several
articles on PSM techniques. This dataset combines 297 treated
individuals from a randomised evaluation of the NSW Demonstration
job-training program with 2,490 non-experimental untreated individuals
drawn from the Panel Study of Income Dynamics (PSID), all of whom
are male. The outcome of interest is re78, 1978 earnings. Available
covariates include age, ethnic status (black, Hispanic or white), marital
status, years of education, an indicator for no high school degree and
1975 earnings (in 1978 dollars).

We use Leuven and Sianesi’s psmatch2 routine, available from SSC.
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Propensity score matching An empirical example

. use nsw_psid, clear
(NSW treated and PSID non-treated)

. qui probit treated age black hispanic married educ nodegree re75

. margins, dydx(_all)

Average marginal effects Number of obs = 2787
Model VCE : OIM

Expression : Pr(treated), predict()
dy/dx w.r.t. : age black hispanic married educ nodegree re75

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

age -.0035844 .000462 -7.76 0.000 -.0044899 -.002679
black .0766501 .0088228 8.69 0.000 .0593577 .0939426

hispanic .0831734 .0157648 5.28 0.000 .0522751 .1140718
married -.0850743 .0070274 -12.11 0.000 -.0988478 -.0713009

educ .0003458 .0023048 0.15 0.881 -.0041716 .0048633
nodegree .0418875 .0108642 3.86 0.000 .0205942 .0631809

re75 -6.89e-06 5.89e-07 -11.71 0.000 -8.04e-06 -5.74e-06

. // compute the propensity score

. predict double score
(option pr assumed; Pr(treated))
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Propensity score matching An empirical example

. // compare the densities of the estimated propensity score over groups
. density2 score, group(treated) saving(psm2a, replace)
(file psm2a.gph saved)

. graph export psm2a.pdf, replace
(file /Users/cfbaum/Documents/Stata/StataWorkshops/psm2a.pdf written in PDF for
> mat)

. psgraph, treated(treated) pscore(score) bin(50) saving(psm2b, replace)
(file psm2b.gph saved)

. graph export psm2b.pdf, replace
(file /Users/cfbaum/Documents/Stata/StataWorkshops/psm2b.pdf written in PDF for
> mat)
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Propensity score matching An empirical example
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Propensity score matching An empirical example
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Untreated Treated
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Propensity score matching An empirical example

1 . // compute nearest-neighbor matching with caliper and replacement
2 . psmatch2 treated, pscore(score) outcome(re78) caliper(0.01)
There are observations with identical propensity score values.
The sort order of the data could affect your results.
Make sure that the sort order is random before calling psmatch2.

        Variable     Sample     Treated     Controls   Difference         S.E.   T-stat

            re78  Unmatched  5976.35202   21553.9209  -15577.5689   913.328457   -17.06
                        ATT   6067.8117   5768.70099   299.110712   1078.28065     0.28

Note: S.E. does not take into account that the propensity score is estimated.

 psmatch2:    psmatch2: Common
 Treatment         support
assignment  Off suppo  On suppor      Total

 Untreated          0      2,490      2,490 
   Treated         26        271        297 

     Total         26      2,761      2,787 

3 . // evaluate common support
4 . summarize _support if treated

    Variable        Obs        Mean    Std. Dev.       Min        Max

    _support        297    .9124579    .2831048          0          1

5 . qui log close

Monday, August 22, 2011 11:14 AM   Page 1
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Propensity score matching An empirical example

1 . // evaluate quality of matching
2 . pstest2 age black hispanic married educ nodegree re75, sum graph 

                               Mean               %reduct      t-test
    Variable     Sample  Treated Control    %bias  |bias|     t    p>|t|

         age  Unmatched  24.626   34.851   -116.6          -16.48  0.000
                Matched  25.052   25.443     -4.5    96.2   -0.61  0.545
                                                          
       black  Unmatched  .80135    .2506    132.1           20.86  0.000
                Matched  .78967   .78967      0.0   100.0   -0.00  1.000
                                                          
    hispanic  Unmatched  .09428   .03253     25.5            5.21  0.000
                Matched  .09594   .08856      3.0    88.0    0.30  0.767
                                                          
     married  Unmatched  .16835   .86627   -194.9          -33.02  0.000
                Matched   .1845   .14022     12.4    93.7    1.40  0.163
                                                          
        educ  Unmatched   10.38   12.117    -68.6           -9.51  0.000
                Matched  10.465   10.166     11.8    82.8    1.54  0.125
                                                          
    nodegree  Unmatched  .73064   .30522     94.0           15.10  0.000
                Matched  .71587   .69373      4.9    94.8    0.56  0.573
                                                          
        re75  Unmatched  3066.1    19063   -156.6          -20.12  0.000
                Matched  3197.4   3307.8     -1.1    99.3   -0.28  0.778
                                                          

         Summary of the distribution of the abs(bias)

                       BEFORE MATCHING

      Percentiles      Smallest
 1%     25.51126       25.51126
 5%     25.51126        68.6224
10%     25.51126       94.00328       Obs                   7
25%      68.6224       116.6243       Sum of Wgt.           7

Monday, August 22, 2011 11:15 AM   Page 1
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Propensity score matching An empirical example
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Propensity score matching An empirical example

Alternatively, we can perform PSM with a kernel-based method. Notice
that the estimate of ATT switches sign relative to that produced by the
nearest-neighbor matching algorithm.

1 . // compute kernel-based matching with normal kernel
2 . psmatch2 treated, pscore(score) outcome(re78) kernel k(normal) bw(0.01)

        Variable     Sample     Treated     Controls   Difference         S.E.   T-stat

            re78  Unmatched  5976.35202   21553.9209  -15577.5689   913.328457   -17.06
                        ATT  5976.35202   6882.18396  -905.831935   2151.26377    -0.42

Note: S.E. does not take into account that the propensity score is estimated.

            psmatch2:
 psmatch2:    Common
 Treatment   support
assignment  On suppor      Total

 Untreated      2,490      2,490 
   Treated        297        297 

     Total      2,787      2,787 

3 . qui log close

Monday, August 22, 2011 11:22 AM   Page 1
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Propensity score matching An empirical example

1 . // evaluate quality of matching
2 . pstest2 age black hispanic married educ nodegree re75, sum graph 

                               Mean               %reduct      t-test
    Variable     Sample  Treated Control    %bias  |bias|     t    p>|t|

         age  Unmatched  24.626   34.851   -116.6          -16.48  0.000
                Matched  24.626   24.572      0.6    99.5    0.09  0.926
                                                          
       black  Unmatched  .80135    .2506    132.1           20.86  0.000
                Matched  .80135   .81763     -3.9    97.0   -0.50  0.614
                                                          
    hispanic  Unmatched  .09428   .03253     25.5            5.21  0.000
                Matched  .09428   .08306      4.6    81.8    0.48  0.631
                                                          
     married  Unmatched  .16835   .86627   -194.9          -33.02  0.000
                Matched  .16835    .1439      6.8    96.5    0.82  0.413
                                                          
        educ  Unmatched   10.38   12.117    -68.6           -9.51  0.000
                Matched   10.38   10.238      5.6    91.8    0.81  0.415
                                                          
    nodegree  Unmatched  .73064   .30522     94.0           15.10  0.000
                Matched  .73064   .72101      2.1    97.7    0.26  0.793
                                                          
        re75  Unmatched  3066.1    19063   -156.6          -20.12  0.000
                Matched  3066.1   3905.8     -8.2    94.8   -1.99  0.047
                                                          

         Summary of the distribution of the abs(bias)

                       BEFORE MATCHING

      Percentiles      Smallest
 1%     25.51126       25.51126
 5%     25.51126        68.6224
10%     25.51126       94.00328       Obs                   7
25%      68.6224       116.6243       Sum of Wgt.           7

Monday, August 22, 2011 11:21 AM   Page 1
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Propensity score matching An empirical example
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Propensity score matching An empirical example

We could also employ Mahalanobis matching, which matches on the
whole vector of X values (and possibly the propensity score as well),
using a different distance metric.

An additional important issue: how might we address unobserved
heterogeneity, as we do in a panel data context with fixed effects
models? A differences-in-differences matching estimator (DID) has
been proposed, in which rather than evaluating the effect on the
outcome variable, you evaluate the effect on the change in the
outcome variable, before and after the intervention. Akin to DID
estimators in standard policy evaluation, this allows us to control for
the notion that there may be substantial unobserved differences
between treated and untreated units, relaxing the ‘selection on
observables’ assumption.
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Regression discontinuity models

Regression discontinuity models

The idea of Regression Discontinuity (RD) design, due to Thistlewaite
and Campbell (J. Educ. Psych., 1960) and Hahn et al. (Econometrica,
2001) is to use a discontinuity in the level of treatment related to some
observable to get a consistent estimate of the LATE: the local average
treatment effect. This compares those just eligible for the treatment
(above the threshold) to those just ineligible (below the threshold).

Among non-experimental or quasi-experimental methods, RD
techniques are considered to have the highest internal validity (the
ability to identify causal relationships in this research setting). Their
external validity (ability to generalize findings to similar contexts) may
be less impressive, as the estimated treatment effect is local to the
discontinuity.
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Regression discontinuity models

What could give rise to a RD design? In 1996, a number of US states
adopted a policy that while immigrants were generally ineligible for
food stamps, a form of welfare assistance, those who had been in the
country legally for at least five years would qualify. At a later date, one
could compare self-reported measures of dietary adequacy, or
measures of obesity, between those immigrants who did and did not
qualify for this assistance. The sharp discontinuity in this example
relates to those on either side of the five-year boundary line.

Currently, US states are eligible for additional Federal funding if their
unemployment rate is above 8% (as most currently are). This funding
permits UI recipients to receive a number of additional weeks of
benefit. Two months ago, the Massachusetts unemployment rate
dropped below the threshold: good news for those who are employed,
but bad news for those still seeking a job, as the additional weeks of
benefit are now not available to current recipients.
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Regression discontinuity models

Other examples of RD designs arise in terms of taxation. In my home
state of Massachusetts, items of clothing are not taxable if they cost
less than US$250.00. An item selling for that price or higher is taxable
at 6.25%. During a recent weekend ‘sales tax holiday’, items
purchased on a single invoice were not taxable if the total was below
US$2,500.00. Thus, a one-dollar increase in the invoice would incur an
additional US$156.25 in taxes, as the entire sale is then taxable.

As Austin Nichols pointed out, the sequence of US estate tax rates on
large inheritances: 45% in 2009, zero in 2010, and 55% in 2011 may
have caused some perverse incentives among potential heirs! That
may be a difficult hypothesis to test, though, without the assistance of
the homicide squad.
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Regression discontinuity models RD design elements

RD design elements

There are four crucial elements to a RD design:
1 Treatment is not randomly assigned, but dependent at least in part

on an observable assignment variable Z .
2 There is a discontinuity at some cutoff value of the assignment

variable in the level of treatment.
3 Individuals cannot manipulate their status to affect whether they

fall on one side of the cutoff or the other. Those near the cutoff are
assumed to be exchangeable or otherwise identical.

4 Other variables are smooth functions of the assignment variable,
conditional on treatment. That is, a jump in the outcome variable
should be due to the discontinuity in the level of treatment.

Christopher F Baum (BC / DIW) PSM, RD, LDV Boston College, Spring 2013 36 / 99



Regression discontinuity models RD methodology

RD methodology

There is considerable art involved in choosing some continuous
function of the assignment variable Z for treatment and outcomes. A
high-order polynomial in Z is often used to estimate separately on both
sides of the discontinuity. Better yet, a local polynomial, local linear
regression model or local mean smoother may be used, where as in
other nonparametric settings one must choose a kernel and bandwidth
parameter. It is probably best to choose several different bandwidth
parameters to analyze the sensitivity of the results to the choice of
bandwidth.
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Regression discontinuity models RD methodology

The first test performed should be a test that the hypothesized cutoff in
the assignment variable produces a jump in the level of treatment. In
the case of an election with two candidates on the ballot, for instance,
the probability of winning the election jumps from zero to one at the
50% cutoff. A local linear regression of X (the treatment variable) on Z
in the vicinity of the cutoff should identify the magnitude of the jump.

It should also be verified that there are no extraneous discontinuities in
the level of treatment or the outcome variable at other points, where no
hypothesized cutoff exists. Likewise, there should be no discontinuities
in other variables in the vicinity of the cutoff.
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Regression discontinuity models RD empirical example

RD empirical example

We make use of Austin Nichols’ rd package, available from SSC. rd
estimates local linear or kernel regression models on both sides of the
cutoff, using a triangle kernel. Estimates are sensitive to the choice of
bandwidth, so by default several estimates are constructed using
different bandwidths.

In the simplest case, assignment to treatment depends on a variable Z
being above a cutoff Z0. Frequently, Z is defined so that Z0 = 0. In this
case, treatment is 1 for Z >= 0 and 0 for Z < 0, and we estimate local
linear regressions on both sides of the cutoff to obtain estimates of the
outcome at Z = 0. The difference between the two estimates (for the
samples where Z >= 0 and where Z < 0) is the estimated effect of
treatment.

Christopher F Baum (BC / DIW) PSM, RD, LDV Boston College, Spring 2013 39 / 99



Regression discontinuity models RD empirical example

For example, having a Democratic representative in the US Congress
may be considered a treatment applied to a Congressional district, and
the assignment variable Z is the vote share garnered by the
Democratic candidate. At Z=50%, the probability of treatment=1 jumps
from zero to one. Suppose we are interested in the effect a Democratic
representative has on the federal spending within a Congressional
district.

The votex dataset contains information for 349 of the 435
Congressional districts in the 102nd US Congress. lne is the logarithm
of Federal expenditures in the district (evidence of the member of
Congress ‘bringing home the bacon’.) Variable d is the Democratic
vote share minus 0.5, so that it is positive for Democratic districts and
negative for Republican districts.
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We may now estimate the RD model:

1 . rd lne d, gr mbw(100) line(`"xla(-.2 "Repub" 0 .3 "Democ", noticks)"')
Two variables specified; treatment is 
assumed to jump from zero to one at Z=0. 

 Assignment variable Z is d
 Treatment variable X_T unspecified
 Outcome variable y is lne

Command used for graph: lpoly; Kernel used: triangle (default)
Bandwidth: .29287776; loc Wald Estimate: -.07739553
Estimating for bandwidth .2928777592534943

         lne       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

       lwald   -.0773955   .1056062    -0.73   0.464      -.28438    .1295889

2 . qui log close

Monday, August 22, 2011 4:16 PM   Page 1

The estimate of the LATE is not significantly different from zero in this
case. Interestingly, as we move from ‘safe’ seats in either party toward
the contested boundary, expenditures modestly increase.
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20
21

22
23

Repub 0 Democ

Log fed expenditure in district 
Bandwidth .2928777592534943
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To evaluate the sensitivity of these results to the estimation technique,
we may vary the bandwidth:

1 . rd lne d, mbw(50(50)300) bdep ox
Two variables specified; treatment is 
assumed to jump from zero to one at Z=0. 

 Assignment variable Z is d
 Treatment variable X_T unspecified
 Outcome variable y is lne

Estimating for bandwidth .2928777592534943
Estimating for bandwidth .1464388796267471
Estimating for bandwidth .4393166388802414
Estimating for bandwidth .5857555185069886
Estimating for bandwidth .7321943981337358
Estimating for bandwidth .8786332777604828

         lne       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

       lwald   -.0773955   .1056062    -0.73   0.464      -.28438    .1295889
     lwald50   -.0949149   .1454442    -0.65   0.514    -.3799804    .1901505
    lwald150   -.0637113   .0942934    -0.68   0.499     -.248523    .1211004
    lwald200   -.0543086   .0911788    -0.60   0.551    -.2330157    .1243985
    lwald250   -.0502168   .0900457    -0.56   0.577    -.2267032    .1262696
    lwald300   -.0479296   .0894768    -0.54   0.592    -.2233009    .1274417

2 . qui log close

Monday, August 22, 2011 4:17 PM   Page 1
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Regression discontinuity models RD empirical example

As we can see, the conclusion of no meaningful difference in the
outcome variable is not sensitive to the choice of bandwidth in the local
linear regression estimator.

For a more detailed discussion of RD and other quasi-experimental
methods, see Austin Nichols, 2007, ‘Causal Inference with
Observational Data,’ Stata Journal 7(4): 507–541. Freely
downloadable from http://www.stata-journal.com.
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Limited dependent variables

Limited dependent variables

We consider models of limited dependent variables in which the
economic agent’s response is limited in some way. The dependent
variable, rather than being continuous on the real line (or half–line), is
restricted. In some cases, we are dealing with discrete choice: the
response variable may be restricted to a Boolean or binary choice,
indicating that a particular course of action was or was not selected.

In others, it may take on only integer values, such as the number of
children per family, or the ordered values on a Likert scale.
Alternatively, it may appear to be a continuous variable with a number
of responses at a threshold value. For instance, the response to the
question “how many hours did you work last week?" will be recorded
as zero for the non-working respondents. None of these measures are
amenable to being modeled by the linear regression methods we have
discussed.
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Limited dependent variables

We first consider models of Boolean response variables, or binary
choice. In such a model, the response variable is coded as 1 or 0,
corresponding to responses of True or False to a particular question. A
behavioral model of this decision could be developed, including a
number of “explanatory factors” (we should not call them regressors)
that we expect will influence the respondent’s answer to such a
question. But we should readily spot the flaw in the linear probability
model:

Ri = β1 + β2Xi2 + · · ·+ βkXik + ui (1)

where we place the Boolean response variable in R and regress it
upon a set of X variables. All of the observations we have on R are
either 0 or 1. They may be viewed as the ex post probabilities of
responding “yes” to the question posed. But the predictions of a linear
regression model are unbounded, and the model of Equation (1),
estimated with regress, can produce negative predictions and
predictions exceeding unity, neither of which can be considered
probabilities.
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Limited dependent variables

Because the response variable is bounded, restricted to take on values
of {0,1}, the model should be generating a predicted probability that
individual i will choose to answer Yes rather than No. In such a
framework, if βj > 0, those individuals with high values of Xj will be
more likely to respond Yes, but their probability of doing so must
respect the upper bound.

For instance, if higher disposable income makes new car purchase
more probable, we must be able to include a very wealthy person in
the sample and still find that the individual’s predicted probability of
new car purchase is no greater than 1.0. Likewise, a poor person’s
predicted probability must be bounded by 0.
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Limited dependent variables The latent variable approach

A useful approach to motivate such a model is that of a latent variable.
Express the model of Equation (1) as:

y∗i = β1 + β2Xi2 + · · ·+ βkXik + ui (2)

where y∗ is an unobservable magnitude which can be considered the
net benefit to individual i of taking a particular course of action (e.g.,
purchasing a new car). We cannot observe that net benefit, but can
observe the outcome of the individual having followed the decision rule

yi = 0 if y∗i < 0
yi = 1 if y∗i ≥ 0 (3)
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Limited dependent variables The latent variable approach

That is, we observe that the individual did or did not purchase a new
car in 2005. If she did, we observed yi = 1, and we take this as
evidence that a rational consumer made a decision that improved her
welfare. We speak of y∗ as a latent variable, linearly related to a set of
factors X and a disturbance process u.

In the latent variable model, we must make the assumption that the
disturbance process has a known variance σ2

u. Unlike the regression
problem, we do not have sufficient information in the data to estimate
its magnitude. Since we may divide Equation (2) by any positive σ
without altering the estimation problem, the most useful strategy is to
set σu = σ2

u = 1.
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Limited dependent variables The latent variable approach

In the latent model framework, we model the probability of an
individual making each choice. Using equations (2) and (3) we have

Pr [y∗ > 0|X ] =

Pr [u > −Xβ|X ] =

Pr [u < Xβ|X ] =

Pr [y = 1|X ] = Ψ(y∗i ) (4)

The function Ψ(·) is a cumulative distribution function (CDF ) which
maps points on the real line {−∞,∞} into the probability measure
{0,1}. The explanatory variables in X are modeled in a linear
relationship to the latent variable y∗. If y = 1, y∗ > 0 implies u < Xβ.
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Limited dependent variables The latent variable approach

Consider a case where ui = 0. Then a positive y∗ would correspond to
Xβ > 0, and vice versa. If ui were now negative, observing yi = 1
would imply that Xβ must have outweighed the negative ui (and vice
versa). Therefore, we can interpret the outcome yi = 1 as indicating
that the explanatory factors and disturbance faced by individual i have
combined to produce a positive net benefit.

For example, an individual might have a low income (which would
otherwise suggest that new car purchase was not likely) but may have
a sibling who works for Toyota and can arrange for an advantageous
price on a new vehicle. We do not observe that circumstance, so it
becomes a large positive ui , explaining how (Xβ + ui) > 0 for that
individual.

Christopher F Baum (BC / DIW) PSM, RD, LDV Boston College, Spring 2013 52 / 99



Limited dependent variables Binomial probit and logit

The two common estimators of the binary choice model are the
binomial probit and binomial logit models. For the probit model, Ψ(·) is
the CDF of the Normal distribution function (Stata’s norm function):

Pr [y = 1|X ] =

∫ Xβ

−∞
ψ(t)dt = Ψ(Xβ) (5)

where ψ(·) is the probability density function (PDF ) of the Normal
distribution: Stata’s normden function.

For the logit model, Ψ(·) is the CDF of the Logistic distribution:

Pr [y = 1|X ] =
exp(Xβ)

1 + exp(Xβ)
(6)
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Limited dependent variables Binomial probit and logit

The two models will produce quite similar results if the distribution of
sample values of yi is not too extreme. However, a sample in which the
proportion yi = 1 (or the proportion yi = 0) is very small will be
sensitive to the choice of CDF . Neither of these cases are really
amenable to the binary choice model.

If a very unusual event is being modeled by yi , the “naïve model” that it
will not happen in any event is hard to beat. The same is true for an
event that is almost ubiquitous: the naïve model that predicts that
everyone has eaten a candy bar at some time in their lives is quite
accurate.
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Limited dependent variables Binomial probit and logit

We may estimate these binary choice models in Stata with the
commands probit and logit, respectively. Both commands assume
that the response variable is coded with zeros indicating a negative
outcome and a positive, non-missing value corresponding to a positive
outcome (i.e., I purchased a new car in 2005). These commands do
not require that the variable be coded {0,1}, although that is often the
case.

Because any positive value (including all missing values) will be taken
as a positive outcome, it is important to ensure that missing values of
the response variable are excluded from the estimation sample either
by dropping those observations or using an
if !mi( depvar ) qualifier.
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Limited dependent variables Marginal effects and predictions

One of the major challenges in working with limited dependent variable
models is the complexity of explanatory factors’ marginal effects on the
result of interest. That complexity arises from the nonlinearity of the
relationship. In Equation (4), the latent measure is translated by Ψ(y∗i )
to a probability that yi = 1. While Equation (2) is a linear relationship in
the β parameters, Equation (4) is not. Therefore, although Xj has a
linear effect on y∗i , it will not have a linear effect on the resulting
probability that y = 1:

∂Pr [y = 1|X ]

∂Xj
=
∂Pr [y = 1|X ]

∂Xβ
· ∂Xβ
∂Xj

=

Ψ′(Xβ) · βj = ψ(Xβ) · βj .

The probability that yi = 1 is not constant over the data. Via the chain
rule, we see that the effect of an increase in Xj on the probability is the
product of two factors: the effect of Xj on the latent variable and the
derivative of the CDF evaluated at y∗i . The latter term, ψ(·), is the
probability density function (PDF ) of the distribution.
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Limited dependent variables Marginal effects and predictions

In a binary choice model, the marginal effect of an increase in factor Xj
cannot have a constant effect on the conditional probability that
(y = 1|X ) since Ψ(·) varies through the range of X values. In a linear
regression model, the coefficient βj and its estimate bj measures the
marginal effect ∂y/∂Xj , and that effect is constant for all values of X .
In a binary choice model, where the probability that yi = 1 is bounded
by the {0,1} interval, the marginal effect must vary.

For instance, the marginal effect of a one dollar increase in disposable
income on the conditional probability that (y = 1|X ) must approach
zero as Xj increases. Therefore, the marginal effect in such a model
varies continuously throughout the range of Xj , and must approach
zero for both very low and very high levels of Xj .

Christopher F Baum (BC / DIW) PSM, RD, LDV Boston College, Spring 2013 57 / 99



Limited dependent variables Marginal effects and predictions

When using Stata’s probit (or logit) command, the reported
coefficients (computed via maximum likelihood) are b, corresponding
to β. You can use margins to compute the marginal effects. If a
probit estimation is followed by the command margins,
dydx(_all), the dF/dx values will be calculated.

The margins command’s at() option can be used to compute the
effects at a particular point in the sample space. The margins
command may also be used to calculate elasticities and
semi-elasticities.
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Limited dependent variables Marginal effects and predictions

After estimating a probit model, the predict command may be used,
with a default option p, the predicted probability of a positive outcome.
The xb option may be used to calculate the index function for each
observation: that is, the predicted value of y∗i from Equation (4), which
is in z-units (those of a standard Normal variable). For instance, an
index function value of 1.69 will be associated with a predicted
probability of 0.95 in a large sample.
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Limited dependent variables Marginal effects and predictions

We use a modified version of the womenwk Reference Manual dataset,
which contains information on 2,000 women, 657 of which are not
recorded as wage earners. The indicator variable work is set to zero
for the non-working and to one for those reporting positive wages.
. summarize work age married children education

Variable Obs Mean Std. Dev. Min Max

work 2000 .6715 .4697852 0 1
age 2000 36.208 8.28656 20 59

married 2000 .6705 .4701492 0 1
children 2000 1.6445 1.398963 0 5
education 2000 13.084 3.045912 10 20
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Limited dependent variables Marginal effects and predictions

We estimate a probit model of the decision to work depending on the
woman’s age, marital status, number of children and level of education.
. probit work age married children education, nolog

Probit regression Number of obs = 2000
LR chi2(4) = 478.32
Prob > chi2 = 0.0000

Log likelihood = -1027.0616 Pseudo R2 = 0.1889

work Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0347211 .0042293 8.21 0.000 .0264318 .0430105
married .4308575 .074208 5.81 0.000 .2854125 .5763025

children .4473249 .0287417 15.56 0.000 .3909922 .5036576
education .0583645 .0109742 5.32 0.000 .0368555 .0798735

_cons -2.467365 .1925635 -12.81 0.000 -2.844782 -2.089948

Surprisingly, the effect of additional children in the household
increases the likelihood that the woman will work.
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Limited dependent variables Marginal effects and predictions

Average marginal effects (AMEs) are computed via margins.

. margins, dydx(_all)

Average marginal effects Number of obs = 2000
Model VCE : OIM

Expression : Pr(work), predict()
dy/dx w.r.t. : age married children education

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

age .0100768 .0011647 8.65 0.000 .0077941 .0123595
married .1250441 .0210541 5.94 0.000 .0837788 .1663094

children .1298233 .0068418 18.98 0.000 .1164137 .1432329
education .0169386 .0031183 5.43 0.000 .0108269 .0230504

The marginal effects imply that married women have a 12.5% higher
probability of labor force participation, while the addition of a child is
associated with an 13% increase in participation.
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Limited dependent variables Estimation with proportions data

When the Logistic CDF is employed, the probability (πi ) of y = 1,
conditioned on X , is exp(Xβ)/(1 + exp(Xβ). Unlike the CDF of the
Normal distribution, which lacks an inverse in closed form, this function
may be inverted to yield

log
(

πi

1− πi

)
= Xiβ. (7)

This expression is termed the logit of πi , with that term being a
contraction of the log of the odds ratio. The odds ratio reexpresses the
probability in terms of the odds of y = 1.
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Limited dependent variables Estimation with proportions data

As the logit of πi = Xiβ, it follows that the odds ratio for a one-unit
change in the j thX , holding other X constant, is merely exp(βj). When
we estimate a logit model, the or option specifies that odds ratios
are to be displayed rather than coefficients.

If the odds ratio exceeds unity, an increase in that X increases the
likelihood that y = 1, and vice versa. Estimated standard errors for the
odds ratios are calculated via the delta method.
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Limited dependent variables Estimation with proportions data

We can define the logit, or log of the odds ratio, in terms of grouped
data (averages of microdata). For instance, in the 2004 U.S.
presidential election, the ex post probability of a Massachusetts
resident voting for John Kerry was 0.62, with a logit of
log (0.62/(1− 0.62)) = 0.4895. The probability of that person voting
for George Bush was 0.37, with a logit of −0.5322. Say that we had
such data for all 50 states. It would be inappropriate to use linear
regression on the probabilities voteKerry and voteBush, just as it would
be inappropriate to run a regression on individual voter’s voteKerry and
voteBush indicator variables.
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Limited dependent variables Estimation with proportions data

In this case, Stata’s glogit (grouped logit) command may be used to
produce weighted least squares estimates for the model on state-level
data. Alternatively, the blogit command may be used to produce
maximum-likelihood estimates of that model on grouped (or “blocked”)
data.

The equivalent commands gprobit and bprobit may be used to fit
a probit model to grouped data.
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Limited dependent variables Ordered logit and probit models

Estimation with ordinal data

We earlier discussed the issues related to the use of ordinal variables:
those which indicate a ranking of responses, rather than a cardinal
measure, such as the codes of a Likert scale of agreement with a
statement. Since the values of such an ordered response are arbitrary,
an ordinal variable should not be treated as if it was measurable in a
cardinal sense and entered into a regression, either as a response
variable or as a regressor.

However, what if we want to model an ordinal variable as the response
variable, given a set of explanatory factors? Just as we can use binary
choice models to evaluate the factors underlying a decision without
being able to quantify the net benefit of making that choice, we may
employ a generalization of the binary choice framework to model an
ordinal variable using ordered probit or ordered logit estimation
techniques.
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Limited dependent variables Ordered logit and probit models

In the latent variable approach to the binary choice model, we observe
yi = 1 if the individual’s net benefit is positive: i.e., y∗i > 0. The ordered
choice model generalizes this concept to the notion of multiple
thresholds. For instance, a variable recorded on a five-point Likert
scale will have four thresholds. If y∗ ≤ κ1, we observe y = 1. If
κ1 < y∗ ≤ κ2, we observe y = 2. If κ2 < y∗ ≤ κ3, we observe y = 3,
and so on, where the κ values are the thresholds. In a sense, this can
be considered imprecise measurement: we cannot observe y∗ directly,
but only the range in which it falls.
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Limited dependent variables Ordered logit and probit models

The parameters to be estimated are a set of coefficients β
corresponding to the explanatory factors in X as well as a set of (I − 1)
threshold coefficients κ corresponding to the I alternatives. In Stata’s
implementation of these estimators via commands oprobit and
ologit, the actual values of the response variable are not relevant.
Larger values are taken to correspond to higher outcomes. If there are
I possible outcomes (e.g., 5 for the Likert scale), a set of threshold
coefficients or cut points {κ1, κ2, . . . , κI−1} is defined, where κ0 = −∞
and κI =∞.
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Limited dependent variables Ordered logit and probit models

Then the model for the j th observation defines:

Pr [yj = i] = Pr [κi−1 < β1X1j + β2X2j + . . .

+βkXkj + uj < κi ]

where the probability that individual j will choose outcome i depends
on the product Xβ falling between cut points (i − 1) and i . This is a
direct generalization of the two-outcome binary choice model, which
has a single threshold at zero. As in the binomial probit model, we
assume that the error is normally distributed with variance unity (or
distributed Logistic with variance π2/3 in the case of ordered logit).

Christopher F Baum (BC / DIW) PSM, RD, LDV Boston College, Spring 2013 70 / 99



Limited dependent variables Ordered logit and probit models

We may estimate these binary choice models in Stata with the
commands oprobit and ologit, respectively. We illustrate the
ordered probit and logit techniques with a model of automobile
reliability. The fullauto data set contains information on 66
automobiles’ repair records, on a five-point scale (1=poor, 5=excellent).
. tab rep77

Repair
Record 1977 Freq. Percent Cum.

Poor 3 4.55 4.55
Fair 11 16.67 21.21

Average 27 40.91 62.12
Good 20 30.30 92.42

Excellent 5 7.58 100.00

Total 66 100.00
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Limited dependent variables Ordered logit and probit models

We estimate the model with oprobit; the model’s predictions are
quantitatively similar if ologit is employed.
. ologit rep77 foreign length mpg, nolog

Ordered logistic regression Number of obs = 66
LR chi2(3) = 23.29
Prob > chi2 = 0.0000

Log likelihood = -78.250719 Pseudo R2 = 0.1295

rep77 Coef. Std. Err. z P>|z| [95% Conf. Interval]

foreign 2.896807 .7906411 3.66 0.000 1.347179 4.446435
length .0828275 .02272 3.65 0.000 .0382972 .1273579

mpg .2307677 .0704548 3.28 0.001 .0926788 .3688566

/cut1 17.92748 5.551191 7.047344 28.80761
/cut2 19.86506 5.59648 8.896161 30.83396
/cut3 22.10331 5.708936 10.914 33.29262
/cut4 24.69213 5.890754 13.14647 36.2378

We find that all three explanatory factors have significant, positive
effects on the repair record.

Christopher F Baum (BC / DIW) PSM, RD, LDV Boston College, Spring 2013 72 / 99



Limited dependent variables Ordered logit and probit models

Following the ologit estimation, we employ predict to compute the
predicted probabilities of achieving each repair record. We then
examine the automobiles who were classified as most likely to have a
poor rating and an excellent rating, respectively.
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Limited dependent variables Ordered logit and probit models

. predict poor fair avg good excellent if e(sample)
(option pr assumed; predicted probabilities)

. summarize poor, meanonly

. list poor fair avg good excellent rep77 make if poor==r(max), noobs

poor fair avg good excell~t rep77 make

.4195219 .4142841 .14538 .01922 .001594 Poor AMC

. summarize excellent, meanonly

. list poor fair avg good excellent rep77 make if excellent==r(max), noobs

poor fair avg good excell~t rep77 make

.0006963 .0041173 .0385734 .3331164 .6234967 Good VW

The AMC Pacer and VW Diesel were those vehicles, respectively.
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Limited dependent variables Truncated regression

Truncation

We turn now to a context where the response variable is not binary nor
necessarily integer, but subject to truncation. This is a bit trickier, since
a truncated or censored response variable may not be obviously so.
We must fully understand the context in which the data were
generated. Nevertheless, it is quite important that we identify situations
of truncated or censored response variables. Utilizing these variables
as the dependent variable in a regression equation without
consideration of these qualities will be misleading.
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Limited dependent variables Truncated regression

In the case of truncation the sample is drawn from a subset of the
population so that only certain values are included in the sample. We
lack observations on both the response variable and explanatory
variables. For instance, we might have a sample of individuals who
have a high school diploma, some college experience, or one or more
college degrees. The sample has been generated by interviewing
those who completed high school.

This is a truncated sample, relative to the population, in that it excludes
all individuals who have not completed high school. The
characteristics of those excluded individuals are not likely to be the
same as those in our sample. For instance, we might expect that
average or median income of dropouts is lower than that of graduates.
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Limited dependent variables Truncated regression

The effect of truncating the distribution of a random variable is clear.
The expected value or mean of the truncated random variable moves
away from the truncation point and the variance is reduced.
Descriptive statistics on the level of education in our sample should
make that clear: with the minimum years of education set to 12, the
mean education level is higher than it would be if high school dropouts
were included, and the variance will be smaller.

In the subpopulation defined by a truncated sample, we have no
information about the characteristics of those who were excluded. For
instance, we do not know whether the proportion of minority high
school dropouts exceeds the proportion of minorities in the population.
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Limited dependent variables Truncated regression

A sample from this truncated population cannot be used to make
inferences about the entire population without correction for the fact
that those excluded individuals are not randomly selected from the
population at large. While it might appear that we could use these
truncated data to make inferences about the subpopulation, we cannot
even do that.

A regression estimated from the subpopulation will yield coefficients
that are biased toward zero—or attenuated—as well as an estimate of
σ2

u that is biased downward.

Christopher F Baum (BC / DIW) PSM, RD, LDV Boston College, Spring 2013 78 / 99



Limited dependent variables Truncated regression

If we are dealing with a truncated Normal distribution, where
y = Xβ + u is only observed if it exceeds τ , we may define:

αi = (τ − Xiβ)/σu

λ(αi) =
φ(αi)

(1− Φ(αi))
(8)

where σu is the standard error of the untruncated disturbance u, φ(·) is
the Normal density function (PDF ) and Φ(·) is the Normal CDF . The
expression λ(αi) is termed the inverse Mills ratio, or IMR.
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Limited dependent variables Truncated regression

If a regression is estimated from the truncated sample, we find that

[yi |yi > τ,Xi ] = Xiβ + σuλ(αi) + ui (9)

These regression estimates suffer from the exclusion of the term λ(αi).
This regression is misspecified, and the effect of that misspecification
will differ across observations, with a heteroskedastic error term whose
variance depends on Xi . To deal with these problems, we include the
IMR as an additional regressor. This allows us to use a truncated
sample to make consistent inferences about the subpopulation.
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Limited dependent variables Truncated regression

If we can justify making the assumption that the regression errors in
the population are Normally distributed, then we can estimate an
equation for a truncated sample with the Stata command truncreg.
Under the assumption of normality, inferences for the population may
be made from the truncated regression model. The estimator used in
this command assumes that the regression errors are Normal.

The truncreg option ll(#) is used to indicate that values of the
response variable less than or equal to # are truncated. We might
have a sample of college students with yearsEduc truncated from
below at 12 years. Upper truncation can be handled by the ul(#)
option: for instance, we may have a sample of individuals whose
income is recorded up to $200,000. Both lower and upper truncation
can be specified by combining the options.
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Limited dependent variables Truncated regression

The coefficient estimates and marginal effects from truncreg may be
used to make inferences about the entire population, whereas the
results from the misspecified regression model should not be used for
any purpose.

We consider a sample of married women from the laborsub dataset
whose hours of work are truncated from below at zero.
. use laborsub,clear

. summarize whrs kl6 k618 wa we

Variable Obs Mean Std. Dev. Min Max

whrs 250 799.84 915.6035 0 4950
kl6 250 .236 .5112234 0 3
k618 250 1.364 1.370774 0 8
wa 250 42.92 8.426483 30 60
we 250 12.352 2.164912 5 17
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Limited dependent variables Truncated regression

To illustrate the consequences of ignoring truncation we estimate a
model of hours worked with OLS, including only working women. The
regressors include measures of the number of preschool children
(kl6), number of school-age children (k618), age (wa) and years of
education (we).
. regress whrs kl6 k618 wa we if whrs>0

Source SS df MS Number of obs = 150
F( 4, 145) = 2.80

Model 7326995.15 4 1831748.79 Prob > F = 0.0281
Residual 94793104.2 145 653745.546 R-squared = 0.0717

Adj R-squared = 0.0461
Total 102120099 149 685369.794 Root MSE = 808.55

whrs Coef. Std. Err. t P>|t| [95% Conf. Interval]

kl6 -421.4822 167.9734 -2.51 0.013 -753.4748 -89.48953
k618 -104.4571 54.18616 -1.93 0.056 -211.5538 2.639668
wa -4.784917 9.690502 -0.49 0.622 -23.9378 14.36797
we 9.353195 31.23793 0.30 0.765 -52.38731 71.0937

_cons 1629.817 615.1301 2.65 0.009 414.0371 2845.597
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Limited dependent variables Truncated regression

We now reestimate the model with truncreg, taking into account that
100 of the 250 observations have zero recorded whrs:
. truncreg whrs kl6 k618 wa we, ll(0) nolog
(note: 100 obs. truncated)

Truncated regression
Limit: lower = 0 Number of obs = 150

upper = +inf Wald chi2(4) = 10.05
Log likelihood = -1200.9157 Prob > chi2 = 0.0395

whrs Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
kl6 -803.0042 321.3614 -2.50 0.012 -1432.861 -173.1474
k618 -172.875 88.72898 -1.95 0.051 -346.7806 1.030579
wa -8.821123 14.36848 -0.61 0.539 -36.98283 19.34059
we 16.52873 46.50375 0.36 0.722 -74.61695 107.6744

_cons 1586.26 912.355 1.74 0.082 -201.9233 3374.442

sigma
_cons 983.7262 94.44303 10.42 0.000 798.6213 1168.831
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Limited dependent variables Truncated regression

The effect of truncation in the subsample is quite apparent. Some of
the attenuated coefficient estimates from regress are no more than
half as large as their counterparts from truncreg. The parameter
sigma _cons, comparable to Root MSE in the OLS regression, is
considerably larger in the truncated regression reflecting its downward
bias in a truncated sample.
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Limited dependent variables Censoring

Censoring

Let us now turn to another commonly encountered issue with the data:
censoring. Unlike truncation, in which the distribution from which the
sample was drawn is a non-randomly selected subpopulation,
censoring occurs when a response variable is set to an arbitrary value
above or below a certain value: the censoring point. In contrast to the
truncated case, we have observations on the explanatory variables in
this sample. The problem of censoring is that we do not have
observations on the response variable for certain individuals. For
instance, we may have full demographic information on a set of
individuals, but only observe the number of hours worked per week for
those who are employed.

Christopher F Baum (BC / DIW) PSM, RD, LDV Boston College, Spring 2013 86 / 99



Limited dependent variables Censoring

As another example of a censored variable, consider that the numeric
response to the question “How much did you spend on a new car last
year?” may be zero for many individuals, but that should be considered
as the expression of their choice not to buy a car.

Such a censored response variable should be considered as being
generated by a mixture of distributions: the binary choice to purchase
a car or not, and the continuous response of how much to spend
conditional on choosing to purchase. Although it would appear that the
variable caroutlay could be used as the dependent variable in a
regression, it should not be employed in that manner, since it is
generated by a censored distribution.
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Limited dependent variables Censoring

A solution to this problem was first proposed by Tobin (1958) as the
censored regression model; it became known as “Tobin’s probit” or the
tobit model.The model can be expressed in terms of a latent variable:

y∗i = Xβ + u
yi = 0 if y∗i ≤ 0 (10)
yi = y∗i if y∗i > 0
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Limited dependent variables Censoring

As in the prior example, our variable yi contains either zeros for
non-purchasers or a dollar amount for those who chose to buy a car
last year. The model combines aspects of the binomial probit for the
distinction of yi = 0 versus yi > 0 and the regression model for
[yi |yi > 0]. Of course, we could collapse all positive observations on yi
and treat this as a binomial probit (or logit) estimation problem, but that
would discard the information on the dollar amounts spent by
purchasers. Likewise, we could throw away the yi = 0 observations,
but we would then be left with a truncated distribution, with the various
problems that creates.

To take account of all of the information in yi properly, we must
estimate the model with the tobit estimation method, which employs
maximum likelihood to combine the probit and regression components
of the log-likelihood function.
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Limited dependent variables Censoring

Tobit models may be defined with a threshold other than zero.
Censoring from below may be specified at any point on the y scale
with the ll(#) option for left censoring. Similarly, the standard tobit
formulation may employ an upper threshold (censoring from above, or
right censoring) using the ul(#) option to specify the upper limit.
Stata’s tobit also supports the two-limit tobit model where
observations on y are censored from both left and right by specifying
both the ll(#) and ul(#) options.
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Limited dependent variables Censoring

Even in the case of a single censoring point, predictions from the tobit
model are quite complex, since one may want to calculate the
regression-like xb with predict, but could also compute the predicted
probability that [y |X ] falls within a particular interval (which may be
open-ended on left or right).This may be specified with the pr(a,b)
option, where arguments a, b specify the limits of the interval; the
missing value code (.) is taken to mean infinity (of either sign).

Another predict option, e(a,b), calculates the expectation
Ey = E [Xβ + u] conditional on [y |X ] being in the a,b interval. Last, the
ystar(a,b) option computes the prediction from Equation (10): a
censored prediction, where the threshold is taken into account.
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Limited dependent variables Censoring

The marginal effects of the tobit model are also quite complex. The
estimated coefficients are the marginal effects of a change in Xj on y∗

the unobservable latent variable:

∂E(y∗|Xj)

∂Xj
= βj (11)

but that is not very useful. If instead we evaluate the effect on the
observable y , we find that:

∂E(y |Xj)

∂Xj
= βj × Pr [a < y∗i < b] (12)

where a,b are defined as above for predict. For instance, for
left-censoring at zero, a = 0,b = +∞. Since that probability is at most
unity (and will be reduced by a larger proportion of censored
observations), the marginal effect of Xj is attenuated from the reported
coefficient toward zero.
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Limited dependent variables Censoring

An increase in an explanatory variable with a positive coefficient will
imply that a left-censored individual is less likely to be censored. Their
predicted probability of a nonzero value will increase. For a
non-censored individual, an increase in Xj will imply that E [y |y > 0]
will increase. So, for instance, a decrease in the mortgage interest rate
will allow more people to be homebuyers (since many borrowers’
income will qualify them for a mortgage at lower interest rates), and
allow prequalified homebuyers to purchase a more expensive home.

The marginal effect captures the combination of those effects. Since
the newly-qualified homebuyers will be purchasing the cheapest
homes, the effect of the lower interest rate on the average price at
which homes are sold will incorporate both effects. We expect that it
will increase the average transactions price, but due to attenuation, by
a smaller amount than the regression function component of the model
would indicate.
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Limited dependent variables Censoring

We return to the womenwk data set used to illustrate binomial probit.
We generate the log of the wage (lw) for working women and set lwf
equal to lw for working women and zero for non-working women. This
could be problematic if recorded wages below $1.00 were present in
the data, but in these data the minimum wage recorded is $5.88. We
first estimate the model with OLS ignoring the censored nature of the
response variable.
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Limited dependent variables Censoring

. use womenwk,clear

. regress lwf age married children education

Source SS df MS Number of obs = 2000
F( 4, 1995) = 134.21

Model 937.873188 4 234.468297 Prob > F = 0.0000
Residual 3485.34135 1995 1.74703827 R-squared = 0.2120

Adj R-squared = 0.2105
Total 4423.21454 1999 2.21271363 Root MSE = 1.3218

lwf Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .0363624 .003862 9.42 0.000 .0287885 .0439362
married .3188214 .0690834 4.62 0.000 .1833381 .4543046

children .3305009 .0213143 15.51 0.000 .2887004 .3723015
education .0843345 .0102295 8.24 0.000 .0642729 .1043961

_cons -1.077738 .1703218 -6.33 0.000 -1.411765 -.7437105
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Limited dependent variables Censoring

Reestimating the model as a tobit and indicating that lwf is
left-censored at zero with the ll option yields:
. tobit lwf age married children education, ll(0)

Tobit regression Number of obs = 2000
LR chi2(4) = 461.85
Prob > chi2 = 0.0000

Log likelihood = -3349.9685 Pseudo R2 = 0.0645

lwf Coef. Std. Err. t P>|t| [95% Conf. Interval]

age .052157 .0057457 9.08 0.000 .0408888 .0634252
married .4841801 .1035188 4.68 0.000 .2811639 .6871964

children .4860021 .0317054 15.33 0.000 .4238229 .5481812
education .1149492 .0150913 7.62 0.000 .0853529 .1445454

_cons -2.807696 .2632565 -10.67 0.000 -3.323982 -2.291409

/sigma 1.872811 .040014 1.794337 1.951285

Obs. summary: 657 left-censored observations at lwf<=0
1343 uncensored observations

0 right-censored observations
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Limited dependent variables Censoring

The tobit estimates of lwf show positive, significant effects for age,
marital status, the number of children and the number of years of
education. Each of these factors is expected to both increase the
probability that a woman will work as well as increase her wage
conditional on employed status.
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Limited dependent variables Censoring

Following tobit estimation, we first generate the marginal effects of
each explanatory variable on the probability that an individual will have
a positive log(wage): the pr(a,b) option of predict.

. margins, dydx(*) predict(pr(0,.))

Average marginal effects Number of obs = 2000
Model VCE : OIM

Expression : Pr(lwf>0), predict(pr(0,.))
dy/dx w.r.t. : age married children education

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

age .0071483 .0007873 9.08 0.000 .0056052 .0086914
married .0663585 .0142009 4.67 0.000 .0385254 .0941917

children .0666082 .0044677 14.91 0.000 .0578516 .0753649
education .0157542 .0020695 7.61 0.000 .0116981 .0198103
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Limited dependent variables Censoring

We then calculate the marginal effect of each explanatory variable on
the expected log wage, given that the individual has not been censored
(i.e., was working). These effects, unlike the estimated coefficients
from regress, properly take into account the censored nature of the
response variable.
. margins, dydx(*) predict(e(0,.))

Average marginal effects Number of obs = 2000
Model VCE : OIM

Expression : E(lwf|lwf>0), predict(e(0,.))
dy/dx w.r.t. : age married children education

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

age .0315183 .00347 9.08 0.000 .0247172 .0383194
married .2925884 .0625056 4.68 0.000 .1700797 .4150971

children .2936894 .0189659 15.49 0.000 .2565169 .3308619
education .0694634 .0091252 7.61 0.000 .0515784 .0873484

Note, for instance, the much smaller marginal effects associated with
number of children and level of education in tobit vs. regress.
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