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Dynamic panel data estimators

Dynamic panel data estimators

In the context of panel data, we usually must deal with unobserved
heterogeneity by applying the within (demeaning) transformation, as in
one-way fixed effects models, or by taking first differences if the
second dimension of the panel is a proper time series.

The ability of first differencing to remove unobserved heterogeneity
also underlies the family of estimators that have been developed for
dynamic panel data (DPD) models. These models contain one or more
lagged dependent variables, allowing for the modeling of a partial
adjustment mechanism.
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Nickell bias

A serious difficulty arises with the one-way fixed effects model in the
context of a dynamic panel data (DPD) model particularly in the “small
T , large N" context. As Nickell (Econometrica, 1981) shows, this
arises because the demeaning process which subtracts the
individual’s mean value of y and each X from the respective variable
creates a correlation between regressor and error.

The mean of the lagged dependent variable contains observations 0
through (T − 1) on y , and the mean error—which is being conceptually
subtracted from each εit—contains contemporaneous values of ε for
t = 1 . . .T . The resulting correlation creates a bias in the estimate of
the coefficient of the lagged dependent variable which is not mitigated
by increasing N, the number of individual units.
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The demeaning operation creates a regressor which cannot be
distributed independently of the error term. Nickell demonstrates that
the inconsistency of ρ̂ as N →∞ is of order 1/T , which may be quite
sizable in a “small T " context. If ρ > 0, the bias is invariably negative,
so that the persistence of y will be underestimated.

For reasonably large values of T , the limit of (ρ̂− ρ) as N →∞ will be
approximately −(1 + ρ)/(T − 1): a sizable value, even if T = 10. With
ρ = 0.5, the bias will be -0.167, or about 1/3 of the true value. The
inclusion of additional regressors does not remove this bias. Indeed, if
the regressors are correlated with the lagged dependent variable to
some degree, their coefficients may be seriously biased as well.
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Note also that this bias is not caused by an autocorrelated error
process ε. The bias arises even if the error process is i .i .d . If the error
process is autocorrelated, the problem is even more severe given the
difficulty of deriving a consistent estimate of the AR parameters in that
context.

The same problem affects the one-way random effects model. The ui
error component enters every value of yit by assumption, so that the
lagged dependent variable cannot be independent of the composite
error process.
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One solution to this problem involves taking first differences of the
original model. Consider a model containing a lagged dependent
variable and a single regressor X :

yit = β1 + ρyi,t−1 + Xitβ2 + ui + εit (1)

The first difference transformation removes both the constant term and
the individual effect:

∆yit = ρ∆yi,t−1 + ∆Xitβ2 + ∆εit (2)

There is still correlation between the differenced lagged dependent
variable and the disturbance process (which is now a first-order
moving average process, or MA(1)): the former contains yi,t−1 and the
latter contains εi,t−1.
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But with the individual fixed effects swept out, a straightforward
instrumental variables estimator is available. We may construct
instruments for the lagged dependent variable from the second and
third lags of y , either in the form of differences or lagged levels. If ε is
i .i .d ., those lags of y will be highly correlated with the lagged
dependent variable (and its difference) but uncorrelated with the
composite error process.

Even if we had reason to believe that ε might be following an AR(1)
process, we could still follow this strategy, “backing off” one period and
using the third and fourth lags of y (presuming that the timeseries for
each unit is long enough to do so).

This approach is the Anderson–Hsiao (AH) estimator implemented by
the Stata command xtivreg, fd.
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The DPD approach

The DPD (Dynamic Panel Data) approach is usually considered the
work of Arellano and Bond (AB) (Rev. Ec. Stud., 1991), but they in fact
popularized the work of Holtz-Eakin, Newey and Rosen
(Econometrica, 1988). It is based on the notion that the instrumental
variables approach noted above does not exploit all of the information
available in the sample. By doing so in a Generalized Method of
Moments (GMM) context, we may construct more efficient estimates of
the dynamic panel data model.
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Arellano and Bond argue that the Anderson–Hsiao estimator, while
consistent, fails to take all of the potential orthogonality conditions into
account. A key aspect of the AB strategy, echoing that of AH, is the
assumption that the necessary instruments are ‘internal’: that is,
based on lagged values of the instrumented variable(s). The
estimators allow the inclusion of external instruments as well.

Consider the equations

yit = Xitβ1 + Witβ2 + vit

vit = ui + εit (3)

where Xit includes strictly exogenous regressors, Wit are
predetermined regressors (which may include lags of y ) and
endogenous regressors, all of which may be correlated with ui , the
unobserved individual effect. First-differencing the equation removes
the ui and its associated omitted-variable bias.
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The AB approach, and its extension to the ‘System GMM’ context, is
an estimator designed for situations with:

‘small T , large N ’ panels: few time periods and many individual
units
a linear functional relationship
one left-hand variable that is dynamic, depending on its own past
realisations
right-hand variables that are not strictly exogenous: correlated
with past and possibly current realisations of the error
fixed individual effects, implying unobserved heterogeneity
heteroskedasticity and autocorrelation within individual units’
errors, but not across them
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The Arellano–Bond estimator sets up a generalized method of
moments (GMM) problem in which the model is specified as a system
of equations, one per time period, where the instruments applicable to
each equation differ (for instance, in later time periods, additional
lagged values of the instruments are available).

This estimator is available in Stata as xtabond. A more general
version, allowing for autocorrelated errors, is available as xtdpd. An
excellent alternative to Stata’s built-in commands is David Roodman’s
xtabond2, available from SSC (findit xtabond2). It is very well
documented in his paper, included in your materials. The xtabond2
routine provides several additional features—such as the orthogonal
deviations transformation discussed below—not available in official
Stata’s commands.
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Constructing the instrument matrix

In standard 2SLS, including the Anderson–Hsiao approach, the
twice-lagged level appears in the instrument matrix as

Zi =


.

yi,1
...

yi,T−2


where the first row corresponds to t = 2, given that the first
observation is lost in applying the FD transformation. The missing
value in the instrument for t = 2 causes that observation for each
panel unit to be removed from the estimation.
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If we also included the thrice-lagged level yt−3 as a second instrument
in the Anderson–Hsiao approach, we would lose another observation
per panel:

Zi =


. .

yi,1 .
yi,2 yi,1

...
...

yi,T−2 yi,T−3


so that the first observation available for the regression is that dated
t = 4.
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To avoid this loss of degrees of freedom, Holtz-Eakin et al. construct a
set of instruments from the second lag of y , one instrument pertaining
to each time period:

Zi =


0 0 . . . 0

yi,1 0 . . . 0
0 yi,2 . . . 0
...

...
. . .

...
0 0 . . . yi,T−2


The inclusion of zeros in place of missing values prevents the loss of
additional degrees of freedom, in that all observations dated t = 2 and
later can now be included in the regression. Although the inclusion of
zeros might seem arbitrary, the columns of the resulting instrument
matrix will be orthogonal to the transformed errors. The resulting
moment conditions correspond to an expectation we believe should
hold: E(yi,t−2ε

∗
it ) = 0, where ε∗ refers to the FD-transformed errors.
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It would also be valid to ‘collapse’ the columns of this Z matrix into a
single column, which embodies the same expectation, but conveys
less information as it will only produce a single moment condition. In
this context, the collapsed instrument set will be the same implied by
standard IV, with a zero replacing the missing value in the first usable
observation:

Zi =


0

yi,1
...

yi,T−2


This is specified in Roodman’s xtabond2 software by giving the
collapse option.
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Given this solution to the tradeoff between lag length and sample
length, we can now adopt Holtz-Eakin et al.’s suggestion and include
all available lags of the untransformed variables as instruments. For
endogenous variables, lags 2 and higher are available. For
predetermined variables that are not strictly exogenous, lag 1 is also
valid, as its value is only correlated with errors dated t − 2 or earlier.

Using all available instruments gives rise to an instrument matrix such
as

Zi =


0 0 0 0 0 0 . . .

yi,1 0 0 0 0 0 . . .
0 yi,2 yi,1 0 0 0 . . .
0 0 0 yi,3 yi,2 yi,1 . . .
...

...
...

...
...

...
. . .


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In this setup, we have different numbers of instruments available for
each time period: one for t = 2, two for t = 3, and so on. As we move
to the later time periods in each panel’s timeseries, additional
orthogonality conditions become available, and taking these additional
conditions into account improves the efficiency of the AB estimator.

One disadvantage of this strategy should be apparent. The number of
instruments produced will be quadratic in T , the length of the
timeseries available. If T < 10, that may be a manageable number, but
for a longer timeseries, it may be necessary to restrict the number of
past lags used. Both the official Stata commands and Roodman’s
xtabond2 allow the specification of the particular lags to be included
in estimation, rather than relying on the default strategy.
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The System GMM estimator

A potential weakness in the Arellano–Bond DPD estimator was
revealed in later work by Arellano and Bover (1995) and Blundell and
Bond (1998). The lagged levels are often rather poor instruments for
first differenced variables, especially if the variables are close to a
random walk. Their modification of the estimator includes lagged levels
as well as lagged differences.

The original estimator is often entitled difference GMM, while the
expanded estimator is commonly termed System GMM. The cost of
the System GMM estimator involves a set of additional restrictions on
the initial conditions of the process generating y . This estimator is
available in Stata as xtdpdsys.
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Diagnostic tests

As the DPD estimators are instrumental variables methods, it is
particularly important to evaluate the Sargan–Hansen test results
when they are applied. Roodman’s xtabond2 provides C tests (as
discussed in re ivreg2) for groups of instruments. In his routine,
instruments can be either “GMM-style" or “IV-style". The former are
constructed per the Arellano–Bond logic, making use of multiple lags;
the latter are included as is in the instrument matrix. For the system
GMM estimator (the default in xtabond2) instruments may be
specified as applying to the differenced equations, the level equations
or both.
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Another important diagnostic in DPD estimation is the AR test for
autocorrelation of the residuals. By construction, the residuals of the
differenced equation should possess serial correlation, but if the
assumption of serial independence in the original errors is warranted,
the differenced residuals should not exhibit significant AR(2) behavior.
These statistics are produced in the xtabond and xtabond2 output.
If a significant AR(2) statistic is encountered, the second lags of
endogenous variables will not be appropriate instruments for their
current values.

A useful feature of xtabond2 is the ability to specify, for GMM-style
instruments, the limits on how many lags are to be included. If T is
fairly large (more than 7–8) an unrestricted set of lags will introduce a
huge number of instruments, with a possible loss of efficiency. By
using the lag limits options, you may specify, for instance, that only
lags 2–5 are to be used in constructing the GMM instruments.
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An empirical exercise

To illustrate the performance of the several estimators, we make use of
the original AB dataset, available within Stata with webuse abdata.
This is an unbalanced panel of annual data from 140 UK firms for
1976–1984. In their original paper, they modeled firms’ employment n
using a partial adjustment model to reflect the costs of hiring and firing,
with two lags of employment.

Other variables included were the current and lagged wage level w, the
current, once- and twice-lagged capital stock (k) and the current,
once- and twice-lagged output in the firm’s sector (ys). All variables
are expressed as logarithms. A set of time dummies is also included to
capture business cycle effects.
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If we were to estimate this model ignoring its dynamic panel nature, we
could merely apply regress with panel-clustered standard errors:

regress n nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr*, cluster(id)

One obvious difficulty with this approach is the likely importance of
firm-level unobserved heterogeneity. We have accounted for potential
correlation between firms’ errors over time with the cluster-robust VCE,
but this does not address the potential impact of unobserved
heterogeneity on the conditional mean.

We can apply the within transformation to take account of this aspect
of the data:

xtreg n nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr*, fe cluster(id)
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The fixed effects estimates will suffer from Nickell bias, which may be
severe given the short timeseries available.

OLS FE
nL1 1.045∗∗∗ (20.17) 0.733∗∗∗ (12.28)
nL2 -0.0765 (-1.57) -0.139 (-1.78)
w -0.524∗∗ (-3.01) -0.560∗∗∗ (-3.51)
k 0.343∗∗∗ (7.06) 0.388∗∗∗ (6.82)
ys 0.433∗ (2.42) 0.469∗∗ (2.74)
N 751 751
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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In the original OLS regression, the lagged dependent variable was
positively correlated with the error, biasing its coefficient upward. In the
fixed effects regression, its coefficient is biased downward due to the
negative sign on νt−1 in the transformed error. The OLS estimate of
the first lag of n is 1.045; the fixed effects estimate is 0.733.

Given the opposite directions of bias present in these estimates,
consistent estimates should lie between these values, which may be a
useful check. As the coefficient on the second lag of n cannot be
distinguished from zero, the first lag coefficient should be below unity
for dynamic stability.
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To deal with these two aspects of the estimation problem, we might
use the Anderson–Hsiao estimator to the first-differenced equation,
instrumenting the lagged dependent variable with the twice-lagged
level:

ivregress 2sls D.n (D.nL1 = nL2) D.(nL2 w wL1 k kL1 kL2 ///
ys ysL1 ysL2 yr1979 yr1980 yr1981 yr1982 yr1983 )
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A-H
D.nL1 2.308 (1.17)
D.nL2 -0.224 (-1.25)
D.w -0.810∗∗ (-3.10)
D.k 0.253 (1.75)
D.ys 0.991∗ (2.14)
N 611
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Although these results should be consistent, they are quite
disappointing. The coefficient on lagged n is outside the bounds of its
OLS and FE counterparts, and much larger than unity, a value
consistent with dynamic stability. It is also very imprecisely estimated.
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The difference GMM approach deals with this inherent endogeneity by
transforming the data to remove the fixed effects. The standard
approach applies the first difference (FD) transformation, which as
discussed earlier removes the fixed effect at the cost of introducing a
correlation between ∆yi,t−1 and ∆νit , both of which have a term dated
(t − 1). This is preferable to the application of the within
transformation, as that transformation makes every observation in the
transformed data endogenous to every other for a given individual.

The one disadvantage of the first difference transformation is that it
magnifies gaps in unbalanced panels. If some value of yit is missing,
then both ∆yit and ∆yi,t−1 will be missing in the transformed data. This
motivates an alternative transformation: the forward orthogonal
deviations (FOD) transformation, proposed by Arellano and Bover (J.
Econometrics, 1995).
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In contrast to the within transformation, which subtracts the average of
all observations’ values from the current value, and the FD
transformation, that subtracts the previous value from the current
value, the FOD transformation subtracts the average of all available
future observations from the current value. While the FD
transformation drops the first observation on each individual in the
panel, the FOD transformation drops the last observation for each
individual. It is computable for all periods except the last period, even
in the presence of gaps in the panel.

The FOD transformation is not available in any of official Stata’s DPD
commands, but it is available in David Roodman’s xtabond2
implementation of the DPD estimator, available from SSC.
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To illustrate the use of the AB estimator, we may reestimate the model
with xtabond2, assuming that the only endogeneity present is that
involving the lagged dependent variable.

xtabond2 n L(1/2).n L(0/1).w L(0/2).(k ys) yr*, gmm(L.n) ///
iv(L(0/1).w L(0/2).(k ys) yr*) nolevel robust small

Note that in xtabond2 syntax, every right-hand variable generally
appears twice in the command, as instruments must be explicitly
specified when they are instrumenting themselves. In this example, all
explanatory variables except the lagged dependent variable are taken
as “IV-style” instruments, entering the Z matrix as a single column. The
lagged dependent variable is specified as a “GMM-style” instrument,
where all available lags will be used as separate instruments. The
noleveleq option is needed to specify the AB estimator.
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A-B
L.n 0.686∗∗∗ (4.67)
L2.n -0.0854 (-1.50)
w -0.608∗∗ (-3.36)
k 0.357∗∗∗ (5.95)
ys 0.609∗∗∗ (3.47)
N 611
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

In these results, 41 instruments have been created, with 17
corresponding to the “IV-style” regressors and the rest computed from
lagged values of n. Note that the coefficient on the lagged dependent
variable now lies within the range for dynamic stability. In contrast to
that produced by the Anderson–Hsiao estimator, the coefficient is quite
precisely estimated.
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There are 25 overidentifying restrictions in this instance, as shown in
the first column below. The hansen_df represents the degrees of
freedom for the Hansen J test of overidentifying restrictions. The
p-value of that test is shown as hansenp.

All lags lags 2-5 lags 2-4
L.n 0.686∗∗∗ (4.67) 0.835∗ (2.59) 1.107∗∗∗ (3.94)
L2.n -0.0854 (-1.50) 0.262 (1.56) 0.231 (1.32)
w -0.608∗∗ (-3.36) -0.671∗∗ (-3.18) -0.709∗∗ (-3.26)
k 0.357∗∗∗ (5.95) 0.325∗∗∗ (4.95) 0.309∗∗∗ (4.55)
ys 0.609∗∗∗ (3.47) 0.640∗∗ (3.07) 0.698∗∗∗ (3.45)
hansen_df 25 16 13
hansenp 0.177 0.676 0.714
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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In this table, we can examine the sensitivity of the results to the choice
of “GMM-style” lag specification. In the first column, all available lags
of the level of n are used. In the second column, the lag(2 5) option
is used to restrict the maximum lag to 5 periods, while in the third
column, the maximum lag is set to 4 periods. Fewer instruments are
used in those instances, as shown by the smaller values of sar_df.

The p-value of Hansen’s J is also considerably larger for the
restricted-lag cases. On the other hand, the estimate of the lagged
dependent variable’s coefficient appears to be quite sensitive to the
choice of lag length.

Christopher F Baum (BC / DIW) Dynamic Panel Data estimators Boston College, Spring 2014 32 / 50



Dynamic panel data estimators An empirical exercise

We illustrate estimating this equation with both the FD transformation
and the forward orthogonal deviations (FOD) transformation:

First diff FOD
L.n 0.686∗∗∗ (4.67) 0.737∗∗∗ (5.14)
L2.n -0.0854 (-1.50) -0.0960 (-1.38)
w -0.608∗∗ (-3.36) -0.563∗∗∗ (-3.47)
k 0.357∗∗∗ (5.95) 0.384∗∗∗ (6.85)
ys 0.609∗∗∗ (3.47) 0.469∗∗ (2.72)
hansen_df 25 25
hansenp 0.177 0.170
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The results appear reasonably robust to the choice of transformation,
with slightly more precise estimates for most coefficients when the
FOD transformation is employed.
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We might reasonably consider, as did Blundell and Bond (J.
Econometrics, 1998), that wages and the capital stock should not be
taken as strictly exogenous in this context, as we have in the above
models.

Reestimate the equation producing “GMM-style” instruments for all
three variables, with both one-step and two-step VCE:

xtabond2 n L(1/2).n L(0/1).w L(0/2).(k ys) yr*, gmm(L.(n w k)) ///
iv(L(0/2).ys yr*) nolevel robust small
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One-step Two-step
L.n 0.818∗∗∗ (9.51) 0.824∗∗∗ (8.51)
L2.n -0.112∗ (-2.23) -0.101 (-1.90)
w -0.682∗∗∗ (-4.78) -0.711∗∗∗ (-4.67)
k 0.353∗∗ (2.89) 0.377∗∗ (2.79)
ys 0.651∗∗∗ (3.43) 0.662∗∗∗ (3.89)
hansen_df 74 74
hansenp 0.487 0.487
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The results from both one-step and two-step estimation appear
reasonable. Interestingly, only the coefficient on ys appears to be more
precisely estimated by the two-step VCE. With no restrictions on the
instrument set, 74 overidentifying restrictions are defined, with 90
instruments in total.
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To illustrate system GMM, we follow Blundell and Bond, who used the
same abdata dataset on a somewhat simpler model, dropping the
second lags and removing sectoral demand. We consider wages and
capital as potentially endogenous, with GMM-style instruments.

Estimate the one-step BB model.

xtabond2 n L.n L(0/1).(w k) yr*, gmm(L.(n w k)) iv(yr*, equation(level)) ///
robust small

We indicate here with the equation(level) suboption that the year
dummies are only to be considered instruments in the level equation.
As the default for xtabond2 is the BB estimator, we omit the
noleveleq option that has called for the AB estimator in earlier
examples.
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n
L.n 0.936∗∗∗ (35.21)
w -0.631∗∗∗ (-5.29)
k 0.484∗∗∗ (8.89)
hansen_df 100
hansenp 0.218
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

We find that the α coefficient is much higher than in the AB estimates,
although it may be distinguished from unity. 113 instruments are
created, with 100 degrees of freedom in the test of overidentifying
restrictions.
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A second empirical exercise

We also illustrate DPD estimation using the Penn World Table
cross-country panel. We specify a model for kc (the consumption
share of real GDP per capita) depending on its own lag, cgnp, and a
set of time fixed effects, which we compute with the xi command, as
xtabond2 does not support factor variables.

We first estimate the two-step ‘difference GMM’ form of the model with
(cluster-)robust VCE, using data for 1991–2007. We could use
testparm _I* after estimation to evaluate the joint significance of
time effects (listing of which has been suppressed).
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. xi i.year
i.year _Iyear_1991-2007 (naturally coded; _Iyear_1991 omitted)

. xtabond2 kc L.kc cgnp _I*, gmm(L.kc openc cgnp, lag(2 9)) iv(_I*) ///
> twostep robust noleveleq nodiffsargan
Favoring speed over space. To switch, type or click on mata: mata set matafavor
> space, perm.

Dynamic panel-data estimation, two-step difference GMM

Group variable: iso Number of obs = 1485
Time variable : year Number of groups = 99
Number of instruments = 283 Obs per group: min = 15
Wald chi2(17) = 94.96 avg = 15.00
Prob > chi2 = 0.000 max = 15

Corrected
kc Coef. Std. Err. z P>|z| [95% Conf. Interval]

kc
L1. .6478636 .1041122 6.22 0.000 .4438075 .8519197

cgnp .233404 .1080771 2.16 0.031 .0215768 .4452312
...
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Dynamic panel data estimators A second empirical exercise

(continued)

Instruments for first differences equation
Standard
D.(_Iyear_1992 _Iyear_1993 _Iyear_1994 _Iyear_1995 _Iyear_1996 _Iyear_1997
_Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002 _Iyear_2003
_Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007)

GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/9).(L.kc openc cgnp)

Arellano-Bond test for AR(1) in first differences: z = -2.94 Pr > z = 0.003
Arellano-Bond test for AR(2) in first differences: z = 0.23 Pr > z = 0.815

Sargan test of overid. restrictions: chi2(266) = 465.53 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(266) = 87.81 Prob > chi2 = 1.000
(Robust, but can be weakened by many instruments.)
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Dynamic panel data estimators A second empirical exercise

Given the relatively large number of time periods available, I have
specified that the GMM instruments only be constructed for lags 2–9 to
keep the number of instruments manageable. I am treating openc as
a GMM-style instrument. The autoregressive coefficient is 0.648, and
the cgnp coefficient is positive and significant. Although not shown,
the test for joint significance of the time effects has p-value 0.0270.

We could also fit this model with the ‘system GMM’ estimator, which
will be able to utilize one more observation per country in the level
equation, and estimate a constant term in the relationship. I am
treating lagged openc as a IV-style instrument in this specification.
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Dynamic panel data estimators A second empirical exercise

. xtabond2 kc L.kc cgnp _I*, gmm(L.kc cgnp, lag(2 8)) iv(_I* L.openc) ///
> twostep robust nodiffsargan

Dynamic panel-data estimation, two-step system GMM

Group variable: iso Number of obs = 1584
Time variable : year Number of groups = 99
Number of instruments = 207 Obs per group: min = 16
Wald chi2(17) = 8193.54 avg = 16.00
Prob > chi2 = 0.000 max = 16

Corrected
kc Coef. Std. Err. z P>|z| [95% Conf. Interval]

kc
L1. .9452696 .0191167 49.45 0.000 .9078014 .9827377

cgnp .097109 .0436338 2.23 0.026 .0115882 .1826297
...

_cons -6.091674 3.45096 -1.77 0.078 -12.85543 .672083
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Dynamic panel data estimators A second empirical exercise

(continued)

Instruments for first differences equation
Standard
D.(_Iyear_1992 _Iyear_1993 _Iyear_1994 _Iyear_1995 _Iyear_1996 _Iyear_1997
_Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002 _Iyear_2003
_Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007 L.openc)

GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/8).(L.kc cgnp)

Instruments for levels equation
Standard
_cons
_Iyear_1992 _Iyear_1993 _Iyear_1994 _Iyear_1995 _Iyear_1996 _Iyear_1997
_Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002 _Iyear_2003
_Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007 L.openc

GMM-type (missing=0, separate instruments for each period unless collapsed)
DL.(L.kc cgnp)

Arellano-Bond test for AR(1) in first differences: z = -3.29 Pr > z = 0.001
Arellano-Bond test for AR(2) in first differences: z = 0.42 Pr > z = 0.677

Sargan test of overid. restrictions: chi2(189) = 353.99 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(189) = 88.59 Prob > chi2 = 1.000
(Robust, but can be weakened by many instruments.)
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Dynamic panel data estimators A second empirical exercise

Note that the autoregressive coefficient is much larger: 0.945 in this
context. The cgnp coefficient is again positive and significant, but has
a much smaller magnitude when the system GMM estimator is used.

We can also estimate the model using the forward orthogonal
deviations (FOD) transformation of Arellano and Bover, as described in
Roodman’s paper. The first-difference transformation applied in DPD
estimators has the unfortunate feature of magnifying any gaps in the
data, as one period of missing data is replaced with two missing
differences. FOD transforms each observation by subtracting the
average of all future observations, which will be defined (regardless of
gaps) for all but the last observation in each panel. To illustrate:
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Dynamic panel data estimators A second empirical exercise

. xtabond2 kc L.kc cgnp _I*, gmm(L.kc cgnp, lag(2 8)) iv(_I* L.openc) ///
> twostep robust nodiffsargan orthog

Dynamic panel-data estimation, two-step system GMM

Group variable: iso Number of obs = 1584
Time variable : year Number of groups = 99
Number of instruments = 207 Obs per group: min = 16
Wald chi2(17) = 8904.24 avg = 16.00
Prob > chi2 = 0.000 max = 16

Corrected
kc Coef. Std. Err. z P>|z| [95% Conf. Interval]

kc
L1. .9550247 .0142928 66.82 0.000 .9270114 .983038

cgnp .0723786 .0339312 2.13 0.033 .0058746 .1388825
...

_cons -4.329945 2.947738 -1.47 0.142 -10.10741 1.447515
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Dynamic panel data estimators A second empirical exercise

(continued)

Instruments for orthogonal deviations equation
Standard
FOD.(_Iyear_1992 _Iyear_1993 _Iyear_1994 _Iyear_1995 _Iyear_1996
_Iyear_1997 _Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002
_Iyear_2003 _Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007 L.openc)

GMM-type (missing=0, separate instruments for each period unless collapsed)
L(2/8).(L.kc cgnp)

Instruments for levels equation
Standard
_cons
_Iyear_1992 _Iyear_1993 _Iyear_1994 _Iyear_1995 _Iyear_1996 _Iyear_1997
_Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002 _Iyear_2003
_Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007 L.openc

GMM-type (missing=0, separate instruments for each period unless collapsed)
DL.(L.kc cgnp)

Arellano-Bond test for AR(1) in first differences: z = -3.31 Pr > z = 0.001
Arellano-Bond test for AR(2) in first differences: z = 0.42 Pr > z = 0.674

Sargan test of overid. restrictions: chi2(189) = 384.95 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(189) = 83.69 Prob > chi2 = 1.000
(Robust, but can be weakened by many instruments.)
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Dynamic panel data estimators A second empirical exercise

Using the FOD transformation, the autoregressive coefficient is a bit
larger, and the cgnp coefficient a bit smaller, although its significance
is retained.

After any DPD estimation command, we may save predicted values or
residuals and graph them against the actual values:
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Dynamic panel data estimators A second empirical exercise

. predict double kchat if inlist(country, "Italy", "Spain", "Greece", "Portugal
> ")
(option xb assumed; fitted values)
(1619 missing values generated)

. label var kc "Consumption / Real GDP per capita"

. xtline kc kchat if !mi(kchat), scheme(s2mono)
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Dynamic panel data estimators A second empirical exercise
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Dynamic panel data estimators A second empirical exercise

Although the DPD estimators are linear estimators, they are highly
sensitive to the particular specification of the model and its
instruments: more so in my experience than any other
regression-based estimation approach.

There is no substitute for experimentation with the various parameters
of the specification to ensure that your results are reasonably robust to
variations in the instrument set and lags used. A very useful reference
for DPD modeling is David Roodman’s paper “How to do xtabond2”
paper, freely downloadable from the Stata Journal via IDEAS or
EconPapers.
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