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In a series of interesting papers Banerjee (1992) and Bikhchandani, Hirshleifer and
Welch (1992) develop stylized models of herd-like behavior in abstract setup. In the model
each agent receives a private signal about the state, observes the past decisions of other agents
and takes some action. These early models are quite stark in their assumptions: agents move
in an exogenously specified sequence, agents make simple zero-one decisions, and agents are
not allowed to share information even though they may have an incentive to do so. This
literature recognizes that these assumptions are stark. For example, Banerjee argues that it
would be more natural to let the order of choice be endogenous, but that this modification is
rather complicated. The starkness of these assumptions have led economists to both question
the robustness of the results and the relevance of herd behavior in applied contexts (Lee
1995). In this paper we relax the stark assumptions and find that there are still herds.

The applied context we are most interested in is one of investment in a foreign country
by domestic lenders. We are motivated by the recent crises in Latin America and Asia. 'We
think the herding story is an attractive explanation of these crises but in this applied context
as well as others the stark assumptions of the simple model seem strained: investors cannot
make investments either before their turn in the order or after their turn, they must invest
all or none of their money, and they cannot share the information. If herds are to be relevant
they should be robust to a relaxation of these assumptions.

We begin by developing a model with endogenous timing of moves, but we retain the
zero-one decisions and we don’t allow communication. In the model agents choose when, if
at all, to invest one unit in a risky project. In each period a single investor receives a private
signal about the profitability of the risky project. Investors observe the aggregate amount

of investment in each period and optimally decide whether to invest or to wait for more



information. Waiting is costly because of discounting. In the model if agents become either
sufficiently optimistic or pessimistic about profitability they take the same action regardless
of their private signal and information can get trapped. We say that an outcome is a herd
if investors decisions do not vary with their signals and the aggregate outcome differs from
that with public signals. We show that in the stationary equilibrium there are both herds
of investment and herds of no investment. We also show that the equilibrium outcomes
are identical to those in a version of the model in which the order of moves is exogenously
specified. In this sense herds are robust to endogenous timing.

Next, we extend the model to allow for continuous investment decisions but do not
allow communication. In the model investors must choose when, if at all, to invest any
nonegative amount in a risky project. We show that there are both herds of investment and
herds of no investment. Interestingly, in the corresponding version with exogenous timing it
turns out that are no herds of investment, because whenever agents invest, the size of their
investment reveals their signal perfectly. (This result is shown in Lee 1995). In contrast, with
endogenous timing, if investors become sufficiently optimistic they all invest thereby forgoing
to opportunity to receive and act on a later signal. In this sense, when investment decisions
are continuous, herds are not merely robust to endogenous timing but become more likely
than with exogenous timing.

Finally, we consider the incentives to communicate in a version of the endogenous
timing model with zero-one investment decisions. We allow investors to send messages about
their signals. We assume there is an early-mover advantage to investing in that the return is
decreasing in the aggregate number of investors. We show that there is a unique stationary
equilibrium which coincides with that in the version without communication. In this sense,
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herds are robust to information-sharing.

Our paper is most closely related to Caplin and Leahy (1993) and Chamley and Gale
(1994). Both of these papers allow for private signals and endogenous timing of decisions. In
Caplin and Leahy’s model a continuum of agents at each date agents must decide whether
to continue with their projects or suspend them. The profitablity of projects is perfectly
correlated across agents and in each period each agents gets a private signal about this
profitability. Caplin and Leahy show that there is some deterministic date at which agents
who have received all negative signals suspend their projects. The fraction of agents who
suspend projects perfectly reveals the underlying state and all agents either continue their
projects to completion or abandon them forever. Thus, the aggregate number of completed
projects coincides with that under public information. In this sense, Caplin and Leahy’s
model generates delays in investment but not herds.

Chamley and Gale consider a model in which all signals are received in the first period.
In equilibrium agents follow mixed strategies over investing and waiting in each period. With
a large number of agents the time profile of investment has an extreme form in that in
the first period there is a negligible amount of investment followed in the second period by
either everyone investing or no one investing. Chamley and Gale show that the equilibrium
outcomes differ from those with public information. In this sense, Chamley and Gale’s model

generates herds but not delays in investment.

1. Endogenous timing
Consider an economy populated with N risk neutral agents each of whom has 1 unit

of resources to invest. There are two assets, a safe domestic asset with gross return that is



normalized to 1 and a risky foreign asset. The payoff on the risky foreign asset depends on
the state denoted y € {G, B}, where G is referred to as the good state and B is referred to
as the bad state. The state of the foreign country is unknown, although the distribution is
common knowledge to the agents. The common prior probability of the good state at date 0
is pg. Each agent starts at period 0 with one unit invested in the domestic asset and in each
period t, for t = 0,...,T; chooses whether or not to switch all of his principal plus interest
from the domestic asset into the foreign asset. Once an agent has switched his money he
must leave it there until period T, which satisfies T > T7. In period T' the foreign asset pays
a gross return of R per period if the state is good or a gross return of 0 if the state is bad.
Both returns are continuously compounded and consumption occurs at 7. Hence, an investor

that switches at time ¢, gets a total expected return of
efT=0Prob, (state is G).

where Prob,(state is G) is the conditional probability that the lender assigns to the state
being . Notice that after an agent invests in the risky project there are no actions to be
taken. Hence, we do not need to define payoffs or strategies for such agents.

Agents receives signals s € {G, B} about the state as follows. In each period ¢t =
0,...,T} one signal arrives to the economy and is randomly distributed to one and only one
agent among the set of agents who have not already received a signal.? The signals are

informative and symmetric in the sense that
(1) Pr(s=G|y=G)=Pr(s=B|y=DB)=q>1/2

The only publicly observable events are the number of investments in each period. Let
ny denote the number of new investments at ¢. The public history h; = (ng,n1,,...,n¢ 1)
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records the aggregate number of positive investments in each period up through the beginning
of period t. Agents also record the signal they receive, if any, and the date they receive it.
Thus, the history of an agent ¢ at ¢ who received a signal at r is hy = (hy, s,,7) and we let
(ht,0,0) denote the history of an agent who has not received a signal. Notice that at each
date t, given their histories, agents can be described as belonging to one of several groups.
Any agent that has already invested is inactive. The active agents consist of a newly informed
agent who received the signal at the beginning of period t, previously informed agents who
received a signal at some date r before ¢t and uninformed agents who have not yet received
a signal. Notice that given the structure of signals, the probability that an uninformed agent
receives a signal at t is 1, = 1 /(N — t).

An agent’s strategy and beliefs are sequences of functions z;(h;) and py(hs) that map
their histories into actions and priors over the state. The payoffs are defined as follows. Let
Vi(hi) denote the payoff for an agent that switches his assets from the safe to the risky project

at t conditional on the history h;, then
Vi(hy) = eR(Tit)pt(hit)a

Let Wi(h;) denote the payoff for an agent that doesn’t switch at time ¢, and let Jy(hy) =
max{V;(hi), Wi(hy)} be the payoff to an agent that makes the optimal decision at time ¢.

Then,

Wt(hit) = Z Mt(hit+1|hit)Jt+1(hit+1)

hit+1

where g, (hio1|hit) is the conditional distribution over history at ¢ 4+ 1 given the history at ¢.
Notice that the conditional distributions g, (ks 1|hit) are induced from the strategies and the

structure of exogenous uncertainty of the game in the obvious way. Notice also that we have



imposed symmetry by supposing that all agents who have the same histories take the same
actions and have the same beliefs. Here, a perfect Bayesian equilibrium is a set of strategies
x(hy), a set of conditional distributions g, (hiti1|hi) and a set of beliefs p(h;;) such that 7)
for every history h;;, such that the agent has not switched to the risky project before ¢, z;(h;)
is optimal, i7) the conditional distributions g, (hsi1|hit) and the beliefs p;;(h;) are consistent
with Bayes’ rule wherever possible and arbitrary otherwise.

In constructing an equilibrium we will find it useful to let Pg(p) and Pg(p) be defined

by

B bq
@ Feo) = g A=y
3)  Palp) = e

r(l—q)+(1-plg

and let P(0) = po, P(1) = Po(P(0)), P(2) = Po(P(1)) and so on, and let P(—1) = Pg(P(0)),
P(—2) = Pg(P(—1)) and so on. Thus, P(k) for k > 0, is the prior probability that the state
is good if k good signals have been received and P(k) for k < 0, is the prior probability that

the state is good if k& bad signals have been received. Notice from the symmetry in (1) that

4)  Pa(Ps(p)) = Ps(Fa(p) = p.

It follows from (4) that the effect on the prior of a given set of signals is summarized by the
number of good minus the number of bad signals in the set. Thus, for example, receiving two
good signals and one bad signal yields that same prior as receiving one good signal.

We make the following parameter restrictions,
(5) 1< I p(0)

6) 1>efP(-1)



(7) BT P(0) < va(P(0)e™ TV P(1) + vp(P(0))

where vg(p) = P(s = Glp) = pg+(1-p))(1—¢q) and v5(p)=P(s = Blp)) = p(1—q)+(1-p)g.
Note that because R > 1 these assumptions imply the following. Assumption (5) implies that
at any date ¢, between the two options of investing in the risky asset given belief P(0) or
never investing in the risky asset, it is better to invest. Assumption (6) implies that at any
date t, between the two options of investing in the risky asset given belief P(—1) or never

investing in the risky asset, it is better to not invest. Assumption (7) implies
®)  MTIP(0) < va(P(0)e™ U P(1) + vp(P(0))

so that at any date ¢, investing with beliefs P(0) is dominated by waiting one period and
investing if and only if a good signal is realized. To understand the role of (7), note that in
this model, waiting and receiving information is beneficial because agents having the option
of not investing if the signals are sufficiently bad. We call this benefit the no investment
option value. The cost of waiting comes from a kind of discounting in that agents forgo the
flow return from investing. Assumption (7) requires that the no investment option value be
large relative to discounting.

We begin with an informal description of the equilibrium outcomes. At the beginning
of date 0 one agent receives a signal and is the newly informed agent. That agent invests if
the signal is good and does not otherwise. All uninformed agents wait.

The decisions at date 1 depends on the history from date 0. If there was positive
investment at date 1 all agents invest at date 1. We say that this history starts a cascade
with investment. If there was zero investment at date 0 then the uninformed agents wait
while the newly informed agent at date 1 invests if his signal is good and waits otherwise.
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At the beginning of date 2 if there has been no investment at either dates 0 or 1 then
no agent invests at date 2 or any subsequent date. We will say that this history starts a
cascade with no investment. If there has been no investment at date 0 but an investment
at date 1 then both the uninformed agents and the previously informed agent wait and the
newly informed agents invests if his signal is good and does not otherwise.

More generally, histories of the form (1), (0,1,1), (0,1,0,1),...,(0,1,0,1,...,0,1,1)
start cascades with investment. Histories of the form (0,0), (0,1,0,0),...,(0,1,0,1,...,0,1,0,0),
start cascades with no investment.

More formally we proceed as follows. The strategy for all uninformed and previously

informed agents is

9)  w(ha) =
0 otherwise

for t < T} —1 and zp, (hy,) = 1if and only if p;(h;;) > P(0). The strategy for newly informed

agents is

(10) @y (hi) =
0 otherwise

for t < T). Notice that the uninformed and previously informed agents need to be more

optimistic than newly informed agents in order to invest before T7.



The beliefs of uniformed agents at history hyy1 = (hey1,0,0) are recursively defined

by
Pg(pi(hy)) if ng =0, z(hy, G,t) = 1 and zy(h, B,t) =0
Po(pi(hi)) if ng =1, x¢(he, G,t) = 1 and z¢(he, B,t) =0
(1) pesi(hie) = P(2)ifn; > 2, or ng =1, ay(hy, G, t) = a;(hy, B, 1)

P(—2) lf ng = 0, xt(ht,G,t) = xt(ht,B,t) = 1

pt(hit) otherwise
where po(hig) = po. Recall that x,(h;, G,t) and x,(h:, B,t) are the strategies of a newly in-
formed agent at date t. The beliefs of the newly informed agents at history h;1 = (hey1, S, 1)
are piy1(hii1, S,t) = Ps(peyi(hey1,0,0)) for S = G, B as long as no other agent invests at
t and piy1(heg1,0,0) < P(0), pryi(higa, S,t) = P(=2) if pra(hey,0,0) > P(1) and no one
else invests at ¢, otherwise his beliefs are P(2). The beliefs of the previously informed agents
at hiy1 = (heer, S, ) are recursively defined using (11) except that the recursion starts at r,
with the beliefs of the newly informed agent at r,namely p,(h;., S, 7).

Built into these beliefs is the idea that agents look at previous agents’ actions and try to
infer their signals. On the equilibrium path and for deviations that they cannot detect agents
infer the following. Consider the uniformed agents. If they see one unit of investment at ¢
and the strategies specify that a newly informed agent receiving a good signal should invest
while a newly informed agent receiving a bad signal should not invest, they infer the newly
informed agent received a positive signal. They update beliefs in a similar fashion when they
see zero investment at t. (Notice that when the newly informed agent acts differently based
on their signal, their deviations cannot be detected by uninformed agents so that uninformed
agents beliefs are updated as if there were no deviation by the informed agent.)
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On the equilibrium path and for undetectable deviations the newly informed agents
simply update the beliefs of the uninformed agents with their private signal. The previously
informed agent that was newly informed at t — 1, simply updates the beliefs of the newly
informed agent at t—1 appropriately. The previously informed agent that was newly informed
at r < t—1, simply updates the beliefs of the previously informed agent at ¢t — 1 appropriately.

For detectable deviations agents infer the following. If an uninformed agent sees more
than one unit of investment, beliefs are updated to an optimistic level, namely, P(2). If an
uninformed agent sees other deviations, beliefs are left unchanged. Previously informed agents
behave similarly. A newly informed agent at t who is active at t + 1 and sees investments by
others also updates beliefs to the optimistic level P(2).

These strategies and beliefs induce the conditional distributions fi;,,; (hi1|hi) in the
obvious manner. We will show that these strategies and beliefs are an equilibrium. An
important feature of the strategies is that cutoff level for investment for the uninformed
agents is higher than that for the newly informed agents. To get why this is necessary
suppose first that both types of agents invest if their beliefs are greater than or equal to
P(0). To see why this cannot be an equilibrium consider a deviation by the uniformed agent
at t = 0 with beliefs P(0) to waiting. Since the newly informed agent invests if and only if
his signal is good, the deviating agent learns the value of the signal. By (19) this deviation
increases payoffs.

Suppose next that the cutoff level for both types of agents is P(1). Consider a history
of signals B. The newly informed at 0 does not invest and the other agents infer he got a
bad signal and their priors are P(—1). The newly informed at date 1 is supposed to wait

regardless of his signal. Thus the prior of the prior of the uninformed stays at P(—1) and
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thus all newly informed agents at all future dates also wait. After a history of signals B, G,
the newly informed at date 1 has a prior of P(0). A deviation to investing, by (5), raises the
payoffs.

These arguments help explain why the cutoff levels of the informed and uninformed
agents must be different. We now show that when these cutoffs have the form in (9) and (10)
the strategies and beliefs are an equilibrium.

Proposition 1. Under assumptions (5) — (7), the strategies and beliefs in (9)-(11)
constitute a perfect Bayesian equilibrium.

Proof. By construction the beliefs in (11) satisfy Bayes’ rule. We repeatedly use the
observation that by construction for any history h; p;(hy) = P(k) for some integer k .

Consider first optimality for histories with no detectable deviations. Consider first the
strategies of the uninformed agents. For a history of the uninformed agent with p,(h;) = P(1)

the uninformed agent invests and receives
eR(T_t)P(l)

Suppose the agent deviates and waits. If for all future histories the agent ends up investing
then waiting merely reduces the length of time of investment in the high return project and
loses eft in each period. Thus, the only way that this deviation can be profitable is that there
are some future histories in which this agent never invests. Consider the most pessimistic
information the agent could receive. Recall that for such a history all other active agents
invest. Thus, by waiting the uninformed agent receives no new information from others. By
waiting the uninformed agent could receive a signal in the future. But even if the future

signal is s = B, this agent’s belief will be P(0) and by (5) he will invest. Thus, even under
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the most pessimistic information it is optimal to invest, and hence waiting is not profitable.
Clearly, for histories with p;(h;) > P(1) it is also optimal to invest.

Consider next the strategies of the informed agents at some history h;. From (6) it
follows that deviating to investing when the strategies specify waiting is not optimal, namely
for histories in which the newly informed agent’s beliefs are P(k) for & < —1. It also easy
to check that deviating in a cascade is not optimal. A cascade is associated with a history
in which the uninformed agents’ beliefs are either P(1) or P(—2). After such histories either
all agents have already invested or they will never invest. In either case deviations are not
profitable. The interesting histories are those in which the uninformed agents’ beliefs are P(0)
or P(—1) and the newly informed agent has just received a good signal. The strategy for the
newly informed agent specifies invest and suppose this agent deviates and waits, presumably
to garner information about the signals of subsequent informed agents.

Consider first a history h; in which the uniformed agents’ beliefs are P(—1) so that
uninformed agents and the newly informed agent receives a good signal and hence has beliefs
P(0). If the newly informed agent deviates and waits then this deviation triggers a cascade
with no investment. To see this note that the deviation causes the uninformed agents’ beliefs
to be P(—2) permanently. Given these beliefs uninformed agents never invest. Future newly
informed agents update their beliefs to at most P(—1) and do not invest either. Thus this
deviation garners no new information. The beliefs of the uninformed agent remain at P(0).
Assumption (5) then implies that given these beliefs it is optimal for the newly informed
agent to invest at t.

Next, consider a history h; in which the uniformed agents’ beliefs are P(0) and the
newly informed agent receives a good signal and hence has beliefs P(1).Suppose the newly
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informed agent deviates and waits. In the subsequent period the uninformed agents’ beliefs
fall to P(—1) while the informed agent's beliefs stay at P(1). The reason the beliefs of the
newly informed agent is 2 higher than the uninformed agents is the newly informed agent’s
private signal raised his beliefs by 1 and the deviation by the newly informed agent did not
affect his beliefs while it lowered the uninformed agents counter by 1.

If for all future histories the agent ends up investing then waiting merely reduces
the length of time of investment in the high return project. Thus, the only way that this
deviation can be profitable is that there are some future histories in which this agent never
invests. Consider the most pessimistic information the agent could receive. This information
is associated with the uninformed agents beliefs of P(—2). The informed agent’s beliefs
are P(0).Given their beliefs, uninformed agents never invest. Future newly informed agents
update their beliefs to at most P(—1) and do not invest either. Thus this deviation garners
no new information. The beliefs of the uninformed agent remain at P(0). Assumption (5)
then implies that given these beliefs it is optimal for the newly informed agent to invest at
t. Thus, since it is optimal to invest eventually even with the most pessimistic information,
waiting simply reduces the return.

Consider next histories at ¢ with deviations detectable by uninformed agents and
previously informed agents. Suppose that the first detectable deviation occurs at s < t.There
are three types of such histories at ¢ :deviations at s to investing during a cascade without
investment, deviations to investing before a cascade starts, and deviations to not investing at
the onset of a cascade with investment. Under the first and the second type of history, (11)
implies that all agents’ beliefs are P(2) at s + 1.The only agents whose beliefs can change

from s + 1through ¢ are those that become newly informed and their beliefs are either P(1)
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or P(3).Since the equilibrium specifies that all agents should invest there is no possibility of
acquiring more information and it is optimal for any agent to invest at ¢.Under the third type
of history all agents’ beliefs are at P(—2) at s + 1.The only agents whose beliefs can change
from s+ 1 through ¢ are those that become newly informed and their beliefs are either P(—1)
or P(—3).With these beliefs it is optimal for no agent to invest at ¢.

Consider next histories at ¢ with deviations detectable only by newly informed agents.
The only interesting deviation that only a newly informed agent can detect is one in which
the prior was at P(0),the newly informed agent received a bad signal and some other agent
invested. In this case uninformed agents’ beliefs are at P(1), the newly informed agents’
beliefs are at P(2)and all agents should invest. It is easy to check that this is indeed optimal.

Q.E.D.

Next we show that within a certain class the equilibrium we have constructed is unique.
We will say that a collection of strategies and beliefs is a symmetric, stationary equilibrium
if it is a perfect Bayesian equilibrium and the strategies have the cutoff rule form. Namely,
there are sets of integers I and I’ such that for ¢ < T} — 1 the strategies of the uninformed

and previously informed agents are of the form

1if pt(hzt) el
0 otherwise

while the strategy for newly informed agents is of the form

Lif py(hiy) € I
0 otherwise

(Notice that we allow the strategies at T} to differ.)
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Proposition 2. The strategies and beliefs described in (9)-(11) is the unique symmet-
ric stationary equilibrium.

Proof. Consider period T;. By (5) and (6) it follows that all agents invest if and
only if their beliefs are greater than or equal to P(0). Consider next period 7} — 1. The
newly informed agent can learn nothing by waiting and hence invests if and only if his beliefs
are greater than or equal to P(0). Thus, the set I’ is the set of integers with £ > 0. An
uninformed agent who enters the period with beliefs P(0), by waiting learns the signal of the
newly informed agent. By (7) it is optimal to wait. An uninformed agent who enters the
period with beliefs greater or equal to P(1) will invest in period 7} regardless of the newly
informed agent’s action. Hence, waiting only postpones invest and it is optimal to invest
immediately. Thus, the set I is the set of integers with £ > 1. Q.E.D.

Next, we show that this model has the same type as cascades as a model with exogenous
timing of investments. To reduce our model to one with exogenous timing suppose that only
the newly informed agent can invest at ¢t and N = T}. Let the strategies and beliefs of the
newly informed agents be the same as those in the endogenous timing model. It is obvious
that these strategies and beliefs are the unique equilibrium of the exogenous timing model.
In particular, histories of the form (1), (0,1,1), (0,1,0,1), ...,(0,1,0,1,...,0,1,1) start
cascades with investment. Histories of the form (0,0), (0,1,0,0),...,(0,1,0,1,...,0,1,0,0),
start cascades with no investment. Thus, we have shown the following.

Proposition 3. The strategies described in (10) and the associated beliefs is the
unique equilibrium of the model with exogenous timing. Furthermore, for any history of

signals the aggregate investment at 77 is the same as in the model with endogenous timing.
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Next, we are interested in exploring if there is any sense in which these cascades are
mistakes relative to some benchmark. One benchmark is the public information version of
the above game. As before, the agent at t receives his signal at ¢t and chooses whether or
not to invest at ¢, but now suppose that at each ¢ the signal at ¢ is publicly observable.
It is easy to show that even if actions always fully reveal the private information, under
(5)-(7) the equilibrium of the private information game will not coincide with those in the
public information game. The reason is that in the private information game the uninformed
agents can only react to the revealed information with a one period lag, while in the public
information game they can react immediately.

A more interesting benchmark is a public information game which captures the infor-
mational lags built into the private information game. Consider a game with public informa-
tion lags in which the uninformed agents learn the realization of the date ¢ signal after they
have made their period t investment decisions. Thus, at ¢ the relevant history of agents is the
history of past investments (mg,m,..., m; 1) together with the history of the signals. For
the newly informed agent the history of signals s* = (s, s1,...,5;), while that of all other
agents is s~ 1. An equilibrium is defined as before. For any equilibrium the outcome path
can be defined recursively from the strategies, and depends only on the history of signals.
The equilibrium strategies induce outcomes at each date. Let my(s') denote the aggregate
number of positive investments at ¢ for history s’. Similarly, in the private information game,
let ny(s') denote the aggregate number of positive investments along the equilibrium path at
t for history s'.

We say that the private information game has a herd at s* if 1) for all future histories

s" containing s, n,(s") is that same for all s" and ii) for some future history s” containing s,
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n.(s") # m,(s"). We say that the game has a herd of investment if it has a herd for some s

and

t t
D> ng(s®) = N and > my(s*) < N
k=0

k=0

for all subhistories s* € s’.all future histories s* > s*. We say that the game has a herd of no

investment if it has a herd for some s and
ng(s) =0

for all future histories s* 3 s and for at least one future history s* 3 s, my(s*¥) > 0.

The first clause in our definition of a herd requires that individuals make the same
decisions regardless of their signals. The second clause requires that these decisions are
mistakes relative to the benchmark game of public information with lags. Several authors
(Banarjee, Lee, Scharfstein et al. 7?) have defined notions of herd-like behavior which only
require the first clause. With only the first clause, if we started agents with prior below
P(—=T) they would never invest in either game regardless of the signals. In a sense everyone
is doing the same thing because they are all doing the right thing. The second clause ensures
that when everyone is doing the same thing in some sense they are doing the wrong thing.

To pin down the equilibrium of the game of public information with lags we need to

strengthen our assumptions. We assume
(14) "'pP(1) <
va(P(1)e" ™ VP(2) +vp(P(1)) [va(P(0)e™ ™ 2 P(1) + v(P(0))]

We think of (14) as strengthened version of (7), since one can show that, given (6), (14)
implies (7). This assumption implies that at any ¢ investing at P(1) dominated by the
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following strategy. Wait until ¢ 4 1, if the signal is good invest, if the signal is bad, wait until
t + 2 and invest if and only if the signal is good.

Proposition 4. Under (5)-(14), the equilibrium has both herds of investment and
herds of no investment.

Proof. To see that there is a herd of investment consider the history of signals st =
(G,B,B,...,B). In the private information game, no = 1 and ny = N — 1. In the public
information game, using (5)-(14), m; = 0 for all ¢. Likewise there are clearly herds of no
investment. Consider the history of signals st = (B, B, G, ...,G). In the private information
game n; = 0 for all ¢, while in the public information game for T} > 4 the prior rises above
P(0) and there is positive investment. Q.E.D..

In (14) we guarantee that in the public information game it is optimal to wait at P(1).
Suppose instead that we replaced (14) with an assumption that guarantees that in the public
information game it is optimal to invest at P(1). Obviously, the equilibrium outcomes of the
private information game would be unaffected, but the positive cascades would not be herds
because they would coincide with outcomes in the public information game.

So far, we have focused on what we consider to be the most interesting region of the
parameter space. We briefly discuss the characteristics of symmetric stationary equilibria for
other regions. If the rate of return R is so low that e P(1) < 1 then agents never invest
regardless of the signals. If the rate of return R is so high that e®7=7)P(—1) > 1, then
all agents invest at time 0. If R is lower than what we have but satisfies, e P(0) < 1, but
efT-T1)P(1) > 1 then the equilibrium is very similar to the equilibrium described above.
Specifically, in the equilibrium described above, it takes one good signal to set a positive herd
and two bad signals to set off a negative herd, while here it will take two good signals to
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set off a positive herd and one bad signal to set off a negative herd. Next, if parameters are
such that the value of waiting at P(0) is less than the value of immediately investing (the
direction of the inequality is reversed in the analog 7 , where the right side is now the payoff
to the optimal strategy following waiting) then all agents invest at 0. Finally, we have chosen
assumptions so that, except for the last period, the equilibria are stationary in that they
depend only on the prior, and not on time. If, for example, we assumed that (6) was replaced
by ef'P(—1) > 1 > efT=T)P(—1), then the equilibria are necessarily nonstationary and
would depend on time as well as the prior.

We have also focused attention on stationary equilibria. Under assumptions (5) — (14)
there are also nonstationary equilibria. For example, consider the strategies we have proposed
with the single change that the newly informed agent at date 0 waits, and the beliefs in period
1 of the uninformed agents stay at P(0). We need only show that the newly informed agent

prefers to wait when he gets a G. By (14) waiting is optimal.

2. Continuous investment

In the basic model agents either invested all of their money in the foreign project
or none. Here we let agents make a once and for all decision to invest any nonadditive
amount and assume the foreign project has decreasing returns. These changes will imply
that, conditional on investing, agents will adjust their investments smoothly as a function
of their beliefs. Nevertheless, we find that there are herds similar to those with zero/one
investment.

We consider a variant of the basic model in which the investment project has decreasing

returns and there is a nonnegativity constraint on investment. For an investment of x at ¢ in
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the foreign project the foreign project’s payoff is 7 =% f(z) in the good state and 0 in the
bad state, where f(z) is a strictly increasing concave function with f’(0) finite. The rest of
the model is unchanged.

For some arbitrary belief p that the state is GG, an agent who chooses to invest at ¢,

solves the problem

V(p,t) = maxe™ 9 f(x)p + (1 - x)
subject to

0<z<1
The first order condition at an interior point is
(15)  f'(z) =" /p

Let p(t) = e®-D)/f'(0). Clearly, the agent’s optimal investment is given by

N=1(R(t-T) i
(16)  z(p,t) = (F)7 /p) if p > p(t)

0 otherwise

We make the following assumptions.
(17)  V(P(0),T}) > 1

(18) V(P(-1),0)=1

(19)  V(P(0),0) <ve(P(0))V(P(1),1) +vs(P(0))
and

(20) Vi(p,t) >aV(@,t+1)+(1—a)V(p" t+1)
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for all ¢, p,p/,p" and « € [0, 1] such that p’,p” > P(0) and p = ap’ + (1 — )p” Assumptions
(17)-(19) are the analogs of (5)-(7). To understand the roles of (19) and (20) note that in this
model, waiting and receiving information has two benefits. The first, is the no investment
option value discussed earlier. The second, which we call the fine-tuning option value, comes
from better information allowing agents who have already decided to invest to adjust the size
of their projects. The cost of waiting comes from the same kind of discounting as before.
Assumption (19) requires that no investment option value be large relative to discounting.
Assumption (20) requires that fine-tuning option value is small relative to discounting in the
following sense. If information is going to keep agents at least as optimistic as P(0), the
benefits of adjusting the size of the project is small relative to discounting. Note that if the
size of the risky project is fixed, as in the previous section, the fine-tuning option value is
zero, and hence (20) is automatically satisfied.

We use assumption (20) to show that starting at history in which uninformed agents’
priors are P(0), a newly informed agent who has received a good signal will invest immediately
rather than attempting to learn from the investments of future newly informed agents and
then optimally adjusting the size of his investment.

The histories, strategies, and beliefs are defined as follows. Let X; = (zy4, ..., zn:) denote
the amount of the date ¢ investments of the N agents. We let n; denote the number of agents
that invested positive amounts at ¢. The public history h; = (Xg, X1,,..., Xy 1). The strate-
gies are that in all periods, except at T}, uniformed and previously informed agents invest a
positive amount z(p, t) if and only if p > P(1). At T}, they invest a positive amount z(p, T})
if and only if p > P(0). Newly informed agents invest a positive amount z(p,t) if and only
if p > P(0). The beliefs of uniformed agents at history hi 1 = (hiy1,0,0) are defined on the
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equilibrium path as follows

PB(pt(hzt)) lf ny = O, Z‘t(ht7G, t) >0 and Z‘t(ht,B,t) =0

Per1(Pitr) = Po(py(ha)) if ne = 1, max;(zy) = 2(Pe(py(ha),t) > 0 and z4(hy, B,t) =0

pt(hit) if xt(ht,G,t) = mt(hta B,t) =0

analogously to those in the previous section. Off the equilibrium path, beliefs are defined as
follows.

P2)ifn, =1, x(he, G,t) > x(Pe(pi(hit), t) and x(hy, B,t) =0
P2)ifny > 2 orng =1, z(hy,G,t) = x(hy, B,t)
Per1(hirr) = { P(=2) if n, = 1, z4(hy, G,t) < 2(Pa(pi(hy), t) and z4(hy, B,t) =0

P(=2) if ny =0, z4(hy, G,t) >0, x¢(hy, B,t) >0

pi(hi) otherwise

where po(hi) = po. The beliefs of the newly informed and previously informed are similarly
adapted from the previous section.

The proof that these strategies and beliefs are an equilibrium is essentially the same
as the proof of Proposition 1. The only part of the proof that needs elaboration is showing
that at a history in which uninformed agents’ priors are P(0), a newly informed agent who
has received a good signal will invest immediately. We use assumption (20) to show that
investing immediately dominates attempting to learn from the investments of future newly
informed agents and then optimally adjusting the size of his investment.

More formally, consider a history h; in which the uniformed agents’ beliefs are P(0)
and the newly informed agent receives a good signal and hence has beliefs P(1). Suppose the
newly informed agent deviates and waits. Recall that in all subsequent periods, the counter
of this deviating agent is 2 higher than that of the uninformed agents (1 for the private
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signal and 1 for the deviation). Recall that a herd with investment starts when uninformed
agents’ beliefs are P(1) and a herd of no investment starts when uninformed agents’ beliefs
are P(—2). Hence, in any period after the deviation, the deviating agent’s beliefs can be one
of four values, P(0), P(1), P(2), or P(3).

We recursively solve for the strategy the yields the highest payoff following the devi-
ation as follows. Suppose that the agent has not invested until 77. For all four beliefs (17)
implies that it is optimal to invest. Suppose that the agent has not invested until 7; — 1. For
each of the four beliefs, the payoff to investing is given by the left-side and dominates the
payoff to waiting and investing given by the right-side of (20). Since investing at 7} is optimal
if the agent has not already invested, it follows that it is optimal to invest at 77 — 1. Repeating
this argument, it follows that it is optimal for the agent to invest at ¢ + 2. Assumption (20)
then implies that investing at ¢, dominates waiting and then investing at t 4 2.

We have proved the following.

Proposition 5. Under (17)-(20), the above strategies and beliefs constitute a perfect
Bayesian equilibrium.

To show that there are herds we need another assumption to pin down the equilibrium

of the game of public information with lags. We assume the analog of (14),

(21)  V(P(1),0) <va(P()V(P(2),1) +vp(P(1)) [va(P0)V(P(1),2) + vp(P(0))].

The following proposition is immediate.
Proposition 6. Under (17) — (21), there are both herds of investment and herds of
no investment.

Next, we contrast the type of herd behavior in the endogenous timing model with that
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in the exogenous timing model. To reduce our model to one with exogenous timing suppose
that only the newly informed agent can invest at t and N = Tj. Let the strategies of the
newly informed agents be the same as those in the endogenous timing model. Let the beliefs
be adapted in the obvious fashion.

In the model the exogenous timing a newly informed agent that does not invest at
t can never invest in the future, while when there is endogenous timing such an agent can
invest in the future. Because of this difference we need to modify our definition of a herd.
Let equilibrium investment outcomes at ¢ for a given sequence of signals s* in the private and
the public information games be denoted x;(s*) and v (s") respectively. We will say that the
private information game with exogenous timing has a herd of investment if for some s, i)
for all future histories s containing s, z,.(s") > 0 for all s" and ii) for some future history s"
containing s*, z,.(s") # y,(s"). We will say that the private information game with exogenous
timing has a herd of no investment if for all s', i) for all future histories s” containing
st 2,.(s") = 0 for all s" and ii) for some future history s" containing s', z,.(s") # y.(s").

We will show that, in contrast to model with endogenous timing, with exogenous
timing there can be no herds of investment. Intuitively, with exogenous timing each agent
has a take it or leave it option to invest. Thus as long as the prior is above the cutoff level
p(t),the agent invests some positive amount, say z;, given by (16). Using (15), the belief of

the agent can be inferred to be

pe= e/ f(xy)

and, given some public prior p,_; the action z; reveals the agent’s signal. More formally we

have the following
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Proposition 7. In the equilibrium of the model with exogenous timing, there are
herds of no investment but there are no herds of investment.

Proof. By the above construction (0,...,0) is a herd of no investment. To see that
there are no herds of investment note first that for any outcome in which investment is
always positive, say (zg,...,zy) the investment decisions can be inverted to give unique
beliefs (07 / (), ..., e®T=T) / f/(zx)) and since Bayes rule is monotone, a unique path
of signals. A moment’s reflection makes it clear that the only way information can be trapped
is either in outcome paths that start with two consecutive zeros, or in outcome paths which
have z(P(0)) and then two consecutive zeros. In each of these however, the beliefs after the
two zeros are P(—2) and there can be no more investment. Hence, for such outcome paths

xy = 0 and such outcome paths cannot be herds of investment. Q.E.D.

3. Incentives to share information

One question that arises in the above formulation is that it seems that agents have an
incentive to share information. Here we consider a version of the model in which agents can
share information by sending messages and show that in one sense they do not have such an
incentive. We consider a variant of the model in which there is a flow benefit to being one of
the early-investors in the risky project. This confers a type of early-mover advantage on the
informed investor which provides incentives to mislead other investors. We show that there
does not exist a truth-telling equilibrium.

The model is the same as before except for the following two changes. First, we let
the rate of return earned in the risky project be R if there are fewer than 7; investors and

R otherwise, where R > R. Second, we assume that at the beginning of each period ¢ each

25



informed agent sends a message m; € {G, B} about his signal in that period. All other agents
receive the message and then decide whether or not to invest in period ¢.

The publicly observable events are the number of investments in each period and the
messages. The public history hy = (ng,nq,...,n¢ 1, Mo, mq,...,my;) records the aggregate
investment in each period up through the end of period ¢ — land the messages in each
period up through and including the message sent at the beginning of period ¢.The histories,
strategies and beliefs of newly informed agents, previously informed agents and uninformed
agents are defined analogously to those in Section 1.

We impose the following assumptions.

(22) 1< fTTDP(0)
(23) 1> efTP(-1)
(24) T P(0) < v (P(0)e™ T VP (1) + vy (P(0))

Assumptions (22)-(24) play the same role as before. Under these assumptions truth-telling
for all histories is not an equilibrium. To see this consider a newly informed agent at T that
inherits a prior of P(—1) from period 77 — 1. If truth-telling were an equilibrium then if
the informed agents sends a message G,the priors of all other investors rise to P(0) and they
invest, while if the informed agents sends a message B then the priors of all other investors
fall to P(—2) and they do not invest. Clearly, if the informed agent gets a good signal and
lies by sending a message B he gains the early-mover advantage. Thus, truth-telling cannot
be an equilibrium for all histories.

It is useful to define H; = (hy 1,m¢ 1, My 1) to be the public history at the beginning
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of period t, before the period ¢ message is sent, and the inherited prior at ¢ to be the prior
based on such a history. The beginning of period ¢ history for any agent is Hy = (Hy, s, 7).

We define a symmetric stationary equilibrium of the communication game to be one
with strategies for investment of the following form. There are functions zy, zy,and m such
that for t < T7 — 1 the investment strategies of the uninformed and previously informed

agents are of the form

(25)  xi(Hig,my) = 2y (pe(Hit), my),

the investment strategy for newly informed agents is of the form

(26)  x(Hit,s¢) = 21(pe(Hit, )

while the message strategy is of the form

(27)  my(Hi, s¢) = m(pi(Hy, 5t), 5¢)-

(Notice that we allow the strategies at T to differ.) We will say that a message is uninfor-
mative if it is the same for both signals. We then have

Proposition 8. Under (22)-(24), the symmetric stationary equilibrium of the com-
munication game is essentially unique, in that there is a unique investment outcome. This
outcome equals that of the symmetric stationary equilibrium of the no-communication game.

Proof. We will show that z; = 1 if and only if p,(Hy) > P(1) for all my, x; = 1 if and
only if p;(H, s¢) > P(0), and the message strategy is uninformative when the inherited prior
is P(0), P(—1), or P(—2). (Notice that if these strategies are followed, the only inherited priors

at which there will be active agents at the end of the period are P(0), P(—1) and P(—2). Off
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the equilibrium path, the message strategies and beliefs can be filled in an analogous manner
to that in the basic model.)

Consider period T7. By (22) and (23) it follows that all agents invest if and only if their
beliefs are greater than or equal to P(0). Furthermore, the uninformed and the previously
informed agents’ decisions are independent of the newly informed agent’s message. To see this
suppose that the inherited prior is P(0) or P(—1). If the uninformed agents’ decisions depend
on the newly informed agent’s message then the newly informed agent has an incentive to
mislead.

Consider next period T} — 1. Consider first the newly informed agent at 77 — 1. Since
this agent’s decision at T3, if he waits, is independent of the messages at T, he can learn
nothing by waiting and hence invests if and only if his beliefs are greater than or equal to
P(0). Thus, z; = 1 if and only if p;(H;, s;) > P(0). If the inherited prior is either P(0) or
P(—1) the uninformed and the previously informed agents’ decisions must be independent
of the newly informed agent’s message, otherwise the newly informed agent has an incentive
to mislead. Hence, in any symmetric stationary equilibrium at any date the message must
be uninformative at an inherited prior of P(0) or P(—1). It remains to be shown that at an
inherited prior of P(—2) the message is uninformative. We consider this case below. If the
inherited prior is P(1) or higher, everyone invests and thus the message is irrelevant.

Consider next an uninformed agent at 77 — 1. Suppose this agent has an inherited prior
P(0) or P(—1). If this agent waits, he can observe the newly informed agent’s investment
decision at 77 — 1 and hence can infer the signal and take the optimal decision in period T;.
At inherited prior P(0), (24) implies that it is optimal to wait. At inherited prior P(—1),
(23) implies that is optimal to wait. By (22), since under the conjectured strategy all other
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agents are investing, it is optimal to invest if the inherited prior is P(1) or higher. This shows
that z;; = 1 if and only if the inherited prior is greater than or equal to P(1).

We now show that at an inherited prior of P(—2) the newly informed agent sends an
uninformative message. We will show that if this is not true at ¢ then it gives the newly
informed agent at ¢ — 1 an incentive to deviate from the conjectured strategy. To see this
suppose by way of contradiction that at inherited prior P(—2), truth-telling is part of the
equilibrium at ¢. To show that this suppostion is false, consider period t —1 and suppose that
the newly informed agent has inherited prior P(—1) and receives a good signal. This agent’s
prior rises to P(0) and he is supposed to invest (and send an uninformative message). Suppose
that he deviates and waits. The uninformed agents’ priors fall to P(—2) at the beginning of
period t. Under our posited strategy the newly informed agent at ¢ sends a truthful message,
the deviating agent’s prior either rise to P(1) or fall to P(—1). By (24) this deviation is
profitable. It follows at inherited prior P(—2) the message must be uninformative. Q.E.D.

The communication game has nonstationary equilibria, in much the same way as the

no communication game.

4. Conclusion

In his early work on herds, Banerjee (1992) argues that there are interesting unresolved
strategic issues on how herds work when the timing of moves is endogenous. He also calls
for an analysis of herds when agents can communicate. We have extended the analysis of
herds in both of these directions. We have also extended the work of Lee (1995) to show
that when the actions are continuous, moving from exogenous timing to endogenous timing

actually makes herds more likely.
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