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1 Introduction

In an influential series of papers, Meese and Rogoff (1983a,b, 1988) noted that the out-of-sample fore-

casts of exchange rates produced by structural models based on fundamentals are no better than those

obtained using a naive random walk or no-change model of the nominal exchange rate. These results,

seen as devastating at the time, spurred a large literature that has re-examined the conclusions of the

Meese-Rogoff studies. Some recent research, using techniques that account for several cumbersome

econometric problems, including small sample bias and near-integrated regressors in the predictive

regressions, suggests that models based on monetary fundamentals can explain a small amount of the

variation in exchange rates (e.g., Mark, 1995; Mark and Sul, 2001). However, others remain skeptical

(e.g., Berkowitz and Giorgianni, 2001; Faust, Rogers and Wright, 2003). Thus, even with the benefit

of almost twenty years of hindsight, the Meese-Rogoff results have not been convincingly overturned:

evidence that exchange rate forecasts obtained using fundamentals models are better than forecasts

from a naive random walk is still elusive (e.g., Cheung, Chinn and Pascual, 2002; Neely and Sarno,

2002).

Prior research on the ability of monetary-fundamentals models to forecast exchange rates relies

on statistical measures of forecast accuracy, like mean squared errors. Surprisingly little attention

has been directed, however, to assessing whether there is any economic value to exchange rate pre-

dictability (i.e., to using a model where the exchange rate is forecast using economic fundamentals)1 .

The present paper fills this gap. We investigate the ability of a monetary-fundamentals model to

predict exchange rates by measuring the economic or utility-based value to an investor who relies

on this model to allocate her wealth between two assets that are identical in all respects except the

currency of denomination. We focus on two key questions. First, as a preliminary to the forecasting

exercise, we ask how exchange rate predictability and parameter uncertainty affect optimal portfolio

choice for investors with a range of horizons up to ten years. Second, and more importantly, we ask

whether there is any additional economic value to a utility-maximizing investor who uses exchange

rate forecasts from a monetary-fundamentals model relative to an investor who uses forecasts from a

naive random walk model. We quantify the economic value of predictability in a Bayesian framework

that allows us to account for uncertainty surrounding parameter estimates in the forecasting model.

Indeed, parameter uncertainty or ‘estimation risk’ is likely to be of importance, especially over long

horizons.
1An exception is West, Edison and Cho (1993), who compare the utility gains from competing models for forecasting

the volatility of exchange rates.
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Our results with regard to the two questions addressed in this paper, obtained using three major

US dollar exchange rates during the recent float and considering forecast horizons from 1 to 10 years,

are as follows. First, we find that each of exchange rate predictability and parameter uncertainty sub-

stantially affect, both quantitatively and qualitatively, the choice between domestic and foreign assets

for all currencies and across different levels of risk aversion. Specifically, exchange rate predictability

can generate optimal weights to the foreign asset that are substantially different (in magnitude and,

sometimes, in sign) from the optimal weights generated under a random walk model. Further, we

find that taking into account parameter uncertainty causes the allocation to the foreign asset to fall

(in absolute value) relative to the case when parameter uncertainty is not taken into account, effec-

tively making the foreign asset look more risky. Second, our main result is that we find evidence

of economic value to exchange rate predictability across all exchange rates examined and for a wide

range of plausible levels of risk aversion. In particular, the realized end-of-period wealth, utility

and certainty equivalent return achieved by a US investor over a ten-year horizon using a monetary

fundamentals-exchange rate model for forecasting the exchange rate are higher than the corresponding

end-of-period wealth, utility and certainty equivalent return obtained by an investor who acts as if the

exchange rate were a random walk. Our results show that the economic value of predictability can be

substantial also over relatively short horizons and across different levels of risk aversion, regardless of

whether the investment strategy is static or dynamic and whether parameter uncertainty is taken into

account. We view our findings as suggesting that the case against the predictive power of monetary

fundamentals may be overstated.

Our work is related to and builds on earlier research by Kandel and Stambaugh (1996) and Barberis

(2000), who use a Bayesian framework to study asset allocation2 between a riskless asset and risky

equities. Our work differs from theirs in three important ways. First, since we consider the economic

gains (losses) to an investor whose problem is allocating her wealth between two assets that are

identical in all respects except the currency of denomination, our focus is on exchange rate prediction.

Put differently, in our framework risk only enters the investor’s problem through the nominal exchange

rate3. Second, we allow the investor to hold short positions in the assets, which is an important

feature in real-world foreign exchange markets (e.g., Lyons, 2001). Third, while we analyze the

impact of predictability and parameter uncertainty on optimal allocation decisions, our primary goal

is to evaluate the out-of-sample economic value of exchange rate predictability. We do this by

2This decision-theoretic approach has also been used recently by Avramov (2001), Bauer (2000), Cremers (2002),
Shanken and Tamayo (2001) and Tamayo (2002).

3 See Karolyi and Stulz (2002) for an elegant survey of asset allocation in an international context.
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comparing the end-of-period wealth, end-of-period utility and certainty equivalent return obtained

using a standard monetary fundamentals model of the exchange rate with the corresponding measures

of economic value obtained using a naive random walk, which remains the standard benchmark in the

exchange rate forecasting literature.

Another related paper is Campbell, Viceira and White (2002), who study long-horizon currency

allocation using a vector autoregressive framework where the predictive variables are the real interest

rate and the real exchange rate. Our study differs from theirs in at least two ways. First, our

basic forecasting instrument is the conventional set of monetary fundamentals proposed by exchange

rate determination theory and used in the exchange rate forecasting literature since the Meese-Rogoff

studies. Second, our framework allows for parameter uncertainty, which may be relevant over long

investment horizons.

The rest of the paper is organized as follows. Section 2 provides a brief outline of the theoretical

background, while in Section 3 we describe the framework used to analyze the economic value of

exchange rate predictability both with and without parameter uncertainty. Next, in Section 4, we

discuss our empirical results relating to the asset allocation choice of our investor over various horizons.

In Section 5 we report the results from an out-of-sample forecasting exercise, where we compare the

realized end-of-period wealth, utility gains and certainty equivalent return for an investor who relies

on the monetary fundamentals model and one who uses a random walk model. Section 6 concludes.

Details of the estimation procedure and the numerical methods used are provided in a Technical

Appendix.

2 Exchange Rates and Monetary Fundamentals

A large literature in international finance has investigated the relationship between the nominal ex-

change rate and monetary fundamentals. This research focuses on the deviation, say u, of the nominal

exchange rate from its fundamental value:

ut = st − ft, (1)

where s denotes the log-level of the nominal bilateral exchange rate (the domestic price of the foreign

currency); f is the long-run equilibrium of the nominal exchange rate determined by the monetary

fundamentals; and t is a time subscript.

The fundamentals term is, most commonly, given by

ft = (mt −m∗t )− φ(yt − y∗t ), (2)
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where m and y denote the log-levels of the money supply and income respectively; φ is a constant;

and asterisks denote foreign variables. Here f may be thought of ‘as a generic representation of

the long-run equilibrium exchange rate implied by modern theories of exchange rate determination’

(Mark and Sul, 2001, p. 32). For example, equation (2) is implied by the monetary approach to

exchange rate determination (Frenkel, 1976; Mussa, 1976, 1979; Frenkel and Johnson, 1978) as well

as by Lucas’ (1982) equilibrium model and by several ‘new open economy macroeconomic’ models

(Obstfeld and Rogoff, 1995, 2000; Lane, 2001). Hence, the link between monetary fundamentals and

the nominal exchange rate is consistent with both traditional models of exchange rate determination

based on aggregate functions as well as with more recent microfounded open economy models.

While it has been difficult to establish the empirical significance of the link between monetary

fundamentals and the exchange rate due to a number of cumbersome econometric problems4, some

recent research suggests that the monetary fundamentals described by equation (2) co-move in the

long run with the nominal exchange rate and therefore determine its equilibrium level (Groen, 2000;

Mark and Sul, 2001; Rapach and Wohar, 2002). This result implies that current deviations of the

exchange rate from the equilibrium level determined by the monetary fundamentals induce future

changes in the nominal exchange rate which tend to correct the deviations from long-run equilibrium,

so that estimation of a regression of the form

∆kst+k = α+ βut + εt+k (3)

(where ∆k denotes the k-difference operator) often produces statistically significant estimates of β

(e.g., Mark, 1995; Mark and Sul, 2001). Indeed, equation (3) is the equation analyzed by a vast

literature investigating the ability of monetary fundamentals to forecast the nominal exchange rate

out of sample at least since Mark (1995)5. In this paper, we follow this literature and use equation

(3) in our empirical analysis, imposing the conventional restriction that φ = 1 in the definition of ft

given by equation (2) (e.g., Mark, 1995; Taylor and Peel, 2000; Mark and Sul, 2001)6.

4E.g., see Mark (1995), Berben and van Dijk (1998), Kilian (1999), Berkowitz and Giorgianni (2001).
5 See Mark (2001, Ch. 4) for a recent review of the relevant studies. Also, note that equation (3) implicitly

assumes that deviations from long-run equilibrium are restored via movements in the exchange rate; however, it seems
possible that they may be restored also via movements in the fundamentals. Notably, Engel and West (2002) show
analytically that, in a stylized rational expectations present value model, the exchange rate follows a near random
walk if fundamentals are nonstationary and the discount factor is close to unity. Under these conditions, therefore, the
exchange rate is exogenous but an exchange rate-monetary fundamentals relationship may still exist where fundamentals
bear the burden of adjustment towards long-run equilibrium. See also the papers in the special issue on “Empirical
Exchange Rate Models” forthcoming in the Journal of International Economics.

6We also tested the validity of the unity restriction as a preliminary to the forecasting exercise and we could not
reject the hypothesis that the unity restriction is valid for each exchange rate examined in this paper. In the interest
of brevity, these results are not reported.
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3 International Asset Allocation, Predictability and Parame-
ter Uncertainty: Methodology

In this section we describe our framework for measuring the economic value of predictability of ex-

change rates, both with and without parameter uncertainty. Our work is related to and builds on

the empirical finance literature that analyzes asset allocation in a Bayesian framework, including the

work of Kandel and Stambaugh (1996) and Barberis (2000)7. We consider a utility-maximizing US

investor who faces the problem of choosing how to invest in two assets that are identical in all respects

except the currency of denomination. As a result we can focus on evaluating the economic and utility

gains to an investor who relies on the monetary-fundamentals model to forecast exchange rates. Our

benchmark is an investor who does not believe in predictability or, in other words, believes that the

exchange rate follows a random walk - the benchmark used in the exchange rate literature since Meese

and Rogoff (1983a,b). In our framework, the investor uses the forecasts from the model (either the

fundamentals model or the random walk model) to construct strategies designed to decide how much

of her wealth to invest in the domestic and foreign assets respectively.

We consider the following two cases. First, we study the problem of an investor who has to

decide at time T how much of her wealth to invest in a nominally safe (or riskless) domestic bond

and a foreign bond which is nominally safe in local currency over a time period fT using a simple

buy-and-hold strategy. Second, we allow our investor to optimally re-balance her portfolio at the end

of every year over her investment horizon. Finally, for each of these two cases - buy-and-hold and

dynamic rebalancing strategies - we consider both cases with and without parameter uncertainty in

estimating the monetary-fundamentals model.

3.1 Buy-and-Hold Strategy

Consider first the problem of an investor who has to decide at time T how much of her wealth to invest

in nominally safe domestic and foreign bonds respectively. These two bonds yield the continuously

compounded returns r and r∗ respectively, each expressed in local currency. The investor wishes to

hold the portfolio for fT periods.

The exchange rate may be modelled using a vector autoregression (VAR) of the following form

(Campbell, 1991; Bekaert and Hodrick, 1992; Hodrick, 1992; Barberis, 2000; Campbell, Viceira and

7Lewis (1989) is an example of an early application of Bayesian techniques to the foreign exchange market. See also
Lewis (1995).
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White, 2002):

zt = a+Bxt−1 + ηt, (4)

where z0t = (∆st, x
0
t), xt = (x1,t, x2,t, . . . , xn,t)

0, and ηt ∼ iid(0,Σ).8 The first component of zt,

namely ∆st, is the change in the nominal exchange rate between period t and t− 1. The remaining
components of zt consist of variables useful for predicting the change in the exchange rate, such as

the deviation from the long-run equilibrium level of the exchange rate as measured by the monetary

fundamentals (ut as defined by equations (1)-(2)). Thus, the VAR (4) comprises a first equation which

specifies the exchange rate change as a function of the predictor variables, while the other equations

govern the stochastic evolution of the predictor or state variables.

In our empirical work, we implement the VAR (4) assuming a monetary fundamentals equation

of the form (3) as the predictive regression and a first-order autoregressive process for the deviations

from the fundamentals, ut. This amounts to estimating a bivariate VAR with z0t = (∆st, ut); a is

a 2 × 1 vector of intercept terms; B is a 2 × 1 vector of parameters; the predictor variables vector
comprises only one variable, namely the deviation from the fundamental exchange rate equilibrium

level, i.e., xt = ut; and η0t = (η1t, η2t) where ηjt is the error term of the jth equation in the VAR, for

j = 1, 2. In the case of no predictability of the exchange rate, ∆st equals a drift term plus a random

error term.

Given initial wealth WT = 1 and defining ω the allocation to the foreign bond, the end-of-horizon

or end-of-period wealth is

WT+ eT = (1− ω) exp
³
r eT´+ ω exp

³
r∗ eT +∆ eT sT+ eT

´
. (5)

The investor’s preferences over end-of-period wealth are governed by a constant relative risk-

aversion (CRRA) power utility function of the form

υ(W ) =
W 1−A

1−A , (6)

where A is the coefficient of risk aversion.

The investor’s problem may then be written as follows:

max
ω

ET


h
(1− ω) exp

³
r eT´+ ω exp

³
r∗ eT +∆ eT sT+ eT

´i1−A
1−A

 , (7)

8We term the model in equation (4) a VAR to adhere to the standard terminology used in this literature (e.g., Kandel
and Stambaugh, 1996; Barberis, 2000).
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where the expectation operator ET (·) reflects the fact that the investor calculates the expectation
conditional on her information set at time T . A key issue in solving this problem relates to the

distribution the investor uses in calculating this expectation, which depends both upon whether the

exchange rate is predictable and on whether parameter uncertainty is taken into account.

To shed light on the impact of the predictability of exchange rates on portfolio decisions, we

compare the allocation of an investor who ignores predictability to the allocation of an investor who

takes it into account. This can easily be done by estimating the VAR model (4), with and without

the deviations from fundamentals ut, to obtain estimates of the parameters vector, say θ.9 The model

can be iterated forward with the parameters fixed at their estimated values. This gives a distribution

of future exchange rates conditional on the estimated parameters vector, p
³
∆ eT sT+ eT | bθ, z´, where

zt = (z1, z2, . . . , zT )
0 is the observed data up to the date when the investment begins. Thus, the

investor’s problem is

max
ω

Z
υ
³
WT+ eT

´
p
³
∆ eT sT+ eT | bθ, z´ d∆ eT sT+ eT . (8)

In order to take into account parameter uncertainty, however, one can use the posterior distribution

p (θ | z), which summarizes the uncertainty about the parameters given the data observed so far.
Integrating over the posterior distribution, we obtain the predictive distribution of exchange rate

movements conditioned only on the data observed, not on the estimated parameters vector, bθ. Then
the predictive distribution is

p
³
∆ eT sT+ eT | z

´
=

Z
p
³
∆ eT sT+ eT | θ, z

´
p (θ | z) dθ, (9)

which implies that the investor’s problem under parameter uncertainty is

max
ω

Z
υ
³
WT+ eT

´
p
³
∆ eT sT+ eT | z

´
d∆ eT sT+ eT (10)

= max
ω

Z
υ
³
WT+ eT

´
p
³
∆ eT sT+ eT , θ | z

´
d∆ eT sT+ eTdθ

= max
ω

Z
υ
³
WT+ eT

´
p
³
∆ eT sT+ eT | θ, z

´
p (θ | z) d∆ eT sT+ eTdθ. (11)

Finally, given the optimal weights derived by the maximization problems (8) and (10), we can calculate

the realized end-of-period wealth using the wealth function (5) for an investor who ignores parameter

uncertainty - equation (8) - and an investor who recognizes it and takes it into account - equation

(10). Given end-of-period wealth, we can then calculate also end-of-period utility of wealth using

9θ comprises a, B and the variance-covariance matrix of the error terms, say Σ.
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equation (6) and the certainty equivalent return10 to measure the economic value of predictability.11

The maximization problems (8) and (10) are solved by calculating the integrals in these equations

for values of ω = −100,−99, . . . , 199, 200 (in percentage terms), which essentially allows for short
selling.12 In our empirical analysis below, we report the value of ω that maximizes expected utility.

The integrals are calculated by numerical methods, using 1, 000, 000 simulations in each experiment.

In our case, the conditional distribution p
³
∆ eT sT+ eT | bθ, z´ is normal, so that the integral in (8) is

approximated by generating 1, 000, 000 independent draws from this normal distribution and aver-

aging υ
³
WT+ eT

´
over all draws. For the maximization problem under parameter uncertainty, it is

convenient to evaluate it in its reparameterized form (11) by sampling from the joint distribution

p
³
∆ eT sT+ eT , θ | z

´
- i.e., by first sampling from the posterior p (θ | z) and then from the conditional

distribution p
³
∆ eT sT+ eT | θ, z

´
- and averaging υ

³
WT+ eT

´
over all draws13.

3.2 Dynamic Rebalancing Strategy

We next consider an investor who optimally re-balances her portfolio at the end of every period using

exchange rate forecasts based on the monetary-fundamentals model. We again analyze the optimal

allocation both with and without parameter uncertainty. In this multi-period asset allocation problem,

the optimal weights are now the solution to a dynamic programming problem that can be solved by

discretizing the state space and using backward induction. We divide the investor’s horizon starting at

T and ending at fT into K subperiods denoted by [t0, t1] , ... [tK−1, tK ], where t0 = T and tK = T +fT .
Thus the investor now adjusts her portfolio K times over the investment horizon by changing ω, the

allocation to the foreign bond, at the end of each sub-period. To simplify the notation we denote by

Wk the quantity Wtk , the investor’s wealth at time tk. The investor’s problem now is

max
t0

Et0

Ã
W 1−A
K

1−A

!
, (12)

10The certainty equivalent return (CER) can be defined as the return that, if earned with certainty, would provide
the investor with the utility equal to the end-of-period utility calculated for a given allocation, υ

T+ eT . In general, the
CER can be obtained by solving the equation:

v [WT (1 +CER)] = vT+ eT
where WT denotes wealth at time T and v [·] is the utility function in (6).
11 See Section 6 for more details on these measures of economic value of predictability.
12Obviously no allowance for short selling would involve a weight ω between 0 and 100. Given the wide use of

short selling in the foreign exchange market (e.g., Lyons, 2001) we allow ω to be defined between −100 and 200, which
essentially allows for full proceeds of short sales and assumes no transactions costs.
13For further details on the estimation procedure and the numerical methods used see the Technical Appendix.
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where the investor maximizes over all remaining decisions from t0 onwards. The law of motion of her

wealth is given by

Wk+1 =Wk

(
(1− ωk) exp

Ã
r
eT
K

!
+ ωk exp

Ã
r∗
eT
K
+∆k+1sk+1

!)
. (13)

We can then define the indirect utility of wealth as

J (Wk, xk, tk) = max
tk

Etk

Ã
W 1−A
K

1−A

!
, (14)

where the maximization is over all remaining decisions from tk on. This can be written, using an

induction argument, as

J (Wk, xk, tk) =
W 1−A
k

1−A Q (xk, tk) (15)

when A 6= 1. Accordingly, the Bellman equation is

Q (xk, tk) = max
ωk

Etk


"
(1− ωk) exp

Ã
r
eT
K

!
+ ωk exp

Ã
r∗
eT
K
+∆k+1sk+1

!#1−A
×Q (xk+1, tk+1)

 .
(16)

We first consider the case without parameter uncertainty. Here the expectation in equation (16)

is evaluated conditional on fixed parameter values based on the posterior mean. When we allow

for parameter uncertainty there are two main differences compared to the case with no parameter

uncertainty. The first is that the expectation in the value function is now taken over the predictive

distribution which incorporates parameter uncertainty. The second is that, in this multi-period case,

parameter uncertainty may change over time and the investor updates her posterior distribution for

the parameters. Thus, in addition to the hedging demand arising from the stochastic investment

opportunity set (see Merton, 1973; Karolyi and Stulz, 2002), there may be an additional source of

hedging demand arising from changes in the investor’s beliefs about the model parameters over time.

Evaluating the joint dynamics of the state variables as well as the parameters in the model is a

non-trivial dynamic programming problem. It is useful therefore to make some reasonable simplifying

assumptions so that this task is numerically tractable. The dimensionality of the problem is reduced

by assuming that the investor’s beliefs about the parameters of the model do not change from what

they are at the beginning of the investment horizon (e.g., Barberis, 2000). In other words, these

beliefs are summarized by the posterior distribution calculated conditional only on the data observed

at the beginning of the investment horizon. We can thus still use equation (16) to calculate the

value function, but the expectation is now evaluated over p (∆k+1sk+1, xk+1 | xk) rather than over
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p (∆k+1sk+1, xk+1 | θ, xk). The investor constructs a sample from the predictive distribution by

taking a large number of draws from the posterior p (θ | z1, . . . , zT ) - conditional only on data until
the horizon start date - and then, for each set of parameters values drawn, makes a draw from

p (∆k+1sk+1, xk+1 | θ, xk).
We now turn to a description of our data set, to which we apply the procedure outlined above.

4 Data

Our data set comprises monthly observations on money supply and income (industrial production)

for the US, Canada, Japan and the UK, and spot exchange rates for the Canadian dollar, Japanese

yen and UK sterling vis-à-vis the US dollar. The sample period covers most of the recent floating

exchange rate regime, from 1977M01 to 2000M12, and the start date of the sample was dictated by

data availability. The data are taken from the International Monetary Fund’s International Financial

Statistics data base. We use the monthly industrial production index (line code 66) as a proxy for

national income since gross domestic product (GDP) is available only at the quarterly frequency.14

Our measure of money is defined as the sum of money (line code 34) and quasi-money (line code 35)

for the US, Canada, Japan, while for the UK we use M0. We deseasonalize the money and industrial

production indices, following Mark and Sul (2001). The exchange rate is the end-of-month nominal

bilateral exchange rate (line code AE). Our choice of countries reflects our intention to examine

exchange rate data for major industrialized economies belonging to the G7 that have been governed

by a pure float over the sample15. As a proxy for the nominally safe (riskfree) domestic and foreign

bonds, we use end-of-month Euro-market bid rates with one month maturity for each of the US,

Canada, Japan and the UK, provided by the Bank for International Settlements (BIS).

The data were transformed in natural logarithms prior to beginning the empirical analysis to yield

time series for st, mt, m∗t , yt and y
∗
t . The monetary fundamentals series, ft, was constructed with

these data in logarithmic form according to equation (2) with φ = 1; and st is taken as the logarithm

of the domestic price of the foreign currency, with the US denoting the domestic country. In our

14Note that a preliminary analysis of the statistical properties of the (quarterly) industrial production indices and
GDP time series over the sample period and across the countries examined in this paper produced a coefficient of
correlation higher than 0.95.
15Note that, while Canada and Japan have experienced a free float since the collapse of the Bretton Woods system

in the early 1970s, the UK was in the Exchange Rate Mechanism (ERM) of the European Monetary System (EMS)
for about two years in the early 1990s. However, given the short length of this period, we consider sterling as a freely
floating exchange rate in this paper. The remaining three G7 countries not investigated here, namely Germany, France
and Italy, have all been part of the ERM for most of the sample period under investigation and in fact joined the
European Monetary Union on 1 January 1999, when the euro replaced the national currencies of these three countries.
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empirical work, we use the data over the period January 1977-December 1990 for estimation, and

reserve the remaining data for the out-of-sample forecasting exercise.16 In addition, the domestic

and foreign interest rates are treated as constant and set equal to their historical mean.

5 International Asset Allocation, Predictability and Parame-
ter Uncertainty: Empirical Results

We now report our empirical results based on solving the maximization problems (8) and (10), which

allow us to study the implications for portfolio weights when the exchange rate is either a random

walk or predictable respectively. In each case our investor uses two different investment strategies.

The first is a simple static buy-and-hold strategy, where the investor chooses the optimal weight to the

foreign asset and does not change it until the end of the investment (forecast) horizon. The second is a

dynamic strategy where the investor optimally rebalances her portfolio at the end of each rebalancing

period. We report results for four cases: random walk exchange rate and predictable exchange rate,

and in each case both with and without parameter uncertainty. We begin by describing the case of

a buy-and-hold investor in the next sub-section.17

5.1 Buy-and-Hold Strategy

As described in Section 3.1, a buy-and-hold investor with an horizon eT = 1, ..., 10 solves the problem in
equation (8). Using a recursive Monte Carlo sampling procedure, we obtain an accurate representation

of the posterior distributions of the estimated vector of parameters θ.18 Using data till December

1990, we estimate the posterior distribution of the parameters for all countries by drawing samples

of size 1, 000, 000. From these estimated distributions, we obtain out-of-sample forecasts for the

investment horizon eT = 1, ..., 10 years when the investor takes into account parameter uncertainty

and when she ignores it.

16 It should be noted that the original Meese-Rogoff studies considered forecast horizons of up to 12 quarters ahead,
while Mark (1995), for example, uses a maximum horizon of 16 quarters. In general, most studies in this literature
have focused on horizons of up to 4 years ahead and therefore the forecast horizon considered in this paper is - to the
best of our knowledge - the longest horizon considered in the relevant exchange rate literature to date.
17Preliminary estimation of the VAR model in equation (4) produced results consistent with a vast literature in this

context (see Mark, 1995). Specifically, we find significant estimates of all parameters, with the parameter associated
with the deviations from the fundamentals ut being negative and very small in magnitude, suggesting slow adjustment
of the exchange rate towards its equilibrium level. Also, the estimated AR(1) parameter on ut is positive and quite
large in magnitude, albeit clearly lower than unity, suggesting that ut is stationary but persistent. (These preliminary
results are not reported to conserve space but are available upon request.)
18 See footnote 9.
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Figures 1-3 (which refer to the Canadian dollar, the Japanese yen and the UK sterling respectively)

show the optimal weight ω (in percentage terms) allocated by a US investor to the foreign asset on the

vertical axis, and the investment horizon (in years) on the horizontal axis. For each exchange rate, we

show optimal weights for four different values of the coefficient of risk aversion, A, ranging from 2 to

20. The dotted and solid lines correspond to the case where the investor relies on the fundamentals

model (predictability) with and without parameter uncertainty respectively. The dot-dash and dash

lines refer to the cases where the investor uses a random walk model (no predictability) with and

without parameter uncertainty respectively.19

It is important to note one point about the variability that would be attached to the estimate

of ω obtained using this procedure. Barberis (2000) provides a detailed discussion of this issue and

shows that, given the sample size used in the simulated draws (1, 000, 000), there is no significant

variation in the estimate of ω. In other words, for this number of draws, the law of large numbers

holds, resulting in a vanishing small variance of ω. As a result, we assume that we have converged

to the optimal portfolio weight ω that would have been obtained if we could perform the integrations

exactly (see Barberis, 2000, Appendix, for further details). Hence, in our empirical results, we do not

report confidence intervals for ω given that its variability is ‘virtually’ zero for our number of draws.

The graphs show several interesting features that are common to all three exchange rates examined.

We begin with an analysis of the case where the investor uses a random walk model (dash and dot-

dash lines in Figures 1-3), which suggests the following results. First, if the investor does not account

for parameter uncertainty (dash line in each of Figures 1 to 3), the optimal asset allocation does not

vary with the investment horizon. This is consistent with studies on stock market data (Barberis,

2000) and may be seen as simply validating Samuelson’s (1969) result that, under power utility, if

asset prices follow a random walk then the optimal investment in the risky asset is constant regardless

of the investment horizon.20 Second, regardless of whether parameter uncertainty is accounted

for, the optimal weight to the foreign bond, ω is lower (in absolute value) for higher levels of risk

aversion, A (dash and dot-dash lines in Figures 1-3). Third, if the investor takes into account

parameter uncertainty, we find that for low values of the coefficient of risk aversion (say A = 2), the

optimal weight is virtually identical to the optimal weight obtained when parameter uncertainty is not

accounted for (i.e., dot-dash and dash lines are virtually identical). This suggests that, for low levels

of risk aversion, parameter uncertainty does not influence asset allocation for our data and sample

19Note that, within each figure, the graphs use different scales for clarity.
20Note, however, that Samuelson’s result was obtained for an investor applying a rebalancing strategy, rather than a

buy-and-hold strategy.
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period. Fourth, for moderate to high values of the coefficient of risk aversion (say A = 5, 10, 20),

if the investor takes into account parameter uncertainty (dot-dash line), we find a different optimal

allocation across horizons: specifically, the absolute value of the initial optimal allocation to the

foreign asset generally decreases with the length of the investment horizon. These results suggest

that, under no predictability, parameter uncertainty matters more for optimal asset allocation the

higher the coefficient of risk aversion and the longer the investment horizon.

We now turn to the case where the investor relies on the monetary-fundamentals model (solid and

dotted lines in Figures 1-3), where we present our results on the impact of parameter uncertainty in

an order similar to that in the preceding paragraph for the case of no predictability. First, in the case

without parameter uncertainty (solid line in each of Figures 1 to 3), the absolute value of the initial

optimal allocation to the foreign asset increases with the investment horizon. This result suggests

that, if the investor believes in predictability of the exchange rate, she will be more prone to invest

in the foreign asset the longer the investment horizon. This result contrasts with the invariance

of the optimal weight over the investment horizon under no predictability and may be explained as

follows. Under no predictability, the mean and the variance of the exchange rate increase linearly

over time and, as shown by Samuelson (1969) for stock prices, this implies identical optimal weights

for all investment horizons. However, as noted by Barberis (2000, p. 243-5), under predictability

the variance of the exchange rate may grow less than linearly over time, making the foreign asset

look less risky at longer investment horizons, leading to a higher optimal weight at longer horizons21 .

Second, regardless of whether parameter uncertainty is accounted for, the optimal allocation to the

foreign bond, ω is lower (in absolute value) for higher levels of risk aversion, A (solid and dotted

lines in Figures 1-3), essentially replicating the result discussed above for the case of no predictability.

Third, if the investor takes into account parameter uncertainty, we find that, for low values of the

coefficient of risk aversion (say A = 2), the optimal allocation line across horizons is virtually identical

to the optimal allocation line obtained when parameter uncertainty is not accounted for (i.e., solid

and dotted lines are identical). Again, this is similar to the case of no predictability and suggests

that, for low levels of risk aversion, parameter uncertainty does not matter for asset allocation, for the

exchange rates and sample period examined. Fourth, for moderate to high values of the coefficient

of risk aversion (say A = 5, 10, 20), if the investor takes into account parameter uncertainty (dotted

line), this implies a different optimal allocation across horizons where the absolute value of the initial

optimal allocation to the foreign asset is generally non-decreasing with the length of the investment

21However, note that this result may not hold if learning is taken into account (Xia, 2001).
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horizon. This result replicates the finding under no parameter uncertainty in a qualitative, but not

quantitative, way.

In addition, with regard to the effects of predictability versus no predictability in determining the

optimal weights to the foreign asset, our results clearly indicate that the optimal weights may differ

significantly in these two cases. Indeed, the difference can be so large as to imply optimal weights

with different signs, as reported, for example, in the cases of Canada and Japan (Figures 1-2). For

the UK, however, the sign of the optimal weight is the same under predictability and no predictability,

but the difference in the two corresponding weights is still sizable for higher levels of risk aversion

(Figure 3). In addition, it is instructive to note that this result holds, in a qualitative sense, regardless

of whether parameter uncertainty is taken into account.

A final observation, based on these results, is that the absolute value of the initial optimal allocation

to the foreign asset for short investment horizons (say one or two years) is very similar for all cases

examined here as the coefficient of risk aversion increases - regardless of whether the investor recognizes

predictability and/or takes into account parameter uncertainty. Intuitively this suggests that for very

high levels of risk aversion neither predictability nor parameter uncertainty matter particularly for

asset allocation at short investment horizons.

Overall, our results show that both predictability and parameter uncertainty play an important

role in the investor’s choices for all countries and for different values of the coefficient of risk aversion.

Specifically, predictability implies different optimal weights to the foreign asset compared to no pre-

dictability. The difference can be as large as to generate weights with a different sign - effectively

meaning that when a fundamentals model implies a long (short) position in the foreign asset the

random walk model may imply a short (long) position in the foreign asset. Parameter uncertainty

induces the foreign asset allocation to fall (rise) as the horizon increases when the models predict

positive (negative) weights assigned to the foreign asset.22 Intuitively, this means that parameter

uncertainty makes the allocation to the foreign asset look more risky than without parameter uncer-

tainty. Across different countries (on average), parameter uncertainty changes the optimal weight

to the foreign asset, relative to the case without parameter uncertainty, by 33% in the case of no

predictability (14% in the case of predictability) for a coefficient of risk aversion A = 5, and 44% in

the case of no predictability (41% in the case of predictability) for a coefficient of risk aversion A = 20.

22Put differently, when the models would suggest buying the foreign asset, parameter uncertainty (by increasing the
variance associated with the out-of-sample prediction) reduces the percentage of wealth invested in the foreign asset.
This reduction is generally larger the longer is the investment horizon. If the models predict that the foreign asset be
short sold, parameter uncertainty works in the opposite direction, by reducing the percentage of foreign asset to be sold
short.
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5.2 Dynamic Rebalancing Strategy

We now examine the case where the investor optimally rebalances over her investment horizon, as-

suming a rebalancing period of one year. Again, we analyze the cases with and without parameter

uncertainty. The problem faced by the investor is as detailed in Section 3.2. To solve the Bellman

equation (16), we discretize the state space by taking intervals ranging from three standard deviations

below to three standard deviations above the historical mean of the deviation from the monetary fun-

damentals, u and dividing it into 25 equally spaced grid points. We draw a sample of size 1, 000, 000

from the distributions of exchange rate changes as in the static buy-and-hold strategy. The number of

grid points selected and the large number of replications used should guarantee satisfactory accuracy

of the results.

We depict graphically, in Figures 4-6, changes over different horizons and for varying coefficients

of risk aversion in the patterns of holding of a US investor who optimizes her portfolio annually. Our

results, reported in the left-hand panels of Figures 4-6, show optimal allocations for the investor when

parameter uncertainty is ignored. The graphs in the right-hand panels show the optimal allocation

when parameter uncertainty is taken into account. Each graph refers to a different level of risk

aversion and, in each graph, the lines plotted correspond to a different initial value of the predictor

variable. In particular, each graph reports asset allocations relative to an initial value equal to three

and one standard deviations below the historical mean, three and one standard deviations above the

historical mean, and the historical mean itself.

Our results show that, even if different initial values of the predictor variable (i.e., the deviation

from the fundamental exchange rate equilibrium value) influence the magnitude of the allocation to

the foreign asset, the optimal allocation under dynamic rebalancing is qualitatively similar to the

allocation implied by the static buy-and-hold strategy. The differences, for different initial values, in

the foreign asset allocation under dynamic rebalancing are more pronounced for lower levels of risk

aversion. Further, as in the static buy-and-hold case, parameter uncertainty affects asset allocation

in the same way; that is, it causes the foreign asset allocation to fall (rise) as the horizon increases

when the models predict positive (negative) weights assigned to the foreign asset.23

It is interesting to note that the higher the initial value of the predictor variable, the lower (higher)

is the proportion of wealth invested in the foreign asset when the underlying model predicts a positive

(negative) weight to the foreign asset. Intuitively, for example, a high initial value of the predictor

23However, although the results are qualitatively similar, the effect driving them is not the same in that the increase
in allocation across horizons in the case of a rebalancing strategy is due to hedging demand effects, as first described
by Merton (1973) and reported, for example, by Barberis (2000). See also Karolyi and Stulz (2002).
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variable means that there is a large positive departure of the nominal exchange rate from its funda-

mental value. This in turn implies that, in order to restore equilibrium, the nominal exchange rate

will decrease in the future - in other words, it will appreciate. A future appreciation of the nominal

exchange rate will of course induce the US investor to invest less in the foreign asset and more in the

domestic asset.

We now turn to the core of our empirical work, a quantitative analysis of the economic value of

exchange rate predictability.

6 The Out-of-Sample Economic Value of Predictability

This section reports estimates of the economic value of predictability. We begin by calculating end-

of-period wealth, as defined in equation (5) and normalizing its initial value WT = 1. In these

calculations ω is obtained from the utility maximization problems (10) and (16) for the static and

dynamic rebalancing cases respectively. In our context, the random walk model and the fundamentals

model may be seen as reflecting two polar approaches to exchange rate forecasting. Specifically, an

investor who assumes predictability (believes in the fundamentals model) considers the fundamentals

approach as a perfect description of reality. An investor who believes in the random walk approach

assumes, on the other hand, that there is no variable able to predict the exchange rate. The wealth

calculations on the basis of which we compare the two models are obtained using realized or ex post

data in equation (5).24 We also calculate the realized end-of-period utilities, using equation (6), and

the realized certainty equivalent returns in order to compare the out-of-sample performance of the

two competing models on the basis of various measures of economic and utility gains.

A related question involves the ex ante performance of each of the random walk model and the

fundamentals model. In this case, the evaluation of the performance of the models would be based

on an ex ante or expected end-of-period wealth calculation, where the change in the exchange rate

∆sT+ eT is the forecast of the exchange rate implied by the model being considered rather than its
realized value. This calculation would provide information on the returns and on the economic

value that the investor would expect given the data and investment horizon and given her belief in a

particular model. Clearly, while this exercise can be implemented out-of-sample, it implicitly assumes

that the model which provides the forecasts is the true data generating process - that is, no ex post

realized data are used. However, this is helpful as it provides an estimate of expected returns or

24Thus, given equation (5), the forecasts produced by each of the two models considered affect the end-of-period
wealth only through the choice of the optimal weight ω.
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economic value, which the investor may use in deciding whether, given her belief in the model, the

investment in foreign exchange is worthwhile ex ante. It should be clear, on the other hand, that such

ex ante calculation does not address the key question in this paper, which is about the out-of-sample

forecasting ability of the fundamentals model relative to a random walk model. A pure out-of-sample

comparison designed to evaluate the ability of a model to match the realized data can only be done

by comparing the outcome from the model-based forecasts to the ex post data, which is the approach

we follow in this paper, in line with the literature on exchange rate forecasting.

We now turn to the core of the results in this section, which relates to the calculation of the ex

post end-of-period wealth in each of our four cases (predictability and no predictability under each of

parameter uncertainty and no parameter uncertainty) for both buy-and-hold and dynamic rebalancing

strategies. We define the following measures of economic gain (loss): (i) the wealth ratio as the ratio

of the end-of-period wealth from using the fundamentals model to the end-of-period wealth from using

a random walk; (ii) the utility ratio as the ratio of the end-of-period utility from the fundamentals

model to the end-of-period utility from using a random walk; (iii) the differences in certainty equivalent

returns (CERs) as the annualized differences between the CER calculated from the utility from the

fundamentals model and the CER corresponding to the utility using a random walk. It is important

to emphasize that none of these measures of economic value has a standard error since they are based

on a pure ex post out-of-sample evaluation which relies on the calculation of the end-of-period wealth

given in equation (5) at time eT .25
Note that the end-of-period wealth is calculated on the basis of interest rates which are known (r

and r∗), a realized value of the change in the exchange rate at time eT , and the value of ω implied
by a particular investment strategy, risk aversion parameter and model. Hence, given that ω has a

variance that may be regarded as ‘virtually’ zero for our number of draws (see our discussion at p.

25Although, as explained above, this is not directly relevant to the question addressed in this paper, as a preliminary
exercise we also carry out the analysis on an ex ante basis. In particular, for each of static and dynamic strategies, we
calculate the ex ante end-of-period wealth to verify that it is consistent with an ex ante economic value which would
validate the belief of the investor (either in the random walk or the fundamentals model). In each case, the ex ante
calculations indicate sizable increases in the end-of-period wealth up to ten years ahead. Indeed, the ex ante returns
and measures of economic value are larger than their ex post corresponding measures we report later in the paper,
especially for longer investment horizons. One advantage of the ex ante calculations is that it is possible to obtain a
measure of the uncertainty surrounding the expected end-of-period wealth because the calculation is based on forecasts
for exchange rates, obtained by drawing 1,000,000 times from the predictive distribution of exchange rates. This allows
us to recover the distribution of the end-of-period wealth and hence to assign confidence intervals. Our general result
is that, for each of the random walk model and the fundamentals model and for each of the two strategies employed
here, the expected end-of-period wealth is not only large but also strongly statistically significant, which implies that
any investor believing in either the random walk model or the fundamentals model would carry out the investment.
The results from this preliminary ex ante analysis are not reported but are available upon request.
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13), the end-of-period wealth obtained using equation (5) does not have an associated variance. As

a result, our empirical results allow us to compare the ex post economic value across different models

and investment strategies without having to test for statistical significance of the difference between

different end-of-period wealths. Put differently, this means that in our framework if the results

suggest that one strategy/model yields higher ex post returns than an alternative strategy/model,

this implies the first strategy/model has greater economic value than the competing one, given the

investment (forecast) horizon and sample period utilized.

In our discussion of the empirical results in this section, we focus mainly on end-of-period wealth

and wealth ratios, since, as briefly reviewed below, the results from using the other measures of

economic value of predictability (utility ratios and differences in certainty equivalent returns) are

qualitatively identical. In Tables 1-2 we report our results from calculating the measures of economic

gain (loss) defined above.

6.1 Buy-and-Hold Strategy

We first analyze the case of a buy-and-hold US investor and compute the end-of-period wealth for

our investor over the period January 1991-December 2000 for each of the Canadian dollar, Japanese

yen and UK sterling. The results for this case, reported in Table 1, show the economic values and

gains for different investment horizons eT = 1, . . . , 10 and for different coefficients of risk aversion

(A = 2, 5, 10, 20). For a given coefficient of risk aversion, Table 1 reports the end-of-period wealth

both without and with parameter uncertainty (p.u.). The figures in parentheses, brackets and braces

denote the wealth ratios, utility ratios and differences in CERs respectively, as defined above. Our

results show that predictability using monetary fundamentals is, in general, of incremental economic

value above that for a random walk specification. For example, for a less risk averse investor (A = 2),

in the case of Canada, the wealth ratio is greater than unity at all horizons longer than one year,

indicating that at all horizons longer than one year the end-of-period wealth achieved from using the

fundamentals model is higher than the end-of-period wealth attained from using a random walk. Even

allowing for parameter uncertainty, this still remains the case. For A = 5, 10, 20, the fundamentals

model outperforms the random walk for all horizons except for 1 year. In the case of Japan, for A = 2

the end-of-period wealth under predictability is much higher than that for a naive no-change investor:

the wealth ratio ranges from a low of 1.08 at the one-year horizon to a high of 1.60 at the ten-year

horizon. The effects of predictability are dramatically reduced for a very risk averse investor (A = 20),

with a wealth ratio ranging from 1.01 at the one-year horizon to a high of 1.05 at the ten-year horizon.
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For the UK, however, the use of predictability does not seem to be economically important for A = 2,

although for more risk averse investors there is some gain from using the monetary fundamentals

model compared with using a naive random walk model at medium to long horizons.

It is interesting to note that, in general, our results are not very sensitive to the length of the

investment horizon for a low level of risk aversion. The results in Table 1 also show that it is mainly

at horizons longer than one year that monetary fundamentals predict future nominal exchange rates

better than a naive random walk. However, we find that the wealth ratio is often greater than unity

even for relatively short horizons such as eT = 2 and occasionally even for eT = 1. This is in sharp

contrast with the conventional wisdom that monetary fundamentals can forecast the exchange rate

only at horizons as long as 4 or 5 years ahead.26 In the case of investors with greater risk aversion

(A = 20), the results are qualitatively similar. We also find that allowing for parameter uncertainty

at higher levels of risk aversion results in a lower relative wealth ratio. This indicates that the effect

of parameter uncertainty at higher levels of risk aversion (in terms of reducing the absolute value of

the optimal weight relative to the case without parameter uncertainty) is generally greater for the

case of predictability than for the case of the random walk model.

However, note that, while wealth increases monotonically with the investment horizon both under

predictability and no predictability, the wealth ratio measuring the gain from using the fundamentals

model does not increase monotonically over the investment horizon. For example, for each of Canada

and Japan, the wealth ratio drops at eT equal to 5 or 6, while increasing again afterwards. Hence,

while the wealth ratio always increases in period 10 as compared with period 1, its increase over the

investment horizon is not monotonic. Nevertheless, it is notable that the return at the end of the

10-year investment horizon from employing a fundamentals model is relatively large, at least 120, 102

and 137 percent for Canada, Japan and the UK respectively.

Overall, these results provide evidence of economic value to exchange rate predictability across

countries and for a range of values of the coefficient of risk aversion. This is clear from the fact that

the end-of-period wealth achieved by the investor who assumes that the exchange rate is predictable is

higher than that obtained by the investor who assumes that the exchange rate follows a random walk.

The order of magnitude varies across countries and with the coefficient of risk aversion. In particular,

we find that the difference between end-of-period wealth under predictable and unpredictable exchange

rate changes is lower for higher levels of risk aversion. However, taken together, the results that the

26As pointed out by Lyons (2002) : “The [...] puzzle [that macro variables cannot account for exchange rates
empirically] does indeed remain unresolved. (Read ‘exchange rates’ as referring to major floating rates against the U.S.
dollar and ‘account for’ as referring to horizons less than two years).” Note that the sentence in parentheses is in the
original text.
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wealth ratio increases non-monotonically and that the return from employing a fundamentals model

is large imply that the return from a random walk is also large in terms of economic value. This

confirms the stylized fact that a random walk model is a very difficult benchmark to beat, even when

the assessment of its predictive power is based on economic criteria.27

6.2 Dynamic Rebalancing Strategy

We now turn to the forecasting results for an investor who uses a dynamic rebalancing strategy.

Table 2 reports the end-of-period wealth (and the relevant wealth ratio, the utility ratio and the

difference in CERs) for a US investor who dynamically rebalances her portfolio annually over an

investment horizon of ten years. These results are obtained from solving the Bellman equation (16)

by discretizing the state space and using backward induction. We take intervals ranging from three

standard deviations (±3σu) above and below the historical mean (µ(u)) of the predictor variable, the
deviation from the monetary fundamentals u. Intuitively, larger intervals for u imply the possibility

of larger misalignments of the nominal exchange rate from its fundamental value. We report the

expected end-of-period wealth calculated for five initial values of the predictor variable ranging from

−3σu to +3σu at the end of the 10th year for different values of A. In the last column of Table 2,

we report for comparison the end-of-period wealth obtained under a static buy-and-hold strategy as

well as the relevant wealth ratio.

The results in Table 2 confirm, in general, the predictive ability of the monetary fundamentals

model, as measured in terms of economic value. Except for Japan, where the random walk outperforms

the monetary fundamentals framework for large negative initial values of u, the wealth and utility

ratios recorded are almost always larger than unity, which is corroborated by the generally positive

differences in the CERs, suggesting a higher CER for the fundamentals model. The results for the UK

display virtually no change in end-of-period wealth and relative ratios for all values of A other than 20.

This is not surprising given that the optimal weights from which these wealth calculations are derived

do not show much variability over investment horizons and across lower levels of risk aversion (see

Figure 6). The results in the last column of Table 2 clearly show that a static buy-and-hold strategy

that recognizes predictability leads to the largest end-of-period wealth relative to all other strategies

27 Indeed, an extreme case is the UK for A = 2 (Panel C of Table 1), where we report a wealth ratio of unity over
the whole investment horizon. This is of course due to the fact that the optimal weights are the same under each of
predictability and no predictability in this case (see top-left graph in Figure 3). Generally, although for the UK we
record high returns in absolute terms from assuming predictability, these returns are not much larger than the returns
obtained using a random walk specification. This result seems consistent with the difficulty to forecast the UK sterling
during the 1990s often recorded in the literature even in studies where time-series models are found to beat a random
walk (see, for example, Clarida, Sarno, Taylor and Valente, 2001).
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considered here for a forecast horizon equal to 10 years. Also, in general, a dynamic rebalancing

strategy leads to worse outcomes relative to a static buy-and-hold strategy for a forecast horizon of

10 years.

At first glance, one might argue that this result is puzzling since it is always possible for the

dynamic strategy to mimic the static strategy. In essence, the two strategies have the same weight at

the end of the investment horizon T+ eT . However, while the static strategy results in the same weight
throughout the investment horizon, the dynamic strategy chooses weights by backward induction from

time T + eT to time T +1; the weight is adjusted depending on the predicted path of the exchange rate
between time T and T+ eT according to the Bellman equation (16). Therefore, in the dynamic strategy,
maximization of expected utility occurs on the basis of the period-by-period predictive distributions of

the exchange rate, whereas the static strategy maximizes expected utility on the basis of the eT -period
predictive distribution of the exchange rate. This implies that, ex ante, when one knows or assumes the

true data generating process of the exchange rate (and hence its distribution is known), the investor

would always prefer the dynamic strategy to the static one28. However, this is not necessarily true ex

post in finite sample. In our ex post evaluation over the sample period and exchange rates examined,

the dynamic strategy performs worse than the static one. This suggests that, while the exchange

rate forecasts at long horizons are accurate, as indicated by the evidence that the fundamentals model

beats a random walk model for both dynamic and static strategies, the predicted dynamic adjustment

path of the exchange rate towards its forecast at the end of the horizon T + eT may be poor. This

is not suprising since the model used for forecasting exchange rates with fundamentals is a classic

long-horizon regression which does not attempt to model the short run dynamics. Clearly, a richer

specification of the short-run exchange rate dynamics in our empirical model might well yield the

result that the dynamic strategy makes the investor better off relative to a static strategy. To sum

up, what we take from the result that ex post the dynamic strategy performs worse than the static

strategy on our data set is that if one uses a long-horizon regression out of sample the gain from using

a dynamic strategy rather than a static one is not obvious.29

28As a special case, note that dynamic and static strategies will imply identical weights ω only if the investor assumes
a random walk for the exchange rate and does not take into account parameter uncertainty. In this case the weights
do not change with the investment horizon (Samuelson, 1969).
29Also, our result might be due to our choice of the rebalancing period, which is assumed to be one year. This

may be suboptimal in light of the evidence that fundamentals are most powerful at predicting the exchange rate in the
medium to long run, say 3 or 4 years (e.g., Mark, 1995). In principle, one would expect that the optimal rebalancing
period is a function of the speed at which the exchange rate change adjusts to restore deviations of the exchange rate
from its fundamental value in a way that the rebalancing is carried out over the horizon where the predictive power
of the deviations from fundamentals is at its peak. Given the large amount of evidence in the literature (e.g., Mark,
1995; Mark and Sul, 2001) and in this paper that the predictive power of monetary fundamentals is higher at medium
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It is important to note that the results discussed above for end-of-period wealth and wealth ratios

do not change qualitatively when looking at utility ratios and differences in CERs. In general, the

utility ratios, reported in brackets in Tables 1-2, confirm that the investor using the fundamentals

model enjoys higher utility than the investor using a random walk model. The gains increase, albeit

non-monotonically, with the investment horizon, with a pattern that resembles the pattern of the

wealth ratios. Finally, the differences in the CERs, reported in braces in Tables 1-2, indicate the

certain return that would equate the end-of-period utility of the two investors. Our results show

that the differences in CERs are almost always positive, suggesting that the end-of-period utility of

the investor using a fundamentals model is generally higher than the end-of-period utility for the

random-walk investor. Indeed, the positive differences in CERs can also be quite large in magnitude,

suggesting that the difference in the utilities obtained under no predictability and predictability can

be quite substantial.

6.3 Summing up the Forecasting Results

In general, our results provide evidence that there is economic value to predictability at various

forecast horizons - which also include relatively short horizons - for a range of coefficients of risk

aversion, regardless of whether the investment strategy is static or dynamic and whether parameter

uncertainty is taken into account. However, the gain from assuming predictability appears to vary

somewhat across currencies and increases non-monotonically over the 10-year investment horizon

considered here. We find that the gain from using a fundamentals model is positively related to the

investment horizon, negatively related to the level of risk aversion, and negatively related to parameter

uncertainty. Of course, the results are based on a particular sample period for estimation and for

out-of-sample prediction, so that our claims are subject to the caveat that they are sample specific.

Nevertheless, for the sample period investigated, the evidence we present suggests that an investor

using a fundamentals model in 1990 to take positions in domestic and foreign bonds would have

been better off than an investor using a random walk model. Overall, these results may be viewed

as suggesting that the case against the predictive power of monetary-fundamentals models may be

overstated.

to longer horizons (albeit still being potentially substantial at shorter horizons) one would expect the optimal dynamic
rebalancing period to be somewhat longer than one year. Rules of selection of the optimal rebalancing period are not
investigated in this paper, but we consider this issue as an immediate avenue for future research.
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7 Conclusion

Meese and Rogoff (1983a,b, 1988) first noted that standard structural exchange rate models are unable

to outperform a naive random walk model in out-of-sample exchange rate forecasting, even with the

aid of ex post data. Despite the increasing sophistication of econometric techniques employed and

quality of the data sets utilized, the original results highlighted by Meese and Rogoff continue to

present a challenge and constitute a component of what Obstfeld and Rogoff (2000) have recently

termed as the ‘exchange rate disconnect puzzle’.

Prior research in this area has largely relied on statistical measures of forecast accuracy. Our

study departs from this in that we focus instead on the metric of economic value to an investor

in order to assess the performance of fundamentals models. This is particularly important given

the several cumbersome econometric issues that plague statistical inference in this literature. Our

paper provides the first evidence on the economic value of the exchange rate forecasts provided by an

exchange rate-monetary fundamentals framework. Specifically, we compare the economic value, to a

utility maximizing investor, of out-of-sample exchange rate forecasts using a monetary-fundamentals

model with the economic value under a naive random walk model. We assume that our investor faces

the problem of choosing how much she will invest in two assets that are identical in all respects except

the currency of denomination. This problem is studied in a Bayesian framework that explicitly allows

for parameter uncertainty.

Our main findings are as follows. First, each of predictability and parameter uncertainty sub-

stantially affect, both quantitatively and qualitatively, the choice between domestic and foreign assets

for all currencies and across different levels of risk aversion. Specifically, exchange rate predictability

(characterized using the monetary-fundamentals model) can yield optimal weights to the foreign asset

that may be very different (in magnitude and, sometimes, in sign) from the optimal weights obtained

under a random walk model. Parameter uncertainty causes the foreign asset allocation to fall (rise)

as the horizon increases when the models predict positive (negative) weights assigned to the foreign

asset, effectively making the foreign asset look more risky. Second, and more importantly, our results

lend some support for the predictive ability of the exchange rate-monetary fundamentals model. This

finding holds for the three major exchange rates examined in this paper using data for the modern

floating exchange rate regime. The gain from using the information in fundamentals in order to pre-

dict the exchange rate out of sample (as opposed to assuming that the exchange rate follows a random

walk) is often substantial, although it varies somewhat across countries. We find that the gain from

using a fundamentals model is, in general, positively related to the investment horizon, negatively
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related to the level of risk aversion, and negatively related to parameter uncertainty. In turn, these

findings suggest that the case against the predictive power of monetary-fundamentals models may be

overstated.

There are a number of ways in which this study could be extended. First, one obvious concern is

that our results may be sample specific. Our choice of exchange rates and sample period reflects our

intention to focus on freely floating exchange rates over the post-Bretton Woods period and follows

much previous research in the literature on exchange rate forecasting. Testing the robustness of our

findings using other exchange rate data and/or sample periods is a logical extension. Second, we

consider here a simple case where the investor allocates wealth between two assets; a more realistic

scenario would be to allow for multiple assets. However, while this will require more complex esti-

mation techniques, it would also take us away from the main point of this paper, which is to draw

attention to the economic value of forecasting fundamentals models rather than only on the use of

statistical metrics for forecast comparison. Third, we use a simple power utility set up to illustrate

our main point. However, in the context of an international investor, the use of other utility functions,

such as those that allow for ambiguity aversion or habit formation, may also be of great interest.
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A Technical Appendix

This appendix provides details of the Bayesian econometric approach used in our paper. We begin

by describing the computations used in the static buy-and-hold case described in Section 3.1.

First, we assume that the exchange rate is a random walk with drift: ∆st = µ + εt, where

∆st is the log-difference of the end-of-period nominal exchange rate, and ∆ is the first-difference

operator; and εt ∼ iidN(0,σ2). We incorporate parameter uncertainty by using the predictive

distribution of the nominal exchange rate, p(∆ eT sT+ eT |∆s), where ∆s is the vector of observed nominal
exchange rate changes over the sample period. In the case without parameter uncertainty, on the

other hand, we compute the expected value over the distribution of the future nominal exchange

rate conditional on fixed parameters values, p(∆ eT sT+ eT |∆s, bµ, bσ2). In both of these cases, the

conditional distribution of the nominal exchange rate is a normal distribution. Under no parameter

uncertainty, p(∆ eT sT+ eT |∆s, bµ, bσ2) is a normal distribution, N ³eTbµ, eTbσ2´, where bµ and bσ2 denote the
estimates of the mean and variance calculated over the sample period. When parameter uncertainty

is accounted for, p(∆ eT sT+ eT |∆s) is obtained using the value of the parameters µ and σ2 obtained by

iterative sampling from the marginal posterior distributions under a noninformative prior (that is,

p
¡
µ,σ2

¢ ∝ 1
σ2 ).

30 In other words, in order to get a sample
n
∆
(i)eT sT+ eT

oM
i=1

from the two possible

distributions, we drawM times from the normal distribution N
³eTbµ, eTbσ2´ in the case of no parameter

uncertainty; in the case of parameter uncertainty we draw M times from the normal distribution

N
³eTbµ(i), eTbσ2 (i)´, where bµ(i), bσ2 (i) are values from the ith draw from p

¡
σ2|∆s¢ and p ¡µ|σ2,∆s¢.

Second, we consider the case when the exchange rate is predictable, that is zt = a+ Bxt−1 + ηt,

where z0t = (∆st, x
0
t), xt = (x1,t, x2,t, . . . , xn,t)

0, and ηt ∼ iidN(0,Σ). The vector of explanatory

variables xt are used for predicting the exchange rate; these include the deviation from the long-

run equilibrium level of the exchange rate as measured by the monetary fundamentals. Here too

we consider the effects of accounting for parameter uncertainty. In particular, under no parameter

uncertainty, p(zT+ eT |z,ba, bB, bΣ) is a bivariate normal distribution, N2µbbµ, bbΣ¶, where
bbµ = eTba+ ³eT − 1´ bB0ba+ ³eT − 2´ bB20ba+ . . .+ bB eT−1

0 ba+ ³ bB0 + . . .+ bB eT
0

´
zTbbΣ = bΣ+ ³I + bB0´ bΣ³I + bB0´0 + . . .+³

I + bB0 + . . .+ bB eT−1
0

´ bΣ³I + bB0 + . . .+ bB eT−1
0

´0
(A1)

30The posterior distribution of the parameters conditional upon the data p(µ,σ2|∆s) can be obtained by first sampling
from the marginal distribution, p(σ2|∆s), an inverse gamma distribution, and then, given the draw for the variance,
from the conditional distribution p(µ|σ2,∆s), which is a normal distribution. See Zellner (1971).
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and ba, bB, bΣ are estimates of the parameters in the VAR zt = a + Bxt−1 + ηt, obtained over the

sample period used; bB0 is a matrix obtained by adding an initial vector of zeros to bB; and I is the
identity matrix. If parameter uncertainty is taken into account, p(zT+ eT |z) is computed using the
value of the estimated parameters ba, bB, bΣ obtained by iterative sampling from the marginal posterior

distributions under a noninformative prior (that is, p (a,B,Σ) ∝ |Σ|−(n+2)/2):31

bbµ = eTba(i) + ³eT − 1´ bB(i)0 ba(i) + ³eT − 2´ bB2(i)0 ba(i) + . . .+ bB eT−1(i)
0 ba(i) + ³ bB(i)0 + . . .+ bB eT (i)

0

´
zTbbΣ = bΣ(i) + ³I + bB(i)0 ´ bΣ(i) ³I + bB(i)0 ´0 + . . .+

+
³
I + bB(i)0 + . . .+ bB eT−1(i)

0

´ bΣ(i) ³I + bB(i)0 + . . .+ bB eT−1(i)
0

´0
(A2)

for i = 1, . . . ,M , where ba(i), bB(i)0 , bΣ(i) are values from the ith draw from p(Σ−1|z) and p(vec (a,B) |Σ,∆s).
By computing p(zT+ eT |z, a,B,Σ) and p(zT+ eT |z), we are able to extract a sample

n
∆
(i)eT sT+ eT

oM
i=1

which

represents the future expected nominal exchange rate for the horizon eT under predictability, without
and with parameter uncertainty respectively.

Finally, we approximate the integrals for expected utility (8) and (11) by using the samplen
∆
(i)eT sT+ eT

oM
i=1

from the two cases of no predictability and predictability and then computing

1

M

MX
i=1

h
(1− ω) exp

³
r eT´+ ω exp

³
r∗ eT +∆(i)eT sT+ eT´i1−A

1−A . (A3)

To obtain an accurate representation of the posterior distributions, the data have been used to

generate different sample sizes M . The results reported in the paper refer to a sample size of

M = 1, 000, 000 and were produced using an initial value of the predictor variables vector (in our case

simply ut as defined in equations (1)-(2)) equal to its historical mean.

Next, we provide details of the computations related to the dynamic allocation problem described

in Section 3.2. We solve this by discretizing the state space and then using backward induction to

solve the Bellman equation. In particular, in the case of predictability, we take an interval ranging

from three standard deviations below the historical mean of the predictor variables in xt (simply ut

as defined in equations (1)-(2)), to three standard deviations above and discretize this range using j

equally spaced grid points. The maximization problem (16) in the main text can be solved as follows:

31The posterior distribution of the parameters conditional upon the data is obtained in this case by first sampling
from the marginal distribution p(Σ−1|z), a Wishart distribution, and then, given the draws for the variance-covariance
matrix, from the conditional distribution p(vec (a,B) |Σ,∆s), which is a multivariate normal distribution. See Zellner
(1971).
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Q
³
xjk, tk

´
= max

ω

1

M

MX
i=1


"
(1− ωk) exp

Ã
r
eT
K

!
+ ωk exp

Ã
r∗
eT
K
+∆k+1s

(i)
k+1

!#1−A
×Q

³
xjk+1, tk+1

´ ,
(A4)

where Q
³
xjk, tk

´
is the value function calculated for xjk for all j.

32 In order to carry out the

backward induction we assume that Q
³
xT+ eT , tT+ eT

´
= 1 for all xT+ eT and we use equation (A4)

to approximate Q
³
xjk, tk

´
. ∆k+1s

(i)
k+1 can then be computed as explained above in this appendix in

the case of predictable exchange rates under the cases of both parameter uncertainty and no parameter

uncertainty and for different values of the explanatory variable xj . This calculation gives Q
³
xjk, tk

´
for all j. Solving through all of the rebalancing points allows us to obtain Q

³
xj0, t0

´
and hence

the optimal allocation at time T . As in the static optimization problem the sample size used is

M = 1, 000, 000. We performed additional robustness checks to investigate the effect of the number

of grid points selected. We produced our results for j = 15, 25, 35 grid points and we selected j = 25

since the accuracy of our results was better than in the case of j = 15 but not qualitatively different

from the case where j = 35.

32An alternative procedure would involve allowing for learning over the investment horizon. We did not explore the
implications of learning for our results in this paper, although this is a logical exercise for future research (e.g., see
Lewis, 1995; Xia, 2001).
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Table 1. The economic value of predictability: Static buy-and-hold strategy

Panel A) - Canada

eT = 1 2 3 4 5 6 7 8 9 10

A = 2

without p.u. 1.0844 1.2167 1.3241 1.4497 1.5320 1.6441 1.8010 1.9798 2.0628 2.2501
(0.96) (1.04) (1.05) (1.09) (1.02) (1.01) (1.06) (1.14) (1.05) (1.10)
[0.96] [1.03] [1.04] [1.08] [1.01] [1.00] [1.05] [1.12] [1.04] [1.09]
{-0.047} {0.022} {0.021} {0.031} {0.005} {0.001} {0.015} {0.031} {0.011} {0.020}

with p.u. 1.0844 1.2167 1.3241 1.4497 1.5320 1.6441 1.8010 1.9798 2.0628 2.2501
(0.96) (1.04) (1.05) (1.09) (1.02) (1.01) (1.06) (1.14) (1.05) (1.10)

[0.95] [1.03] [1.04] [1.08] [1.01] [1.00] [1.05] [1.12] [1.04] [1.09]
{-0.047} {0.022} {0.021} {0.031} {0.005} {0.001} {0.015} {0.031} {0.011} {0.020}

A = 5

without p.u. 1.0875 1.2167 1.3241 1.4497 1.5320 1.6441 1.8010 1.9798 2.0628 2.2501
(0.96) (1.04) (1.05) (1.09) (1.02) (1.01) (1.06) (1.14) (1.05) (1.10)
[0.82] [1.13] [1.18] [1.30] [1.07] [1.02] [1.21] [1.42] [1.18] [1.31]
{-0.044} {0.022} {0.021} {0.031} {0.005} {0.001} {0.015} {0.031} {0.011} {0.020}

with p.u. 1.0973 1.2092 1.3163 1.4377 1.5307 1.6437 1.7981 1.9738 2.0598 2.2432
(0.97) (1.03) (1.04) (1.08) (1.02) (1.01) (1.06) (1.14) (1.05) (1.10)

[0.86] [1.11] [1.16] [1.27] [1.06] [1.02] [1.21] [1.41] [1.17] [1.31]
{-0.035} {0.018} {0.018} {0.028} {0.005} {0.001} {0.014} {0.030} {0.010} {0.019}

A = 10

without p.u. 1.0941 1.2145 1.3241 1.4497 1.5320 1.6441 1.8010 1.9798 2.0628 2.2501
(0.97) (1.04) (1.05) (1.09) (1.02) (1.01) (1.06) (1.14) (1.05) (1.10)
[0.63] [1.27] [1.36] [1.55] [1.15] [1.05] [1.42] [1.70] [1.36] [1.57]
{-0.038} {0.021} {0.021} {0.031} {0.005} {0.001} {0.015} {0.031} {0.011} {0.020}

with p.u. 1.0961 1.2065 1.3116 1.4260 1.5270 1.6423 1.7834 1.9416 2.0488 2.2225
(0.97) (1.03) (1.04) (1.08) (1.02) (1.01) (1.05) (1.12) (1.04) (1.09)
[0.66] [1.23] [1.30] [1.48] [1.12] [1.04] [1.37] [1.65] [1.31] [1.52]

{-0.036} {0.017} {0.017} {0.025} {0.004} {0.001} {0.012} {0.026} {0.009} {0.017}
A = 20

without p.u. 1.0965 1.2091 1.3183 1.4481 1.5320 1.6441 1.8010 1.9798 2.0628 2.2501
(0.98) (1.02) (1.03) (1.07) (1.01) (1.00) (1.05) (1.11) (1.04) (1.07)
[0.50] [1.33] [1.45] [1.70] [1.22] [1.08] [1.57] [1.85] [1.50] [1.73]
{-0.023} {0.012} {0.013} {0.022} {0.004} {0.001} {0.011} {0.023} {0.008} {0.015}

with p.u. 1.0981 1.2035 1.3058 1.4148 1.5247 1.6415 1.7744 1.9187 2.0391 2.2018
(0.98) (1.02) (1.02) (1.03) (1.01) (1.00) (1.02) (1.03) (1.01) (1.02)
[0.59] [1.24] [1.30] [1.45] [1.10] [1.03] [1.24] [1.42] [1.16] [1.24]
{-0.019} {0.008} {0.008} {0.011} {0.001} {0.001} {0.003} {0.006} {0.002} {0.003}

(continued ...)
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(... Table 1 continued)

Panel B) - Japan

eT = 1 2 3 4 5 6 7 8 9 10

A = 2

without p.u. 1.1079 1.2094 1.3846 1.6306 1.7437 1.7784 1.8217 2.1529 2.5325 2.5762
(1.08) (1.12) (1.28) (1.52) (1.52) (1.36) (1.24) (1.48) (1.79) (1.60)
[1.07] [1.10] [1.21] [1.34] [1.34] [1.26] [1.19] [1.32] [1.44] [1.37]

{0.081} {0.062} {0.100} {0.140} {0.118} {0.078} {0.050} {0.087} {0.124} {0.096}
with p.u. 1.1043 1.1949 1.3425 1.4922 1.6266 1.6755 1.7465 1.9814 2.2261 2.3038

(1.08) (1.10) (1.24) (1.39) (1.41) (1.28) (1.19) (1.36) (1.58) (1.43)
[1.07] [1.09] [1.19] [1.28] [1.29] [1.22] [1.15] [1.26] [1.36] [1.30]
{0.078} {0.055} {0.086} {0.105} {0.095} {0.061} {0.039} {0.066} {0.090} {0.069}

A = 5

without p.u. 1.0857 1.1690 1.2859 1.4181 1.5407 1.6180 1.7014 1.8999 2.1150 2.2168
(1.06) (1.08) (1.19) (1.32) (1.34) (1.24) (1.16) (1.31) (1.50) (1.38)
[1.20] [1.25] [1.49] [1.67] [1.68] [1.57] [1.44] [1.65] [1.80] [1.72]
{0.059} {0.042} {0.067} {0.086} {0.078} {0.052} {0.033} {0.055} {0.077} {0.060}

with p.u. 1.0844 1.1639 1.2742 1.3860 1.4808 1.5645 1.6608 1.8155 1.9774 2.0919
(1.05) (1.06) (1.14) (1.22) (1.22) (1.16) (1.10) (1.17) (1.27) (1.19)
[1.17] [1.22] [1.41] [1.54] [1.55] [1.44] [1.32] [1.47] [1.61] [1.50]
{0.052} {0.035} {0.053} {0.062} {0.053} {0.035} {0.022} {0.033} {0.046} {0.033}

A = 10

without p.u. 1.0807 1.1620 1.2641 1.3786 1.4782 1.5645 1.6593 1.8099 1.9818 2.1032
(1.03) (1.04) (1.10) (1.16) (1.16) (1.11) (1.08) (1.14) (1.22) (1.17)
[1.24] [1.31] [1.56] [1.73] [1.73] [1.61] [1.48] [1.69] [1.83] [1.75]
{0.032} {0.024} {0.036} {0.047} {0.040} {0.026} {0.016} {0.028} {0.039} {0.030}

with p.u. 1.0762 1.1551 1.2481 1.3514 1.4470 1.5398 1.6397 1.7733 1.9241 2.0503

(1.03) (1.03) (1.07) (1.11) (1.10) (1.07) (1.04) (1.08) (1.12) (1.09)
[1.20] [1.24] [1.43] [1.59] [1.56] [1.44] [1.32] [1.49] [1.64] [1.55]
{0.026} {0.017} {0.025} {0.032} {0.025} {0.016} {0.009} {0.016} {0.023} {0.017}

A = 20

without p.u. 1.0758 1.1545 1.2467 1.3464 1.4444 1.5378 1.6397 1.7761 1.9285 2.0541
(1.01) (1.02) (1.05) (1.07) (1.08) (1.05) (1.04) (1.07) (1.11) (1.08)
[1.23] [1.32] [1.56] [1.73] [1.74] [1.62] [1.49] [1.71] [1.85] [1.78]
{0.015} {0.011} {0.017} {0.022} {0.020} {0.013} {0.008} {0.014} {0.020} {0.015}

with p.u. 1.0735 1.1513 1.2380 1.3341 1.4288 1.5254 1.6292 1.7536 1.8885 2.0200

(1.01) (1.01) (1.03) (1.05) (1.05) (1.03) (1.02) (1.04) (1.06) (1.05)
[1.20] [1.24] [1.43] [1.59] [1.58] [1.47] [1.34] [1.52] [1.66] [1.59]
{0.013} {0.008} {0.012} {0.015} {0.013} {0.008} {0.005} {0.008} {0.011} {0.009}

(continued ...)
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(... Table 1 continued)

Panel C) - UK

eT = 1 2 3 4 5 6 7 8 9 10

A = 2

without p.u. 1.1241 1.0773 1.2109 1.4343 1.6020 1.9264 2.1020 2.3551 2.5288 2.6014

(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
[1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00]
- - - - - - - - - -

with p.u. 1.1241 1.0773 1.2109 1.4343 1.6020 1.9264 2.1020 2.3551 2.5288 2.6014
(1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)
[1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00]
- - - - - - - - - -

A = 5

without p.u. 1.1241 1.0773 1.2109 1.4343 1.6020 1.9264 2.1020 2.3551 2.5288 2.6014
(1.01) (0.96) (0.97) (1.01) (1.02) (1.06) (1.08) (1.09) (1.09) (1.07)

[1.03] [0.79] [0.87] [1.02] [1.07] [1.21] [1.22] [1.27] [1.28] [1.23]
{0.009} {-0.025} {-0.011} {0.002} {0.006} {0.018} {0.018} {0.023} {0.022} {0.016}

with p.u. 1.1241 1.0773 1.2109 1.4343 1.6020 1.9264 2.1020 2.3551 2.5288 2.6014
(1.01) (0.94) (0.96) (1.01) (1.03) (1.11) (1.12) (1.15) (1.16) (1.13)
[1.03] [0.73] [0.81] [1.04] [1.11] [1.33] [1.36] [1.43] [1.44] [1.38]
{0.009} {-0.033} {-0.017} {0.003} {0.009} {0.030} {0.032} {0.038} {0.037} {0.029}

A = 10

without p.u. 1.1199 1.0854 1.2114 1.4343 1.6020 1.9264 2.1020 2.3551 2.5288 2.6014
(1.01) (0.95) (0.96) (1.01) (1.03) (1.09) (1.09) (1.11) (1.11) (1.09)
[1.06] [0.36] [0.57] [1.08] [1.20] [1.52] [1.54] [1.61] [1.60] [1.54]

{0.008} {-0.030} {-0.016} {0.003} {0.008} {0.025} {0.024} {0.029} {0.027} {0.021}
with p.u. 1.1179 1.1004 1.2271 1.4301 1.5896 1.8804 2.0529 2.2950 2.4610 2.5465

(1.01) (0.95) (0.97) (1.01) (1.03) (1.08) (1.09) (1.13) (1.13) (1.10)
[1.05] [0.47] [0.65] [1.07] [1.20] [1.51] [1.55] [1.65] [1.67] [1.59]
{0.007} {-0.026} {-0.013} {0.003} {0.007} {0.024} {0.025} {0.032} {0.031} {0.024}

A = 20

without p.u. 1.1102 1.1429 1.2556 1.4226 1.5693 1.8129 1.9767 2.1909 2.3657 2.4657
(1.00) (0.97) (0.98) (1.01) (1.02) (1.06) (1.07) (1.09) (1.10) (1.08)
[1.07] [0.34] [0.51] [1.10][ [1.29] [1.68] [1.73] [1.82] [1.84] [1.78]
{0.004} {-0.015} {-0.008} {0.002} {0.005} {0.017} {0.018} {0.023} {0.024} {0.019}

with p.u. 1.1089 1.1529 1.2657 1.4187 1.5554 1.7655 1.9141 2.1007 2.2628 2.3775
(1.00) (0.98) (0.99) (1.00) (1.01) (1.05) (1.05) (1.07) (1.08) (1.06)
[1.05] [0.52] [0.65] [1.07] [1.20] [1.58] [1.61] [1.72] [1.76] [1.69]
{0.003} {-0.011} {-0.006} {0.001} {0.003} {0.013} {0.013} {0.017} {0.018} {0.014}

Notes: These figures refer to the end-of-period (equal to 10 years) economic value, as measured
by wealth levels, wealth ratios, utility ratios and certainty equivalent returns for the case of an investor
acting on the basis of the static buy-and-hold strategy. Initial wealth is assumed to be equal to unity.
A is the coefficient of risk aversion in the CRRA utility function defined by equation (6). eT is the
investment horizon in years. ‘With p.u.’ and ‘without p.u.’ denote the case where the investor takes
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into account parameter uncertainty (p.u.) and the case where she ignores it respectively. Under each
of these cases, the first row reports the end-of-period wealth calculated using the definition given by
equation (5). Values in parentheses in the second row, for each of the two cases with and without
p.u., are ratios of the end-of-period wealth levels obtained in the case of predictability to the end-of-
period wealth levels obtained under a random walk exchange rate. Values in brackets in the third row
are ratios of the end-of-period utility levels obtained in the case of predictability (with and without
p.u.) to the end-of-period utility levels obtained under a random walk exchange rate model (with
and without p.u.). Values in braces in the fourth row are differences of the end-of-period certainty
equivalent return (CER) obtained in the case of predictability (with and without p.u.) and the end-
of-period CER obtained under a random walk exchange rate model (with and without p.u.). The
differences in CERs are annualized.
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Table 2. The economic value of predictability: Dynamic rebalancing strategy

Panel A) - Canada

−3σu −1σu µ (u) +1σu +3σu Static

A = 2

without p.u. 2.2269 2.2269 2.2269 2.2269 2.2269 2.2501
(1.09) (1.09) (1.09) (1.09) (1.09) (1.10)
[1.08] [1.08] [1.08] [1.08] [1.08] [1.09]

{0.018} {0.018} {0.018} {0.018} {0.018} {0.020}
with p.u. 2.2269 2.2269 2.2269 2.2269 2.2269 2.2501

(1.09) (1.09) (1.09) (1.09) (1.09) (1.10)
[1.08] [1.08] [1.08] [1.08] [1.08] [1.09]
{0.018} {0.018} {0.018} {0.018} {0.018} {0.020}

A = 5

without p.u. 2.2269 2.2269 2.2269 2.2269 2.2269 2.2501
(1.09) (1.09) (1.09) (1.09) (1.09) (1.10)
[1.29] [1.29] [1.29] [1.29] [1.29] [1.31]
(0.018) (0.018) (0.018) (0.018) (0.018) (0.020)

with p.u. 2.1739 2.2102 2.2211 2.2269 2.2269 2.2432
(1.06) (1.08) (1.09) (1.09) (1.09) (1.10)
[1.21] [1.26] [1.28] [1.29] [1.29] [1.31]
{0.012} {0.016} {0.017} {0.018} {0.018} {0.019}

A = 10

without p.u. 2.2269 2.2269 2.2269 2.2269 2.2269 2.2501
(1.09) (1.09) (1.09) (1.09) (1.09) (1.10)
[1.53] [1.53] [1.53] [1.53] [1.53] [1.57]
{0.018} {0.018} {0.018} {0.018} {0.018} {0.020}

with p.u. 2.1900 2.2084 2.2136 2.2165 2.2165 2.2225

(1.07) (1.08) (1.08) (1.08) (1.08) (1.09)
[1.46] [1.50] [1.51] [1.51] [1.51] [1.52]
(0.014) (0.016) (0.016) (0.017) (0.017) (0.017)

A = 20

without p.u. 2.2269 2.2269 2.2269 2.2269 2.2269 2.2501
(1.06) (1.06) (1.06) (1.06) (1.06) (1.07)
[1.67] [1.67] [1.67] [1.67] [1.67] [1.73]
{0.012} {0.012} {0.012} {0.012} {0.012} {0.015}

with p.u. 2.1854 2.1912 2.1917 2.1935 2.1969 2.2018

(1.01) (1.01) (1.01) (1.01) (1.01) (1.02)
[1.13] [1.17] [1.17] [1.18] [1.21] [1.24]
{0.001} {0.002} {0.002} {0.002} {0.002} {0.003}

(continued ...)
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(... Table 2 continued)

Panel B) - Japan

−3σu −1σu µ (u) +1σu +3σu Static

A = 2

without p.u. 1.1399 1.1450 1.3715 1.5516 1.7627 2.5762
(0.71) (0.71) (0.85) (0.96) (1.09) (1.60)
[0.58] [0.59] [0.82] [0.96] [1.08] [1.37]
{-0.047} {-0.046} {-0.023} {-0.005} {0.015} {0.096}

with p.u. 1.3355 1.5413 1.7421 1.8038 1.9377 2.3038
(0.83) (0.96) (1.08) (1.12) (1.20) (1.43)

[0.79] [0.95] [1.07] [1.10] [1.16] [1.30]
{-0.027} {-0.007} {0.013} {0.019} {0.032} {0.069}

A = 5

without p.u. 1.5928 1.6546 1.8605 2.0200 2.1693 2.2168
(0.99) (1.03) (1.15) (1.25) (1.35) (1.38)
[0.95] [1.10] [1.43] [1.59] [1.69] [1.72]
{-0.001} {0.004} {0.024} {0.040} {0.055} {0.060}

with p.u. 1.6185 1.7833 1.9891 2.0921 2.1641 2.0919
(0.92) (1.01) (1.13) (1.19) (1.23) (1.19)

[0.60] [1.05] [1.38] [1.50] [1.56] [1.50]
{-0.014} {0.002} {0.023} {0.033} {0.040} {0.033}

A = 10

without p.u. 1.8656 1.9531 2.0149 2.0612 2.0509 2.1032
(1.03) (1.09) (1.12) (1.15) (1.14) (1.17)
[1.28] [1.52] [1.64] [1.70] [1.69] [1.75]
{0.006} {0.015} {0.021} {0.026} {0.025} {0.030}

with p.u. 1.9788 2.0406 2.0869 2.1230 2.1693 2.0503
(1.05) (1.09) (1.11) (1.13) (1.16) (1.09)
[1.38] [1.53] [1.61] [1.67] [1.72] [1.55]

{0.010} {0.016} {0.021} {0.024} {0.029} {0.017}
A = 20

without p.u. 2.0200 2.0406 2.0818 2.1024 2.1127 2.0541
(1.07) (1.08) (1.10) (1.11) (1.11) (1.08)
[1.70] [1.75] [1.83] [1.86] [1.87] [1.78]
{0.012} {0.014} {0.018} {0.020} {0.021} {0.015}

with p.u. 2.0766 2.0921 2.1281 2.1744 2.2104 2.0200
(1.08) (1.09) (1.11) (1.13) (1.15) (1.05)
[1.76] [1.79] [1.85] [1.90] [1.92] [1.59]
{0.015} {0.016} {0.020} {0.024} {0.028} {0.009}

(continued ...)
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(... Table 2 continued)

Panel C) - UK

−3σu −1σu µ (u) +1σu +3σu Static

A = 2

without p.u. 2.6163 2.6163 2.6163 2.6163 2.6163 2.6014
(1.01) (1.01) (1.01) (1.01) (1.01) (1.00)
[1.01] [1.01] [1.01] [1.01] [1.01] [1.00]
{0.001} {0.001} {0.001} {0.001} {0.001} -

with p.u. 2.6163 2.6163 2.6163 2.6163 2.6163 2.6014
(1.01) (1.01) (1.01) (1.01) (1.01) (1.00)

[1.01] [1.01] [1.01] [1.01] [1.01] [1.00]
{0.001} {0.001} {0.001} {0.001} {0.001} -

A = 5

without p.u. 2.6163 2.6163 2.6163 2.6163 2.6163 2.6014
(1.07) (1.07) (1.07) (1.07) (1.07) (1.07)
[1.25] [1.25] [1.25] [1.25] [1.25] [1.23]
{0.018} {0.018} {0.018} {0.018} {0.018} {0.016}

with p.u. 2.6163 2.6163 2.6163 2.6163 2.6163 2.6014
(1.13) (1.13) (1.13) (1.13) (1.13) (1.13)

[1.39] [1.39] [1.39] [1.39] [1.39] [1.38]
{0.031} {0.031} {0.031} {0.031} {0.031} {0.029}

A = 10

without p.u. 2.6163 2.6163 2.6163 2.6163 2.4613 2.6014
(1.10) (1.10) (1.10) (1.10) (1.03) (1.09)
[1.56] [1.56] [1.56] [1.56] [1.25] [1.54]
{0.023} {0.023} {0.023} {0.023} {0.007} {0.021}

with p.u. 2.6163 2.6163 2.5624 2.5017 2.4186 2.5465
(1.14) (1.14) (1.11) (1.09) (1.05) (1.10)
[1.68] [1.68] [1.61] [1.52] [1.36] [1.59]

{0.031} {0.031} {0.026} {0.020} {0.011} {0.024}
A = 20

without p.u. 2.5736 2.5736 2.5557 2.5332 2.5197 2.4657
(1.13) (1.13) (1.12) (1.11) (1.11) (1.08)
[1.90] [1.90] [1.88] [1.86] [1.85] [1.78]
{0.029} {0.029} {0.027} {0.025} {0.024} {0.019}

with p.u. 2.4546 2.4231 2.3580 2.2726 2.1760 2.3775
(1.10) (1.08) (1.06) (1.02) (0.97) (1.06)
[1.83] [1.78] [1.64] [1.27] [0.35] [1.69]
{0.022} {0.018} {0.012} {0.003} {-0.005} {0.014}

Notes: These figures refer to the end-of-period (equal to 10 years) economic value, as measured
by wealth levels, wealth ratios, utility ratios and certainty equivalent returns for the case of an investor
acting on the basis of the dynamic buy-and-hold strategy with a rebalancing period of 1 year. Initial
wealth is assumed to be equal to unity. A is the coefficient of risk aversion in the CRRA utility function
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defined by equation (6). µ (u) denotes the historical mean of the predictor variable, ut, calculated
over the sample period September 1977 - December 1990. ±3σu and ±1σu denote three and one
standard deviations above (below) the historical sample mean of the predictor variable. “Static”
denotes the 10-year wealth obtained with a static buy-and-hold strategy under predictable exchange
rates (as reported in Table 1). ‘With p.u.’ and ‘without p.u.’ denote the case where the investor takes
into account parameter uncertainty (p.u.) and the case where she ignores it respectively. Under each
of these cases, the first row reports the end-of-period wealth calculated using the definition given by
equation (5). Values in parentheses in the second row, for each of the two cases with and without p.u.,
are ratios of the end-of-period wealth levels obtained in the case of predictability to the end-of-period
wealth levels obtained under a random walk exchange rate. Values in brackets in the third row are
ratios of the end-of-period utility levels obtained in the case of predictability (with and without p.u.)
to the end-of-period utility levels obtained under a random walk exchange rate (with and without
p.u.). Values in braces in the fourth row are differences of the end-of-period certainty equivalent
return (CER) obtained in the case of predictability (with and without p.u.) and the end-of-period
CER obtained under a random walk exchange rate (with and without p.u.). The differences in CERs
are annualized.
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Figure 1: US/Canada, static buy-and-hold strategy. The figure shows the optimal weight ω
to the foreign asset plotted against the investment horizon in years. The dotted and solid lines corre-
spond to the cases where the investor assumes predictability with and without parameter uncertainty

respectively. The dot-dash and dash lines correspond to the cases where the investor assumes that
the exchange rate follows a random walk with and without parameter uncertainty respectively.
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Figure 2: US/Japan, static buy-and-hold strategy. The figure shows the optimal weight ω to
the foreign asset plotted against the investment horizon in years. The dotted and solid lines corre-
spond to the cases where the investor assumes predictability with and without parameter uncertainty

respectively. The dot-dash and dash lines correspond to the cases where the investor assumes that
the exchange rate follows a random walk with and without parameter uncertainty respectively.
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Figure 3: US/UK, static buy-and-hold strategy. The figure shows the optimal weight ω to the
foreign asset plotted against the investment horizon in years. The dotted and solid lines correspond
to the cases where the investor assumes predictability with and without parameter uncertainty re-

spectively. The dot-dash and dash lines correspond to the cases where the investor assumes that the
exchange rate follows a random walk with and without parameter uncertainty respectively.
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A = 2, without parameter uncertainty
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Figure 4: US/Canada, optimal dynamic rebalancing strategy. The figure shows the optimal

weight ω to the foreign asset plotted against the investment horizon in years. The four graphs on the
left refer to the case without parameter uncertainty, those on the right refer to the case with parameter
uncertainty. The five lines within each graph correspond to different intial values of the predictor
variable: +3σu (solid), +1σu (dotted), µ (u) (dash), −1σu (dot/dash single), −3σu (dot/dash double).
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Figure 5: US/Japan, optimal dynamic rebalancing strategy. The figure shows the optimal

weight ω to the foreign asset plotted against the investment horizon in years. The four graphs on the
left refer to the case without parameter uncertainty, those on the right refer to the case with parameter
uncertainty. The five lines within each graph correspond to different intial values of the predictor
variable: +3σu (solid), +1σu (dotted), µ (u) (dash), −1σu (dot/dash single), −3σu (dot/dash double).
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Figure 6: US/UK, optimal dynamic rebalancing strategy. The figure shows the optimal weight
ω to the foreign asset plotted against the investment horizon in years. The four graphs on the left
refer to the case without parameter uncertainty, those on the right refer to the case with parameter
uncertainty. The five lines within each graph correspond to different intial values of the predictor
variable: +3σu (solid), +1σu (dotted), µ (u) (dash), −1σu (dot/dash single), −3σu (dot/dash double).
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