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1. INTRODUCTION

This paper has two legacies: the literature on fixed point algorithms (for ex-
ample, SCARFI'") and Toppl'®)) and the literature on dynamic user equilibrium in
models of congestible facilities, in particular models of peak period traffic congestion
(for example, ARNOTT et al.l%], BEN-AKIVA et al'®], HENDERSON®, HENDRICKSON AND
Kocur™), MAHMASSANI AND HERMANI™®), SMiTHl™8] ang VICKREY?")), We draw on the
first legacy to generalize some of the models from the second legacy. We study
dynamic user equilibria in a deterministic mode! of peak period traffic congestion with
heterogenecus commuters. Commuters may choose from ditferent routes and modes
having different performance characteristics, and may also trade off travel time and
schedule delay by choosing ditferent departure times. Computation of user equilibria
with a fixed point algorithm permits treatment of models involving a larger number of
routes, modes, and user types, and more general user cost functions, than much of the
literature referenced above.

Fixed point algorithms, while widely used in economics and other areas of
operations research (see, eg., SCARF!' 7 and Topo!'l), have had a negligible impact
on the transportation literature.? Computational time of fixed point algorithms
increases at least with the cube of the dimension of the set over which search is being
conducted, and equilibrium models of transportation networks tend to have a large
number of variables. We show in this paper how some natural special structure of
user cost functions can be exploited to avoid these dimensionality problems.

Section 2 describes the base mode!, Section 3 provides a constructive
existence proof of a dynamic user equilibrium in the base model, and Section 4 gives
a numerical example of the algorithm involving bottleneck congestion. Section 5 views

the computational routine as a decomposition procedure for nonlinear complementar-

1See DAFERMOS!®), MAGNANTI'3), and NAGURNEY!™ for 3 review of algorithms that have been used to

compute traffic equilibria. Mast of these models do not endogenize the time of departure decision.
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ity problems. This view illuminates how we have been able to avoid the dimensional-
ity problem inherent in fixed point algorithms. Section 6 generalizes the base model to
include multiple origins and destinations, and the possibility that a commuter chooses
not to make a trip. We also discuss the feasibility of generalizing the structure of the
cost function to permit treatment of more realistic networks.

TABLE 1
Summary of Notation
(vectors are in boldface)

R index set for routes

G : index set for groups

T index set for time intervals

Rl IG|, [TI  number of elements in the sets R, G, T respectively

Ny number of commuters in group g

N total number of commuters

dyn number of departures from group g on route r during interval t

dy ngn, the total departures across all groups on route r during
geG
interval t

d (dgn)geG.re RiteT

an average cost incurred by a type g commuter who depars on route
r during interval t

Cq minimum average cost for a type g commuter

c (Cg)geG

E(e) image set of the excess commuter corrgspondence

d(c) image set of the subproblem solution correspondence

2. THE BASE MODEL
There are a finite number of routes, indexed by re R, connecting a single origin
(a residence location) to a single destination (the Central Business District (CBD)).
Ditterent routes may correspond to different modes of transportation. There are a finite
number of homogeneous groups of commuters, indexed by ge G. N, is the number of

commuters of group g, with N= ZNg. Each commuter makes 1 trip between the origin
geG

and destination. There are a finite number of departure time intervals, indexed by
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teT={1,...[T|}.2 |G|, |R], and [T| denote the number of elements in G. R andT
respectively.

Let dil- denote the total number of commuters departing on route i (across all
groups) during interval j. For any 3-tuple (9,r.t) we define the cost function
Con: R, = R,, where C_(d,,.....d,) denotes the average trip cost incurred by a
commuter from group g who departs on route r during interval 1.3 ng summarizes the
cost of travel time, schedule delay, and the like. The nature of tratfic congestion is
assumed to be embedded in these cost functions. The dependence of Cgn ON
(dyy....,dy) implies that congestion is anonymous, dependent on the number of users,
but not their type. The lack of dependence of an on the number of departures on
routes other than r in any time interval makes it convenient to interpret the base model
as one involving parallel roads. The lack of dependence of Cgnon d (foraflie R and
t>1} is crucially exploited in the algorithm.4 The indexing of the cost functions affords
considerable flexibility in interpretation. The presence of the g index permits treatment
of commuters with different costs of travel time, desired arrival times at the CBD, and

costs of early or late arrival. The presence of the rindex aliows for ditferent route

2For example, assumptions can be made which guarantee that the morning rush hour starts no earlier than
6 AM and ends no later than 10 AM. We can then partition thls 4 hour period into a finite number of
uniformly sized intervals. The larger the number of intervals, the more closely the model will approximate a
continuous time mode!l. Each commuter then chooses to depart for work during one of these intervals.

3In a model involving congestion and discrete time intervals, it may not be true that all commuters of a

particuiar group that depart in the same time interval incur the same actual cost. Cgﬂ represents the
average of these actual costs. See Section 4 for an example. The number of departures djjis treated as a
continuous variable. Under the assumption that the N, are large, this causes no difficulty with the notion

of approximate equilibrium discussed in Section 4.

4In Section 6 we consider generalizations involving an expansion of the list of arguments of Cgrt-
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(including mode) attractiveness, congestion characteristics and the like. The presence
of the t index permits treatment of the important dynamic aspects of the problem.

Assumptions

(A.1) an is continuous.
(A.2) For fixed values ot (d,,...,d, ). an(dn, dn.1/dy) > Cpldyy.. dyy y,di) i O >

dr.5 (We say an is increasing ind,,.)

Each commuter is assumed to pick a route and a departure time interval, conditional

on assumed departures of other commuters, so as to minimize cost. Letd,, denote

the number of commuters of group g who depart on route r during interval t.

DEFINITION. (d",¢*)>0, where d*=(d ). G ;cqe7 (With Q ,,_Z Oy @Nd €¥=(C})g. 318
gedid

a dynamic user eqw‘!fbrium if for each (g,r,t} e GxRxT:
) 205~ Ny

(if} C M n_,,d,;):o; ifdg_*n> 0;
(iii) Con(Tfy. .00, dy) 2 Cgif Ogn= 0.

Condition (i) simply requires that all commuters make the trip from the residence
location to the CBD. cg represents the minimum average cost that a commuter of
group g incurs, given the departure pattern summarized by d*. Conditions (i) and {iii)
insure that each commuter’s choice of route and departure time interval is consistent
with cost minimization, given the choices of all other commuters. This equilibrium

notion embodies WARDROP'S??] principle— all routes utilized by a given group will

SWhile it would be more plausible to either restrict the domain of Cgrt 10 a subset of KR!, orto assume that
(A.1) and (A.2) hold only on a subst of KR!, for simplicity we assume (A.1) and (A.2) hold on alt of R!. We
could restrict these assumptions to the subset (s e R! | s < (N+1,...,N+1)} without affecting any of the

rasults in this paper.
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have the same travel cost, which must be minimal among travel costs on all routes for

that group.

3. COMPUTING AN APPROXIMATION TO A USER EQUILIBRIUM

The basic idea behind the computational routine is similar to an idea exploited
by ARNOTT AND MACKINNONI*! in a different cantext. Armott and MacKinnon were
concerned with allocating consumers to spatial locations in an urban area.
Conditional on a centain vector of parameters, they allocated consumers to the various
locations so as to build in certain equilibrium requirements (such as utility maximiza-
tion and the equality of supply and demand for land in each location). At the end of
their aliocation process they compared the number of consumers actually allocated
with the number that had to be allocated. if these numbers differed significantly, they
systematically adjusted the vector of parameters and repeated the allocation process.
Qur aigorithm in the present context embodies the same spirit. Conditional on a
centain vector of parameters, instead of allocating consumers to spatial locations the
algorithm allocates commuters to departure time intervals and routes so as to
essentially build in the cost minimization requirements of equilibrium (conditions (i)
and (iii)). Then it compares the number of commuters (of each group) that are actually
allocated with the number that must be allocated. If these numbers ditfer significantly
(i.e., if condition (i) is not approximately satisfied), the vector of parameters (which
corresponds to a |G|-vector of minimized bosts) is systematically varied and the
process is repeated. The algorithm stops when condition (i) is approximately satisfied.

The formal algorithm is explained by:
(1) Describing the creation of the excess commuter correspondence, whose domain
is a set of candidate equilibrium minimized cost vectors ¢ = (cg)gE o Satisfaction of
conditions (i) and (jii) of equilibrium is built into this corrgspondence.
(2) Showing a zero ¢* of this correspondence corresponds 1o a dynamic user

equilibrium,
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{3) Describing how a fixed point algorithm can be used to approximate a zero of this
correspondence. (The dimensionality of the domain of the correspondence equals |G|

1

and is independent of |R| and |T].)

The excess commuter correspondence

The creation of the excess commuter correspondence E: RSl ®/¢! s

illustrated in Figure 1. Given an arbitrary vector CE‘RLG', we first define d,, the total

number of commuters that are assigned to depart on route r in interval 1.6 Making this
assignment for each reR yields the unique vector (d,), g Of total departures in interval
1. Armed with this vector we then determine uniquely d ,, the total number of
commuters assigned to depart on route r during interval 2. After calculating d_, for
each re R, we will have in hand a unique vector (dri)reH.ie{1.2} representing the total
departures on the various routes during intervals 1 and 2. Continuing this sequential
process enables us to determine a unique vector (d,),. g .7 Which summarizes the
number of commuters which are assigned {o depant on route r during interval j for all
routes re R and all intervals je T. Note that this sequential procedure exploits crucially

the property that an does not depend on the number of departures cn any route in

B1f the first branch of d,; is operative, it follows (since Cyr1 18 increasing in v} that Cgyy(v) < ¢y for all
ve[0,N+1], veritying that the 2 branches are mutually exclusive. The continuity of C,4 insures that d,, is
well defined if the saecond branch of the definition is operative. |f the first branch is operative, there is
some group g whose cost on route r cannot be driven up to the proposed equilibrium level Cq, €ven if
more than the entire population of commuters uses that route. Obviously such a ievel Cq is not a viable
equilibrium candidate, and so we assign more than the total population of commuters to that route, which
insures that the algerithm cannot possibly converge 1o such a cost vector €. If the second branch is
operalive, then the total number of commuters placed on route r insures that no group incurs lower cost
on that route than its propesed equilibsium cost, which at least allows for the possibility that ¢ could be a

vector of equilibrium costs.
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D(C) E{(dgrt)gﬁG‘ns R.teT < 9-{+PG[IHIIT|' stgrt =drl’ with dgrt >0 only if Cgrl‘(dr} '“"drt) gCg}
ge

'

E(e) ={(N, —de--‘-,qu _zdlem) e R (dy dgecrem 1T € DIC))

Fig. 1. Creation of the excess commuter correspondence
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any interval subsequent to interval t,

Having determined the unique total departure vector (d),. g ;. v we then define a
collection of departure patterns D(c¢) which are consistent with this total departure
vector, and which satisfy a certain cost constraint, It is straightforward to argue that
D(c) is nonempty.” Each element of D(¢) specifies the number of commuters from
each group that depart in each interval on each route. A commuter from group g is
allowed to depart on route rin interval t only if his cost would be no greater than the
coordinate c, of the given vector c. Each departure pattern vector (dy)o g e R e T
generates an element of E{(¢). The gth coordinate of such an element represents the
difference between the size of group g and the number of commuters from group g that
depart on some route during some time interval in the underlying departure pattern
vector.

The algorithm finds an approximate zero of E. The definition of E is designed to
insure (see the proof of Theorem 3.1) that at a zero of E, conditions {ii) and (iii) of

equilibrium are satisfied.

THEOREM 3.1. Let O E(c”), where 0= (Ng—;dgn)ge .- Then (d*.c*), where d’=

(Ogge G reRte T + 18 @ dynamic user equilibrium.

7We can always construct an element of D(c) in the following manner. For an arbitrary pair (r,t) € R<T, if the
first branch of the definition of d, in Figure 1 is operative, then there exists g’ such that

Canidr.- G N+1) < €5 Setdgy=N+1and dgq=01%or all g=g'. If the second branch determines d,,
and d;= 0, then we set dgy = O for all ge G. Finally, suppose the second branch determines a positive
d. Since Cgn{dyy.....dn.1.v) Is continuous and increasing in v, it follows that Contldr1--,dy.1,0n) 2 ¢4 for all
g, with = holding for at least one g, say g=g'. Setdy,=0forallg=g" and set dyy =0y dqn is permitted

by the definition of D(c) to be positive since Cgn{d,y,....dn.1.94) =4
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gn= n=
art

Proof. Condition (i) of equilibrium is obviously satisfied. Since Ed* ZNg_—. N, d;
g

ZdansN for each pair (r,t). Thus dy is determined by the second branch of its

’

definition in Figure 1, and hence an(d;q,...,d;)zc; for all ge G. Condition {iii) of
equilibrium follows immediately. If dge> 0, then it follows from the definition of D{c*)
that an(d;1,...,d,’;)scé, and thus the equality must hold, verifying condition (i} of

equitibrium. B

The link to fixed point algorithms

We have shown that a zero of the excess commuter correspondence
corresponds to an equilibrium. Fixed point algorithms can be used to constructively
demonstrate the existence of a zero of a well-behaved correspondence and to
approximate such a zero numerically. In particular, the proof of Theorem 3.2 below
implies that a fixed point algorithm can be used to demonstrate the existence of a zero
of the ex.cess commuter correspondence, and hence by implication can be used to
approximate a dynamic user equilibrium. The proof of Theorem 3.2 is an application
of Lemma 3.1, which is a slight variation of a theorem which is proved constructively in
RICHTERI'®] using a fixed point algorithm. Lemma 3.1 essentially presents a set of

sufficient conditions for a correspondence to have a zero.8

LEMMA 3.1, Letu>0, XE{XE a7

Zx,-_<u } and §:X— %" be an upper

=1

hemicontinuous, nonempty, convex, compact-valued correspondence. Suppose that:

(a.1) Foreach xe X with Zx,-: 1 and each ec§(x), Jie{1,...,n} such that x>0 and
-t

£<0.

Then there exists x*e X and e*e &(x*) such that €”< 0, with €;=0ifx j>0.

The following theorem follows directly from Lemma 3.1 and Theorem 3.1.

8Strictly speaking, the x* determined by Lemma 3.1 may not be a zero of £ unless x* »» 0.
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THEOREM 3.2. Suppose that for each (g,nt)e G<RxT:
(A.1) Cgpy is continuous.
(A.2}) For fixed values of (d,,....d  ,}, Cqn is increasing in d,,.

Then there exists a dynamic user equilibrium (d* ¢*) = ((d;n)ge GreRieT (c_g}g e

Proof. (A.1) implies there exists |1> 0 such that for all (g,r.t}e GxRxT,
Con(s)<WiG| forall seS={se R ||s<(N+1,... ,N+1}}. (1)

Use this p in Lemma 3.1, set n=|G|, x=¢, X= {ce‘)ﬂf'

chgp} 2 and let £ be the

geG

restriction of E to X.19 We first show that all of the hypotheses of Lemma 3.1 will be
satisfied if (A.1) and (A.2) of Theorem 3.2 hold. We then show that (d*,¢*}, where ¢*=
x* and (Ng— ;daf‘)geeze*’ constitute an equilibrium. It is straightforward to show that

the restriction of E to X is upper hemicontinuous, nonempty, convex, and compact

valued.!! To establish (a.1) of Lemma 3.1, suppose ce X with ¢ =4, and
geG

let (Ng - zr:‘dgﬂ)gee be an arbitrary element of E(¢). Then for some ke G, ¢, 2 WG|

Since Cq(N+1) < Ww/|Gj<c, (the first inequality following from (1}), it follows from
Figure 1 that d,, = N+1. Then from the definition of D{c}, ng” =N+1. Hence there

aeG

exists ie G such that N;—d,;; <0 and thus N.— de<0. Furthermore, d,,; >0 implies
rt

9Any equilibrium ¢* must ie in this set. Suppose ¢* and d” = {dgrdge Grer e T dESCribE an equilibrium.
Then dpy = Zdﬁns N for alt {rt) e RxT. Consequently, {d[,,....d) € S, for all {r.t) e BT, and hence ¢ 5%
geG

Cgnfdry,e- 0 < WG| for all ge@. Thus Zéca <i.
pe

10Note that {A.1) and {A.2) have already been used in insuring that E is well defined.

11The convexity of the set E(c) follows from the convexity of the set D(c). In establishing that D(c) is a
convex set, it is critical that the total generated departure vector (dyg). g 7 COFresponding to ¢ is unigue.
In establishing the upper hemicontinuity of E, it is critical that this total departure vector is a continucus

function of c.
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from the definition of D(¢) that C;;,(d,,)<¢, Since Ci11(0)20,dyy=N+1, and C,,, is an

increasing function, we conclude that ¢;>0. In summary, given ¢ce X with Zc =L, and
ge G

an arbitrary element ( ngrt)g of E(c), we have shown there exists an i such

that the ith coordinate of this element is negative and ¢;>0. Thus (a.1) of Lemma 3.1 is
satistied. Applying the conclusion of Lemma 3.1 in the present context, there exists
¢*eX and (Ng— Z‘dan)geee E(c*) such that (Ng—;dgn)g <0, with (N ngn)

0 if c§> 0. Suppose for some g, (Ng - ;dan)< 0. Then Cg=0, and there exists a route

i and a time period j such that d5u> 0 and hence d;>0. Since Cgu(d”, d;j'_1,0)2 0 and
Cgi Is increasing in its last coordinate, it follows that Cildy,...d5) > 0= ¢y Thenit

follows from the definition of D(c) that dg; =0, which is a contradiction. Thus

(N Zd*ﬂ) must be O for all ge G. Thus (N ng,t)g is & zero of E{c*), and by
Theorem 3.1, (d*,c*} is a dynamic user equilibrium. N
Since a fixed point algorithm can be used to approximate the x* and ¢* of

Lemma 3.1, it can be used to approximate the user equilibrium summarized by (d*,¢*).

4. A NUMERICAL EXAMPLE
In this section we show how our algorithm can be used to approximate the
equilibrium of a continuous time model of the morning rush hour involving
heterogeneous commuters, schedule delay costs, bottleneck congestion, and a

Vickrey type queueing model.’2  There are 3 parallel routes from a suburb to a CBD,

with 3 commuter groups. Each of the Ng commuters in group g has the user cost
function Ug= ag(travel time)+Bg(time early)+yg(time late). The characteristics of the
groups are summarized in Table 2, where g Bg, and Yq &fe measured in dollars per

hour.

T2ARNOTT et al 2l employ such a model with ohe route.
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TABLE 2
Group Characteristics
N Desired
Group g Oy Bg g arrival time
1 7500 4.8 2.4 3.6 8:00
2 7500 15.0 1.0 2.0 8:30
3 7500 15.0 2.0 4.0 9:00

Each route contains a single bottleneck with a fixed capacity. We assume the
bottlenack is entered as soon as a commuter ieaves home, and is followed by a stretch
of uncongested roadway before the CBD is reached. Travel time is the sum of waiting
time at the bottleneck and time to traverse the uncongested portion of the route. The

characteristics of the routes are summarized in Table 3.

TABLE 3
Route Characteristics
Bottleneck capacity Travel time on uncongested
Route  (commuters per minute) portion (minutes)
1 58.33 6.6
2 66.67 6
3 75 2.4

An equilibrium in such a model can be summarized by a function ry(t) for each
group g, where tis a continuous variable representing departure time, and rg(t) is the
departure rate of group g at time t. Such a collection of functions represents an
equilibrium if no commuter can lower his costs by unilaterally altering his departure
time.

In translating this model into our discrete formulation we chopped up time into 1

minute intervals and assumed that depariures during any 1 minute interval were
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distributed uniformly over the interval.’3 Then we defined our cost functions C, as the

average of the actual costs incurred by all commuters from group g departing on route

r duting interval t.14

13Akternative assumptions were tried. In one variant, all departures during an interval were assumed to be
made at the beginning of the interval. Very little difference in the results occurred. Of course, as the
length of the intervals approaches zero, these variants should converge to the same result.

HFor example, suppose the interval t corresponds to the period 7:30~7:31, and that given the vector of

total departures (d,...,d,) on route r up through intervai t, a commuter from group g leaving at 7:31 will
ariive early to work. Let Q, denote the length of the queue at 7:30 on route r. Qg will be a function of
(drt-...dn_4) and can be determined iteratively from the equation Qn= Q,_y— cap,+dy_y, where cap, is
the number of commuters the bottleneck on route r can process per minute. Let 1, denote the time to
travel the uncongested part of route r, ty denote the desired arrival time of group g commuters, and
7:30:30 denote the midpoint of interval t (i.e., when the clock is half past the hour pius 30 seconds). Then

we define

o, i+ 0.5{dy~cap,) '
an(d'l"""d“)g g%{ma}((o capr 4 ,0)+ Tf +

0.5(d,,~
E51{t‘—-?:30:30—max(0"+ (9 capr)lo)_ T,}.

6019 cap,

o, and B are divided by 60 to translate their units into dollars per minute. The term in braces multiplying
Oy dpproximates average travel time for a commuter departing on route r during interval t, under the
assumption that departures of these commulérs are distributed uniformly in the time interval. The
numerator of the first term under the max operator represents the iotal number of coemmuters in line at the
bottleneck on route r at 7:30 plus one halt the difference between the total departures on route r between
7:3C and 7:31 and the total number of commuters the bottleneck can process during this minute. If the
numerator is positive, it represents the average queue size during the interval. Dividing by cap, then
yields the average waiting time in the queue for commuters who depart during the interval. If the

numerator is nonpositive, then it can be shown that Q= 0, and hence no queue will appear during the

interval, implying average waiting time is 0. {One feature of this particular model is that the queue is



page 14

Tables 4 and 5 and Figure 2 are examples of the type of output that can be

obtained from our computations.15

nondecreasing over time as long as eary arrival is feasible for at least one group. Without 1his feature a
more complex representation of an would be necessary.) The term in braces multiplying Bg measures the
average number of minutes early (assumed positive) that a commuter from group g arrives who deparls
during this interval. The desired arrival time is subtracted from the average arrival time, where average
arrival time is determined by adding to the average time of departure (7:30:30) the average travel time.

Analogous expressions can be derived for the case where everyone from group g who departs during

interval t arrives late, and the case where there is a mix of early and late arrivals. an may onfy be
nondecreasing (rather than increasing as required by assumption (A.2}) in d,, if there is no queug on route
rin interval t, but this has caused no particular difficulties in the computations. We have chosen Qg > Bg
since otherwise Cgq may be decreasing in dy, which can cause existence problems, as has been noted by
HENDRICKSON AND KOGURI,

15An approximate equilibrium was found using a Fortran implementation of a fixed point algorithm due to
ToDD!?), The equilibrium was found in about 17 seconds of cpu time on a Vax 8700, and involved the
calculation of 121 elements from the image sets of the excess commuter ¢orrespondence. (ncreasing the
number of routes would have relatively little effect on computational time. The equilibrium is approximate
in the sense that a commuter may be able to find an atternative route that is slightly cheaper. In the
equilibrium presented, no commuter could reduce his cost by more than 0.006% by switching routes, and
hence, practically speaking, would have no incentive to do so. By appropriate rounding and reallocation
of a small number of commuters to alternative routes, one can easily obtain an approximate equilibrium

involving an integral number of departures during every time interval.



page 15

TABLE 4
Equilibrium Departure Patterns
Departure Group Departure rate
time departing State of arrival (commuters/min)
7:29-7:41 1 early 116.67
7:41-8:03 1 late 33.33
ROUTE 1 8:03-8:19 2 early 62.50
8:19-8:32 2 fate 51.47
8:32-8:49 3 early 67.30
8:49-9:09 3 late 46.05
7:21-7:29 2 early 71.43
7:29-7:41 i early 133.33
7:41-8:03 1 late 38.10
ROUTE 2 8:03-8:19 2 early 71.43
8:19-8:32 2 late 58.82
8:32-8:49 3 early 76.92
8:49-9:12 3 late 52.63
7:13-7:29 2 early 80.36
7:29-7:41 1 early 150.00
7:41-8:03 1 late 42.86
RouTe 3 8:03-8:19 2 early 80.36
8:19-8:32 2 late 66.18
8:32-8:49 3 garly 86.54
8:49-9:15 3 late 59.21
TABLE 5

Departure Times for On Time Arrival
Departure time to

Group Desired arrival time arrive on time
1 8:00 7:41
2 8:30 8:19
3 9:00 8:48

In Figure 2 the equilibrium size of the queue at the bottleneck on route 3 during
the rush hour is plotted. From 7:13 to 7:29 commuters from group 2 arrive at a rate

(80.36 commuters per minute) exceeding the capacity (75 commuters per minute) of
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the bottieneck, thus causing the queue to risg. (Note that the arrival rate of commuters
from group 2 at the bottleneck from 7:13 to 7:29 is the same as the departure rate in
Table 4 for group 2 on route 3 from 7:13 to 7:29, reflecting our assumption that
commuters reach the bottleneck as soon as they leave home.) The queue continues
to rise as commuters from group 1 arrive from 7:29 to 7:41 at a rate exceeding the
capacity. From 7:41 to 8:03 the queue lessens, since the arrival rate of commuters
from group 1 is less than the capacity of the bottleneck. By 9:15, after several focal

peaks, the queue disappears.

1200 -
(Group arriving at bottleneck,arrival rate)
900 -
(1,42.86)
»
O
=!
E 600
g 1,150
3 (1,150)
300 -
{3,59.21)
{2.80.36
0 I T H 1 1
7:00 7:30 8:00 8:30 9:00 9:30

Time

Fig. 2. The queue on route 3

5. AN ALTERNATIVE VIEW OF THE COMPUTATIONAL PROCEDURE
in this section we view our computational procedure as a decomposition

procedure for a nonlinear complementarity problem. This view makes transparent why
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our technique alleviates to a considerable degree, in the present context, the
dimensionality problems inherent in the use of fixed point algorithms.

AASHTIANI AND MAGNANTIT have formulated the static user equilibrium problem
as a nonlinear complementarity problem. In the spirit of their approach, we can
formutate our dynamic user equilibrium problem as a nonlinear complementarity

problem.
THEOREM 5.1. (d*¢*), where d”* = (Cgrdge Grente T - IS @ dynamic user equilibrium if and
only if (d*,¢*} is a solution of

Find (dya)ge repie 720 and (Cg)ge a2 0 such that

an(den . .,den)— c,20 V(g1 e GxRT
heG kG

(Cgf{édk”"-wédkrt]_ Cg)dnz 0 Vi{g,rt)e GxR=T o

Z dgn—Ngzo VgeG

reRleT

[Z dgn-—Ng)cg=0 vgeG.16.17

reRteT

(d*,c") is & solution of (2) it and only if it is a zero of the function

b ERI-'G.HH”TI‘*]GJ - ER|G! IR ITl+fG|’ where

16The genera! nonlinear complementarity problem is: Let {: X" - ®" be a continuous function. Find z>

0 with {(z)=> 0 and z-{(z) = 0. Problem (2) comesponds to choosing n= |G|IR||T}+|Gi, z=
((dgn)ge GreRte T'(cg)ge gh and {(z)= ((Cgrt(') - Gg )ge GreRteT " (r Z dgd— Ng} GJ .

=RtsT

17Proof: The only part which is not obvious is that i (d*.c*) is a solution of (2}, then 2 dgn—Ng=0
reRteT

Y geG. Suppose for some g that E d;:m-— Ng:>0. Then Cq-=0 and for some {i,f) ¢ RxT, d gij> 0
reH =T

But dg; > 0 implies Cgi (k;;dgn ..... % d;;j)— Cq = 0. Since ¢ = 0, we conclude that

Cg‘;j(Zd;H ,...,%dgiiJ =0. Since Zd;ij >0, this equality is inconsistent with (A.2).
ke G ke ke G
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CD(d,c): ((min[dgn*cgn(')_ Cg])ge GreRteT {min[cg,m; ngrt_ NQ:DEEG}

One way of solving (2) is to use a fixed point algorithm to find a zero of @ (see, egq.,
Toool'?), p. 22). However, computational time of a fixed point algorithm generally
varies with the number of arguments of @ raised to a power of 3 or more. Since |T] and
possibly |R| are likely to be large in the present context, use of a fixed point algorithm
to compute a dynamic user equilibrium by finding a zero of ® does not appear
promising.'® However, we now show that our earlier algorithm amounts to
decomposing (2) into a number of interdependent smaller nonlinear complementarity
problems (which can be solved easily because of the special structure of the cost
functions}, with a fixed point algorithm applied to a "master” coordinating problem
involving only |G| variables. In this fashion we are able to reduce the dimensionality of
the problem to which the fixed point algorithm is applied from an unmanageable
|GI|RI|T| + |Gl to a much more manageable |G|.

Problem (2} generates |R||T| nonlinear complementarity subproblems.
Subproblem {r,t), for (rt)e RxT, is defined for predetermined nonnegative vectors

(Cqlgei @Nd (dyy,..., .y

Find {dgy)ge 20 such that

an[dr1,...,dn_1,%de— ¢,20 VgeG (3)

(an[dn,...,dn_v;dkn)— cg]dgn= 0 VgeG.

Figure 3 illustrates the creation of the subproblem solution correspondence

8: R — RIGHIT. Given the nonnegative vector ¢=(cy,....c,q), We define 3(c), for

18An optimistic upper bound on the number of arguments that a fixed point algerithm can be expected 10

handle lies between 50 and 100.
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|

{(agﬂ)geG >0 Zag” = N+1, with 69” >0 On'y if CgH(N+1) < Cg}

gea
8,4(C) =< it subproblem (r,1) does not have a solution (dg,,)g.q With ZGEigH <N+1
ge
{(ag”)gee ZGEign <N+1 and (ufig”)gee is & solution of subproblem (r,1)JL otherwise
=14
o

!

(dr‘l )rER
f }

{(fc‘ign.:.),_:}EG 20 269,2 = N+1, with &grz >0 only if Cgrz(d N+1) < cg}

r!
gelG

8p(c) =< it subproblem (r,2) does not have a solution (agrQ)gr:G with Zég{z <N+1
gsa

{(agrz)gee

.

g;adgrg < N+1 and (d,,),.q is 2 solution of subprobiem (r,z)} otherwise

!

(drj) reR.je{1,2}

|

(drj)re R.je(1,...t-1}

| !

.....

3,,(c) =< it subproblem (r,t) does not have a solution (E:‘ign)ge{3 with E{;Ejg” <N+1
ge
{(fdgn)g‘EG Z;agr, < N+1 and (c'ign)gEG is a solution of subproblem (r,t)} otherwise
Qe
.

4

5(0) = {(agrt)geG, reR,teT

(agrl)geG € Srl(c)}

Fig. 3. Creation of the subproblem solution correspondence
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each reR, as indicated.’® 3§ ,(c) is essentially the set of solutions of subproblem (r,1),
appropnrately bounded. If (di ;). and (dy 4 )ke g DElONG to 8,4(c), it follows from

monotanicity of the cost functions (assumption (A.2)) that Zd‘k” = 2 kr1-2° Thus & ,(c)
keG keG

determines the unique nonnegative number d ,, where d , = Z&Im for any
ke G
(éik”)k,___,ae{ir1 (c), and collectively & (c) (for r=1,...,|R{} determine the unique
nonnegative vector (d,),. g-
Armed with the vector (d ,),_g, we then consider subproblem (r,2) for all re R by
setting t=2in (3). 6,,(c} is defined analogously to §,,(c), and the coliection of sets

{6,5(C)},. g generates the unique vector (d,) . =20, where d,= Zc'ikrz for any
keG

(ke g € 82(C). Continuing in this fashion we end up with the sets 3,(c) for all

1%The set determined by the first line of 8,4{c) is nonempty. To verify this it is sufficient to show that if
subproblem {r,1) does not have a solution (dgy)ge 6 With Eag” < N+1, then there exists g'e G with
geGG

Cgﬂ (N+1) < Cg- Suppose not, Then Cgr1{N+1} 2¢5 Vge G. Choose the smailest A ¢[0,1] such that

CgrifA(N+1)}2c, VgeG. (The continuity of G4 insures that A is well defined.) ItA=0,then { dgr4)o. o=

< N+1.

0 contradicts our hypothesis that subproblem (r,1) does not have a solution (agr‘i}geG with Z E}g” <
ge 3

ItA=0, Ike G with Cy(;(A(N+1)) = ¢,. (This assertion follows from the continuity and monotonicity of the

cost functions.) Let ag” =0 vV g=k and let &kn =A(N+1). Then (ag”)gee is a solution of subproblem

(r,1}— contradiction.

20This assertion trivially follows if the first line of 5, is operative. Thus suppose (di k. g and (A} ke o
with zd;ﬂ > zdi;n. are determined by the second line of §,1(c). Then there exists ge G with dyy > 0.
€ ke

Since (di)k g 1 a solution of subproblem (r.1), Cy, (Zd;m)- Cg=0. But then monotonicity of C
ke(d

implies 09,1(§d;;,1) —€4< 0, which contradicts the supposition that (d jo)i g s @ solution of subproblem

{(r,1}.
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(rt)e R<T. We then define (¢)= {(dgngecreric 7! Ggndgec €8,(C)). 1is easily verified
that 8(c) is identical to the set D(c) of Figure 1.21

Given the correspondence 8, we then define the master problem:

Find¢= (C4)ge a2 0 such that for some (dgnlge G rerieT € B(E):

Z dgyn—=Ng20 VgeG {4)

re e T

(; dgn—Nchg=0 VgeG.22
reRIET

If ¢” is a solution of the master problem, and d* is the associated element of 8(c*}, then

(d*,e") is a solution of problem (2), and hence (by Theorem 5.1), a dynamic user

2'Suppose (dgrlge G remie TED(E). W, = Zédgrt is determined by the first line of its definition in Figure 1,
ge

then E;’;dg" =N+1, and the existence of a g with Conldrt,. .. Ay N+1) < Gq implies (using monotonicity of
ge

the cost functions) that subproblem {r1) does not have a selution whose coordinate sum is fess than of

equalto N+1. Thenthe first line of the definition of 84(c) implies (dgn)gE a€8y(c). If dyis determined by

the second line of its definition in Figure 1, then %dgns N+1. Furthermore, the requirement that dgn >0
ge

only f Cgr{drq,....dy) < ¢4 (from the definition of D{c)}, coupled with the restrictions from the second line of
the definition of d,, in Figure 1, implies (dgn)ge G IS @ solution of subproblem {r,t), and hence

(dyrlge g € 8nfC). Thus (dgnlge G re R1c TES(C). The proof of the converse is feft to the reader.

22Problem (4) can be viewed as a correspondence version of the standard nonfinear complementarity
problem. The standard version is: Let L:R] — R" be a continuous function. Find z>0 with {(2)> 0 and

z-{(2)=0. The comespondence versionis: Let L:RD— R" be an upper hemicontinuous

correspondence. Find z>0 such that for some e c {(2) with 20, ze=0. Problem (4} Is a special case

of the correspondence version in which n= IG}, z=c¢, and {(2) =
{( 2 dgf‘“ NQ }EG I (dgn)geG,re R TE(C) } .

RiteT
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equilibrium. To see this note that Z din—Ng=0 VgeG,23 and hence Zdéﬁ N+ 1

reRteT ge G

for all {r,tye RxT. Since (dén)gece d,({C"), it must be the case that the last line of the
definition of 8,(¢*) is operative, and hence (dart)geG is a solution of subproblem (r,t}. It
follows immediately that (d*,c*) is a solution of problem (2).

As noted above, if ¢” is a solution of the master problem, and d* is the

associated element of 8(c*), then Y, dyn—Ng=0 VgeG. Thus solving the master
re BteT

problem amounts to finding a zero of the correspondence M: RISl 5 XIS where

M(c):{(Ng— Y dgn},esI(dgn)gea.ren.tereﬁ(c)} . Since d(¢) is identical to D(c), M

reR, 1T

is identical to the excess commuter correspondence. Thus the decomposition

procedure of the present section reduces to our earlier excess commuter approach.

6. GENERALIZATIONS
Generalization of our base model to include treatment of multiple origins and/or
destinations, with each route carrying commuters only for one origin-destination pair,
is straightforward. For example, suppose different groups are exogenously located at
different origins, with all groups facing a choice of multiple destinations. Then each
route will have an origin-destination pair associated with it, and the cost functions for

the various routes can reflect the relative attractiveness of the various destinations.24

233uppose E dgn>Ng for some g'e G. Then ¢ g =0, and there exists a route i and a time period |
reRteT
such that dg; > 0. Since (dgjlge g €5;(C7), it follows that Gy k;;d;m,...,k;gdgﬁ) - €= 0, which implies that

Cg-q{k;dgn,...,hzdd;ﬁ) = 0. This equality contradicts the monotonicity of Gy

24ror example, in addition to travel time and schedule delay costs, negative terms reflecting attractiveness
of the origin or destination can be added to the cost function. (The cest functions can be appropriately
translated to preserve their nonnegativity.} If group g does not reside at the location from which route r
onginates, or the destination of route r does not correspond to a possible workplace for group g, then an

can be chogen to be a suitably large number for all 1.
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Note that this generalization does not cause an increase in the number of arguments
of the excess commuter correspondence (or equivalently, the number of variables in
the master problem). The choice of origin can be made endogenous, with the cost
function reflecting relative attractiveness of the origins. Scarcity of land at the various
origins can be handled by expanding the number of variables of the excess commuter
correspondence to include a land rental at each origin, and expanding the number of
coordinates of an image point to include an excess demand for land at each origin.25
An attificial route representing the option of staying at home rather than making a trip
can also be introduced.26 Adding policy instruments such as congestion tolis is also
straightforward.

Relaxing the structure of the cost functions would permit the treatment of more
complicated networks, but is not neariy as straightforward. Our computationa!
procedure has crucially exploited the following properties of an: (1) its lack of
dependence on total departures in intervals subsequent to t; (2) its lack of dependence

on total departures on routes other than r in intervalt. From the excess commuter

25Suppose for simplicity that there is a fixed supply of land at each origin, and each commuter's demand
for land at a particular origin is totally inelastic. The cost functions would have as additional arguments land
remtals at the various origins. Conditional on a vector of minimized costs ¢ and land rentals, a departure
pattern (dgn)ge Gre R e T WOUK] be generated essentially as in the base model. Since each route would
hiave an origin associated with it, this depaiture pattern would generate a demand for land at each origin,
and hence an excess demand for land at each origin. We would then define an augmented excess
commuter correspondence, whose image points would contain additional coordinates corresponding to
the excess demand for land at the various origins. The fixed point algorithm would then be used to find a
zero of this augmented excess commuter correspondence.

26Fgr example, suppose there is a fixed cost & for an individual of type g staying at home (i.e., using route
f}. Inorder to preserve assumption {A.2), we can define Cgrtldry....0) = &+ edy for altte T, where ¢ is an

arbitrarily small positive number.
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viewpoint, property (1) allowed us to determine the total departures in each interval

sequentially, first determining (d.(), 5. then (d,),. g etc. Within aninterval, property (2)

allowed us to determine the total departures on each route independently of one
another, thus permitting the determination of d, via a one-dimensional search. From
the decompasition perspective ot Section 5, property (1) allowed us to solve the
subproblems sequentially, while (2} allowed us to index the subproblems by r as well

as t, making the solution of the subproblems particularly simple.

One can trivially extend our computational procedure to permit C_, to depend
on ((d;}eR, jef1,...1-1p:dn). i-€., on total departures on all routes (not just route r) in
periods 1,...,1—1, as well as total departures in period 1. While this generalization
would not significantly enhance the kinds of networks that could be treated, it would
afiow for intermodal congestion.2? Permitting Cyn to also depend on
((9icmyett..... my), 1-€., on total departures on routes other than rin period t and
beyond would require a more significant alteration. To see how this might be
accomplished, we shall view the essential elements of the decomposition procedure of
Section 5, for the case of 2 routes and 2 time periods and an aribitrary number of
groups,28 using a metaphor drawn from the literature on deceniralized economic
planning (see Figure 4). Suppose there is a central planner and 4 managers. The

central planner sends cost signals (Cg)ges to each of the 4 managers. Conditional ¢n

these signals, manager (r,1) (for r=1,2) decides, by solving subproblem (r,1}, how

27For example, suppose there was only one road between a single residential location and the CBD, but 2

modes (bus and car). Then we can define 2 routes, with route 1 corresponding to traveling by car on the

road, and route 2 corresponding to traveling by bus on the same road. Then including (dy)ic 11 .. 1-1)
among the list of arguments of Cyy, allows us 1o treat the case where the cost incurred by a commuter from
group g deparing in period t by car depends upen the number of buses that have left in previous periods
on the same road.

28The diagram trivially generalizes 1o arbitrary numbers of routes and time periods.
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many commuters from each group must depart on route r during interval 1. This
decision, (agn)gEG, is reported to the central planner, while the total number of

commuters that have been assigned to route r, Z&k,,, is reported to manager (r,2).
ke G

Manager (r,2) {for r=1,2) then uses this information together with the cos! signals sent

from the central planner to solve subproblem (r,2), reporting an optimal solution

(dgr2)ge g t0 the central planner. The central planner then plugs the reports of the 4

managers into the master problem and checks whether the cost signals that had been
sent solve the master problem. I[f not, the central planner uses a fixed point algorithm
to adjust the cost signals and the whole process is repeated. Basically what we have
shown in Section 5 is that there exists a vector of cost signals which the central
planner can send, and a vector of corresponding assignments which the managers
can report, such that the master problem will be solved. Furthermere, a fixed point
algorithm can be used 10 find such a set of signals.

The lack of dependence of an on departures subsequent to interval { permits
the subproblems to be solved sequentially, with managers (1,1) and {2,1) solving their
problems, and then managers (1,2) and (2,2) solving theirs.29 The lack of dependence
of an on departures on other routes in the same interval then permits managers (1,1)
and (2,1) to make their assignments independently of one another, and managers
{1,2) and {2,2) (once they have received their reports from managers (1,1} and (2,1)) 1o
solve their problems independently.

A tiny step toward treating more complicated networks can be made by allowing

Cyatodependon (di)i nic 1.y 10, Cgq depends on total departures on all routes in

the current period as well as all previous periods. A network invalving nonparallel

roads, such as the one pictured in Figure 5, can be handled using this formulation.

29The lack of dependence of an on past departures on routes other than r can be easily accomodated.

For example, manager {1,2) could receive reports from both managers (1,1} and (2,1).
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©)

Fig 5. A simple network involving nonparaliel roads

Commuters are exogenously located at the origins O, and O, Routes from origins 0,

and O, feed into a common bottleneck labeled B. Exiting from the bottleneck

corresponds to arriving at the CBD. Travel time between each erigin and the
bottleneck is the same and independent of the number of commuters using the route.

an will depend on (dij)ie{1,2},je{1 y because waiting time in any queue at the

,,,,,

bottleneck will depend on the total number of past departures as well as current
departures on both routes. This case can be handled by amending the procedure of
Figure 4 so that managers (1,1) and {2,1) jointly solve their problems, passing on the
results to the managers controlling period 2's assignments, who then jointly solve their
problems. While the derivation of the assignments for each time period will now be
more difficult, other aspects of the procedure, in particular the dimensionality of the
master problem, remain unchanged. One can also take advantage of the fact that the
fixed point algorithm does not change the cost signals (cg)geG very much from one
iteration to the next. Consequently the subproblem for period t on successive
iterations will not be very different, and a solution for it from the previous iteration can
be used as a starting pointin searching for a solution on the current iteration.

A giant step toward treating more complicated networks can be made by
allowing an to depend on (r:lij)ie RjeT -6+ an depends on total departures on all
routes in all time periods. We can amend the procedure of Figure 4 by expanding the

number of signals sent from the central planner (see Figure 8). In addition to sending
(cg)geG’ suppose the central planner sends a vector of proposed total deparures

(d)ie mjer- Manager (1,1) would now be asked to solve the subproblem:
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Find (dg;1)ge >0 such that

CQ11 (édk‘l 1 ’d—21 )6121622) _Cg =0 Vg e
Car1 (kzs:dkf 1+G31.01,d50) - Cgldg11=0 YgeG.

This manager, as in Figure 4, would only be responsible for assigning commuters to
route 1 during interval 1. Howsever, unlike Figure 4, this assignment would be
conditional upon not only the cost signals sent from the central planner but also all of
the coordinates of the total departure signal vector d except the one pertaining to route
1 and time interval 1. Analogously, manager (r,t) would solve for the assignment
vector (dy,)ge ¢ conditional on (Cg)ge @nd d, ignoring coordinate d.. Another
difference from Figure 4 is that the managers only report their decisions to the central
planner, not to other managers.30 As in Figure 4, the central planner receives the
reports of the managers and then revises the cost signals with a fixed point algorithm.
However, on the next iteration the central planner sends not only these revised cost

signals but also a revised total departure vector d. The simplest procedure would be
to set the new d equal to the vector of total departures (2 11D Bors 2 Oy o)
ke G ke ke G

ke G
corresponding to the managers' reports on the previous interation. The advantage of
this procedure would be that the dimensionality of the master problem and the ease of
solution of the subproblems would have been preserved from Figure 4. The
disadvantage is that by not having the revision of the aggregate departure vector
signal also under the control of the fixed point algorithm, the nice convergence

propetties of the procedure of Figure 4 may be lost.

30A variant of this procedure would have manager (1,1} report zak” and manager (2,1) report Zékm to
ke G ke G

managers (1,2) and (2,2}, and then have these managers use these reports in place of dy» and do, in their

subproblems.
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The two alternative structures we have assumed for the cost functions are likely
to bracket a broad range of interesting networks. Determining the best set of signals to

send, and which ones to systematically revise, is the subject of ongeing research.
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