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Abstract

In a recent paper, Engel (1999b) presents monte-carlo evidence to suggest that unit root tests
cannot detect a non-stationary component in the real exchange rate even when this component
accounts for almost half of its long-horizon forecast error variance. This hidden non-stationary
component led Engel to conclude that long run PPP might not hold afterall. In this note, we
first highlight the extreme properties of the simulated data being considered, but concur that
even when the data have less extreme properties, unit root tests will over-reject. However, the
size problem can be alleviated with suitable construction of the tests. We discuss in layman’s
terms what steps a practitioner can take to minimize Type I error in cases when the non-
stationary component is hard to detect. We also show that the contribution of the non-stationary
component to long horizon forecast errors is substantially smaller than Engel reported. The key
difference is that our estimates are based on forecast errors of the real exchange rate directly,
rather than the forecast errors of the two components underlying it. Real exchange rate data
for 19 countries are examined and estimates are obtained for the duration of the real exchange
rate shocks.
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1 Motivation

The law of one price (PPP) posits that the price level of traded goods converted to a common
currency should be equal as a result of arbitrage. It would then seem natural to conjecture that
national price levels converted to a common currency— the real exchange rate- should also tend
towards parity. Let p = (1 — ¢)p’ + ¥p" be the logarithm of the national price level of a home
country. It is a geometric weighted average of the log price of traded and non-traded goods, p!
and p", where v is the share of non-traded goods. If we denote variables for the foreign country
with an asterik (*), and let s; be the log of the nominal exchange rate, then the log real exchange

rate is

@ = S+P—p
= x¢+ Yy, (1)
where xy=s;+plt—pf,

ye = pi " — i = Yoy — i .

The real exchange rate thus has two components: a traded-goods component x;, and a component y;
which captures the bilateral difference between the relative price of traded to non-traded goods. The
real exchange rate is stationary if x; and y; are both stationary, or x; and y; are both non-stationary
but that the two series have common stochastic trends. Given our prior that PPP should hold for
traded goods, at least in the long run, non-stationarity of x; is difficult to admit. Stationarity of
the real exchange rate would then seem to rest on stationarity of 3;. Is this necessary? And does
it matter if y; is non-stationary?

Real exchange rates are generally found to be highly persistent. There is little dispute about
this. More difficult to ascertain is whether this persistence is strong enough to be deemed non-
stationary. Establishing this as a fact turns out to be a non-trivial task. As surveyed in Froot
and Rogoff (1995), while early research suggests the presence of a unit root, the recent evidence
supports stationarity. Many put the blame for this ambiguity on the low power of unit root tests
and the lack of data with a long enough span. The views expressed in Froot and Rogoff (1995) are
representative of the latest thinking. The size of unit root tests was rarely brought up as an issue.

In a recent paper, Engel (1999b) argued that root tests would fail to identify a non-stationary
component in the real exchange rate even if there was one. Engel (1999b) Engel used a macroeco-
nomic model with eight parameters to calibrate the U.S.-U.K. real exchange rate. The data support
x; as a stationary AR(1) process but suggest y; has a unit root, implying that ¢, = x¢ + y; should

have a unit root. But in monte carlo experiments in which ¢; was tested for a unit root the way



an “average person”would, Engel found that unit root tests would overwhelmingly reject the null
hypothesis even though ¢; has a unit root component by construction, and that the long horizon
forecast error variance of y; accounts for almost half the combined forecast error variance of x; and
y¢. Rejection rates were close to 100 percent when asymptotic critical values at the 5% level were
used. So why do unit root tests reject non-stationarity?

Apart from clarifying the results of Engel, the goal of this article is to help understand why
testing for a unit root in some data is so difficult and to stress that in spite of this difficulty, the
”average person” has not been doing the best that he can, both in terms of minimizing Type I
error (rejecting the null hypothesis of non-stationarity) and maximizing the power of the tests. We
analyze data on real exchange rates and present evidence for the life of shocks to real exchange
rates using estimates of autoregressive parameters that have better properties than conventional

least squares estimation.
2 The Negative Moving Average Component and the Real Exchange Rate

Consider a series 2z = 2zt — ug,t = 1,...T where p; is a deterministic trend function which we
assume is known for the moment. Suppose the (demeaned or detrended) series Z; is generated by

an unobserved component model:

Ze = T+,
Tt = QT¢-1+ U,
Then Az = (a—1)Z-1+e, (2)

er = uy + Ouy_q,

with 6 satisfying

0 —az(r?7
1+602 o2+ (1+a?)o2’

Without loss of generality, assume that 7 and v; are i.i.d. and mutually uncorrelated. Suppose
a =1 and 02 (the innovation variance to ;) is infinite. Then 6 = 0 and Z; is completely dominated
by the random walk component. At the other extreme when 02 = 0, then § = —1 and Z; = u is
i.i.d. in view of the common factor between the moving average and the autoregressive polynomial
(the unit root). In between the two extremes, z; is fundamentally non-stationary but also has a
tendency to revert to mean. This force for mean reversion is larger the closer is 6 to -1. It is
this tension between non-stationarity and mean reversion that poses problems for unit root tests.

The size problem arises because z; behaves like a stationary process and unit root tests are fooled.



Nabeya and Perron (1994) referred to these as nearly integrated nearly white noise processes. Cases
when the innovation variances are of comparable magnitudes but « is near but not exactly unity
are also a problem for unit root tests. But the problem there is low power and the issue should be
kept distinct from the size problem arising from a near common factor in the moving-average and
the autoregressive polynomial that is being discussed here.

The size problem in testing for a unit root when there is a large negative moving average
component was documented in Phillips and Perron (1988) and highlighted by Schwert (1989),
among many others. To see the nature of the problem, rewrite (2) in the form of a k*— order

augmented autoregression in AZ;:

k k
Az = (a=1)) (=0)Z_i1—> (-0)'AZ_i+ +er — (—0)"ei_p.
i=0 i=1
k
= BoZi—1+ Y BilNZ_i + ew, (3)
i=1
oo ) k
e = er— ()" epo1— D (0 AZ i+ (a—1)) (—0)Z—i1,
i=k+1 i=1
where 3y = (o — 1), 3; = —(—0)’. Notice that the truncation lag k plays a crucial role in the

dynamic properties of e;;,. When 6 is large and negative, lags of AZz; will have non-negligible
weights in ey at large k even when o = 1. If § = —.8, for example, we need k > 20 for (—6)" to
be less than .01. Because AZ; is serially correlated, ey can be strongly serially correlated if k is
small and 6 < 0. The severity of this problem is specific to negative values of 6 because when 6 is
positive, (—6)? alternates in sign and successive lags of AZ;_; offset each other.

The size problem in (perhaps all) unit root tests when 6 is negative can be traced to the fact
that [y cannot be precisely estimated from (3). Nabeya and Perron (1994) and Perron (1996)
analyzed the problem for the case with £k = 0. The more general case which allows &k to increase
with the sample size was analyzed in Ng and Perron (1995, 1997, 1998) and Perron and Ng (1996,
1998). In those cases, fy + 1 = « is the sum of the coefficients of an AR(k+1) model in the levels
of Z;; it is this sum that is not precisely estimated.

Let us return to the real exchange rate problem. Suppose

Yt = Y1 + Wy,

Ty = Qi%’til + my.

2

where w; and my are ii.d. with variance o,

and 02, respectively, and covariance o2, # 0.

Engel (1999b) offered a three equation model for exchange rate determination (reproduced in the



Appendix) for which x; and y; have the above time series properties. Using quarterly U.S./U.K.
data over the sample 1970-1995, Engel estimated the parameters and used them to simulate 400
data points to mimic a 100 year sample. He constructed a battery of unit root tests. When esti-
mation of an autoregression such as (3) was required, k was set to a maximum (hereafter denoted
kmaz) of 12 and a x? test was then used to test for the significance of the last lag.! Engel showed
huge size distortions in unit root tests for both the baseline parameters and for small perturbations
around them. The MZ, test developed in Perron and Ng (1996) to be more robust to size distor-
tions when 6 is negative? did not work as it should, and tests for the null hypothesis of stationarity

did not seem immuned to the size problem. Engel also evaluated

mse(yrin — yT+h|T)
mse(Trip — $T+h\T) + mse(yrn — yT-i—h\T) ’

Ro(h) = (4)

where mse(-) is the mean-squared forecast error function and h is the forecast horizon.> For the

stochastic processes assumed for x; and ,

h-o?
Ro(h) = w .
h-o2 + %oﬁl + Q%Uam

Engel interprets Ryp(h) as the importance of the random walk component at horizon h. With
h = 400 and assuming o2, is negligible, this ratio was reported to be around .4 for the base case.
Thus, variations in the non-stationary component seems important at long horizons. In spite of this,
unit root tests reject non-stationarity and tests for stationarity cannot reject that null hypothesis.
It appears that unit root tests have indeed missed a non-negligible permanent component badly.
Recall from the unobserved components model that the problem of a small innovation variance in
the random walk component maps into a large negative moving-average component in the observed

series.* If y; is a random walk and a; is a stationary AR(1), then for ¢; = x; + yy,

Ag = ¢Ag-1+e (5)

e = ut+9ut,1,

Equation (5) is a special case of (2) with ¢ = 0, and the key parameter is once again 6. It is related

to the parameters of the processes for x; and y; as follows:

0 _ _d)o—?u - (Tr2n B (1 + ¢)U121)m (6)
1+62 (14 ¢?)02 4202, 4 2(1 + ¢)o2,,

!This is a small variation to the ¢ test considered in Ng and Perron (1995).

2Engel referred to this as the PN test.

3Under optimal prediction, this is simply the forecast error variance and these terminologies will be used
interchangeably.

*Ng and Perron (1997) used a similar framework to analyze the inflation series.
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For the base case, 02, = .328 x 10~* and 02, = .2667 x 10~2 with 02, very small. Since o2 is 100
times smaller than o2,, 6 should be large and negative. For the base case, Engel calculated that
0 =-—28.

There are two issues involved. First, does Ag behave like this calibrated ARMA process? This
is an empirical matter which we will take up in a later section of this article. Second, suppose Agq,
indeed has this negative moving average component and Engel’s suspicion of size problems is well
motivated. Then the issue is why are the size distortions so extreme, and what can be done when
we encounter such a type of data? We take up this latter issue in the rest of this section.

To understand what is happening, we calculate ¢ and 0 for different parameterizations of the
exchange rate model. Six configurations of parameters along with the implied values of ¢ and 6
are given in the Appendix.® Cases 1 to 3 are taken from Engel. All three have small values of
02 /o2,. Hence, in each case,  is very close to the unit circle. Case 1, which is Engel’s base case,
has § = —.9911, (rather than -.8 which Engel reported). Cases 2 and 3 have § = —.9995 and -.9827
respectively. Table 1 reports simulations based on 2500 replications of the model in Appendix A
with T = 400. The results by and large confirm Engel’s finding. Although in no case did an exact
common factor occur, the problem of parameter redundancy is severe in all three cases because 6
is almost on the boundary. Since Ag; = ¢pAq,_1 + e; is well approximated by ¢ = ¢q;1 + ug, in a
regression of g; on ¢;—1, the least squares estimator tends to identify ¢ < 1. It is thus not surprising
that M Z, and DF reject the null hypothesis of a unit root in these three cases.

Cases 4 through 6 are our own parameterizations. Case 4 involves a close common factor
between ¢ and €, but the unit root in the data is left intact. All tests have no problem detecting
non-stationarity and the size of the tests are close to the nominal size of 5%. Cases 5 and 6 have 6
much further away from the unit circle, and for which we would expect unit root tests not to reject
the null hypothesis. But size distortions remain noticeable. Thus, even though Engel has presented
size distortions for cases of parameter redundancy that are indeed extreme, the size problem with
the tests used in Table 1 is genuine.

Table 1 also confirms Engel’s result that, for the base case, y; accounts for over 40% of the
forecast error variance according to Rg(h). But if g; really behaves like a stationary AR(1) process
with parameter ¢ < 1, the puzzle is perhaps not so much that unit root tests over-reject, but
why the random walk component explains so much of the long-horizon forecast error variance? To
see this, notice that even though (rg =02+ (7?3 + 2(7%11 over a sample of size T, this identity does

not hold for out of sample error variances. This is because the minimum mean squared forecast

5Case 1 is the base case of Engel. Other configurations in his Table 3 give very similar parameter values and
therefore have similar size properties.



for ¢ is given by an ARIMA(1,1,1) model, and not the forecast of an AR(1) process combined
with a random walk. This is important because neither z; nor y; has the negative moving average
component that is inherent in ¢. Since we are interested in the importance of y; in forecasting ¢,

it is more appropriate to consider:

Ri(h) = mse(yrin — yT+h|T) (7)
mse(qrin — QT+h|T) '

Since

by direct calculations,

(1-9¢)3*(1—¢*" )
1—¢?

Hence mse(qrin — qranr) = S mse(Aqra; — Aqrijr)- It follows that

mse(Aqryp — AqTJrh‘T) =02 +02 |1+

ho?
ho?, + ho, [1 + U] — g2 O=gE0-)

T 1=

Ri(h)

A comparison of the denominator of Ry and R; makes it clear that the h-step ahead forecast error
variance of ¢; can be very different from the sum of the forecast error variance of x; and and ;.
In particular, Ry understates the mean-squared error of ¢; and therefore overstates the importance
of the permanent component. As we see from Table 1, R; is small at large h if 02 /02, is small.
At h=400, R; is quite close to zero for the base case. The puzzle that unit root tests reject the
null hypothesis even when a non-stationary component explains an important fraction of long run

forecast error variance is specific to the use of Ry in the calculations.

2.1 A Digression on Measuring Persistence

The decomposition of long-horizon forecast errors is one way to assess the importance of the per-
manent component. But as seen above, calculations of R; necessitates knowledge of the moving-
average component. But given the tradition in the literature to favor autoregressive rather than
mixed ARMA models, how are the alternative ways of measuring persistence? Suppose a k + 1t
order autoregression is estimated, and let @ = Zfill Q;, be the sum of the estimated autoregressive
coefficients. Consider two measures of persistence, both aim to capture the time required for a

fraction, say 7, of the effect to a unit shock is complete. Define

Jo = supj |0z4j/0us| <1—7,
J1 log(1 —7)/log(@).



When 7 = .5, Jy is the period beyond which the (absolute) response to a unit shock in u; no longer
exceed .5. On the other hand, J; is the half life of a shock as implied by estimated sum of the
autoregressive coefficients. The difference between the two is that Jg is based on the moving-average
representation of the estimated model and hence depends on all k+1 parameters in its autoregressive
representation. In contrast, J; depends only on the estimated sum of the autoregressive parameters.

Our conjecture is that for data with a negative moving average component, J; will overstate the
effects of the permanent component over short horizons. To see why this is the case, consider an
ARMA(1,1) process with parameters o and 6 for z; with a+6 # 0. From the infinite moving-average

representation, we see that the response of z;,; to a unit shock in period ¢ is:
8Zt+j/8ut = Ozjil(Od +(9) (8)

While « controls the slope of the impulse response function, € helps pin down the amplitude. When
a = 1, both statistics evaluated at 7 close to one will be large, since o does not vanish in the case
of Jo, and log(1)=0 in the case of J;. Thus, both statistics will have no problem revealing that
the complete adjustment to a shock will be infinitely long. But what if one’s interest is in smaller
values of 7 (such as .5), which are associated with horizons relevant for policy analysis? Since
the dynamic effects of a shock at any lag is a/~!(a + 6), it will be much smaller than a/~! when
0 is negative. Thus, J; will overstate the duration of adjustment. The Jy statistic utilizes the
autoregressive estimates at all lags and thus provides a more reliable measure of the speed at which
the effect of a shock dissipates.

An alternative to Jy is the autocorrelation function, say, I'(j). Indeed, both the estimated sum of
the autoregressive coefficients and I'(j) are widely used as measures of persistence in macroeconomic
analysis.® The potential problem with T'(j) is that it is typically evaluated at only small values of
j. But for processes that are both persistent and have a tendency for mean reversion, the j that is
consistent with a large 7 could be very large. In this regard, I'(j) could understate the importance
of the permanent component. The Jy statistic has the advantage that we do not need an a priori

choice on j; it is endogenously determined once we pick the cut-off point, 7.
3 Testing for a Unit Root Once Again

Some, including ourselves, have argued” that there is always a non-stationary representation for

a time series that is arbitrarily close to a stationary representation. Because of this potential for

SFor example, Mcgrattan, Chari and Kehoe (1998) used the degree of serial correlation in the real exchange rate
to judge whether a sticky price model can replicate the observed persistence in the real exchange rate. Bergin and
Feenstra (1999) used the first and fourth order autocorrelation coefficients to assess the degree of stickiness in the
real exchange rate.

"See Perron and Ng (1996), Cochrane (1991), Faust (1996), Blough (1992).



observational equivalence, any test that has high power rejecting the null hypothesis of a unit root
when the signal of the non-stationary component is strong must also have a large size when this
signal is week. Consider once again the mapping from the relative size of the innovation variance
to 6. The near-observational equivalence problem can now be stated as follows:- when using unit
root tests with asymptotic critical values, there will exist values of € in the range (—1,x) for some
—1 < x < 0, say, such that liberal size distortions will surface. The value of x will depend on the
sample size and the test used, but it will always approach -1 as the sample size increases. That is
to say, the range over which size distortions occur will diminish.

Engel used an example to show that the problem of observational equivalence could indeed
happen in real data. The tests he considered really ought to have supported non-stationarity,
though the defense that # = —.99 is not an interesting case could perhaps be invoked. The
more serious problem is that for sample sizes commonly encountered, the value of x where size
distortions start to appear is not -.99, but much further away from -1. Depending on the test, x
could be anywhere from -.4 to -.8 for T' = 100. This is worrisome because there will exist empirically
important time series which are genuinely non-stationary, and would yet be classified as stationary.
Cases 3, 5 and 6 documented earlier are representative of the problem. If R; is .3 at A = 400 as
in case 5, we would indeed want unit root tests not to reject stationarity. Table 1 shows that the
rejection rate is too high. Most troublesome are cases 5 and 6.8 Even with a sample size of 400,
the statistics can reject with 80% probability instead of 5%.

How prevalent are such time series? In our experience and as we will see in the next section,
variables such as inflation tend to have this property, and we are in the process of a more complete
documentation of such data. While a formal test of parameter redundancy is difficult because the
maximum likelihood estimates of the autoregressive and moving average parameters are not precise
when there is a near common factor,” the symptoms are there for us to detect. From our previous
work, the kernel estimate of the spectral density at frequency zero based upon €y (i.e. the least
squares residuals) should be very different from a particular autoregressive spectral estimate of ey
(which does not depend on €).1° There should also be sharp differences between the Phillips-
Perron Z tests and M Z tests even though the two differ only by a term that should vanish at
rate T. The premise of our latest work is precisely to exploit such information to robustify the

size of DF and the class of MZ tests. This is achieved by parameterizing the model and/or finding

8Case 4 may seem somewhat surprising because if the dominant root is unity, then one might expect R; to be
larger. Furthermore investigation reveals that we need o2 to be at least 50 times larger 02, for the forecast error
variance to be overwhelmed by the random walk component. Therefore, a weak force for mean reversion is still at
play.

9See Clark (1988).

19T hese issues are discussed in Ng and Perron (1997).



estimators such that the sum of the autoregressive coefficients and the nuisance parameters can
be estimated as precisely as possible. We now provide a non-technical summary of this work. All
statistics considered are defined in the Appendix.!!

To begin, recall that in the above discussion Zz; is the demeaned series. That is, 2z = 2z — p,
where p; is a vector of deterministic components. For persistent data, least squares detrending
is inefficient. Elliott, Rothenberg and Stock (1996) showed that using GLS detrended data to
construct the DF statistic can yield substantial power gains. Ng and Perron (1998) showed that
these power gains extend to the Z and MZ tests. As a first step, therefore, one should first quasi-
transform the data at @ = 1+ ¢/T, where ¢=-7.0 in the constant case and -13.5 in the linear trend
case. Then use GLS to obtain estimates of the coefficients on the deterministic components. The
discussion to follow assumes that all regressions are based on GLS detrended data and the object

of interest is whether there is a unit root in the detrended data Zz;.

The DF-GLS is the t— statistic on Gy in the k" order augmented autoregression (3).

e The Problem: BO is biased if k is small because ey is serially correlated.
e The Fix: Select a large k& when necessary.

e Implementation: Use the MAIC to select k in the augmented autoregression (3), where

2(7r(k) + k)

MAIC = Argmink:O,...kmam ln(ﬁl%) + T )

with 7r(k) = (2718372 1,

where 67 = TS &%

The key to the fix is the selection of k. The MAIC is motivated by the observation that the
bias in BO decreases non-linearly as k increases. Model selection rules such as the AIC and BIC
do not take this non-linearity into account; they under-penalize models with a small k£ and select
autoregressive approximations that are too parsimonious for models with negative . The MAIC
explicitly accounts for the strong dependence of the bias in B() on k via the term 77 (k). The MAIC
reduces to the standard AIC when this dependence is absent (such as ARMA noise functions with

autoregressive and moving average roots far from the unit circle).

1This has been the basis of work in Ng and Perron (1995, 1997, 1998), and Perron and Ng (1995, 1996).



The Z-GLS requires (a), a least squares estimate of a from the regression z; = aZ;—1 + ey, and
(b), the short and long run variance (the non-normalized spectral density at frequency zero) of ey.

e The Problem: (a), & is severely biased because ey is strongly serially correlated, and because
of this, (b), the estimated residuals €y provide poor estimates of both the short-run and the
long-run variance.

e The Fix: Remove any dependence of Z-GLS on a.

e Implementation: (a), Apply a correction factor to Z-GLS to give MZ-GLS; (b), Estimate the
short run variance under the null hypothesis and the long run variance using an autoregressive
spectral density estimator based upon (3); (¢), when estimating the autoregressive spectral
density, use the MAIC to select k.

The modification factor removes the direct dependence of Z-GLS on @. With Z$%, for example,
this factor is simply (7/2)(a — 1)?. Note that M ZG%5 = ZG19 + Z(a — 1)? can be rewritten as
(T 122 — s2) (2T 23], ). The removal of the dependence on @ is complete since s? also
does not depend on @ if the spectral density is estimated using (3). To obtain a precise estimate
of 52, select k using the MAIC for the same reason given for the DF-GLS.

The only remaining issue is that, as in the AIC and the BIC, we need to specify a kmax for
the MAIC. Our theoretical results only provide guidance about the rate of increase of k relative
to the sample size and does not pin down a kmax for empirical work. Our recommendation is to
use a kmax that varies with the sample size, such as kmaz = 12(7/100)"/%. But because the k
that is required to make ey approximately serially uncorrelated depends on the data generating
process, there could be cases when such a kmax might not be large enough. That is, kmax could
bind. In that case, reset kmax to some larger number and reoptimize the MAIC function. In our
experience with simulations and empirical applications, setting this kmax will yield substantial size
improvements for 6 no smaller than -.8. We have encountered few economic time series with 6 even
closer to the boundary. Increasing kmax further yields small improvements in size, but risks power
loss.

Use of the old and new tests can make an important difference both in terms of size and power,
especially in the case of a linear time trend. For example, when § = —.8 the DF with k selected by
the BIC has a rejection rate of .5 instead of .05; with Z,, the size is close to 100%. Using the MAIC
to select k, the rejection rates for DF-GLS and M ZS™ are .149 and .084 respectively. These are
huge reductions in Type I error. As for power, the gains are also non-trivial. For an iid errors, the
rejection can be increased from 30% to close to 50% even for sample size reasonably small at the
alternative @ = 1 + ¢/T, where ¢ = —7 for p = 0 and -13.5 for p = 1. The contrasts are somewhat

less dramatic for the constant only case but remain non-trivial.

10



Extensive simulations for MZ-GLS and DF-GLS have been reported elsewhere for pure AR and
pure MA noise functions.'? In Table 2, we use the real exchange rate example to highlight two
points. First, even with with § = —.99 as in the base case, the probability of a Type I error with
the new tests is much smaller. Second, when 6 is further away from the boundary (such as case 5),
the size is approximately correct.

It should be emphasized that proper implementation of the new tests is extremely important.
As seen from Table 2, use of the MAIC without modifying Z, to M Z$"™¥ will do little to reduce size
distortions. Table 3 shows that, for the same kmax, the BIC always have larger size distortions;
increasing kmax does little to help. In the simulations, it selects & = 1 on average. Under
the MAIC, k is, on average, 12 when kmax = 20. Thus, use of the modified statistics without
appropriately selecting k will also be ineffective. Letting & be the default used in software packages
is also undesirable.

How about the ¢ test recommended in Ng and Perron (1995)7 Let us consider case 6. From
Table 1, we see that the size is still over .8. The size problem here arises not because of the ¢ test
per se, but with kmax. While kmax = 12 might be large enough for most data, it is not when there
is a negative moving average component as large as -.97. Simulations show that size distortions
will fall if we increase kmazx for the t-test. But even if we had done so, the DF and MZ in Table 1
will remain inferior to the DF-GLS and MZ-GLS of Table 2. This is because the statistics in Table
1 are not based on GLS detrended data.'® Table 4 reports the average & = 1 + BO for different
values of k. First note that when there is no common factor (such as cases 4 and 5), adding lags
neither harm nor hurt the estimate. But in some cases, BO can be made substantially more precise
if we increase k (compared to Table 1). Thus, it is GLS detrending along with the selection of k
that improve the precision of the estimates of sum of the autoregressive coefficients. Of the two
tests, the MZ-GLS tests hold a size advantage while the DF-GLS has better power, especially for
sample sizes less than 150.

As an example, consider log(GDP), inflation in GDP, and in the consumption deflator over
1962q1-1998q4 (T = 160). The data are taken from FRED!. Both the DFGLS and MZ-GLS use
GLS detrending and the MAIC with kmax set to 14. We also report DF and Z,, both based on

least squares detrending and k selected using the BIC. This is perhaps the most commonly used

2There are two differences between those simulations and the current setting. First, in those simulations 6 was
invariant to the variance of e;, but here 6 here varies with o2. Second, the current setting amounts to an ARMA noise
function in our previous work. But neither can account for the size discrepancies between the reasonably accurate
size we found and the huge size distortions reported in Engel.

13The weakness of the t test is that it tends to overparameterize and induces power loss in cases when large lags
are not necessary.

14The web site is http://www.stls.frb.org/fred.
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method in practice, except that kmax is higher than most practitioners use.

We first estimate an ARMA(1,1) model to obtain a rough idea of the size of the moving average
component. For log GDP, 0 is positive suggesting size distortions is not an issue for all tests. Indeed,
no test rejects a unit root in GDP around a linear deterministic trend, and MAIC and BIC chooses
k of 2 and 1 respectively. Consider the two inflation series. Both estimates of 8 are negative, and
even though the point estimates are far from -1, problems with inference already surface. The Z,
rejects a unit root in both cases, while the DFGLS and MZ-GLS do not. The DF is known to be
somewhat more robust than Z, when 6 is negative, but it too rejects a unit root at the 5% level
for one series and 10% level for the other. For both inflation series, the BIC selects a lag length
of 0. The MAIC selects 2 and 9 respectively. This shows, first, that the BIC will not pick a large
k even when kmaz is high!'®, and second that the MAIC does not necessarily pick the largest k
possible. A comparison of &% and a°%® shows that in general, the OLS/BIC combo yield lower
estimates of a. Also of interest is a comparison of Jy and J;. Evaluating them at 7 = 1/2, we
see that the half-life of a shock to GDP is around 35 years, with little difference between Jy and
J1. However, when there is a moving average component, J; indicates a much longer half life than
Jo as we conjectured earlier. On the other hand, the largest autoregressive root is appropriate for
evaluating 7 closer to 1. Hence when 7 = .8, both Jy and J; suggest that it will take about 50
quarters for 80% of the effect of the shock to dissipate. The results also reinforce the finding that

all series have a unit root.
4 Back to the Real Exchange Rate

One issue that arises frequently in the analysis of the exchange rate (real or nominal) is whether
combining the low volatility data before the Bretton Woods agreement with data which are more

16 This issue of a break in

volatile after the agreement will affect the size of unit root tests.
variance was studied by Hamori and Tokihisa (1997) for the normalized least squares estimator.
The authors find that the break fraction and the relative variance in the two regimes will enter the
limiting distribution of the test statistic, and in monte carlo experiments, combining the data of
the two regimes will lead to over-rejections of the unit root tests. Although no formal analysis is
available for other test statistics, there is little doubt that the qualitative conclusion will generalize.
The focus of most exchange rate analysis on one regime is justified.

Table 5 presents estimates of 6 from an ARMA(1,1) model on the nominal and the real exchange

rate as measured by the consumption deflator. The data are for the period 1973q1-1997q2, taken

5Note in passing that the t-test will, but it does not do so judiciously and hence loose power when a large k is not
necessary.
163ee, for example, the discussion in Froot and Rogoff (1995), Section 2.3.5.
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from the OECD sectoral database. Results for the GDP deflator are similar and not reported. In
all cases, the moving average component is estimated to be positive with ¢ statistics larger than 1.6
in absolute value. Recall that the Engel’s basic premise was that Ag; could have a large negative
moving-average component. Evidence for this is found in only two countries, Australia and Korea.
The U.K. data, which was the basis of Engel’s analysis, clearly did not exhibit a negative 6. Since
there is hardly any evidence of a negative 6 in either ¢, or Agy, the size of unit root tests should not
be an issue. Applying the new (and old) tests, we can only reject a unit root in the real exchange
rate for Canada, and only marginally.

Interest in establishing whether there is a unit root in the real exchange rate arises because
we want to understand how long it will take for a shock which perturbs PPP to work itself out.
And rightly argued, with 25 years of data, unit root tests may indeed have low power in providing
a precise I(1)/1(0) classification. But the autoregressive coefficient estimates are still informative.
Consider once again Jy along with bootstrapped standard errors.!” With the exception of Korea,
Greece, and Portugal, the half life of real exchange shocks is between nine and fifteen quarters, in
line with the consensus estimate of 4.5 years from panel studies. Evaluating 7 at .8 gives a clearer
picture of the relative persistence across countries. Japan has the fastest speed of adjustment, with
80% completed in 15 quarters. This is followed by Canada, Ireland, Sweden, France and Italy.
Adjustments in the remaining countries take over 20 quarters to complete, with Greece and Korea

being the outliers.
5 Conclusion

From an econometric perspective, Engel’s conclusion that long-run PPP may not hold is valid
because we fail to reject a unit root in the real exchange rate. While the size issue Engel raised
is a valid methodological problem, the issue is not relevant to exchange rate data we investigated.
Engel’s result is likely an artifact of the imprecise estimates of the parameters used to calibrate the
model. We have taken the occasion to emphasize that there are steps an ” average person” can take
to maximize power and minimize size distortions in unit root tests. The estimation strategy also
provides more precise estimates of the autoregressive parameters which can be informative about
economic dynamics. Our estimates put the half life of shocks to real exchange rate between nine
and fifteen quarters, though there are more variations in the time required to complete 80% of the
adjustments.

There remains the question of whether we should care if a non-stationary component in ¢

exists? Such an issue is of independent interest because it is relevant whenever testing a variable

1"Because of the lack of a negative moving-average component, estimates for J; are similar.
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which has subcomponents (such as CPI, industrial production) is at stake. The answer depends
on the objective of the exercise. Take industrial production. If an economist was asked “Are all
sectors stationary?”, then he should document as clearly as possible unit root tests results on all
sectors. But if this economist was asked “is industrial production non-stationary”, then there is
no value-added in knowing if there is a permanent component in, say, the output for shoelaces.
One might think otherwise if it was the production of automobiles rather than shoelaces that has
a permanent component. But if the variations in automobiles are important enough, it will be
reflected in industrial production anyways. In the end, unit root tests on the components are
neither necessary nor sufficient for establishing a unit root in the aggregate variable. On the other
hand, if we were interested in the source of the unit root in the aggregate, analysis of the components
will be necessary. But establishing the existence and the source are two different questions.'® In
the case of the real exchange rate, little is lost from not knowing that a permanent component in

y; exists if all we want to know is whether the real exchange rate has a unit root.

183uch an analysis was provided by Engel (1999a).
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Appendix

Test Statistics
The Said-Dickey-Fuller DF-GLS test due to Dickey and Fuller (1979), Said and Dickey (1984) and
Elliott et al. (1996) is the ¢ statistic on Bo from the augmented autoregression:

k
Az = Bozi—1 + Z BiAZi—; + e, 9)
=

where z; is 2z — B’ dy, B is the GLS estimate of the coeflicients on the deterministic terms d;.

The Phillips-Perron test is
Zo = T(a—1)—(s*—s3)(2T 2Zzt DL

where z;_1 are the residuals from a regression of z;_1 on d;, t =1...,T, and & is the least squares

estimate from the regression

%y =A% _1 + 0y, (10)
where Z are the residuals from a regression of z; on d; (the deterministic terms), t =1,...,T, 32 =
Il % and t, = (@ —1)(X L, 22 {)Y?/s, is the standard t-ratio to test the null hypothesis

2

of a unit root. The term s* is a consistent estimate of the spectral density at frequency zero.

The Modified Phillips-Perron test M Z,, is

2

T132 — 5 T
—== ~ Zo+=(@—1)>%
2T Zt:l 2t—1 2

The autoregressive estimate of the spectral density at frequency zero of vy, is defined as:

MZ, =

san = s/ (1= B(1))?, (11)

where 3(1) = YF | 3, s, =Tty e, with B and {éy,} obtained from the autoregression

9).
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Engel’s Model and Parameterizations

Ayt = Qaug,
As; = —6(s +pT - PT) = buy + cvy,
T *1" _ *T' T
Alp; —pt') = (st +p™ —p') +dee + for + gue,

where ug, vy, € are iid N(0,1) and are mutually uncorrelated. The model then implies
xp = pxi—1 —deg + (¢ — flue + (b — g)uy,
with ¢ =1 — 6 —v. Thus, 02 =a?, 02, = (c— f)* + (b—g)? + d?, and 02, = a(b — g).

Structural Parameters and Implied Values of ¢ and 6

Case ® 0 ow/02, a d c )

1 0.9196 | -0.9911 | 0.0123 | 0.00573 | 0.01129 | 0.05077 | 0.08038
0.9760 | -0.9995 | 0.0005 | 0.00100 | 0.01890 | 0.04150 | 0.02400
0.9524 | -0.9827 | 0.1416 | 0.01800 | 0.01550 | 0.04560 | 0.04761
0.9196 | -0.9259 | 3.7503 | 0.10000 | 0.01129 | 0.05077 | 0.08038
0.8500 | -0.8923 | 0.9376 | 0.05000 | 0.01129 | 0.05077 | 0.15000
0.8500 | -0.9713 | 0.0375 | 0.01000 | 0.01129 | 0.05077 | 0.15000

S O W N

In the simulations v = 0, b = .001088, f = .000632, d = .011286. ¢ = 1 — v — 6 and 0 is determined according to
(6). Cases 1,2 and 3 are from Tables 2 and 4 of Engel (1999b).
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Table 1: Statistics k selected by the t test, kmax = 12.

Case | ¢ 0 MZy | DF | Za a | Ro(400) | Ry(400)
1 | 0.9196 | -0.9911 | 0.9604 | 0.9120 | 0.9664 | 0.9188 | 0.4314 | 0.0117
2 | 0.9760 | -0.9995 | 0.4436 | 0.3040 | 0.4592 | 0.9653 | 0.0092 | 0.0005
3| 0.9524 | -0.9827 | 0.4476 | 0.3452 | 0.4584 | 0.9628 | 0.8404 | 0.1215
4 | 0.9196 | -0.9259 | 0.0748 | 0.0584 | 0.0784 | 0.9848 | 0.9957 | 0.7827
5 | 0.8500 | -0.8923 | 0.1604 | 0.1336 | 0.1672 | 0.9763 | 0.9905 | 0.4646
6 | 0.8500 | -0.9713 | 0.8400 | 0.7944 | 0.8668 | 0.8955 | 0.8063 | 0.0335

¢ and 6 are parameters for Aq; = ¢Aqi—1+et, et = ur+0ui—1 as implied by the parameters in Table 1. The rejection
rates for MZ,, DF, and Z, based on the 5% asymptotic critical values of -14.1, -2.86, and -14.1. The tests are based
on OLS demeaned data. Rg(400) and R;(400) assess the importance of the permanent component in long horizon

forecast errors. These are defined as 4 and 7 in the text.

Table 2: Modified Statistics with k selected by the MAIC

Case ¢ 0 ZyaLs MZSGES DF&LS

kmax 12 20 40 12 20 40 12 20 40
1 0.9196 | -0.9911 || 0.9036 | 0.8912 | 0.9028 || 0.6928 | 0.5560 | 0.3256 | 0.6824 | 0.5468 | 0.2884
2 0.9760 | -0.9995 || 0.3436 | 0.3556 | 0.3628 || 0.4136 | 0.3788 | 0.3344 | 0.3964 | 0.3500 | 0.2560
3 0.9524 | -0.9827 || 0.3380 | 0.3592 | 0.3556 || 0.3028 | 0.2744 | 0.2188 | 0.2936 | 0.2468 | 0.1744
4 0.9196 | -0.9259 || 0.0636 | 0.0608 | 0.0568 || 0.0572 [ 0.0568 | 0.0708 [ 0.0568 | 0.0460 | 0.0428
5 0.8500 | -0.8923 || 0.0964 | 0.1072 | 0.0984 || 0.0828 | 0.0764 | 0.0780 | 0.0816 | 0.0656 | 0.0464
6 0.8500 | -0.9713 || 0.7220 | 0.7092 | 0.7236 || 0.5160 | 0.3180 | 0.1360 | 0.5128 | 0.3292 | 0.1364

The 5% asymptotic critical value for ZS*% and MZS*® is -8.1, and for DFL5 is -1.91.
Table 3: Modified Statistics with & selected by the BIC

Case ¢ 0 ZocLs MZSGHS DFGES

kmax 12 20 40 12 20 40 12 20 40
1 0.9196 | -0.9911 || 0.9964 | 0.9932 | 0.9948 || 0.8876 | 0.8800 | 0.8908 [ 0.8880 | 0.8828 | 0.8900
2 0.9760 | -0.9995 || 0.4216 | 0.4264 | 0.4316 || 0.4888 | 0.4900 | 0.4904 [ 0.5080 | 0.5040 | 0.5068
3 0.9524 | -0.9827 || 0.4776 | 0.4900 | 0.4788 || 0.4068 | 0.4328 | 0.4460 | 0.4100 | 0.4380 | 0.4536
4 0.9196 | -0.9259 || 0.0748 | 0.0636 | 0.0636 || 0.0696 | 0.0692 | 0.0656 | 0.0712 | 0.0712 | 0.0696
5} 0.8500 | -0.8923 || 0.1944 | 0.1948 | 0.2044 || 0.1524 | 0.1632 | 0.1700 | 0.1600 | 0.1668 | 0.1716
6 0.8500 | -0.9713 || 0.9808 | 0.9796 | 0.9816 || 0.8636 | 0.8464 | 0.8512 [ 0.8628 | 0.8488 | 0.8480

Table 4: Estimates of a = 1 + 3y for different kmaz and Model Selection Strategies

Case ® 6 k=0 | maic(12) | maic(20) | maic(40) | baic(12) | baic(20) | baic(40)
1 0.9196 | -0.9911 | 0.9188 | 0.9550 0.9586 0.9648 0.9469 0.9472 0.9471
2 0.9760 | -0.9995 | 0.9653 | 0.9784 0.9790 0.9804 0.9768 0.9768 0.9769
3 0.9524 | -0.9827 | 0.9628 | 0.9815 0.9821 0.9841 0.9789 0.9783 0.9781
4 0.9196 | -0.9259 | 0.9848 | 0.9943 0.9946 0.9949 0.9939 0.9938 0.9938
) 0.8500 | -0.8923 | 0.9763 | 0.9918 0.9924 0.9930 0.9892 0.9893 0.9890
6 0.8500 | -0.9713 | 0.8955 | 0.9529 0.9615 0.9706 0.9344 0.9366 0.9361
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Table 5: Estimates of 6 for Nominal and Real Exchange Rate: 1973:1-1997:2

St Asy a5 Agy

aus | 0.193 | -0.644 | 0.216 | -0.745
aut | 0.380 | -0.790 | 0.354 | 0.593
can | 0.426 | -0.432 | 0.425 | 0.916
che | 0.367 | -0.677 | 0.358 | 0.764
deu | 0.383 | -0.464 | 0.361 | 0.677
dnk | 0.363 | -0.989 | 0.375 | 0.459
fra | 0.455 | -0.331 | 0.443 | 0.478
gbr | 0.245 | -0.406 | 0.231 | 0.324*
grc | 0.192 | 0.975 | 0.182 | 0.248*
ire | 0.310 | -0.650 | 0.290 | 0.423*
ita | 0.412 | 0.754 | 0.423 | 0.740
jpn | 0.399 | -0.979 | 0.403 | 0.461
kor | 0.364 | -0.385 | 0.263 | -0.603
lux | 0.409 | 0.518 | 0.384 | 0.750
nld | 0.364 | -0.876 | 0.339 | 0.540
nor | 0.364 | 0.986 | 0.365 | 0.590
prt | 0.358 | -0.657 | 0.368 | 0.645
swe | 0.378 | -0.977 | 0.295 | 0.572

?*” denote t statistic less than 1.64
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Table 6: Statistics for the Exchange Rates

logs; logqy
DFGLS | MzZS%S a J | Ji? | DFGLS | MZzGLs a Je° Ji
aus -1.334 -4.082 1 0.956 | 17 | 37 | -1.981 -6.947 | 0.923 | 10(3.0) | 21 ( 7.0)
aut -2.147 -9.244 1 0.927 | 12 | 20 | -2.035 -8.411 | 0.933 | 12(3.4) | 21 (6.9)
can -2.068 -11.466 | 0.955 | 18 | 24 | -2.305 -17.598 | 0.945 | 16(3.2) | 19 ( 4.6)
che -2.217 -10.585 | 0.924 | 11 19 -2.312 -10.605 | 0.919 | 10(2.8) 18 (15.7)
deu -2.191 -10.298 1 0.928 | 12 | 20 -2.094 -8.532 0.935 | 13(3.8) 22 (7.3)
dnk -1.802 -6.581 0.955 | 18 | 31 -2.046 -8.232 0.940 | 14(4.2) 23 (7.9)
fra -1.931 -6.919 | 0.955 | 18 | 29 | -2.352 -10.342 | 0.928 | 12(3.1) | 18 ( 6.0)
gbr -1.679 -5.829 1 0.940 | 13 | 28 | -1.991 -7.619 | 0.922 | 10(2.8) | 21 ( 6.5)
gre -1.077 -2.589 0.972 | 26 | 58 -1.201 -3.234 0.965 | 21(6.1) | 46 (13.0)
ire -1.593 -5.682 1 0.961 | 20 | 35 | -2.199 -8.885 | 0.903 | 8(2.2) 17 (15.1)
ita -1.609 -5.925 | 0.964 | 22 | 37 | -2.383 -12.653 | 0.918 | 10(2.7) | 17 ( 5.3)
jpn -2.511 -13.076 | 0.914 | 10 | 16 | -2.578 -15.633 | 0.906 | 9(2.2) 14 (14.3)
kor -1.490 -5.735 1 0.974 | 29 | 45 | -1.119 -5.723 | 0.988 | 5615.2) | 79 (20.7 )
lux -1.830 -7.018 ] 0.953 | 17 | 29 | -1.850 -7.039 | 0.948 | 16(4.5) | 27 ( 8.8)
nld -2.158 -10.083 | 0.931 | 12 | 20 | -2.033 -8.843 | 0.938 | 13(3.8) | 23 ( 7.4)
nor -2.021 -7.995 0.936 | 13 | 23 -2.223 -9.384 0.922 | 11(3.9) 19 (1 8.6)
prt -0.872 -2.665 | 0.984 | 47 | 83 | -1.843 -8.240 | 0.949 | 17(5.0) | 25 (10.0)
swe -2.019 -8.485 1 0.940 | 14 | 24 | -1.959 -8.082 | 0.939 | 14(3.8) | 24 ( 7.7)
Table 5: Output and Inflation in the U.S.
Case ayr | Oy | DFGLS DF MZGLS Za QGLs | QOLS | kmic | kbic | J° | JP° | J? | Ji2
gdp 0.954 | 0.221 | -1.576 | -2.094 | -5.319 -8.020 | 0.980 | 0.966 2 1 371 34| 63 | 78
gdpdef | 0.950 | -0.298 | -1.242 | -2.834 | -3.096 | -15.388 | 0.967 | 0.895 2 0 14 | 20 | 56 | 48
pcectpi | 0.947 | -0.283 | -1.199 | -2.871 | -3.089 | -16.014 | 0.962 | 0.890 9 0 9 18 | 46 | 41

Regressions for log(GDP) include a constant and a trend. Only a constant is included in regressions for inflation.
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