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1 Introduction.

The statistical analysis of models with nonstationary variables has received considerable attention

in the last decade, as seen from the many theoretical results that have been developed and the

numerous applications that have been reported. It is by now common practice to report the

outcome of some unit root test on each variable, perform tests for the presence of cointegration

and, using one of the many asymptotically optimal procedures, estimate the cointegrating vectors.

For a review, see Campbell and Perron (1991), Stock (1995) and Watson (1995). Consider for

example the following simple relation between a scalar yt and an m dimensional vector xt with all

variables being I(1):

yt = �0xt + vt: (1.1)

Of special interest is to test the null hypothesis of no cointegration. This is often done applying a

unit root test to the estimated residuals, v̂t = yt � �̂0xt, where �̂ is the OLS estimate of �. Note

that (1.1) contains the univariate unit root problem as a special case with � = 0 and v̂t = yt. This

model is quite general because substantial heterogeneity and autocorrelation are permitted in the

errors fvtg and the �rst di�erences of the data, �xt . Usually some kind of \mixing conditions"

are imposed, see e.g. Phillips and Perron (1988), such that one can apply a functional central limit

theorem to the partial sums of the errors.

The basis of many unit root tests is the following �rst-order autoregression:

v̂t = �v̂t�1 + ut;

with the least-squares estimate denoted �̂ and ût = v̂t� �̂v̂t�1. It is by now well known that, under

the null hypothesis of no cointegration (or the null hypothesis of a unit root when � = 0), the

least squares estimator, �̂, converges to 1 at the fast rate of T . However, the limiting distributions

of T (�̂ � 1) and of its associated t-statistic depend on nuisance parameters arising from serial

correlation in the errors f�vtg. A popular approach to remove this dependence of the asymptotic

distribution on the nuisance parameters has been to apply some kind of transformation to the

basic least-squares estimates. For the univariate case, early examples of transformed unit root tests

are those of Phillips (1987) and Phillips and Perron (1988). In the multivariate case, transformed

statistics were proposed by Phillips and Ouliaris (1990). To apply these transformations, consistent

estimates of �2�v = limT!1 T�1
PT

t=1E(�v
2
t ) and �2 = limT!1 T�1E(S2

T ), with ST =
PT

t=1�vt,

are needed. These are usually based on the estimated residuals ût since �̂ converges to 1 at the

fast rate of T . For example, to estimate �2�v one uses s2u = T�1
PT

t=1 û
2
t , and to estimate �2 the
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most popular method has been to use a kernel-based estimator of the form:

s2WA = T�1
TX
t=1

û2t + 2T�1
(T�1)X
j=1

k(j;MT)
TX

t=k+1

ûtût�k : (1.2)

Here k(j;MT) is some kernel that weighs the sample autocovariances, MT is a bandwidth which

acts as a truncation lag parameter when k(j;MT) = 0 for jjj > MT . While many variants of unit

root and cointegration tests have been proposed, almost all use in some way such estimators to

eliminate the e�ect of nuisance parameters on the asymptotic distribution.

It is important to note that the above estimators of �2�v and �
2 both depend on the properties

of �̂ via the use of the estimated residuals ût. However, it has also been shown that the least-

squares estimate of � is severely biased in samples of typical sizes (and remains so even in quite

large samples) when there is substantial correlation in the errors. This feature has been extensively

documented in Perron (1996) for the univariate case, and is recently analyzed in Ng and Perron

(1997a) for the multivariate case. This can explain the substantial size distortions of the tests in

the presence of important serial correlation.

Given these biases in the least-squares estimates, one would like to construct cointegration and

unit root tests that are a�ected as little as possible by the dependence on �̂. An obvious possibility

is to use the residuals under the null hypothesis, i.e. �v̂t (or �yt in the univariate unit root

problem). However, if both �2�v and �
2 are estimated using the residuals under the null hypothesis,

it was shown by Phillips and Ouliaris (1990) that the tests become inconsistent. This result was

more or less perceived as implying an impossibility to altogether avoid the use of the least squares

estimates �̂ in constructing estimates of the nuisance parameters.

The theme of this paper is that, on the contrary, it is possible to construct estimates of the

nuisance parameters that are consistent under the null hypothesis and ensure consistent tests while

avoiding any dependence on �̂. The idea is to use the residuals under the null hypothesis, �v̂t

to construct s2u and to use a particular formulation of the autoregressive spectral density esti-

mator to estimate the spectral density at frequency zero of �vt. Such an estimator was �rst

proposed by Stock (1990) and is de�ned by s2AR = s2ek=(1 � b̂(1))2; where b̂(1) =
Pk

j=1 b̂j and

s2ek = T�1
PT

t=k+1 ê
2
tk with b̂j and êtk obtained from the following autoregression:

�v̂t = b0v̂t�1 +
kX

j=1

bj�v̂t�j + etk :

It is the aim of this paper to analyze the properties of such an autoregressive spectral density

estimator. Without much loss of generality we concentrate on the univariate case where � = 0

with v̂t = yt, and the problem of interest is that of testing for a unit root. The focus is on the
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properties of the estimator when there is substantial correlation in the error process. We �rst show

that such an estimator of the spectral density at frequency zero has much smaller biases and mean

squared errors compared to a kernel based estimator of the form (1.2) which is constructed using the

least-squares residuals. These features are analyzed using both simulations and local asymptotic

analyses where the errors are modeled as AR(1) or MA(1) processes with parameters approaching

the boundaries �1 or +1 as the sample size increases. The qualitative results obtained extend

immediately to the multivariate framework.

The plan of the paper is as follows. Section 2 motivates the analysis in terms of the Z�

test for the presence of a unit root. Section 3 discusses the data-generating processes used for

the simulations and presents the results. Section 4 presents a framework to analyze the local

asymptotic properties of the spectral density estimators. Section 5 summarizes the implications

of the di�erent estimators of the spectral density at frequency zero for the unit root tests. In

particular, we discuss how the use of the autoregressive spectral density estimator allows unit root

tests that show little size distortions even in the presence of substantial serial correlation in the

errors. Section 6 o�ers concluding comments. A technical contribution of this paper is to derive

the limit of the autoregressive spectral density estimator in several local asymptotic frameworks.

These proofs are contained in a mathematical appendix.

2 Motivation.

We motivate our analysis with the problem of testing for a unit root. We consider a series fytgTt=0
generated by:

yt = �yt�1 + ut; (2.1)

with � = 1 under the null hypothesis. The errors futg are assumed to be a linear process of the form

ut =
P1

i=0 biet�i with et � i:i:d:(0; �2e). Let B(z) = 1+
P1

i=1 biz
i = 1=(1+

P1
i=1 aiz

i) = 1=A(z). We

further assume that B(z) is non-zero on the unit circle, that A(1) 6= 0 and that k1=2
P1

i=1 jak+ij ! 0

for some increasing sequence k (note that the latter condition is automatically satis�ed if ut is a

stationary and invertible ARMA process).

We shall focus on the Z� test developed in Phillips (1987) and extended in Phillips and Perron

(1988). The test is de�ned as:

Z� = T (�̂� 1)� (s2 � s2u)=(2T
�2

TX
t=1

y2t�1); (2.2)

where �̂ is the OLS estimate of the autoregressive parameter in (2.1), s2u = T�1
PT

t=1 û
2
t , ût =

yt � �̂yt�1 and s2 is a consistent estimator of �2. The analysis can easily be extended to the case
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where additional deterministic components are included in the regression (2.1). The form of Z�

remains the same if yt�1 is replaced by its demeaned or detrended counterpart. See Ng and Perron

(1997b) for a discussion of issues pertaining to detrending and the estimation of the spectral density

function.

A consistent estimator of �2 often used is the non-parametric estimator, s2WA, de�ned in (1.2).

Simulation results of Schwert (1989), DeJong et al. (1992), and Phillips and Perron (1988), among

others, have shown that Z� based upon s2WA su�ers from severe size distortions, especially when

there is substantial negative correlation in the residuals ut (see Haug (1993) concerning cointegration

tests). There is also evidence that the choice of the kernel and the methods to choose the truncation

lag do not a�ect much the �nite sample properties of the test (see Kim and Schmidt (1990)).

The bad size properties of the test can be explained by the fact that �̂ is severely biased.

In Perron (1996), it was shown that the �nite sample distribution of the normalized least-squares

estimator, T (�̂�1), is very badly approximated by its limiting distribution when there is substantial

serial correlation in the residuals and the adequacy of the asymptotic approximation deteriorates

when additional deterministic components are included in the regression. Indeed, the properties of

�̂ a�ect the properties of Z� not only in a direct way via T (�̂�1), but also in indirect ways via the

estimates of the nuisance parameters s2WA and s2u since they are constructed using the least-squares

residuals ût, and hence depend on the biased estimate �̂.

The size problem found in Z� is not unique to the use of the kernel estimator. As an alternative

to s2WA, consider the standard autoregressive spectral density estimator following the work of Berk

(1974). It is de�ned by s2B = s2ek=(1� b̂(1))2, where b̂(1) =
Pk

j=1 b̂j and s
2
ek = T�1

PT
t=k+1 ê

2
tk with

b̂j and êtk obtained from the following autoregression:

ût =
kX

j=1

bj ût�j + etk: (2.3)

The estimator can be seen as parametric autoregressive approximation of �2. Since T (�̂ � 1) =

Op(1), one can use the results of Berk (1974) to show that s2B is consistent provided k3=T ! 0 and

k ! 1 as T ! 1. Simulations showed that unit root tests continue to have severely distorted

sizes when based upon s2B . The problem is that the autoregressive spectral density estimator still

depends on the estimated residuals, ût. Hence, a starting point to modify the Z� test is to try to

get rid of the dependence of the test statistic on �̂.

As a �rst step in eliminating this dependence, let us analyze the case where, instead of using

s2u = T�1
PT

t=1 û
2
t as an estimate of �2u; we use the residuals under the null hypothesis, i.e. s

2
�y =

T�1
PT

t=1�y
2
t . This estimator is obviously also consistent under the null hypothesis of a unit root.
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A little algebra shows that, in this case, Z� can be written as

MZ� = (T�1y2T � s2)=(2T�2
TX
t=1

y2t�1); (2.4)

which is exactly the modi�ed unit root test proposed by Stock (1990) and further analyzed by

Perron and Ng (1996). It is called a modi�ed Z� test because it can also be written as:

MZ� = Z� + (T=2)(�̂� 1)2: (2.5)

Since �̂ converges to 1 at rate T , the correction factor is asymptotically negligible and Z� and

MZ� are asymptotically equivalent. However, when large negative serial correlation is present in

the residuals and hence �̂ is severely biased, the correction factor (T=2)(�̂� 1)2 can be important

even in quite large samples.

The representation (2.4) is interesting in several aspects. First, it shows that using the residuals

under the null hypothesis to construct a consistent estimate of �2u eliminates the dependence of the

unit root test on �̂ were it not for the fact that the spectral density estimate s2 remains constructed

using the least-squares residuals. Secondly, writing MZ� = (y2T �Ts2)=(2T�1
PT

t=1 y
2
t�1), it is easy

to see that a necessary condition for the test to be consistent against stationary alternatives is that

Ts2 diverges under such alternatives. This is important because it shows that we cannot construct

s2WA using the residuals under the null hypothesis if �2u is estimated using the same residuals, i.e.

�yt. This is because Ts
2
WA = Op(1) under stationary alternatives when constructed with �yt as

shown by Phillips and Ouliaris (1990).

The challenge therefore is to construct an estimator s2 that is consistent for �2 under the null

hypothesis, with Ts2 diverging under stationary alternatives, and is such that the estimator does

not depend on �̂. This is achieved using a modi�ed autoregressive spectral density estimator based

on the �rst-di�erences of the data. Such an estimator, which we denote by s2AR, is de�ned in the

present context as:

s2AR = s2ek=(1� b̂(1))2; (2.6)

where s2ek = T�1
PT

t=k+1 ê
2
tk, b̂(1) =

Pk
j=1 b̂j , with b̂j and fêtkg obtained from the following autore-

gression estimated by OLS:

�yt = b0yt�1 +
kX

j=1

bj�yt�j + etk: (2.7)

Under the conditions stated on the errors futg, consistency of the parameter estimates in the above

regression under the null hypothesis that yt has a unit root follows from the results of Berk (1974),

Said and Dickey (1984) and Ng and Perron (1995) provided the truncation lag is such that k! 1
and k3=T ! 0 as T !1. Consistency of s2AR for �2 follows.
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The above autoregressive spectral density estimator di�ers from (2.3) in two ways. First, it uses

�yt instead of ût, and second, the lagged level yt�1 is included as a regressor. The introduction

of the lagged level is of no importance under the null hypothesis of a unit root since b̂0 ! 0 at

rate T . In other words, s2B and s2AR are asymptotically equivalent under the null hypothesis. The

introduction of the lagged level, however, ensures the consistency of unit root tests by making

the estimate bounded below by zero under stationary alternatives. This is an important property

because the requirement that Ts2 diverges is now satis�ed. An overlooked advantage of s2AR over

s2B is that the former based upon (2.7) is immune to potentially severe biases in �̂ caused by the

presence of substantial correlation in the errors.

Given that s2AR based upon (2.7) does not depend on �̂, it is likely to provide a better estimate

of �2 than s2WA in �nite samples. The next sections of this paper establish that this is indeed the

case.

3 The Experimental Design.

In this section, we discuss the experimental design used to evaluate the relative properties of s2WA

and s2AR. We keep the design very simple to better highlight the types of correlation that induce

problems of inference. To that e�ect, we consider errors as being generated by simple AR(1) or

MA(1) models. Hence, the data-generating processes are of the form

yt = yt�1 + ut; (3.1)

where the initial condition is set to y0 = 0 and the errors futg are generated by either of the

following:

MA(1) : ut = et + �et�1;

AR(1) : ut = �ut�1 + et;
(3.2)

with u0 = e0 = 0 and et � i:i:d:(0; �2e). Note that, in this case, the true value of �2 is �2e(1 + �)2

and �2e=(1��)2 for MA and AR models, respectively. We present both simulation experiments and

theoretical analyses based on these speci�cations.

We consider the case where the data are assumed to have an unknown mean. Correspondingly,

s2WA is constructed using residuals ût obtained from the regression (2.1) with a constant included.

Also, the regression used to construct the autoregressive spectral density estimator is

�yt = c+ b0yt�1 +
kX

j=1

bj�yt�j + etk : (3.3)

The aim of the simulation experiments is to quantify the bias and mean squared error of s2WA

and s2AR for a range of values of � and �. The emphasis of our discussion is on cases where there
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is substantial serial correlation in the errors. The innovations fetg are generated as i:i:d: N(0; 1)

random variables using the GASDEV function in Press et al. (1992). In all cases, 2,000 replications

are used. Three sample sizes are considered, T = 100; 200 and 500.

3.1 Results for s2WA with estimated residuals.

We report results for the kernel-based estimator constructed as in (1.2) using the Parzen window.

This is a kernel that operates with a truncation point. Although other kernels are possible, the

choice of this kernel is with little loss of generality given that our focus is on processes for ut

with roots close to the boundary of unity. The Parzen kernel was found to produce estimates with

relatively good �nite sample properties in Ng and Perron (1996). It is among the best windows that

provide non-negative estimates by construction and for which the bandwidth acts as a truncation

lag parameter. We also tried other windows such as the Quadratic spectral advocated by Andrews

(1991). The results are qualitatively similar.

Several methods to choose the truncation lag were considered. We analyzed the properties

of the estimator using �xed truncation lags ranging from 1 to some maximal order MT (max)

which increases with the sample size. We set MT (max) = 6; 10 and 14 for T = 100; 200 and

500, respectively. For data-dependent selection rules, our base case is the asymptotically optimal

data-dependent method suggested by Andrews (1991) using an AR(1) approximation. Another

experiment that we tried was to calculate the optimal bandwidth using an ARMA(1; 1) approxi-

mation with the true values of the parameters. This led to estimates with even worse properties,

especially in the negative MA(1) case. The reason is that for such a process the optimal band-

width is relatively large and for reasons explained below, the properties of s2WA deteriorate as

the bandwidth increases since the estimated residuals are not good approximations to the true

residuals. We also considered experiments using the pre-whitening device suggested by Andrews

and Monahan (1992). This produced signi�cant improvements only for AR(1) errors with positive

coe�cients. However, there were neither signi�cant improvements nor marked deteriorations in

cases with large negative AR(1) or MA(1) coe�cients. To conserve space, these results will not be

reported (but are available on request). Readers will be reminded of the advantages of prewhitening

where appropriate.

The results are presented in Table 1.a and 1.b for the bias and mean squared error, respectively.

Consider �rst the base case with i:i:d: errors. For a given sample size the bias decreases, as

expected, as the truncation lag increases. For a �xed truncation lag, it also decreases rapidly as

the sample size increases. The mean squared error eventually increases with the truncation lag but

it is relatively small in all cases and decreases rapidly as T increases, especially using an automatic
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bandwidth selection procedure. For models with positive MA coe�cients, the bias and MSE are

large for small values of the truncation lag but both decrease substantially as the truncation lag

increases. However, for a given truncation lag, the error decreases less rapidly as the sample size

increases than in the i:i:d: case.

Consider now the case with a large negative moving average coe�cient. Here the bias and

MSE initially decrease as the truncation lag increases but start increasing at larger lags. More

importantly, for � = �:8 the bias and MSE barely decrease as T increases even when an automatic

bandwidth selection procedure is used. The MSE is, in all cases, several orders of magnitude greater

than in the i:i:d: case. Indeed, the bias and MSE at � = �:8 are very large in relative terms since

the true value is �2 = :04. Although the bias and MSE diminish somewhat more quickly in cases

of large negative autoregressive errors, the estimator still gives imprecise estimates of �2 given that

the true values are small when � is negative. When the autoregressive coe�cient is positive, both

the bias and MSE decrease as the truncation lag increases but they are very large compared to

other cases and again decrease only very slowly as T increases.

We also present, in the last column of Tables 1.a and 1.b, the minimal value of the bias and MSE

for each case over all possible integer valued bandwidths. While these �gures correspond to the

best case possible and cannot, in general, be attained in practice, they provide a useful benchmark

for comparison with the bias and MSE of s2AR later.

3.2 Results for the Autoregressive Spectral Density Estimator, s2AR

This subsection discusses results pertaining to the behavior of s2AR constructed using the augmented

autoregression (3.3). For the construction of the autoregressive spectral density estimator, s2AR,

the only nuisance parameter to determine is the order of the autoregression k. We �rst considered

deterministic rules whereby k is a �xed value in the integer interval between 1 and kmax. We used

kmax = 4; 8 and 14 for T = 100; 200 and 500, respectively. We also considered data dependent

rules whereby k is chosen according to statistical criteria. This includes i) a general to speci�c

recursive procedure using a �ve and a ten percent t test for the signi�cance of the last lag (given

the upper bound kmax), and ii) rules based on the AIC and the Schwartz information criteria. The

t test tends to select orders of truncation that are higher than information based rules, with the

order of truncation increasing with the signi�cance level of the test. Thus, of the data dependent

rules considered, the Schwartz criterion produces the tightest model and the ten percent t test is

the most liberal.

The results for the bias and MSE are presented in Tables 2.a and 2.b respectively. A notable

property of s2AR is that its bias and MSE decrease rapidly as the sample size increases. However,
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for T = 100 or smaller, the bias and variance of s2AR can be large, especially at an overly liberal

value of k.

For small sample sizes, for example at T = 100, the results are sensitive to the choice of kmax.

For larger values of kmax, the estimates exhibit occasional outliers which increase the bias and

MSE substantially. This occurs because when k is large relative to the total sample the biases of the

least-squares estimates b̂i are such that
Pk

i=1 b̂i is occasionally close to 1 causing a singularity in the

denominator of s2AR. This problem is less severe when no constant is included in the autoregression

but more so when a time trend is included. When the sample size is larger, say T = 150 or greater,

this sensitivity to the choice of kmax disappears.

Consider �rst the base case with i:i:d: errors. For low values of the truncation lag, the bias and

MSE are small, but increase substantially as the truncation lag increases. With positive moving

average errors, the bias eventually decreases and the MSE increases as the truncation lag increases

for a �xed T . However, the errors decrease noticeably as T increases. While the variations in

performance across selection procedures reduce as the sample size increases, the tight Schwartz

criterion tends to produce the smallest MSE with positive moving average models.

It is of interest to note that both the bias and the MSE display a clear oscillating pattern as

the truncation lag varies from odd to even values. More precisely, bias and MSE are substantially

smaller at even than at odd lags. This can be seen from the fact that the autoregressive repre-

sentation of an MA model has coe�cients (��)i at the ith lag. An even k always ensures that

the calculation of
Pk

i=1 b̂i is balanced, in the sense that the number of odd and even terms always

match.

For negative moving-average errors, several features are noteworthy. First, the bias and MSE

of s2AR both decrease as the truncation lag increases for a �xed T when � � �0:5. Accordingly, a
more liberal data dependent method (e.g., the recursive t-test) produces in this case smaller MSE

than one that tends to select a tight structure (e.g., Schwartz's criterion). Thus, while the MSE

obtained using a recursive t test is higher than that obtained using the Schwartz criterion when �

is positive, the reverse is true when � is negative.

We now turn to cases of AR(1) errors. It is useful to note at the outset that since the true au-

toregressive order of ut is one in all data generating processes considered, any over parameterization

of the autoregression will lead to increases in the MSE. Accordingly, it is easy to understand why

a tight selection procedure such as that based on the Schwartz criterion might produce estimates

that have the lowest MSE. This is indeed the case with j�j < 0:8, where we observed that bias and

MSE increase as the truncation lag increases given a �xed T and they both decrease rapidly as T

increases. When � is close to one, the bias and MSE of the estimator are large, but diminish as T
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increases. When � is close to -1, bias and MSE increase somewhat as k increases with a given T

but fall rapidly as T increases.

In view of the oscillating magnitude of the bias and MSE for the case of MA(1) errors with

positive coe�cient, the errors associated with data dependent rules could be further reduced if the

rules are speci�ed to choose over a range of even valued truncation lags. Simulations to that e�ect

are presented in the last four columns of Tables 2.a and 2.b. As can be seen, the bias and MSE

are substantially reduced in the positive MA case. Indeed, with a search restricted to even lags,

the MSE with k selected using recursive t-tests on the signi�cance of the last lag is decreased in all

cases, even with AR(1) errors. For the data-dependent methods using the AIC and the Schwartz

criteria, the MSE is reduced with MA(1) errors but slightly increased with AR(1) errors. The latter

can be explained by the fact that the true order (k = 1) is outside the permissible range for k,

being 2 to kmax. In practical settings, one should expect a pure numerical advantage in using an

even number of autoregressive lags in empirical work.

3.3 Comparison of s2WA and s2AR.

For the i:i:d: case, a tight selection criterion, such as the Schwartz's criterion, permits s2AR to have

as low a bias as s2WA with the MSE remaining slightly higher. For positive moving average errors,

the MSE of s2AR at the optimal truncation lag for a given T is higher than the MSE of s2WA similarly

evaluated at an optimal truncation lag especially at T = 100, though the di�erence is only marginal

at larger sample sizes.

Signi�cant di�erences between s2WA and s2AR surface when � is negative, in particular if it is close

to �1. The bias and MSE of s2AR are dramatically smaller and decrease much more rapidly than

s2WA as T increases. For example, with T = 200 and � = �0:8, the smallest MSE for s2WA (with a

bandwidth of 4) is .920 while the smallest MSE for s2AR (with k = 8) is .012. The comparisons are

even more dramatic with T = 500.

For AR(1) errors, with j�j < 0:8, a tight selection procedure such as those based on information

criteria permits the MSE's to be as small as those obtained with s2WA evaluated with an optimal

selection procedure for the bandwidth. The statistic s2AR is inferior to s2WA only in the case of

positive AR(1) errors when pre-whitening is applied.

When � is close to the boundary of one, ut is nearly non-stationary with a power spectrum

that becomes unbounded when � approaches 1. It is then not surprising that neither s2AR nor

s2WA produce satisfactory estimates of �2. While the bias remains high compared to other cases,

it is substantially smaller with s2AR than with s2WA. Also, unlike the bias of s
2
WA, the bias of s

2
AR

decreases noticeably as T increases.
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For � close to -1, the bias and MSE of s2AR are dramatically smaller than those of s2WA . Indeed,

even though a tight selection procedure produces the smallest MSE for s2AR, any data-dependant

rule would have resulted in a dramatically smaller bias and MSE than s2WA constructed using an

optimal bandwidth. For example, with T = 100 and � = �0:8, the MSE of s2AR using a data-

dependent method to select k varies from .022 (t-10) to .004 (SW) while the smallest MSE of s2WA

(at MT = 3) is 1.04. The di�erences remain as important for larger sample size.

Our simulation results therefore lead to the following general observations. In well behaved cases

(� > �:5 and j�j < :8), both s2AR and s2WA produce good estimates of �2 but s2WA is somewhat

better in a mean squared sense if evaluated at the optimal bandwidth. In such cases, the choice

of the optimal truncation lag appears to be more important than the choice between the two

estimators. In the AR(1) case with a large value of �, both estimators have rather poor properties.

However, s2AR has noticeably smaller biases and slightly smaller MSE. In cases of large negative

serial correlation (MA or AR), the properties of s2AR are dramatically superior than those of s2WA

irrespective of the method to choose k. Therefore the cases in which the choice of the estimator for

the spectral density at frequency zero matters is when � ! �1, and j�j ! �1. In all three cases,

s2WA appears inferior.

4 Theoretical Results.

To analyze the behavior of the estimates from a theoretical perspective, we adopt the approach of

Nabeya and Perron (1994), treating the MA or AR coe�cients as local to the relevant boundaries.

We consider a slight extension of the models speci�ed by (3.1) and (3.2) with fytg generated by

the following nearly integrated model:

yt = (1 + c=T )yt�1 + ut: (4.1)

The series has an autoregressive root local to unity with non-centrality parameter c. Under the

null hypothesis of a unit root, c = 0. The advantage of this generalization is that it allows deriving

the local asymptotic power of unit root tests. Our results are used to that e�ect in Perron and

Ng (1996). There are three relevant cases. The �rst is when the MA coe�cient is local to �1, in
which case the process is described by:

ut = et + �T et�1;

�T = �1 + �=
p
T:

(4.2)

Throughout, fetg is assumed to be i:i:d:(0; �2e). This speci�es that the MA coe�cient approaches

�1 at rate
p
T . As T increases, the errors have a non-invertible moving average representation
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and fytg is white noise. Hence, this model was labelled as a \nearly-integrated nearly white noise"

process. The second case is when the AR coe�cient is local to +1 and the process is described by:

ut = �Tut�1 + et;

�T = 1 + �=T:
(4.3)

This speci�es that the AR coe�cient approaches +1 at rate T . As T increases, the errors have

a unit root and fytg has accordingly two unit roots. Hence, this model was labelled as a \nearly

twice integrated" process. The third case is when the AR coe�cient is local to �1 and the process

is described by:

ut = �Tut�1 + et;

�T = �(1 + �=T ):
(4.4)

This speci�es that the AR coe�cient approaches �1 at rate T . As T increases, the errors have a

negative unit root and yt = yt�2 + et, a process with a unit root at period 2. Hence, this model

was labelled as a \nearly seasonally integrated" process.

All these speci�cations were found to be useful in providing good approximations to the �nite

sample distribution of the least-squares estimator in an autoregression of order one. Our aim in

characterizing the limits of s2WA and s2AR in these local frameworks is similarly to obtain better

approximations and additional insights about their behavior when there is substantial serial cor-

relation in the errors. We also summarize relevant results about the implied behavior of the unit

root tests.

4.1 Local Asymptotic Properties of s2WA.

In this section, we consider the limit of s2WA for the case where MT acts as a truncation lag. The

results are stated in the following Lemma.

Lemma 4.1. Let fytg be generated by (4.1) and let s2WA be constructed as in (1.2).

a) Suppose that futg is generated by (4.2) then M�1
T s2WA is Op(1).

b) Suppose that futg is generated by (4.3) then (MTT )�1s2WA is Op(1).

c) Suppose that futg is generated by (4.4) then (MTT )
�1s2WA is Op(1).

This Lemma is proved in Perron and Ng (1996) en route to explaining the properties of unit root

tests that adopt a kernel estimate for �2. These asymptotic limits of s2WA are, however, interesting

in their own right. In all cases considered s2WA is not only an inconsistent estimator of �2 but

diverges as T increases (since MT is required to increase as T increases). The rate of divergence

is more severe in the autoregressive cases compared to the negative moving average case. These
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theoretical results are in accord with the simulations reported earlier, namely, that biases and MSE

are large and do not decrease much as the sample size increases when the AR coe�cient is close to

�1 or the MA coe�cient is close to �1.
The results of the above Lemma hold irrespective of the choice of the kernel, and is the reason

for our earlier claim that the choice of the Parzen kernel in the simulations is without loss of

generality. The choice of the kernel a�ects the Op(1) factors in the Lemma but not the rate of

divergence of the estimators. The unimportance of the choice of the kernel in these situations is

corroborated by the empirical �ndings of Kim and Schmidt (1990). While the choice of the kernel

is of secondary importance for the issue considered here, the value of the truncation point MT is

of special importance because it dictates the rate of divergence of s2WA.
1

4.2 Local Asymptotic Properties of the Autoregressive Spectral Density Estimator,

s2AR.

The regression used to construct the autoregressive spectral density estimator is evidently the

same regression used to construct the unit root test of Said and Dickey (1984). However, the noise

function of the three cases of interest each has, in the limit, a root on the unit circle. Hence, we

cannot appeal to results in Said and Dickey (1984) to derive the limit s2AR in the local asymptotic

frameworks. To that e�ect, we provide, in the appendix, detailed proofs of the results stated in

this section.

Consider �rst the case pertaining to a large negative moving-average coe�cient. Since �2 =

�2e(1 + �T )
2, we have that the limiting value is 0 since �T ! �1 as T ! 1. The next Theorem

shows s2AR to be consistent in this case.

Theorem 4.1. Let fytg be generated by (4.1) and (4.2). Let s2AR be obtained by applying OLS

to (2.7). Then s2AR ! 0 provided k!1 and k=T ! 0 as T !1.

Since yt is a white noise process in the limit, �yt is over di�erenced. In spite of this, Theorem

4.1 shows that the augmented autoregression can still be used to construct a consistent estimate

of �2. Since in the limit �2 is 0, all that is required is that b̂(1) ! 1 as T ! 1, a result which

follows if k !1 and k=T ! 0 as T ! 1. The consistency of s2AR in this case is to be contrasted

with the limit of s2WA which diverges. This explains why in the simulations, the bias and MSE are

much smaller with s2AR than with s2WA.

Consider now the case pertaining to a large positive autoregressive coe�cient. Note that since

�2 = �2e=(1� �T )2, we have that the limiting value satis�es T�2�2 ! �2e=�
2 as T ! 1 given that

1Lee and Phillips (1994) suggested an ARMA prewhitened long-run variance estimator that has better properties
than standard kernel estimators and can reduce size distortions in Z�.
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�T = (1 + �=T ).

Theorem 4.2. Let fytg be generated by (4.1) and (4.3). Let s2AR be obtained by applying OLS to

(2.7) with k ! 1 and k = o(T 1=3). Let T (b̂(1)� b(1))! �, where � is a random variable de�ned

in the Appendix (equation (A7)). Then T�2s2AR ! �2e=(c+ �+ �)2.

Note that in this case s2AR is not consistent for the true value even under the null hypothesis of

a unit root (c = 0). Furthermore, it converges to a random variable in the limit. While ut is a unit

root process with non-centrality parameter �, in an augmented autoregression in �yt it is a unit

root process with non-centrality parameter c + � + �.. Thus, the augmented autoregression will

not, in general, identify ut as a unit root process even when � = 0. This accounts for the relatively

poor performance of s2AR in models with positive residual autocorrelation. Recall, however, that

s2WA = Op(MTT ) so that it understates �2 since MT =T ! 0 as T ! 1.. But, unlike s2WA, s
2
AR

is of the same order as the true value �2. Hence, our theoretical result indicate that we can still

expect s2AR to be a better estimator than s2WA, even though both are likely to have poor properties

since neither is consistent.

Consider now the case pertaining to a large negative autoregressive coe�cient. Note that

since �2 = �2e=(1 � �T )
2, we have that the limiting value satis�es �2 ! �2e=4 as T ! 1 since

�T = �(1 + �=T ). The next Theorem shows s2AR to be consistent for �2 in this case.

Theorem 4.3. Let fytg be generated by (4.1) and (4.4). Let s2AR be obtained by applying OLS

to (2.7) with k!1 and k = o(T 1=3) as T !1. Then s2AR ! �2e=4.

In the standard framework, �yt is a stationary process when yt is integrated of order one.

For the DGP in question, yt has a seasonal unit root of period two, and hence �yt remains non-

stationary. Heuristically, consistency of s2AR follows from the fact that all the variables in the

augmented autoregression are I(1). Although the number of regressors increase with the sample

size, we show in the Appendix that consistency of the parameter estimates continue to hold as in

a regression with a �xed number of I(1) regressors. The consistency of s2AR in this case is again to

be contrasted with the limit of s2WA which diverged.

5 Implications for Unit Root Tests.

We now consider the implications of the local limits of s2WA and s2AR for unit root tests using

the same local asymptotic frameworks. The spectral density estimator is, of course, not the only

quantity that a�ects the properties of unit root tests. The sample moments of other quantities also
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matter. The following two lemmas summarize the relevant asymptotic results derived in Perron

and Ng (1996).

Lemma 5.2. Let fytg be generated by (4.1) and let s2WA be constructed as in (1.2).

a) Suppose that futg is generated by (4.2) then (MTT )
�1Z� and (MTT )

�1MZ� are Op(1).

b) Suppose that futg is generated by (4.3) then Z� and MZ� are Op(1).

c) Suppose that futg is generated by (4.4) then (MTT )
�1Z� and (MTT )

�1MZ� are Op(1).

In all cases, the divergence of Z� and MZ� is to minus in�nity.

The implications for the unit root tests depend on the particular cases considered. With negative

serial correlation, Z� and MZ� diverge to minus in�nity at rate (MTT ). If a statistic has a

limiting distribution that diverges to �1 and critical values from a bounded distribution are used

in hypothesis testing, the consequence will be large size distortions. This is essentially why size

distortions are reported for Z�. Even though such results are widely reported for the negative MA

case, the problem is important in the negative AR case also. In such cases, the selection of MT in

unit root tests entails considerations beyond the usual bias-variance trade-o� of s2WA as analyzed

in Andrews (1991), because increasing the truncation lag can aggravate size distortions in the tests.

In the case of autoregressive errors with positive coe�cients, Z� and MZ� remain bounded as T

increases even though s2WA diverges. Hence, less size distortions are expected. These results are

consistent with the simulations reported above.

We now consider the limit behavior of the same unit root tests when s2AR is used as the spectral

density estimator at frequency zero.

Lemma 5.3. Let fytg be generated by (4.1) and let s2AR be obtained by applying OLS to (2.7) as

an estimator of �2..

a) Suppose that futg is generated by (4.2) then Z� = Op(T ) but MZ� = Op(1).

b) Suppose that futg is generated by (4.3) then Z� , MZ� are both Op(1).

c) Suppose that futg is generated by (4.4) then Z� = Op(T ) but MZ� = Op(1).

For the two cases of negative serial correlation (a and c), the implications are �rst that Z�

remains with large size distortions even if s2AR is used instead of s2WA. This is because the bias

in the least squares estimator still a�ects Z� directly via �̂ and indirectly via the least squares

residuals (when constructing s2u). However, the statisticMZ� is now bounded in probability in the

local asymptotic framework where the MA(1) or the AR(1) coe�cient converges to �1 as T !1.

The foregoing analysis suggests that, if we construct MZ� using s2AR, we will essentially have

a unit root test that does not have any dependence on �̂. While the limiting distributions are
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di�erent from those obtained using the standard asymptotic framework, we also found the standard

asymptotic distribution to be a reasonable approximation to the �nite sample distribution ofMZ�.

For this reason, use of the standard asymptotic critical values yielded unit root tests with good

size properties for all the parameters considered in the simulations. Details are contained in Perron

and Ng (1996). The consequence is dramatic improvements in size properties over unit root tests

which do have a dependence on �̂ (e.g., Z�) in the problematic parameter space. To give an idea

of the magnitude of the size improvement, consider the MA(1) case with � = �0:8 and T = 100.

The size of MZ� using s2AR is .09, while the size of Z� using s2WA is .98, when the nominal size of

the test is .05. Such contrasts in size remain in larger samples.

The above Lemmas also indicate that in order to have unit root tests with good properties,

simply replacing s2WA by s2AR will not be su�cient; we need to remove total dependence of the test

statistic on �̂. As discussed in Perron and Ng (1996), there exist several other tests that also do not

have a dependence on �̂; for example, a modi�ed Sargan-Bhargava test suggested by Stock (1990),

or a modi�cation of the Zt test developed in Phillips (1987). The autoregressive spectral density

estimator discussed here can therefore be used in a rather broad range of applications.

6 Conclusions.

This paper has considered estimating the nuisance parameter �2 in the context of unit root or coin-

tegration tests. We have shown that a particular formulation of the autoregressive spectral density

estimator can provide estimates far superior to the traditional kernel-based estimator constructed

using least-squares residuals. The gains are important in cases of strong negative correlation and

there are little losses in accuracy in the other cases. When used in conjunction with tests that do

not depend on �̂, it allows unit root or cointegration tests to have substantially improved size in the

presence of strong serial correlation in the residuals. Also, this marked reduction in size distortions

does not come at the expense of a reduction in power. The estimator is very easy to construct and

requires basically only a standard autoregression estimated by OLS. For these reasons, we believe

that this estimator is of substantial interest for applications.

An issue that remains unsolved is an optimal method to select the order k of the autoregression.

The relative merits of the data dependent methods for selecting k are discussed in Ng and Perron

(1995) in the context of testing for a unit root from an augmented regression such as (2.7). While

we advocated the use of a general to speci�c recursive procedure on the ground that it produces

unit root tests with better �nite sample size and power, it does not follow that this procedure is

better in the context of producing estimates s2AR that have the smallest mean-squared error. As

seen from the results here, too large a kmax can induce excessive variability in the estimates when
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the sample size is small. As well, a liberal selection rule is preferred with negative moving-average

errors, but a conservative rule is preferred with positive moving-average errors, and with (�nite

order) autoregressive errors in general. This being said, it is not clear that the MSE of the spectral

density estimators is the appropriate criteria for selecting k, since our ultimate objective is to test

for the presence of a unit root, and not obtain an estimate of �2 that is as precise as possible.

Clearly, the optimal lag length should depend on the underlying data-generating process. Hence,

an important avenue for future research is to devise optimal data dependent rules for s2AR which

produce unit root tests with good size both when the root of the error process is away from the

unit circle and when it is close to it. These issues are discussed in Ng and Perron (1997b).

Finally, it is important to note that the estimators considered here are clearly aimed at providing

estimates of the nuisance parameters in the context of testing for unit roots or cointegration. In

this case, the class of possible estimators is constrained by the requirement that the estimates

be bounded (or at least converge to zero at a rate slower than T ) under stationary alternatives.

This is needed to ensure consistency of the tests. If one is interested solely in an estimate of (2�

times) the spectral density function at frequency zero of some series, say �yt, then better estimates

are available. Since one is no longer constrained to use the least-squares residuals to construct

s2WA, the �rst-di�erences �yt can be used. Also, in the construction of the autoregressive spectral

density estimator s2AR, one need not include the lagged level yt�1 in the autoregression (2.7). These

alternative constructions not only ensure consistency of the estimators under stationary alternatives

but also more e�cient estimates when the level of the series contains a unit root.
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Appendix A: Mathematical Results

The following regression equation estimated by OLS is considered throughout this appendix:

�yt = b0yt�1 +
kX
i=1

bi�yt�i + etk: (A1)

We denote the OLS estimates by fb̂igki=0 and the estimated variance of the residuals as s2ek =

T�1
PT

t=k+1 ê
2
tk. As a matter of notation, we let \)" denote weak convergence in distribution

and \!" convergence in probability. Also, W (r) is the unit Wiener process de�ned on C[0; 1] and
Jc(r) =

R r
0 exp((r�s)c)dW (s) is the Ornstein-Uhlenbeck process with drift parameter c. The norm

of a matrix B is de�ned by k B k= supf k Bx k : k x k< 1g, where k x k= (x0x)1=2 is the standard
Eucledian norm of a column vector x. We also let C denote an arbitrary constant which is not
necessarily the same throughout.

Proof of Theorem 4.1
We need to show

Pk
i=1 b̂i ! 1, that s2ek = T�1

PT
t=k+1 ê

2
tk is bounded as T ! 1, and hence

that s2AR = s2ek=(1�
Pk

i=1 b̂i)
2 ! 0 with k=T ! 0 and k ! 1 as T ! 1. It is useful �rst to note

the following representation derived in Nabeya and Perron (1994) for fytg generated by (4.1) and

(4.2). De�ne Xt = (1 + c=T )Xt�1 + et, aT = (1� �=
p
T )(1� c=T ), bT = 1� (1� c=T )(1� �=

p
T )

with aT ! 1 and T 1=2bT ! � as T !1, then

yt = aT et + bTXt + op(T
�1=2): (A2)

where the presence of the op(T
�1=2) term is due to the fact that we specify � = 1+ c=T instead of

� = exp(c=T ) as in Nabeya and Perron (1994).
Some of the arguments below are similar to those in Chang (1989) and Chang and Dickey

(1994). We de�ne the following vectors of dimension (k + 1):

U 0t = (yt�1; Z
0
t); with Z0t = (�yt�1; : : : ;�yt�k);

V̂T = T�1
TX

t=k+1

Ut�yt;

V = �2e(�1;�1; 0; : : : ; 0)0;
and the following (k + 1) by (k + 1) matrices:

R̂T = T�1
TX

t=k+1

UtU
0
t = T�1

2
64

PT
t=k+1 y

2
t�1

PT
t=k+1 yt�1Z

0
t

PT
t=k+1 yt�1Zt

PT
t=k+1 ZtZ

0
t

3
75 ;

~RT = �2e

2
666664

��2e T�1
PT

t=k+1(a
2
Te

2
t�1 + b2TX

2
t�1) 1

1 2 �1
�1 2 �1

�1 2 �1
�1 2

3
777775 ;

A-1



R = �2e

2
666664

1 + �2
R 1
0 Jc(r)

2dr 1
1 2 �1

�1 2 �1
�1 2 �1

�1 2

3
777775 :

Using this notation, we have �̂ = R̂�1T V̂T , where �̂ = (b̂0; b̂1; : : : ; b̂k). We �rst state a few results
that are useful for subsequent derivations.

Lemma A1. Let Xt = (1+c=T )Xt�1+et, then a) jE(Xtes)j � C; b) jE(XtXs)j � TC for t; s;� T ;

c) E(
PT

t=1Xtet)
2 = O(T 2); d)

PT
t=1Xt�1et = Op(T ); and e) T�2

PT
t=1X

2
t ) �2e

R 1
0 Jc(r)

2dr.

Parts (a) through (d) are straightforward generalizations of results in Fuller (1976), part (e) is
a standard result for near-integrated processes. The following Lemma collects some useful results
derived in Nabeya and Perron (1994).

Lemma A2. Let fytg be generated according to (4.1) and (4.2) and let e1 = limT!1 eT=�e.

Then as T ! 1, a) T�1
PT

t=1 y
2
t�1 ) �2e + �2e�

2
R 1
0 Jc(r)

2dr ; b) T�1
PT

t=1 yt�1ut ) ��2e ; c)
yT ) �ee1 + �e�Jc(1); and d) T�1

PT
t=1 u

2
t ) 2 �2e .

Using Lemma A2, it is straightforward to derive the convergence results stated in the following
Lemma.

Lemma A3. Let fytg be generated by (4.1) and (4.2). Then for i; j = 1; : : : ; k,

a) T�1
PT

t=k+1 yt�1ut�i )

8><
>:

�2e if i = 1;

0 otherwise;

b) T�1
PT

t=k+1 yt�jyt�i )

8><
>:

�2e (1 + �2
R 1
0 Jc(r)

2dr) if i = j;

�2e�
2
R 1
0 Jc(r)

2dr if i 6= j;

c) T�1
PT

t=k+1 ut�iut�j )

8>>>><
>>>>:

2�2e if i = j;

��2e if ji� jj = 1;

0 otherwise.

The following bounds can also be derived using Lemma A1.

Lemma A4. Let fytg be generated according to (4.1) and (4.2): a) jE[ytys]j � C if s = t or
s = t + 1, and jE[ytys]j � CT�1=2 otherwise; b) E[utus] = 0 for jt � sj > 1 and jE[utus]j � C

otherwise; c) E[
PT

t=k+1 ytut�j ]
2 � CT 2 if j = �1 and E[

PT
t=k+1 ytut�j ]

2 � CT if j 6= �1; d)

E[
PT

t=k+1 utut�j ]
2 � CT for jjj > 1; e) E[

PT
t=k+1 ytyt�j ]

2 � CT 2 for any j.

We now consider the limiting behavior of the moment matrix R̂T .

Lemma A5. a) kR̂T �Rk ! 0; b) kR̂T � ~RTk = Op(k=T 1=2).
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Proof: To prove (a), we show that each element of R̂T converges in distribution to the correspond-

ing element of R. Consider �rst the (1,1) element of R̂T : Using Lemma A2, we have

T�1
TX

t=k+1

y2t�1 ) �2e(1 + �2
Z 1

0
Jc(r)

2dr):

For the remaining elements in the �rst row of R̂T , using (4.2) and parts (a) and (b) of Lemma A3,
we have:

T�1
PT

t=k+1 yt�1�yt�1 = T�1
PT

t=k+1 yt�1(ut�1 +
c
T yt�2)! �2e ;

T�1
PT

t=k+1 yt�1�yt�i = T�1
PT

t=k+1 yt�1(ut�i +
c
T yt�i�1)! 0:

for i = 2; :::; k. Consider now the elements of the lower right k � k matrix of R̂T . We have, for
i; j = 1; :::; k:

T�1
PT

t=k+1 �yt�i�yt�j = T�1
PT

t=k+1(
c
T yt�i�1 + ut�i)(

c
T yt�j�1 + ut�j)

= T�1
PT

t=k+1 ut�iut�j + c2T�3
PT

t=k+1 yt�i�1yt�j�1

+ cT�2
PT

t=k+1 yt�i�1ut�j + cT�2
PT

t=k+1 yt�j�1ut�i:

(A3)

The last three terms converge to zero using parts (a) and (b) of Lemma A3. Thus, by Lemma
A3(c), T�1

PT
t=k+1 �yt�i�yt�j ) 2�2e if i = j, ��2e if ji� jj = 1 and 0 otherwise. This proves part

(a).

For part (b), de�ne the matrix Q = R̂T� ~RT . We show that each element, qij (i; j = 1; :::; k+1),
are such that TE(q2ij) � C, for some constant C. Consider �rst, the (1; 1) element. We have:

T�1
PT

t=k+1 y
2
t�1 = T�1

PT
t=k+1(aTet�1 + bTXt�1)2

= T�1
PT

t=k+1(a
2
T e

2
t�1 + b2TX

2
t�1 + 2aT bTXt�1et�1)

and

TE(q211) = 4a2TTb
2
TT

�2E[
TX

t=k+1

Xt�1et�1]
2 � C;

using (c) of Lemma A1 and the fact that aT = O(1) and Tb2T = O(1). Consider next the (1; 2)
element. We have

TE(q212) = E[T�1=2
PT

t=k+1(yt�1�yt�1 � �2e )]
2

� E[T�1=2
PT

t=k+1(yt�1ut�1 � �2e )]
2 +E[cT�3=2

PT
t=k+1 yt�1yt�2]

2

+ E[2cT�3=2
PT

t=k+1 yt�1yt�2(yt�1ut�1 � �2e)]:

The second term after the inequality is o(1) using Lemma A4(e). Consider the �rst term:

E[T�1=2
PT

t=k+1(yt�1ut�1 � �2e)]
2

� E[T�1=2
PT

t=k+1(aTe
2
t�1 � �2e )]

2 +E[T 1=2bTT
�1PT

t=k+1Xt�1et�1]2

+E[aT�TT
�1=2PT

t=k+1 et�1et�2]
2 + E[�TT

1=2bTT
�1PT

t=k+1Xt�1et�2]
2 � C;
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using Lemma A1(c), the fact that aT ! 1 and standard arguments for i.i.d. random variables. For
i = 2; :::; k, we have

TE(q21;i+1) = E[T�1=2
PT

t=k+1 yt�1�yt�i]
2

= E[T�1=2
PT

t=k+1 yt�1ut�i + cT�3=2
PT

t=k+1 yt�1yt�i�1]
2

� E[T�1=2
PT

t=k+1 yt�1ut�i]
2 + E[cT�3=2

PT
t=k+1 yt�1yt�i�1]

2

� C;

using (c) and (e) of Lemma A4. Consider now the elements of the lower right sub-matrix of Q. We
have, using (A3), for i = 1; :::; k:

qi+1;i+1 = T�1
PT

t=k+1(u
2
t�i � 2�2e) + c2T�3

PT
t=k+1 y

2
t�i�1

+2cT�2
PT

t=k+1 yt�i�1ut�i

TE(q2i+1;i+1) � E[T�1=2
PT

t=k+1(u
2
t�i � 2�2e)]

2 +E[c2T�5=2
PT

t=k+1 y
2
t�i�1]

2

+2E[ cT�3=2
PT

t=k+1 yt�i�1ut�i]
2

� C;

using Lemma A4 and the fact that

E[T�1=2
PT

t=k+1(u
2
t�i � 2�2e)]

2

= E[T�1=2
PT

t=k+1f(e2t�i � �2e) + (�2T e
2
t�i�1 � �2e) + 2�T et�iet�i�1g]2

� E[T�1=2
PT

t=k+1(e
2
t�i � �2e)]

2 + E[T�1=2
PT

t=k+1(�
2
Te

2
t�i�1 � �2e)]

2

+E[2�TT�1=2
PT

t=k+1 et�iet�i�1g]2

� C;

where the last inequalities follow using standard arguments and the fact that j�T j � 1. For the
elements with ji� jj = 1, we have:

TE(q2i+1;j+1) � E[T�1=2
PT

t=k+1(ut�iut�j + �2e )]
2 +E[c2T�5=2

PT
t=k+1 yt�i�1yt�j�1]

2

+E[ cT�3=2
PT

t=k+1 yt�i�1ut�j ]
2 +E[cT�3=2

PT
t=k+1 yt�j�1ut�i]

2

� C;

and for ji� jj > 1,

TE(q2i+1;j+1)

� E[T�1=2
PT

t=k+1 ut�iut�j ]
2 + E[c2T�5=2

PT
t=k+1 yt�i�1yt�j�1]

2

+E[ cT�3=2
PT

t=k+1 yt�i�1ut�j ]
2 + E[cT�3=2

PT
t=k+1 yt�j�1ut�i]

2

� C:
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Hence, we have E(kQk2) � C(k+ 1)2=T since Q is a matrix of dimension (k + 1)� (k + 1).2

We consider now results pertaining to the vector V̂T stated in the following Lemma.

Lemma A6. a) kV̂Tk = Op(k
1=2); b) kV̂T � V k = Op(k=T )

1=2.

Proof: We start by showing that each element of V̂T converges to the corresponding element
of V . Consider the �rst element. From Lemma A2:

T�1
TX

t=k+1

�ytyt�1 = cT�2
TX

t=k+1

y2t�1 + T�1
TX

t=k+1

yt�1ut ! ��2e :

For the remaining elements , we have using Lemma A3:

T�1
PT

t=k+1�yt�yt�i = T�1
PT

t=k+1(
c
T yt�1 + ut)(

c
T yt�i�1 + ut�i)

= c2T�3
PT

t=k+1 yt�1yt�i�1 + cT�2
PT

t=k+1 yt�1ut�i

+cT�2
PT

t=k+1 yt�i�1ut + T�1
PT

t=k+1 utut�i

! ��2e if i = 1 and 0 otherwise.

This proves part (a) since each of the (k + 1) elements of the vector V̂T are Op(1).

Let vi (i = 1; :::; k+1) be the ith element of the vector V̂T �V . To prove part (b), we show that
TE(v2i ) is bounded. Consider the last (k�1) elements. Using the preceding result and Lemma A4,
we have, for 2 � i � k,

E(T�1=2
TX

t=k+1

�yt�yt�i)
2 � E(T�1=2

TX
t=k+1

utut�i)
2 + o(1) � C:

Consider now the �rst element of the vector T 1=2(V̂T � V ). We have:

TE(T�1
PT

t=k+1�ytyt�1 + �2e)
2

= TE(cT�2
PT

t=k+1 y
2
t�1 + T�1

PT
t=k+1 yt�1ut + �2e)

2

= TE(T�1
PT

t=k+1 yt�1ut + �2e )
2 + o(1)

= E[T�1=2aT
PT

t=k+1 etet�1 + T�1=2
PT

t=k+1(aT�T e
2
t�1 + �2e )

+T 1=2bTT
�1PT

t=k+1Xt�1ut]2 + o(1)

� E[T�1=2aT
PT

t=k+1 etet�1]
2 +E[T�1=2aT

PT
t=k+1(�

2
e � e2t�1)]

2

+Tb2TE(T
�1PT

t=k+1Xt�1ut)
2 + o(1)

� C;

since �T ! �1; Tb2T ! �2 and aT ! 1, and using Lemmas A4 and A1(c), and the fact that

T�1=2
PT

t=k+1(e
2
t�1 � �2e ) is bounded in probability. For the second element, similar arguments

show that

TE(v22) = T 1=2E[T�1
TX

t=k+1

�yt�yt�1 + �2e ]
2 � C;
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and part (b) follows.2

The next lemma concerns the inverse of the moment matrix R̂T .

Lemma A7. k ~R�1T k = Op(k
2) and if k11=T ! 0 as T !1, then k1=2kR̂�1T � ~R�1T k ! 0.

Proof. Note that ~RT = A+E where

A = �2e

2
666664

2 �1
�1 2 �1

�1 2 �1
�1 2 �1

�1 2

3
777775 ;

E = �2e

2
66666664

��2e T�1
PT

t=k+1(a
2
T e

2
t�1 + b2TX

2
t�1)� 2 2

2 0 0
0 0 0 0

0 0 0
0 0

0

3
77777775
:

We have �min(E) = 0 and �min(A) = 2�2e (1�cos( �
k+2)) = Op(k

2) (see Dickey (1990)). By Corollary
8.1-3 of Golub and van Loan (1984), �min(A+E) � �min(A)+�min(E), since A and E are symmetric.

This implies �min( ~R
�1
T ) = k ~R�1T k = Op(k

2) since the maximal eigenvalue of ~R�1T is the reciprocal

of the minimal eigenvalue of ~RT .
For part (b), we follow developments similar to those in Said and Dickey's (1984) Theorem 4.1.

Let q = kR̂�1T � ~R�1T k and Q = R̂T � ~RT , we have,

q = kR̂�1T ( ~RT � R̂T ) ~R
�1
T k � kR̂�1T kk ~RT � R̂Tkk ~R�1T k � (q + k ~R�1T k)kQkk ~R�1T k:

Upon rearrangement, we have

k1=2q � k1=2(1� k ~R�1T kkQk)�1k ~R�1T k2kQk:
Note that since E(kQk2) � C(k + 1)2=(T � k), we have k9=2kQk ! 0 if k11=T ! 0. Hence,

k1=2q � (1� k�5=2k�2k ~R�1T kk9=2kQk)�1k�4k ~R�1T k2k9=2kQk ! 0 as T ! 1;

which proves Lemma A7. 2
We are now in a position to prove the following result.

Lemma A8. Suppose k ! 1 and k11=T ! 0 as T ! 1, then k�̂ � ~�k ! 0, where ~� = ~R�1T V .

Also, since T�1
PT

t=k+1(a
2
T e

2
t�1 + b2TX

2
t�1) ) �2e (1 + �2

R 1
0 Jc(r)

2dr), we have k�̂ � �k ! 0, where
� = R�1V:

Proof.

k�̂ � ~�k = kR̂�1T V̂T � ~R�1T V k = kR̂�1T V̂T � ~R�1T V̂T + ~R�1T V̂T � ~R�1T V k
� kR̂�1T � ~R�1T kkV̂Tk+ k ~R�1T kkV̂T � V k
= k1=2kR̂�1T � ~R�1T kk�1=2kV̂Tk+ k5=2T�1=2k�2k ~R�1T kT 1=2k�1=2kV̂T � V k ! 0
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using Lemmas A6 and A7 and the fact that k11=T ! 0. 2

Since
Pk

i=1 b̂i is a continuous function of the vector �̂ = (b̂0; b̂1; : : : ; b̂k), the limit of
Pk

i=1 b̂i is

the same as that of
Pk

i=1 �i, where � = (�0; �1; : : : ; �k) is the solution to � = R�1V . We have used

MAPLE to verify that �i = (k � i+ 1)S=(1 + (k + 1)S) (i = 1; :::; k), where S = �2e�
2
R 1
0 Jc(r)

2dr.

Hence,
Pk

i=1 �i = k(k + 1)S=(2(1+ (k + 1)S)) and k�1
Pk

i=1 �i ! 1=2 as k !1. This shows thatPk
i=1 b̂i !1 as T !1 with k !1.
Finally, note that the same result holds if k11=T ! 1 and k=T ! 0 as T ! 1 since from

Lemma A8, k�̂��k would be bounded below by the case k11=T ! 0 and we still obtain
Pk

i=1 b̂i ! 1
as T !1. To complete the proof, it remains to show that s2ek remains bounded, regardless of the

rate at which k approaches in�nity. Note �rst that s2ek = T�1
PT

t=k+1 ê
2
tk � T�1

PT
t=k+1 e

2
tk, using

standard properties of projections. Hence, all we need to show is that T�1
PT

t=k+1 e
2
tk remains

bounded. This is straightforward using the following representation of etk:

etk = et +
1X

i=k+1

bi�yt�i;

and using the fact that bi = �(1 + c=�
p
T )(1� �=

p
T )i. Details are omitted.

The Nearly Twice Integrated Model.

Proof of Theorem 4.2:
It is useful �rst to state the following Lemma proved in Nabeya and Perron (1994).

Lemma A9. Let fytg and futg be processes given by (4.1) and (4.3). De�ne Jc(r) =
R r
0 exp((r �

s)c)dW (s), J�(r) =
R r
0 exp((r� s)�)dW (s) and Qc(J�(r)) =

R r
0 exp((r� v)c)J�(v)dv. As T !1 :

a) T�3=2yT ) �e Qc(J�(1));

b) T�4
PT

t=1 y
2
t ) �2e

R 1
0 Qc(J�(r))

2dr;

c) T�3
PT

t=1 yt�1ut ) (�2e=2)fQc(J�(1))2 � 2c
R 1
0 Qc(J�(r))2drg;

d) T�2
PT

t=1 u
2
t ) �2e

R 1
0 J�(r)

2dr:

The autoregressive representation of the data-generating process is

�yt = �(c�=T 2)yt�1 + (1 + (c+ �)=T + c�=T 2)�yt�1 + et:

This implies bi = 0 for i > 1. Thus, limk!1
Pk

i=1 bi = 1 + (c+ �)=T + c�=T 2. To derive the limit

of b̂(1), it proves convenient to write the regression (A1) as

�yt = �0yt�1 + �1�yt�1 +
kX
i=2

�i�
2yt�i+1 + etk;

where �1 =
Pk

i=1 bi = b1 = (1 + c+�
T + c�

T 2 ), and �i = �Pk
j=i bj = 0 (i = 2; :::; k) (note that

�0 � b0 and etk = et). We need to derive the limit of T (�̂1 � �1). Let Z0t = (�2yt�1; : : : ;�2yt�k+1),
U 0t = (yt�1;�yt�1; Z 0t), and de�ne the following (k + 1) x (k + 1) matrices:

R̂T =
TX

t=k+1

UtU
0
t =

2
666664

PT
t=k+1 y

2
t�1

PT
t=k+1 yt�1�yt�1

PT
t=k+1 yt�1Z

0
t

PT
t=k+1�yt�1yt�1

PT
t=k+1�y

2
t�1

PT
t=k+1 �yt�1Z

0
t

PT
t=k+1 yt�1Zt

PT
t=k+1�ytZt

PT
t=k+1 ZtZ

0
t

3
777775 ;
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~RT =

2
666664

HT KT

KT JT
�2e

�2e
�2e

3
777775

withHT = T�4
PT

t=k+1 V
2
t�1,KT = cT�4

PT
t=k+1 V

2
t�2+T

�3PT
t=k+1 Vt�2Wt�1 and JT = T�2

PT
t=k+1(

c
T Vt�2+

Wt�1)
2 where Wt =

Pt
j=1 exp((t� j)�=T )ej and Vt =

Pt
i=1 exp((t� i)c=T )Wi. Also,

R = �2e

2
666664

�0 �1
�1 �2

1
1

1

3
777775 ;

where �0 =
R 1
0 Qc(J�(r))

2dr; �1 = 1
2Qc(J�(1))

2; and �2 = cQc(J(1))
2 � c2

R 1
0 Qc(J�(r))

2dr +R 1
0 J�(r)

2dr: Note that using standard results (see, e.g., Nabeya and Perron (1994)) we have

HT = T�4
TX

t=k+1

V 2
t�1 ) �2e�0;

KT = cT�4
TX

t=k+1

V 2
t�2 + T�3

TX
t=k+1

Vt�2Wt�1 ) �2e�1;

JT = T�2
TX

t=k+1

(
c

T
Vt�2 +Wt�1)

2 ) �2e�2:

Hence, jj ~RT � Rjj ! 0. Also de�ne DT = diagfT�2; T�1; T�1=2; : : : ; T�1=2g: We �rst show that

each element of the matrix DT R̂TDT converges in distribution to the corresponding element of R.

Lemma A10. Let fytg be generated by (4.1) and (4.3). Then for i; j = 1; :::; k� 1; as T ! 1 :

a. T�3
PT

t=k+1 yt�1�yt�1 ) �2e
2 Qc(J�(1))2 � �1;

b. T�2
PT

t=k+1�y
2
t�1 ) �2e

�
cQc(J�(1))

2� c2
R 1
0 Qc(J�(r))

2dr +
R 1
0 J�(r)

2dr
�
� �2;

c. T�1
PT

t=k+1�
2yt�i�2yt�j ) �2e if i = j and 0 otherwise;

d. T�5=2
PT

t=k+1 yt�1�
2yt�i ) 0;

e. T�3=2
PT

t=k+1�yt�1�
2yt�i ) 0:

Proof. To prove (a), note that �yt�1 = (c=T )yt�2 + ut�1. Therefore

T�3
PT

t=k+1 yt�1�yt�1

= T�3
PT

t=k+1((1 + c=T )yt�2 + ut�1)(
c
T yt�2 + ut�1)

= c(1 + c=T )T�4
PT

t=k+1 y
2
t�2 + T�3(1 + c=T )

PT
t=k+1 yt�2ut�1 + op(1)

) �2e
2 Qc(J�(1))2 � �1�

2
e ;
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using Lemma A9(b,c). The proof of part (b) follows similarly using Lemma A9(b,c,d). To prove
part (c), note that �2yt�i = (c=T )2yt�i�2+((c+�)=T )ut�i�1+ et�i. The result is immediate after
expanding terms. Parts (d) and (e) follow using analogous arguments.2

Now let Q = DT R̂TDT� ~RT . It is straightforward to show that a typical element of this matrix,
qij , satis�es TE(q

2
ij) � C for some constant C. Hence, EkQk2 � C(k + 1)2=T . Also, since ~RT is

a block diagonal matrix with lower (k � 1) � (k � 1) block being the identity matrix (scaled), we

have k ~R�1T k = Op(1). Using arguments as in Said and Dickey (1984), we have k1=2k(DT R̂TDT )
�1�

~R�1T k ! 0 in probability if k3=T ! 0.

Since etk = et it remains to establish the limit of kDT
PT

t=k+1 Utetk. We start with the following
Lemma.

Lemma A11. Let fytg be generated by (4.1) and (4.3). Then a) E[ytys] � T 2C; b) E[�y2t ] � TC;
c) E[(�2yt)

2] � C:

Proof. For part (a), since yt =
P t

r=1(1 + c=T )t�r
Pr

j=1(1 + �=T )r�jej , and E(eiej) = 0 if i 6= j,

E(ytys) =

E
h�P t

r=1(1 + c=T )t�r
Pr

j=1(1 + �=T )r�jej
� �P s

u=1(1 + c=T )s�u
Pu

i=1(1 + �=T )u�iei
�i

� CT 2E(e2t ) = T 2C;

since (1 + c=T ) and (1 + �=T ) are bounded by some constant. Analogous arguments show that
E(utus) � TC and E(yt�1ut) � T 2C.. For parts (b) and (c), write �yt = c

T yt�1 + ut; and

�2yt =
c
T�yt�1 +

�
T ut�1 + et. It follows that

E[�y2t ] = E
h
c2

T 2 y
2
t�1

i
+ E

�
u2t
�
+ 2c

T E [yt�1ut] � TC;

E[(�2yt)
2] = E[( cT�yt�1 +

�
T ut�1 + et)

2] � �2e + o(1) = C:2

Lemma A12. kDT
PT

t=k+1 Utetk = Op(k
1=2):

Proof. Note �rst that

EkDT

TX
t=k+1

Utetk2

= E(T�2
TX

t=k+1

yt�1et)
2 + E(T�1

TX
t=k+1

�yt�1et)
2 +

kX
i=2

E(T�1=2
TX

t=k+1

�2yt�i+1et)
2

and that yt�1;�yt�1; and �2yt�i+1 are independent of et. The result follows using Lemma A11
which allows us to derive the following:

E(T�2
PT

t=k+1 yt�1et)
2 = T�4

PT
t=k+1E[y

2
t�1]E[e

2
t ] = O(T�1);

E(T�1
PT

t=k+1�yt�1et)
2 = T�2

PT
t=k+1E[(�yt�1)

2]E[e2t ] = O(1);Pk
i=2E(T

�1=2PT
t=k+1�

2yt�i+1et)
2 =

Pk
i=2 T

�1PT
t=k+1E[(�

2yt�i+1)
2]E(e2t) = O(k):2
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We are now in a position to derive the limiting distribution of the estimates �̂. We have

D�1
T (�̂ � �) = ((DT R̂TDT )

�1 � ~R�1T )DT

TX
t=k+1

Utet + ~R�1T DT

TX
t=k+1

Utet: (A4)

Taking norms, the �rst and second terms are op(1) and Op(k
1=2) (since k ~R�1T k = Op(1)), re-

spectively, so that jjD�1
T (�̂ � �)jj = Op(k

1=2). Since jjD�1
T jj = O(T 2) and k = o(T 1=3), we have

jj�̂��jj ! 0. Note that (A4) implies D�1
T (�̂��) = Op(1), and the limiting distribution of D�1

T (�̂��)
is that of ~R�1T DT

PT
t=k+1 Utet which is the same as the limiting distribution of R�1DT

PT
t=k+1 Utet

in view of the fact that k ~RT �Rk ! 0. We are interested in the second element of this vector. By
block diagonality, the limit of the �rst two elements is given by

lim
T!1

 
T 2(�̂0 � �0)

T (�̂1 � �1)

!
=

"
�0 �1
�1 �2

#�1
lim
T!1

"
T�2

PT
t=k+1 yt�1et

T�1
PT

t=k+1�yt�1et

#
=�2e : (A5)

It is straightforward to show the following limits

T�2
PT

t=k+1 yt�1et ) �2e
R 1
0 Qc(J�(r))dW (r)� �2e�3;

T�1
PT

t=k+1 �yt�1et ) �2e (c
R 1
0 Qc(J�(r))dW (r) +

R 1
0 J�(r)dW (r)) � �2e�4:

(A6)

Let T (�̂1 � �1)! �, where
� = (��1�3 + �0�4)=(�0�2 � �21): (A7)

Using this result and (A5), we have T (�̂1�1) = T (�̂1��1)+T (�1�1)) �+c+�. Since jj�̂��jj ! 0,
it is straightforward to show that s2ek ! �2e and T�2s2AR ) �2e=(� + c+ �)2. This proves Theorem
4.2.

Nearly Seasonally Integrated Model.

Proof of Theorem 4.3: We �rst de�ne the following variables to be used throughout. Let

A(r) = (�� c)[Qc(J�;1(r))� Qc(J�;2(r))] + 2 Jc;1(r);

B(r) = J�;1(r)� J�;2(r);

C(r) = A(r)� B(r);

where Jc;1(s) =
R s
0 exp((s�v)c)dW1(v); J�;i(s) =

R s
0 exp((s�v)�)dWi(v), Qc(J�;i(r)) =

R r
0 exp((r�

s)c)J�;i(s)ds for i = 1; 2, W1(r) and W2(r) being independent Wiener processes.
The following Lemma is proved in Nabeya and Perron (1994).

Lemma A13. Let fytg and futg be generated by (4.1) and (4.4). Then

a. T�2
PT

t=1 y
2
t�1 ) (�2e=8)

R 1
0 (C(r)

2+ B(r)2)dr;

b. T�2
PT

t=1 yt�1ut ) �(�2e=4)
R 1
0 B(r)

2dr;
c. T�1y2T ) (�2e=8)A(1)

2;

d. T�2
PT

t=1 u
2
t ) (�2e=2)

R 1
0 B(r)

2dr:
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The autoregressive representation of the model in terms of (A1) is

�yt = (c�=T 2 + 2c=T )yt�1 � (1 + (c+ �)=T + c�=T 2)�yt�1 + et: (A8)

This implies b1 = �(1+ c+�
T + c�

T 2 ), and bi = 0 for i > 1. Thus, limk!1
Pk

i=1 bi = �(1 + c+�
T + c�

T 2 )
which converges to �1 as T ! 1. Hence, to prove the Theorem it is su�cient to prove that the
OLS estimates from (A1) are consistent for the coe�cients stated in (A8). Consistency of s2ek for
�2e then follows immediately. It is convenient to write the regression (A1) as

�yt = �0yt�1 + �1�yt�1 +
kX
i=2

�i�2yt�i+1 + etk;

where �2yt�i+1 = yt�i+1�yt�i�1with �i =Pk
j=i(�1)j�ibj (i = 1; :::; k). Note that �0 � b0; etk = et

and
Pk�1

i=1 (�i + �i+1) + �k =
Pk

i=1 bi. Let Z
0
t = (�2yt�1; : : : ;�2yt�k+1), U

0
t = (yt�1;�yt�1; Z

0
t), and

de�ne the following (k+ 1) x (k+ 1) matrices:

R̂T =
TX

t=k+1

UtU
0
t =

2
666664

PT
t=k+1 y

2
t�1

PT
t=k+1 yt�1�yt�1

PT
t=k+1 yt�1Z

0
t

PT
t=k+1�yt�1yt�1

PT
t=k+1�y

2
t�1

PT
t=k+1 �yt�1Z

0
t

PT
t=k+1 yt�1Zt

PT
t=k+1�yt�1Zt

PT
t=k+1 ZtZ

0
t

3
777775 ;

~RT =

2
666664

HT
1
2JT

1
2JT JT

�2e
�2e

�2e

3
777775

with HT = T�2
P[T=2]

t=k+1[2W
2
t�1+2Wt�1Vt�1+V 2

t�1], JT = T�2
P[T=2]

t=k+1 V
2
t�1 where Vt = X�

2;t�X�
1;t,

Wt =
tX

j=1

[(�� c) exp(2c(t� j)=T )(X�
1;j �X�

2;j) + exp(2c(t� j)=T )e2j]

with X�
1;t =

Pt
j=1 exp(2�(t� j)=T )e2j and X�

2;t =
Pt

j=1 exp(2�(t� j)=T )e2j�1. Also,

R = �2e

2
666664

�0 �1=2
�1=2 �1

1
1

1

3
777775 ;

where �0 = (1=8)
R 1
0 [C(r)

2+B(r)2]dr; and �1 = (1=2)
R 1
0 B(r)

2dr: Note that using standard results

(see, e.g., Nabeya and Perron (1994)) we have HT ) �2e�0 and JT ) �2e�1. Hence, jj ~RT �Rjj ! 0.
Also de�ne DT = diagfT�1; T�1; T�1=2; : : : ; T�1=2g:We �rst show that each element of the matrix

DT R̂TDT converges in distribution to the corresponding element of R. The relevant results are
stated in the following Lemma.
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Lemma A14. Let fytg be generated by (4.1) and (4.4). Then for i; j = 2; :::; k; as T !1 :

a. T�2
PT

t=k+1 yt�1�yt�1 ) (�2e=4)
R 1
0 B(r)

2dr = (�2e=2)�1;

b. T�2
PT

t=k+1�y
2
t�1 ) (�2e=2)

R 1
0 B(r)

2dr = �2e�1;

c. T�3=2
PT

t=k+1 yt�1�2yt�i+1 ) 0;

d. T�3=2
PT

t=k+1 �yt�1�2yt�i+1 ) 0;

e. T�1
PT

t=k+1(�2yt�i+1)
2 ) �2e ;

f. T�1
PT

t=k+1�2yt�i+1�2yt�j+1 ) 0:

Proof. To prove (a), note that since yt�1 = �Tyt�2 + ut�1 (with �T = 1 + c=T ) and �yt�1 =
c
T yt�2 + ut�1

T�2
PT

t=k+1 yt�1�yt�1 = T�3c�T
PT

t=k+1 y
2
t�2 + T�3c�T

PT
t=k+1 yt�2ut�1

+ T�2�T
PT

t=k+1 yt�2ut�1 + T�2
PT

t=k+1 u
2
t�1 ) (�2e=4)

R 1
0 B(r)

2dr = (�2e=2)�1;

since the �rst two terms are op(1), and using the results of Lemma A13. For part (b),

T�2
PT

t=k+1�y
2
t�1 = T�2

PT
t=k+1

�
c
T yt�2 + ut�1

� �
c
T yt�2 + ut�1

�
= T�2

PT
t=k+1 u

2
t�1 + op(1)) (�2e=2)

R 1
0 B(r)

2dr = �2e�2:

Parts (c) to (f) follows analogously using the representation:

�2yt�i+1 =
(c+ �)

T
yt�i + [

(c+ �)

T
+
c�

T 2
]yt�i�1 + et�i+1;

along with the results that T�2
PT

t=k+1 yt�i+1yt�j+1 = Op(1) and T�1
PT

t=k+1 yt�i+1et�j+1 =
Op(1).2

Now let Q = DT R̂TDT� ~RT . It is straightforward to show that a typical element of this matrix,
qij , satis�es TE(q

2
ij) � CT for some constant C. Hence, EkQk2 � C(k + 1)2=T . Also, since ~RT is

a block diagonal matrix with lower (k � 1) � (k � 1) block being the identity matrix (scaled), we

have k ~R�1T k = Op(1). Using arguments as in Said and Dickey (1984), we have k1=2k(DT R̂TDT )
�1�

~R�1T k ! 0 in probability if k3=T ! 0.

Since etk = et it remains to establish the limit of kDT
PT

t=k+1 Utetk. We start with the following
Lemma.

Lemma A15. Let fytg be de�ned as in (4.1) and (4.4). Then
a) E[u2t ] � TC; b) E[yt�iut] � TC; c) E[y2t ] � TC; d) E[�y2t ] � TC; e) E[(�2yt�i+1)2] � C:

Proof: Part (a) follows since ut is a near-integrated process, hence Lemma A1(b) applies. Following
Nabeya and Perron (1994), de�ne, for s = 1; :::; [T=2] :

X1;s =
Ps

j=1(�
2
T )

s�je2j and X2;s =
Ps

j=1(�
2
T )

s�je2j�1;

y2s = (1� T )
Ps

j=1(�
2
T )

s�jX1;j + (�T � �T )
Ps

j=1(�
2
T )

s�jX2;j + T
Ps

j=1(�
2
T )

s�je2j ;

u2s = X1;s � �TX2;s and u2s�1 = X2;s � (1=�T)X1;s + (1=�T)e2s;
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where �T = (1 + �=T ), �T = (1 + c=T ); and T = �T=�T , and note that 1� T = O(T�1). Using
these de�nitions, we have, for t odd and t� 1 = 2s:

E[yt�1ut] = E[y2su2(s+1)]

� Ej�1�T (1� T )
Ps

j=1(�
2
T )

s�jX1;jX1;s+1j+Ej 1�T (1� T )
Ps

j=1(�
2
T )

s�jX1;je2s+1j
+ Ej(�T � �T )

Ps
j=1(�

2
T )

s�jX2;jX2;s+1j+Ej(T=�T )Pt
j=1(�

2
T )

s�je2je2s+1j
+ Ej(T=�T )(Ps

j=1(�
2
T )

s�je2j)X1;s+1j:

It is easy to deduce that the second and the fourth terms are o(1). For the �rst term,

Ej�1�T (1� T )
Ps

j=1(�
2
T )

s�jX1;jX1;s+1j � 1
�T
TC1T (1� T )

�
(�2

T
)s�1)

T (�2
T
�1)

�
� TC; (A9)

Similar derivations can be made to show that the third and the �fth terms are also O(T ). Analogous
arguments hold for t even. Thus, Ejyt�1utj � TC. The arguments for the general case Ejyt�iutj
are similar. Consider now, part (c). We have, for t even:

E[y2t ] = (1� T )
2Ps

j=1

Ps
i=1(�

2
T )

s�j(�2T )
s�iE(X1;jX1;i)

+ (�T � �T )
2Ps

j=1

Ps
i=1(�

2
T )

s�j(�2T )
s�iE(X2;jX2;i) + 2TV ar(

Ps
j=1(�

2
T )

s�je2j)

+ T (�T � �T )
Ps

j=1

Ps
i=1(�

2
T )

s�j(�2T )
s�iE(X2je2j):

Using Lemma A1(b), the �rst and second terms are bounded by TC. Lemma A1 can be used to
show the third and fourth terms are also O(T ). Hence, E[y2t ] � TC for t even. Since E[y2t ] =
�2TE[y

2
t�1] + 2�TE[yt�1ut] +E[u2t ], it follows that E[y

2
t ] � TC for t odd also. For part (d),

E[�yt�ys] = E
��

c
T yt�1 + ut

� �
c
T ys�1 + us

��
= E

h
c
T 2 yt�1ys�1

i
+E [utus] +

c
TE [ys�1ut] +

c
TE [yt�1ut] � TC;

using parts (a) to (c). Now for part (e), we have

�2yt�i+1 =
(c+ �)

T
yt�i + [

(c+ �)

T
+
c�

T 2
]yt�i�1 + et�i+1:

and E[(�2yt�i+1)2] is less than the sum of the expectations of the square of each term,

E[(�2yt�i+1)
2] � (c+ �)2T�2Ejy2t�ij+ (

c+ �

T
+
c�

T 2
)2Ejy2t�i�1j+Eje2t�1j � C

using part (c). 2
The results in the next Lemma follows.

Lemma A16. Let fytg be generated by (4.1) and (4.4). Then
a) E(T�1

PT
t=k+1 yt�1et)

2 = T�2
PT

t=k+1E[y
2
t�1]E[e

2
t ] = O(1);

b) E(T�1
PT

t=k+1�yt�1et)
2 = T�2

PT
t=k+1E[�y

2
t�1]E[e

2
t ] = O(1);

c) E
Pk

i=1(T
�1=2PT

t=k+1�2yt�i+1et)2 = T�1
Pk

i=1

PT
t=k+1E[(�2yt�i+1)2]E[e2t ] = O(k):
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We are now in a position to prove the following result.

Lemma A17. kDT
PT

t=k+1 Utetk = Op(k
1=2).

Since

EkDT
PT

t=k+1 Utetk2

= E(T�1
PT

t=k+1 yt�1et)
2 +E(T�1

PT
t=k+1 �yt�1et)

2 +
Pk

i=2E(T
�1=2PT

t=k+1�2yt�i+1et)
2

The result follows directly from Lemma A16.2
We are now in a position to show consistency of the estimates �̂.. We have

D�1
T (�̂ � �) = ((DT R̂TDT )

�1 � ~R�1T )DT

TX
t=k+1

Utet + ~R�1T DT

TX
t=k+1

Utet:

Taking norms, the �rst and second terms are op(1) and Op(k
1=2) (since k ~R�1T k = Op(1)), re-

spectively, so that jjD�1
T (�̂ � �)jj = Op(k1=2). Since jjD�1

T jj = O(T ) and k = o(T 1=3), we have

jj�̂ � �jj ! 0, and b̂(1) = �̂1 ! �1. Thus, s2AR = s2ek=(1� �̂1)
2 ! �2e=4, since s

2
ek ! �2e .
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Table 1.A: Exact Bias of s2
WA

using the Parzen Window

�
2

MT=1 2 3 4 5 MT (max) Auto Min
T=100, MT (max)=6

i.i.d. 1.00 -0.054 -0.051 -0.046 -0.040 -0.034 -0.029 -0.037 -0.014
MA= 0.80 3.24 -1.688 -1.321 -0.877 -0.650 -0.536 -0.476 -0.428 -0.426

0.50 2.25 -1.053 -0.820 -0.536 -0.388 -0.311 -0.269 -0.220 -0.227
0.20 1.44 -0.450 -0.358 -0.246 -0.188 -0.157 -0.140 -0.134 -0.125
-0.20 0.64 0.341 0.262 0.170 0.130 0.116 0.115 0.137 0.115
-0.50 0.25 0.857 0.705 0.531 0.465 0.455 0.470 0.457 0.455
-0.80 0.04 1.071 1.003 0.942 0.957 1.014 1.088 0.939 0.942

AR= 0.80 25.00 -22.655 -21.765 -20.480 -19.368 -18.373 -17.504 -12.244 -12.286
0.50 4.00 -2.746 -2.448 -2.042 -1.741 -1.512 -1.340 -0.903 -0.887
0.20 1.56 -0.562 -0.465 -0.342 -0.267 -0.220 -0.192 -0.193 -0.157
-0.20 0.69 0.296 0.213 0.121 0.088 0.082 0.086 0.093 0.082
-0.50 0.44 0.791 0.544 0.294 0.251 0.273 0.309 0.260 0.251
-0.80 0.31 1.925 1.372 0.913 1.031 1.257 1.484 1.148 0.913

T=200, MT (max)=10
i.i.d. 1.00 -0.028 -0.026 -0.021 -0.017 -0.013 0.003 -0.015 0.000

MA= 0.80 3.24 -1.640 -1.256 -0.789 -0.545 -0.415 -0.240 -0.229 -0.233
0.50 2.25 -1.032 -0.792 -0.500 -0.346 -0.264 -0.155 -0.149 -0.151
0.20 1.44 -0.426 -0.328 -0.209 -0.145 -0.110 -0.057 -0.077 -0.052
-0.20 0.64 0.367 0.279 0.174 0.122 0.100 0.098 0.113 0.088
-0.50 0.25 0.926 0.735 0.509 0.408 0.372 0.447 0.368 0.366
-0.80 0.04 1.207 1.084 0.958 0.947 0.999 1.480 0.953 0.947

AR= 0.80 25.00 -22.434 -21.431 -19.975 -18.696 -17.531 -13.284 -7.956 -8.011
0.50 4.00 -2.709 -2.395 -1.967 -1.647 -1.401 -0.807 -0.669 -0.612
0.20 1.56 -0.542 -0.441 -0.312 -0.231 -0.178 -0.082 -0.128 -0.067
-0.20 0.69 0.320 0.228 0.124 0.083 0.071 0.086 0.077 0.069
-0.50 0.44 0.825 0.542 0.248 0.178 0.178 0.281 0.184 0.178
-0.80 0.31 2.172 1.395 0.688 0.700 0.849 1.579 0.947 0.688

T=500, MT (max)=14
i.i.d. 1.00 -0.013 -0.011 -0.009 -0.007 -0.005 0.011 -0.007 0.001
0.80 3.24 -1.618 -1.225 -0.745 -0.490 -0.352 -0.121 -0.117 -0.118
0.50 2.25 -1.014 -0.769 -0.471 -0.312 -0.226 -0.080 -0.082 -0.073
0.20 1.44 -0.413 -0.314 -0.193 -0.127 -0.091 -0.025 -0.048 -0.013
-0.20 0.64 0.388 0.292 0.176 0.117 0.087 0.070 0.081 0.059
-0.50 0.25 0.967 0.743 0.475 0.342 0.279 0.308 0.245 0.239
-0.80 0.04 1.365 1.151 0.911 0.830 0.836 1.579 0.866 0.830

AR= 0.80 25.00 -22.305 -21.237 -19.681 -18.306 -17.043 -9.893 -4.900 -4.755
0.50 4.00 -2.683 -2.356 -1.908 -1.571 -1.309 -0.446 -0.386 -0.273
0.20 1.56 -0.533 -0.431 -0.300 -0.219 -0.166 -0.048 -0.094 -0.036
-0.20 0.69 0.341 0.239 0.123 0.073 0.053 0.055 0.049 0.041
-0.50 0.44 0.867 0.553 0.220 0.126 0.109 0.181 0.109 0.108
-0.80 0.31 2.327 1.378 0.472 0.383 0.451 1.116 0.583 0.383

The column labelled \Min" gives the smallest value of the bias over all possible integer-valued bandwidths. Sometimes, the bias obtained

using the automatic bandwidth selection procedure with an AR(1) approximation is slightly smaller (column Auto). This can occur because

the automatic procedure selects a bandwidth that is not necessarily integer-valued.



Table 1.B: M.S.E. of s2
WA

using the Parzen Window

�
2

MT=1 2 3 4 5 MT (max) Auto Min
T=100, MT (max)=6

i.i.d. 1.00 0.022 0.024 0.032 0.040 0.048 0.056 0.040 0.022
MA= 0.80 3.24 2.926 1.884 1.023 0.788 0.760 0.802 1.244 0.760

0.50 2.25 1.149 0.741 0.411 0.326 0.321 0.342 0.485 0.321
0.20 1.44 0.225 0.161 0.116 0.111 0.121 0.135 0.139 0.111
-0.20 0.64 0.137 0.086 0.047 0.038 0.037 0.040 0.041 0.037
-0.50 0.25 0.769 0.518 0.299 0.236 0.234 0.258 0.232 0.234
-0.80 0.04 1.194 1.038 0.911 0.945 1.067 1.236 0.908 0.911

AR= 0.80 25.00 5.13E2 4.74E2 4.21E2 3.78E2 3.43E2 3.14E2 2.17E2 2.02E2
0.50 4.00 7.599 6.104 4.396 3.390 2.792 2.454 2.695 2.203
0.20 1.56 0.340 0.252 0.176 0.153 0.152 0.160 0.177 0.152
-0.20 0.69 0.111 0.064 0.033 0.030 0.034 0.039 0.032 0.030
-0.50 0.44 0.677 0.320 0.101 0.084 0.105 0.136 0.093 0.084
-0.80 0.31 4.094 2.072 1.040 1.429 2.146 2.991 1.706 1.040

T=200, MT (max)=10
i.i.d. 1.00 0.010 0.011 0.015 0.019 0.023 0.045 0.019 0.010

MA=0.80 3.24 2.730 1.651 0.755 0.486 0.416 0.558 0.712 0.413
0.50 2.25 1.086 0.664 0.315 0.212 0.188 0.264 0.283 0.188
0.20 1.44 0.193 0.125 0.072 0.060 0.062 0.102 0.077 0.060
-0.20 0.64 0.146 0.087 0.039 0.025 0.021 0.031 0.025 0.021
-0.50 0.25 0.876 0.550 0.267 0.177 0.153 0.250 0.151 0.153
-0.80 0.04 1.494 1.193 0.932 0.920 1.032 2.302 0.934 0.920

AR= 0.80 25.00 5.03E2 4.59E2 4.00E2 3.52E2 3.11E2 1.90E2 1.37E2 1.24E2
0.50 4.00 7.367 5.796 3.988 2.900 2.225 1.302 1.433 1.295
0.20 1.56 0.305 0.212 0.127 0.096 0.086 0.115 0.102 0.086
-0.20 0.69 0.114 0.061 0.025 0.018 0.018 0.032 0.018 0.018
-0.50 0.44 0.707 0.306 0.068 0.041 0.045 0.119 0.048 0.041
-0.80 0.31 4.992 2.052 0.566 0.663 0.996 3.487 1.214 0.556

T=500, MT (max)=14
i.i.d. 1.00 0.004 0.004 0.006 0.008 0.010 0.026 0.007 0.004

MA= 0.80 3.24 2.634 1.530 0.610 0.320 0.228 0.321 0.362 0.198
0.50 2.25 1.038 0.608 0.250 0.138 0.103 0.147 0.138 0.094
0.20 1.44 0.175 0.105 0.048 0.031 0.027 0.055 0.034 0.027
-0.20 0.64 0.155 0.089 0.035 0.018 0.013 0.018 0.013 0.011
-0.50 0.25 0.943 0.557 0.228 0.121 0.083 0.130 0.068 0.067
-0.80 0.04 1.888 1.334 0.839 0.713 0.740 2.776 0.801 0.713

AR= 0.80 25.00 4.97E2 4.51E2 3.88E2 3.36E2 2.92E2 1.08E2 69.908 62.849
0.50 4.00 7.208 5.574 3.691 2.547 1.823 0.596 0.644 0.596
0.20 1.56 0.288 0.192 0.101 0.064 0.048 0.066 0.046 0.042
-0.20 0.69 0.121 0.061 0.019 0.010 0.008 0.018 0.009 0.008
-0.50 0.44 0.762 0.310 0.051 0.019 0.016 0.055 0.018 0.016
-0.80 0.31 5.544 1.941 0.250 0.199 0.287 1.864 0.496 0.199

The column labelled \Min" gives the smallest value of the MSE over all possible integer-valued bandwidths. Sometimes, the bias obtained

using the automatic bandwidth selection procedure with an AR(1) approximation is slightly smaller (column Auto). This can occur because

the automatic procedure selects a bandwidth that is not necessarily integer-valued.



Table 2.A: Bias of the Autoregressive Spectral Density Estimator, s2
AR

all lags even lags

�

2 k= 1 2 3 4 5 kmax T-10 T-5 AIC SW T-10 T-5 AIC SW

T=100, kmax=4 i.i.d. 1.00 0.023 0.073 0.158 0.232 - - 0.115 0.084 0.058 0.032 0.110 0.097 0.098 0.073

MA=0.80 3.24 1.654 -0.652 1.406 0.010 - - 0.422 0.524 0.454 0.561 -0.680 -0.716 -0.109 -0.331

0.50 2.25 0.786 -0.109 0.615 0.504 - - 0.448 0.476 0.419 0.488 -0.081 -0.101 0.102 -0.052

0.20 1.44 0.136 0.083 0.240 0.360 - - 0.232 0.194 0.156 0.135 0.156 0.120 0.158 0.096

-0.20 0.64 0.092 0.067 0.114 0.167 - - 0.122 0.114 0.093 0.088 0.098 0.088 0.088 0.068

-0.50 0.25 0.332 0.168 0.128 0.114 - - 0.175 0.211 0.200 0.265 0.156 0.160 0.153 0.166

-0.80 0.04 0.673 0.435 0.334 0.261 - - 0.351 0.406 0.412 0.534 0.362 0.384 0.357 0.413

AR=0.80 25.00 -3.328 -1.972 -0.001 3.638 - - -0.289 -1.016 -2.197 -3.106 -0.215 -0.454 -1.217 -1.846

0.50 4.00 -0.044 0.195 0.631 0.964 - - 0.382 0.184 0.114 -0.035 0.337 0.254 0.309 0.221

0.20 1.56 0.036 0.108 0.237 0.306 - - 0.146 0.120 0.097 0.053 0.148 0.135 0.157 0.118

-0.20 0.69 0.027 0.052 0.113 0.170 - - 0.100 0.075 0.061 0.040 0.082 0.068 0.086 0.055

-0.50 0.44 0.026 0.047 0.093 0.130 - - 0.065 0.047 0.035 0.028 0.063 0.057 0.057 0.049

-0.80 0.31 0.019 0.034 0.060 0.086 - - 0.048 0.037 0.031 0.020 0.045 0.040 0.042 0.034

T=200, kmax=8 i.i.d. 1.00 0.014 0.038 0.072 0.094 0.132 0.248 0.129 0.090 0.037 0.018 0.091 0.067 0.051 0.038

MA=0.80 3.24 1.597 -0.692 1.035 -0.186 1.027 0.669 0.716 0.724 0.643 0.558 -0.403 -0.555 0.213 -0.173

0.50 2.25 0.703 -0.211 0.329 0.131 0.355 0.661 0.374 0.292 0.181 0.189 -0.068 -0.138 0.015 -0.166

0.20 1.44 0.121 0.038 0.113 0.144 0.201 0.402 0.253 0.196 0.106 0.112 0.136 0.087 0.067 0.043

-0.20 0.64 0.076 0.035 0.049 0.061 0.084 0.162 0.112 0.103 0.067 0.073 0.074 0.062 0.045 0.035

-0.50 0.25 0.310 0.141 0.083 0.061 0.057 0.077 0.096 0.119 0.117 0.195 0.115 0.124 0.111 0.136

-0.80 0.04 0.612 0.345 0.222 0.154 0.115 0.066 0.105 0.140 0.165 0.297 0.162 0.204 0.162 0.270

AR=0.80 25.00 -1.704 -1.050 -0.142 0.574 1.440 4.830 2.008 0.561 -0.969 -1.638 0.613 -0.072 -0.232 -0.976

0.50 4.00 -0.054 0.060 0.187 0.268 0.400 0.949 0.442 0.250 0.026 -0.047 0.300 0.200 0.107 0.059

0.20 1.56 0.017 0.057 0.125 0.155 0.213 0.409 0.225 0.154 0.048 0.028 0.165 0.119 0.086 0.059

-0.20 0.69 0.014 0.031 0.059 0.071 0.097 0.191 0.120 0.086 0.032 0.016 0.088 0.066 0.052 0.032

-0.50 0.44 0.009 0.020 0.035 0.047 0.061 0.110 0.056 0.041 0.017 0.010 0.046 0.034 0.026 0.020

-0.80 0.31 0.007 0.013 0.024 0.032 0.044 0.079 0.040 0.027 0.010 0.007 0.033 0.027 0.018 0.014

T=500, kmax=14 i.i.d. 1.00 0.004 0.014 0.030 0.035 0.047 0.184 0.115 0.082 0.011 0.005 0.074 0.046 0.019 0.014

MA=0.80 3.24 1.545 -0.726 0.794 -0.348 0.572 0.438 0.393 0.411 0.317 0.198 -0.185 -0.284 0.070 -0.211

0.50 2.25 0.670 -0.252 0.209 -0.010 0.131 0.409 0.260 0.200 0.080 -0.021 -0.034 -0.139 -0.047 -0.201

0.20 1.44 0.102 0.003 0.046 0.052 0.070 0.266 0.185 0.149 0.055 0.092 0.095 0.052 0.015 0.003

-0.20 0.64 0.067 0.019 0.018 0.021 0.030 0.109 0.081 0.071 0.044 0.060 0.047 0.036 0.021 0.019

-0.50 0.25 0.293 0.124 0.063 0.038 0.027 0.046 0.045 0.057 0.059 0.105 0.073 0.090 0.066 0.111

-0.80 0.04 0.564 0.291 0.176 0.116 0.081 0.015 0.025 0.036 0.048 0.099 0.044 0.063 0.047 0.098

AR=0.80 25.00 -0.638 -0.328 0.038 0.243 0.473 3.087 1.710 0.838 -0.236 -0.586 0.707 0.171 -0.164 -0.333

0.50 4.00 -0.004 0.037 0.090 0.116 0.168 0.791 0.478 0.313 0.024 -0.002 0.310 0.213 0.054 0.037

0.20 1.56 -0.003 0.011 0.039 0.052 0.071 0.278 0.153 0.092 0.011 -0.004 0.079 0.046 0.023 0.012

-0.20 0.64 0.003 0.008 0.016 0.023 0.032 0.116 0.070 0.044 0.006 0.003 0.044 0.026 0.011 0.008

-0.50 0.25 0.003 0.005 0.011 0.016 0.019 0.080 0.050 0.038 0.006 0.003 0.030 0.024 0.007 0.005

-0.80 0.04 0.002 0.005 0.010 0.014 0.017 0.056 0.041 0.027 0.005 0.002 0.029 0.017 0.007 0.005
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Table 2.B: M.S.E. of the Autoregressive Spectral Density Estimator, s2
AR

all lags even lags

�

2 k= 1 2 3 4 5 kmax T-10 T-5 AIC SW T-10 T-5 AIC SW

T=100, kmax=4 i.i.d. 1.00 0.070 0.145 0.295 0.545 - - 0.296 0.226 0.169 0.090 0.259 0.225 0.224 0.145

MA=0.80 3.24 5.514 1.584 8.556 3.649 - - 5.858 6.720 5.630 6.229 1.915 1.818 3.351 2.844

0.50 2.25 1.544 0.714 2.373 3.273 - - 2.706 2.290 2.254 1.546 1.518 1.100 2.055 1.352

0.20 1.44 0.242 0.339 0.776 1.475 - - 0.987 0.712 0.582 0.309 0.827 0.591 0.895 0.467

-0.20 0.64 0.037 0.056 0.113 0.334 - - 0.249 0.222 0.179 0.039 0.235 0.217 0.204 0.057

-0.50 0.25 0.125 0.041 0.037 0.045 - - 0.061 0.075 0.067 0.094 0.043 0.042 0.040 0.041

-0.80 0.04 0.483 0.229 0.197 0.179 - - 0.207 0.245 0.245 0.350 0.193 0.199 0.186 0.218

AR=0.80 25.00 2.29E2 3.43E2 6.89E2 2.23E3 - - 9.80E2 8.32E2 3.57E2 2.49E2 9.37E2 8.96E2 4.66E2 3.55E2

0.50 4.00 2.638 4.236 8.210 13.592 - - 7.662 5.104 4.253 2.781 6.514 4.905 5.331 4.464

0.20 1.56 0.242 0.422 0.778 1.168 - - 0.752 0.633 0.548 0.343 0.664 0.588 0.694 0.460

-0.20 0.69 0.029 0.067 0.166 0.308 - - 0.195 0.142 0.100 0.061 0.148 0.110 0.177 0.074

-0.50 0.44 0.009 0.023 0.056 0.104 - - 0.051 0.038 0.024 0.012 0.046 0.041 0.041 0.028

-0.80 0.31 0.003 0.011 0.024 0.047 - - 0.022 0.015 0.012 0.004 0.019 0.017 0.017 0.011

T=200, kmax=8 i.i.d. 1.00 0.032 0.059 0.096 0.141 0.196 0.532 0.274 0.200 0.064 0.036 0.201 0.152 0.099 0.059

MA=0.80 3.24 3.767 0.932 3.057 1.336 4.944 6.354 6.118 5.915 4.957 3.888 1.733 1.289 3.854 2.072

0.50 2.25 0.919 0.329 0.804 0.785 1.369 5.765 2.289 1.791 1.072 0.767 1.108 0.758 2.260 0.562

0.20 1.44 0.111 0.140 0.240 0.332 0.464 1.431 0.856 0.618 0.183 0.121 0.651 0.476 0.219 0.150

-0.20 0.64 0.018 0.021 0.036 0.053 0.076 0.219 0.125 0.090 0.032 0.019 0.094 0.072 0.035 0.021

-0.50 0.25 0.102 0.025 0.012 0.011 0.014 0.038 0.031 0.035 0.027 0.054 0.029 0.028 0.021 0.024

-0.80 0.04 0.387 0.129 0.057 0.029 0.018 0.012 0.023 0.041 0.052 0.131 0.048 0.066 0.047 0.095

AR=0.80 25.00 1.27E2 1.51E2 1.90E2 2.34E2 2.80E2 5.76E2 3.96E2 2.79E2 1.67E2 1.36E2 2.78E2 2.32E2 2.15E2 1.57E2

0.50 4.00 1.203 1.672 2.273 3.111 4.048 10.969 5.629 3.617 1.616 1.263 4.172 3.196 1.975 1.674

0.20 1.56 0.104 0.166 0.273 0.372 0.510 1.643 0.779 0.587 0.180 0.112 0.591 0.459 0.271 0.169

-0.20 0.69 0.012 0.026 0.045 0.068 0.101 0.396 0.186 0.126 0.036 0.014 0.118 0.074 0.066 0.027

-0.50 0.44 0.004 0.009 0.016 0.025 0.035 0.097 0.051 0.034 0.009 0.004 0.038 0.025 0.016 0.009

-0.80 0.31 0.001 0.004 0.007 0.011 0.018 0.044 0.024 0.017 0.004 0.002 0.018 0.014 0.007 0.004

T=500, kmax=14 i.i.d. 1.00 0.011 0.021 0.030 0.040 0.053 0.280 0.186 0.136 0.019 0.012 0.124 0.082 0.025 0.021

MA=0.80 3.24 2.849 0.693 1.251 0.529 1.206 2.662 2.325 2.225 1.652 1.070 1.137 0.963 1.293 0.662

0.50 2.25 0.612 0.168 0.266 0.223 0.324 1.482 0.949 0.757 0.302 0.280 0.608 0.442 0.274 0.191

0.20 1.44 0.045 0.047 0.072 0.094 0.115 0.555 0.370 0.248 0.054 0.047 0.228 0.134 0.064 0.047

-0.20 0.64 0.010 0.008 0.012 0.017 0.022 0.112 0.075 0.048 0.012 0.010 0.050 0.030 0.011 0.008

-0.50 0.25 0.088 0.017 0.006 0.004 0.003 0.017 0.012 0.012 0.008 0.016 0.015 0.015 0.009 0.016

-0.80 0.04 0.322 0.087 0.032 0.014 0.007 0.001 0.001 0.002 0.004 0.014 0.004 0.007 0.004 0.013

AR=0.80 25.00 49.436 55.797 68.198 77.351 90.378 2.82E2 1.78E2 1.44E2 66.407 50.885 1.34E2 1.12E2 63.150 55.917

0.50 4.00 0.468 0.616 0.784 0.916 1.090 6.056 2.844 2.020 0.596 0.476 2.059 1.495 0.725 0.616

0.20 1.56 0.036 0.057 0.084 0.116 0.141 0.714 0.421 0.295 0.063 0.038 0.261 0.170 0.083 0.057

-0.20 0.69 0.005 0.009 0.015 0.020 0.027 0.155 0.109 0.061 0.009 0.005 0.084 0.037 0.013 0.010

-0.50 0.44 0.001 0.003 0.005 0.008 0.010 0.057 0.035 0.024 0.003 0.002 0.021 0.016 0.005 0.003

-0.80 0.31 0.000 0.001 0.002 0.003 0.004 0.026 0.019 0.014 0.001 0.001 0.014 0.009 0.002 0.001
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