References

[1] Anderlini, Luca. and Felli, L. "Incomplete Written Contracts: Undescribable States of Nature." Quarterly Journal of Economics 1994, 1085-1124.
[2] Brickley, James A. and Dark, F. H. "The Choice of Organizational Form: The Case of Franchising." Journal of Financial Economics 1987, 401-420.
[3] Gallini, Nancy T., and Lutz, Nancy A. "Dual Distribution and Royalty Fees in Franchising." Journal of Law, Economics and Organization 1992, 471-501.
[4] Grossman, Sanford J. and Hart, Oliver D. "The Costs and Benefits of Ownership: A Theory of Vertical and Lateral Integration." Journal of Political Economy August 1986, 691-719.
[5] Hadfield, Gillian K. "Problematic Relations: Franchising and Law of Incomplete Contracts." Stanford Law Review 1990, 927-992.
[6] Hart, O. Firms, Contracts, and Financial Structure. Oxford University Press, 1995.
[7] Hart, Oliver, and John Moore. "Property Rights and the Nature of the Firm," Journal of Political Economy 1990, 1119-1158.
[8] Hart, Oliver, Shleifer, Andrei, and Vishny, Robert W. "The Proper Scope of Government: Theory and an Application to Prisons." Mimeo, Harvard, 1996.
[9] Holmstrom, Bengt. "Moral Hazard in Teams." Bell Journal of Economics 1982, 32440.
[10] Holmstrom, Bengt and Milgrom, Paul. "Aggregation and Linearity in the Provision of Intertemporal Incentives." Econometrica March 1987, 55(2), 303-28.
[11] _--.-. "Multitask Principal-Agent Analyses: Incentive Contracts, Asset Ownership and Job Design." Journal of Law, Economics and Organization 1991, 7, Special Issue, 24-52.
[12] _---.. "The Firm as an Incentive System." American Economic Review September 1994, 84(4), 972-91.
[13] Kaufmann, Patrick J. and Lafontaine, F. "Cost of Control: The Source of Economic Rents for McDonald's Franchisees." Journal of Law and Economics 1994, 417-453.
[14] Kostecka, Andrew. Franchising in the Economy, 1985-1987. Washington, D.C.: U.S. Department of Commerce, 1987.
[15] Lafontaine, Francine. "Agency Theory and Franchising: Some Empirical Results." Rand Journal of Economics 1992, v23 n2, 263-283.
[16] _---. "Contractual Arrangements as Signaling Devices: Evidence from Franchising." Journal of Law, Economics and Organization 1993, 256-289.
[17] _----. and Shaw, Kathryn L. "The Dynamics of Franchise Contracting: Evidence from Panel Data," NBER Working Paper 5585, May 1996.
[18] Love, John F. McDonald's: Behind the Arches. Bantam Book: New York, 1986.
[19] Lynch, Robert. The Practical Guide to Joint Ventures and Corporate Alliances: How to Form, How to Organize, How to Operate. New York: Wiley, 1989.
[20] MacLeod, W. Bentley and Malcomsom, James M. "Investment, Holdup, and the Form of Market Contracts." American Economic Review September 1993, 811-837.
[21] Maskin, Eric and J. Tirole. "Unforeseen Contingencies, Property Rights, and Incomplete Contracts." mimeo, Harvard, 1996.
[22] McAfee, R.P. and M. Schwartz (1994): "Opportunism in Multilateral Vertical Contracting: Nondiscrimination, Exclusivity, and Uniformity." American Economic Review 210-230.
[23] Segal, Ilya. "Complexity and Renegotiation: A Foundation for Incomplete Contracts." Mimeo, Harvard, 1996.
[24] Shelton, John P. "Allocative Efficiency vs. 'X-Efficiency': Comment." American Economic Review 1967, 1252-58.

Appendix

Proof of Proposition 1: The HQ should (1) request the same level of goodwill effort from all managers of L units, and (2) offer the same high-powered contract to all managers of H units.
(1) Let $\{g(j)\}_{j \in \mathcal{L}}$ be a profile of goodwill effort levels and $g \equiv \int_{\mathcal{L}} g(j) d j / d(\mathcal{L})$, the average of $\{g(j)\}_{j \in \mathcal{L}}$. Since $y(s, G)$ is concave in $s, y(T-g, G)$ is concave is g. Then by Jensen's Inequality,

$$
\int_{\mathcal{L}} y(T-g(j), G) d j \leq \int_{\mathcal{L}} y(T-g, G) d j
$$

Therefore, the solution to program $(O P-G)$ is the choose $g(j)$ to be a constant. That is, The HQ should request the same level of goodwill effort from all managers of L units. (2) Let us consider program $\left(O P-H Q^{\prime}\right)$. Assumptions 2 and 3 say that $y(s, G)$ is concave in s and $\lim _{s \rightarrow 0} y_{s}(s, G)=\infty$. Therefore, incentive compatibility constraint $(O P-s)$ can be replaced by

$$
\alpha(i) y_{s}(s(i), G)=c^{\prime}(s(i))
$$

By part (1) of this proposition, incentive compatibility constraint $(O P-G)$ becomes

$$
g=\arg \max _{g} p y\left(T-\frac{G}{p}, G\right)+\int_{\mathcal{I}-\mathcal{L}}[(1-\alpha(i)) y(s(i), G)-\beta(i)] d i
$$

where, $G=p g$. It is easy to show that, since $y(s, G)$ is concave in (s, G),

$$
p y\left(T-\frac{G}{p}, G\right)+\int_{\mathcal{I}-\mathcal{L}}[(1-\alpha(i)) y(s(i), G)-\beta(i)] d i
$$

is concave in G. Its derivative with respect to G is

$$
p y_{G}\left(T-\frac{G}{p}, G\right)-y_{s}\left(T-\frac{G}{p}, G\right)+\int_{\mathcal{I}-\mathcal{L}}(1-\alpha(i)) y_{G}(s(i), G) d i
$$

which decreases with G, by Assumption 3, goes to ∞ as $G \rightarrow 0$, and goes to $-\infty$ as $G \rightarrow p T$. Therefore, $(O P-G)$ can be replaced by

$$
p y_{G}\left(T-\frac{G}{p}, G\right)-y_{s}\left(T-\frac{G}{p}, G\right)+\int_{\mathcal{I}-\mathcal{L}}(1-\alpha(i)) y_{G}(s(i), G) d i=0 . \quad(F O C-G)
$$

The objective function of program $\left(O P-H Q^{\prime}\right)$ is now

$$
p y(T-g, G)+\int_{\mathcal{I}-\mathcal{L}}\left[y(s(i), G)-c(s(i))-\frac{1}{2} r \sigma^{2} \alpha(i)^{2}\right] d i
$$

which is also concave in G and the derivative of which with respect to G is positive for G satisfying constraint $(F O C-G)$. Therefore, program $\left(O P-H Q^{\prime}\right)$ can be rewritten as

$$
\begin{array}{clr}
\max & p y(T-g, G)+\int_{\mathcal{I}-\mathcal{L}}\left[y(s(i), G)-c(s(i))-\frac{1}{2} r \sigma^{2} \alpha(i)^{2}\right] d i & \left(O P-H Q^{\prime}\right) \\
\text { s.t. } & p y_{G}\left(T-\frac{G}{p}, G\right)-y_{s}\left(T-\frac{G}{p}, G\right)+\int_{\mathcal{I}-\mathcal{L}}(1-\alpha(i)) y_{G}(s(i), G) d i \geq 0 & (I C-G) \\
& \alpha(i) y_{s}(s(i), G)=c^{\prime}(s(i)) & (I C-s) \tag{IC-s}
\end{array}
$$

When we change the equality sign in $(F O C-G)$ to \geq in $(I C-G)$, we expand the feasible region of program $\left(O P-H Q^{\prime}\right)$ to the left along the G-direction, as the left hand side of $(F O C-G)$ decreases with G. This does not change the optimum because the objective function of $\left(O P-H Q^{\prime}\right)$ decreases with G in the expanded feasible region. Let $\phi(s, G) \equiv c^{\prime}(s) / y_{s}(s, G)$. Then $(I C-s)$ implies $\alpha(i)=\phi(s(i), G)$, which by Assumption 4 is convex in $s(i)$. Substitute $\alpha(i)=\phi(s(i), G)$ into the objective function and constraint $(I C-G)$. Then the integrand in the objective function,

$$
y(s(i), G)-c(s(i))-\frac{1}{2} r \sigma^{2} \alpha(i)^{2},
$$

becomes a concave function of $s(i)$. The integrand in constraint $(I C-G)$,

$$
(1-\alpha(i)) y_{G}(s(i), G),
$$

is also concave in $s(i)$ in the convex range $\left\{s(i): c^{\prime}(s(i)) / y_{s}(s(i), G) \leq 1\right\}$, because ($1-$ $\alpha(i))$ is non-negative, concave and decreasing in $s(i)$, and $y_{G}(s(i), G)$ is, by Assumption 5, positive, concave and increasing in $s(i)$; the product of two non-negative concave functions is concave if one of them is increasing and the other decreasing. Given a profile of sales effort levels,
$\{s(i)\}_{i \in \mathcal{I}-\mathcal{L}}$, let $s \equiv \int_{\mathcal{I}-\mathcal{L}} s(i) d i / d(\mathcal{I}-\mathcal{L})$, the average of $\{s(i)\}_{i \in \mathcal{I}-\mathcal{L}}$. Then, for any given G, Jensen's inequality implies

$$
\int_{\mathcal{I}-\mathcal{L}}\left[y(s(i), G)-c(s(i))-\frac{1}{2} r \sigma^{2} \alpha(i)^{2}\right] d i \leq \int_{\mathcal{I}-\mathcal{L}} y(s, G)-c(s)-\frac{1}{2} r \sigma^{2} \alpha^{2} d i
$$

and

$$
\begin{array}{ll}
& p y_{G}\left(T-\frac{G}{p}, G\right)-y_{s}\left(T-\frac{G}{p}, G\right)+\int_{\mathcal{I}-\mathcal{L}}(1-\alpha(i)) y_{G}(s(i), G) d i \\
\leq & p y_{G}\left(T-\frac{G}{p}, G\right)-y_{s}\left(T-\frac{G}{p}, G\right)+\int_{\mathcal{I}-\mathcal{L}}(1-\alpha) y_{G}(s, G) d i
\end{array}
$$

where $\alpha=\phi(s, G)$. Therefore, choosing the same α and s for all managers of H units is better than choosing different ones. That is, the HQ should offer the same high-powered contract to all managers of H units.

Proof of Lemma 4: (1) s and G are continuous at $\alpha=0$. (2) When $p=0, s(\alpha, 0)$ is uniquely determined by $(F O C-s)$ and is continuous in α.
(1) We first prove that $\lim _{\left(\alpha, p^{\prime}\right) \rightarrow(0, p)} s\left(\alpha, p^{\prime}\right)=s(0, p)=T$. By $(F O C-s)$,

$$
\alpha y_{s}\left(s\left(\alpha, p^{\prime}\right), G\right)=c^{\prime}\left(s\left(\alpha, p^{\prime}\right)\right)
$$

Therefore,

$$
0 \leq c^{\prime}\left(s\left(\alpha, p^{\prime}\right)\right)-c^{\prime}(s(0, p))=\alpha y_{s}\left(s\left(\alpha, p^{\prime}\right), G\right) \leq \alpha y_{s}(T, T) \rightarrow 0
$$

as $\alpha \rightarrow 0$. The last inequality holds because $s\left(\alpha, p^{\prime}\right) \geq T, G \leq T$, and $y_{s}(s, G)$ increases with G and decreases with s. Since $c^{\prime \prime}>0$ as $t>T,\left(c^{\prime}\right)^{-1}$ is continuous in $[0, \infty)$ with
$\left(c^{\prime}\right)^{-1}(0)=T$. Therefore, $c^{\prime}\left(s\left(\alpha, p^{\prime}\right)\right)-c^{\prime}(s(0, p)) \rightarrow 0$ implies $\lim _{\left(\alpha, p^{\prime}\right) \rightarrow(0, p)} s\left(\alpha, p^{\prime}\right)=$ $s(0, p)=T$, i.e., s is continuous at $\alpha=0$.

When $p>0$,

$$
\frac{\partial^{2} \Pi}{\partial G^{2}}=p y_{G G}^{L}-2 y_{s G}^{L}+\frac{1}{p} y_{s s}^{L}+(1-p)(1-\alpha) y_{G G}^{H}<0
$$

by $(F O C-G)$ and the concavity of y, where a function with a superscript H (L, resp.) means that it is evaluated at $(s, G)\left(\left(T-\frac{G}{p}, G\right)\right.$, resp.). Therefore $(F O C-G)$ implies G is a differentiable function of (s, α, p) when $p>0$, by Implicit Function Theorem.

When $p=0$,

$$
G(\alpha, p)-G(0,0)=p g \rightarrow 0
$$

(2) Now we prove that $s(\alpha, 0)$ is continuous in $\alpha . s(\alpha, 0)$ is defined by

$$
\alpha y_{s}(s(\alpha, 0), G)=c(s(\alpha, 0))
$$

If $y_{s}(T, 0)=0$, then $y_{s}(s, 0)=0$ for all $s \geq T$ by the concavity of y, and therefore, $s(\alpha, 0)=T$ for all α.

If $y_{s}(T, 0) \neq 0$, then for $\alpha>0, s(\alpha, 0)>T$ and thus $c^{\prime \prime}(s(\alpha, 0))>0$. Implicit Function Theorem then implies that $s(\alpha, 0)$ is differentiable with respect to α. The continuity of $s(\alpha, 0)$ at $\alpha=0$ is implied by $\lim _{\alpha^{\prime} \rightarrow 0} c^{\prime}\left(s\left(\alpha^{\prime}, 0\right)\right)=\alpha^{\prime} y_{s}\left(s\left(\alpha^{\prime}, 0\right)\right)=0$.

Proof of Proposition 2: At the optimum, $\alpha \in(0,1)$.
We first prove the result for the very special case of $p=1$. In this case, $(F O C-G)$ becomes

$$
y_{G}(T-G, G)-y_{s}(T-G, G)=0,
$$

which implies that G does not depend on α. Therefore, α is chosen to

$$
\begin{array}{cl}
\pi^{H}=\max _{\alpha, s} & y(s, G)-c(s)-\frac{1}{2} r \sigma^{2} \alpha^{2} \\
\text { s.t. } & \alpha y_{s}(s, G)-c^{\prime}(s)=0 \tag{IC}
\end{array}
$$

The Lagrangian of the program is

$$
L=y(s, G)-c(s)-\frac{1}{2} r \sigma^{2} \alpha^{2}+\lambda\left[\alpha y_{s}(s, G)-c^{\prime}(s)\right] .
$$

Differentiation yields

$$
\begin{aligned}
& \frac{\partial L}{\partial \alpha}=-r \sigma^{2} \alpha+\lambda y_{s}(s, G) \\
& \frac{\partial L}{\partial s}=(1-\alpha) y_{s}(s, G)+\lambda\left[\alpha y_{s s}(s, G)-c^{\prime \prime}(s)\right]
\end{aligned}
$$

By the incentive compatibility constraint, $s \geq T>0$. Therefore, $\frac{\partial L}{\partial s}=0$. If $\alpha=1$, then $\frac{\partial L}{\partial s}=0$ implies $\lambda=0$, which in turn implies $\frac{\partial L}{\partial \alpha}<0$. This is a contradiction. If $\alpha=0$, the incentive compatibility constraint implies that $s=T$. Therefore, $\frac{\partial L}{\partial s}=y_{s}(T, G)>0$. This is again a contradiction. Therefore, $\alpha \in(0,1)$.

Now, we consider the more general case of $p<1$. At $\alpha=1$, $(F O C-\alpha)$ becomes

$$
\frac{d \Pi}{d \alpha}=-(1-p) r \sigma^{2}+(1-p) y_{G}^{H} \frac{d G}{d \alpha} .
$$

Apply the implicit function theorem to $(F O C-s)$ and $(F O C-G)$. We have, at $\alpha=1$,

$$
\frac{d G}{d \alpha}=\frac{1}{|J|}(1-p) y_{G}^{H}\left(y_{s s}^{H}-c^{\prime \prime}\right),
$$

where, the Jacobian matrix

$$
J=\left(\begin{array}{cc}
-c^{\prime \prime}(s) & 0 \\
0 & p y_{G G}^{L}-2 y_{s G}^{L}+\frac{1}{p} y_{s s}^{L}
\end{array}\right)+\left(\begin{array}{cc}
\alpha y_{s s}^{H} & \alpha y_{s G}^{H} \\
(1-p)(1-\alpha) y_{s G}^{H} & (1-p)(1-\alpha) y_{G G}^{H}
\end{array}\right)
$$

is positive definite; it is the sum of a positive-definite matrix and a semipositive- definite matrix. Therefore, at $\alpha=1, \frac{d G}{d \alpha}<0$, which implies that $\frac{d \Pi}{d \alpha}<0$. Thus the optimal α is not 1 .

At $\alpha=0$, we cannot use the above argument anymore because the Jacobian becomes singular. We need to utilize the interaction between α and p and therefore some results from the next subsection. Suppose $\alpha=0$, then $s=T$ by $(F O C-s)$. Thus $\frac{\partial s}{\partial p}=0$ and $(F O C-p)$ becomes

$$
\begin{aligned}
\frac{d \Pi}{d p} & =\pi^{L}-\pi^{H}+g y_{s}^{L} \\
& =y(T-g, G)-y(T, G)+g y_{s}(T-g, G)>0
\end{aligned}
$$

as $g(s, G)$ is concave in s. This implies that the optimal $p=1$. The first part of the proof shows that in this case the optimal α is not 0 , a contradiction to our assumption that $\alpha=0$. Therefore, $\alpha \in(0,1)$ for the case of $p<1$ also.

Proof of Proposition 3: For any given p, $\pi^{L}<\pi^{H}$ at the corresponding HQ's optimal choice of α, denoted by $\alpha^{*}(p)$. In particular, $\pi^{L}<\pi^{H}$ holds in equilibrium.

Note from the discussion preceding Lemma 4 that, when $\alpha=0$, an H manager chooses $s=T$, and $\pi^{H}(\alpha=0) \equiv \Pi^{H}(\alpha \rightarrow 0)=y(T, G)$. Now, we prove the result for two separate cases:
Case 1: $p<1$
By the definition of π^{L},

$$
\pi^{L}\left(\alpha=\alpha^{*}(p)\right)=y\left(T-g\left(\alpha^{*}\right), p g\left(\alpha^{*}\right)\right) \leq \max _{g} y(T-g, p g)
$$

Since $y(s, G)$ increases with s and $p<1$,

$$
\max _{g} y(T-g, p g)<\max _{g} p y(T-g, p g)+(1-p) y(T, p g)=\pi(\alpha=0)
$$

By the definition of $\alpha^{*}(p)$,

$$
\pi(\alpha=0) \leq \pi\left(\alpha=\alpha^{*}(p)\right)=p \pi^{L}\left(\alpha=\alpha^{*}(p)\right)+(1-p) \pi^{H}\left(\alpha=\alpha^{*}(p)\right)
$$

Combining the above three inequalities, we have:

$$
\pi^{L}\left(\alpha=\alpha^{*}(p)\right)<p \pi^{L}\left(\alpha=\alpha^{*}(p)\right)+(1-p) \pi^{H}\left(\alpha=\alpha^{*}(p)\right)
$$

which implies that $\pi^{L}\left(\alpha=\alpha^{*}(p)\right)<\pi^{H}\left(\alpha=\alpha^{*}(p)\right)$.
Case 2: $p=1$
In this case, $(F O C-G)$ implies that G, and thus π^{L}, is independent of α. Therefore, the optimal α maximizes π^{H}. Then $\pi^{H}\left(\alpha=\alpha^{*}(p)\right) \geq \pi^{H}(\alpha=0)=y(T, G)>y(T-$ $G, G)=\pi^{L}$.
 $\lim _{\left(\alpha^{\prime}, p\right) \rightarrow(\alpha, 0)} \Pi\left(\alpha^{\prime}, p\right)=\Pi(\alpha, 0)$.

At $(\alpha, p=0), G=0$ and $s(\alpha, p=0)$ is determined by

$$
\alpha y_{s}(s, 0)=c^{\prime}(s) .
$$

At $\left(\alpha^{\prime}, p>0\right), G>0$ by $(F O C-G)$ and $s\left(\alpha^{\prime}, p\right)$ is determined by

$$
\begin{equation*}
\alpha^{\prime} y_{s}(s, G)=c^{\prime}(s) \tag{A1}
\end{equation*}
$$

Because $y_{s G}>0$, it is easy to see that $s\left(\alpha^{\prime}, p\right)>s\left(\alpha^{\prime}, p=0\right)$, for $p>0$.
$B y$ the definition of Π,

$$
\begin{equation*}
\Pi\left(\alpha^{\prime}, p\right)=p y(T-g, G)+(1-p)\left[y\left(s\left(\alpha^{\prime}, p\right), G\right)-c\left(s\left(\alpha^{\prime}, p\right)\right)-\frac{1}{2} r \sigma^{2} \alpha^{\prime 2}\right] \tag{A2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\Pi(\alpha, 0)=y(s(\alpha, 0), 0)-c(s(\alpha, 0))-\frac{1}{2} r \sigma^{2} \alpha^{2}\right] . \tag{A3}
\end{equation*}
$$

By (A2) and (A3) and rearrangement, we have,

$$
\begin{aligned}
& \Pi\left(\alpha^{\prime}, p\right)-\Pi(\alpha, 0)=p[y(T-g, G)-\Pi(\alpha, 0)]+\frac{1}{2}(1-p) r \sigma^{2}\left(\alpha^{2}-\alpha^{\prime 2}\right) \\
& +(1-p)\left[y\left(s\left(\alpha^{\prime}, 0\right), 0\right)-c\left(s\left(\alpha^{\prime}, 0\right)\right)-y(s(\alpha, 0), 0)+c(s(\alpha, 0))\right] \\
& +(1-p)\left[y\left(s\left(\alpha^{\prime}, p\right), G\right)-c\left(s\left(\alpha^{\prime}, p\right)\right)-y\left(s\left(\alpha^{\prime}, 0\right), 0\right)+c\left(s\left(\alpha^{\prime}, 0\right)\right)\right]
\end{aligned}
$$

In the above equation, as $p \rightarrow 0$ and $\alpha^{\prime} \rightarrow \alpha$, the first two terms go to 0 . By Lemma $1(2)$, $s(\alpha, 0)$ is continuous in α and thus the third term goes to 0 as $\alpha^{\prime} \rightarrow \alpha$. Therefore, the last term is crucial in determining the sign of $\Pi\left(\alpha^{\prime}, p\right)-\Pi(\alpha, 0)$. We want to show that the last term is non-negative.

$$
\begin{align*}
& y\left(s\left(\alpha^{\prime}, p\right), G\right)-c\left(s\left(\alpha^{\prime}, p\right)\right)-y\left(s\left(\alpha^{\prime}, 0\right), 0\right)+c\left(s\left(\alpha^{\prime}, 0\right)\right) \\
= & y(0, G)+\int_{0}^{s\left(\alpha^{\prime}, p\right)}\left[y_{s}(s, G)-c^{\prime}(s)\right] d s-y(0,0)-\int_{0}^{s\left(\alpha^{\prime}, 0\right)}\left[y_{s}(s, 0)-c^{\prime}(s)\right] d s \\
\geq & \int_{s\left(\alpha^{\prime}, j\right)}^{s\left(\alpha^{\prime}\right)}\left[y_{s}(s, G)-c^{\prime}(s)\right] d s \tag{A4}\\
\geq & \int_{s\left(\alpha^{\prime}, 0\right)}^{s\left(\alpha^{\prime}, p\right)}\left[y_{s}\left(s\left(\alpha^{\prime}, p\right), G\right)-c^{\prime}\left(s\left(\alpha^{\prime}, p\right)\right)\right] d s \tag{A5}\\
= & {\left[s\left(\alpha^{\prime}, p\right)-s\left(\alpha^{\prime}, 0\right)\right]\left(1-\alpha^{\prime}\right) y_{s}\left(s\left(\alpha^{\prime}, p\right), G\right) \geq 0 . } \tag{A6}
\end{align*}
$$

Inequality (A4) is because $y(0, G) \geq y(0,0)$. Inequality (A5) holds because $y_{s}(s, G)-c^{\prime}(s)$

When $y(s, 0)=0$, by (A2),

$$
\begin{aligned}
& \limsup _{\left(\alpha^{\prime}, p\right) \rightarrow(\alpha, 0)} \Pi\left(p, \alpha^{\prime}\right) \\
\leq & \limsup _{\left(\alpha^{\prime}, p\right) \rightarrow(\alpha, 0)} p y(T-g, G)+(1-p) y\left(s\left(\alpha^{\prime}, p\right), G\right)-\frac{1}{2}(1-p) r \sigma^{2} \alpha^{\prime 2} \\
\leq & -\frac{1}{2} r \sigma^{2} \alpha^{2} \\
\leq & \Pi(0, \alpha)
\end{aligned}
$$

Combining this with the above result, we have $\lim _{\left(\alpha^{\prime}, p\right) \rightarrow(\alpha, 0)} \Pi\left(p, \alpha^{\prime}\right)=\Pi(0, \alpha)$.
Proof of Proposition 4: It is optimal for the company to have some L units.
If $y(s, 0)=0$ for all s, we have argued in the text why the optimal p is positive. If $y(s, 0)$ is not always zero, then the concavity, the monotonicity, and the non- negativity of y implies that $y(s, 0)>0$ for all $s>0$.

We consider the limit of $\frac{d \Pi}{d p}$ as $p \rightarrow 0$. By $(F O C-p)$,

$$
\frac{d \Pi}{d p}=\left(\pi^{L}-\pi^{H}\right)+g y_{s}^{L}+(1-p) \alpha y_{G}^{H} \frac{\partial G}{\partial p}+(1-p)(1-\alpha) y_{s}^{H} \frac{\partial s}{\partial p}
$$

$(F O C-G)$ implies that,

$$
y_{s}(T-g, G) \geq(1-p)(1-\alpha) y_{G}(s, G)
$$

Since $s \geq T$ and $y_{s G}>0$,

$$
(1-p)(1-\alpha) y_{G}(s, G) \geq(1-p)(1-\alpha) y_{G}(T, G)
$$

the right hand side of which $\rightarrow \infty$ because $G=p g \leq p T$, Assumption 3 says that $\lim _{G \rightarrow 0} y_{G}=\infty$, and Proposition 2 says that $\alpha<1$. Therefore, $y_{s}(T-g, G) \rightarrow \infty$, which implies $g \rightarrow T$. Then, by Assumption 6, the substitution effect in $(F O C-p), g y_{s}^{L} \rightarrow \infty$;

$$
\lim _{p \rightarrow 0} g y_{s}^{L}=T \lim _{p \rightarrow 0} y_{s}(T-g, G)=T \lim _{(s, G) \rightarrow(0,0)} y_{s}(s, G)=\infty
$$

In $(F O C-p), \pi^{L}-\pi^{H}$ is bounded. Then to determine the sign of $\frac{d \Pi}{d p}$ as $p \rightarrow 0$, it is sufficient to show that $\frac{\partial G}{\partial p}>0$ and $\frac{\partial s}{\partial p}>0$ as $p \rightarrow 0$. By Lemma 3, it suffices to show that $\frac{\partial^{2} \Pi}{\partial p \partial G}>0$. Substitute $(F O C-G)$ into $\frac{\partial^{2} \Pi}{\partial p \partial G}$ and rearrange. Then

$$
\begin{equation*}
(1-p) \frac{\partial^{2} \Pi}{\partial p \partial G}=y_{G}^{L}+(1-p) g y_{s G}^{L}-\frac{(1-p)}{p} g y_{s s}^{L}-y_{s}^{L} \tag{A7}
\end{equation*}
$$

in which only the last term is negative. By Assumption 6, y_{s} is weakly convex. Then

$$
y_{s}(T, G)-y_{s}(T-g, G) \geq g y_{s s}(T-g, G)
$$

in which $y_{s}(T-g, G) \rightarrow \infty$. Therefore,

$$
-g y_{s s}^{L}=-g y_{s s}(T-g, G) \rightarrow \infty .
$$

Rearranging (A7) yields

$$
\begin{aligned}
(1-p) \frac{\partial^{2} \Pi}{\partial p \partial G} & =y_{G}^{L}+(1-p) g y_{s G}^{L}-\frac{(1-2 p)}{p} g y_{s s}^{L}-g y_{s s}(T-g, G)-y_{s}^{L} \\
& \geq y_{G}^{L}+(1-p) g y_{s G}^{L}-\frac{(1-2 p)}{p} g y_{s s}^{L}-y_{s}(T, G) \rightarrow \infty .
\end{aligned}
$$

In summary, we have shown that $\frac{d \Pi}{d p} \rightarrow \infty$ as $p \rightarrow 0$. Therefore, the optimal p is positive unless the value of Π at $p=0$ is higher than $\lim _{p \rightarrow 0} \Pi$, which Lemma 5 excludes. This completes the proof of the Proposition.

Proof of Lemma 6: When $p=1$, the optimal $s>T$. $\frac{d \pi^{H}}{d r}=-\frac{1}{2} \sigma^{2} \alpha^{2}<0, \frac{d \pi^{H}}{d \sigma}=-r \sigma \alpha^{2}<$ 0 and $\frac{d \pi^{H}}{d K}=-c(s)-\lambda c^{\prime}(s)<0$, where λ is the Lagrange multiplier of the constraint and is positive.

The Lagrangian of the program that chooses the optimal α and s is

$$
L=y(s, G)-K c(s)-\frac{1}{2} r \sigma^{2} \alpha^{2}+\lambda\left[\alpha y_{s}(s, G)-K c^{\prime}(s)\right] .
$$

In the proof of Proposition 2, we showed that the optimal $\alpha \in(0,1)$ and $\frac{\partial L}{\partial \alpha}=0$. Therefore, $\lambda>0$ and the optimal $s>T$.

By the envelope theorem, we have, $\frac{d \pi^{H}}{d r}=-\frac{1}{2} \sigma^{2} \alpha^{2}<0, \frac{d \pi^{H}}{d \sigma}=-r \sigma \alpha^{2}<0$ and $\frac{d \pi^{H}}{d K}=-c(s)-\lambda c^{\prime}(s)<0$.

Proof of Lemma 7: When $p=1$, if $y(s, 0)>0$ for $s>0$ and $\lim _{(s, G) \rightarrow(0,0)} G y_{G}(s, G)=0$, then $\left.\frac{d \pi}{d p}\right|_{p=1}<0$ for sufficiently small T.

As $T \rightarrow 0, \pi^{L}=y(T-g, T) \rightarrow y(0,0)$. When $p=1, g y_{s}^{L}=G y_{s}(T-G, G)$. By (FOC-G), This is $G y_{G}(T-G, G)$, which, by the assumption of the Lemma, approaches 0 as both G and T go to 0 .

$$
\begin{array}{cc}
\pi^{H}=\max _{\alpha} & y(s, G)-c(s-T)-\frac{1}{2} r \sigma^{2} \alpha^{2} \\
\text { s.t. } & \alpha y_{s}(s, G)-c^{\prime}(s-T)=0 .
\end{array}
$$

As $T \rightarrow 0, \pi^{H}$ approaches,

$$
\begin{array}{cl}
\pi^{H}(T=0)=\max _{\alpha} & y(s, 0)-c(s)-\frac{1}{2} r \sigma^{2} \alpha^{2} \\
\text { s.t. } & \alpha y_{s}(s, 0)-c^{\prime}(s)=0,
\end{array}
$$

which is independent of T and greater than $y(0,0)$. Therefore,

$$
\left.\lim _{T \rightarrow 0} \frac{d \pi}{d p}\right|_{p=1}=y(0,0)-\pi^{H}(T=0)<0
$$

that is, $\left.\frac{d \pi}{d p}\right|_{p=1}<0$ for sufficiently small T.

Proof of Proposition 9: For k_{1} and k_{2} sufficiently small, the high-powered incentive contract is renegotiation-proof if and and if the manager owns the unit's physical asset.

Consider the HQ's optimization problem

$$
\begin{array}{clr}
\max & p y\left(T-\frac{G}{p}, G\right)+(1-p)\left[y(s, G)-c(s)-\frac{1}{2} r \sigma^{2} \alpha^{2}\right] & (O P-H Q) \\
\text { s.t. } & \alpha y_{s}(s, G)-c^{\prime}(s)=0 & (F O C-s) \\
& p y_{G}\left(T-\frac{G}{p}, G\right)-y_{s}\left(T-\frac{G}{p}, G\right)+(1-p)(1-\alpha) y_{G}(s, G)=0 & (F O C-G)
\end{array}
$$

where $y(s, G)=z(s, G)+k_{1} \mu(s)+k_{2} \nu(G)$. Let the solution to program $(O P-H Q)$ be denoted with a superscript *. We want to show that, for sufficiently small k_{1} and k_{2},

$$
\begin{equation*}
\alpha^{*} y\left(s^{*}, G^{*}\right)>y\left(s^{*}, 0\right)=k_{1} \mu\left(s^{*}\right) \tag{A8}
\end{equation*}
$$

The proof for the second inequality above Proposition 8 is similar.
If the solution to $(O P-H Q),\left(\alpha^{*}, p^{*}, s^{*}, G^{*}\right)$, is continuous in $\left(k_{1}, k_{2}\right)$, then, as $\left(k_{1}, k_{2}\right) \rightarrow(0,0), \alpha^{*} y\left(s^{*}, G^{*}\right) \rightarrow \alpha^{0} y\left(s^{0}, G^{0}\right)$, where $\left(\alpha^{0}, s^{0}, G^{0}\right)$ is the equilibrium at $\left(k_{1}, k_{2}\right)=(0,0)$. By Proposition $2, \alpha^{0} y\left(s^{0}, G^{0}\right)>0$. As $\left(k_{1}, k_{2}\right) \rightarrow(0,0), k_{1} \mu\left(s^{*}\right) \rightarrow 0$. Therefore, (A8) holds for sufficiently small k_{1} and k_{2}. Unfortunately, it is not easy to show the continuity of the equilibrium because program $(O P-H Q)$ is in general not concave.

To prove the inequality, we first perform an exercise similar to the proof of Proposition $1(2)$. Let $\phi(s, G) \equiv c^{\prime}(s) / y_{s}(s, G)$. Then $(F O C-s)$ becomes $\alpha=\phi(s, G)$. By Assumption $4, \phi$ is convex in s. Substitute $\alpha=\phi(s, G)$ into the objective function and constraint $(F O C-G)$ in $(O P-H Q)$. Then $(O P-H Q)$ becomes

$$
\begin{array}{cll}
\max & p y\left(T-\frac{G}{p}, G\right)+(1-p)\left[y(s, G)-c(s)-\frac{1}{2} r \sigma^{2} \phi(s, G)^{2}\right] & (O P-H Q) \\
\text { s.t. } & p y_{G}\left(T-\frac{G}{p}, G\right)-y_{s}\left(T-\frac{G}{p}, G\right)+(1-p)(1-\phi(s, G)) y_{G}(s, G) \geq 0 & (F O C-G)
\end{array}
$$

The reason why we can change the equality in $(F O C-G)$ to inequality is the same as that offered in the proof of Proposition 1(2). Now, given $(p, G),(O P-H Q)$ is a concave program that chooses the optimal s. The solution $s=s\left(p, G, k_{1}, k_{2}\right)$ is differentiable. Substitute the solution into the objective function. We have an unconstrained optimization problem ${ }^{25}$

$$
\begin{equation*}
\max _{p, G} f\left(p, G, k_{1}, k_{2}\right) \tag{A9}
\end{equation*}
$$

where f is differentiable. Again, we don't know whether or not the solution to (A9) is continuous in (k_{1}, k_{2}).

Define

$$
\mathcal{S} \equiv\left\{\left(p, G, k_{1}, k_{2}\right):(p, G)=\arg \max _{p, G} f\left(p, G, k_{1}, k_{2}\right)\right\}
$$

We claim that \mathcal{S} is a closed set. Suppose this is not true. Then there exists a sequence $\left(p_{n}, G_{n}, k_{1 n}, k_{2 n}\right) \in \mathcal{S}$ such that $\lim _{n \rightarrow \infty}\left(p_{n}, G_{n}, k_{1 n}, k_{2 n}\right)=\left(p_{0}, G_{0}, k_{10}, k_{20}\right)$ but $\left(p_{0}, G_{0}, k_{10}, k_{20}\right)$ is not in \mathcal{S}. There exists $\left(p^{\prime}, G^{\prime}\right)$ such that

$$
\begin{equation*}
f\left(p_{0}, G_{0}, k_{10}, k_{20}\right)<f\left(p^{\prime}, G^{\prime}, k_{10}, k_{20}\right) . \tag{A10}
\end{equation*}
$$

[^0]Let $\epsilon \in\left(0, \frac{1}{2}\left[f\left(p^{\prime}, G^{\prime}, k_{10}, k_{20}\right)-f\left(p_{0}, G_{0}, k_{10}, k_{20}\right)\right]\right)$. Since f is continuous, for sufficiently large n,

$$
\left|f\left(p_{n}, G_{n}, k_{1 n}, k_{2 n}\right)-f\left(p_{0}, G_{0}, k_{10}, k_{20}\right)\right|<\epsilon
$$

and

$$
\left|f\left(p^{\prime}, G^{\prime}, k_{1 n}, k_{2 n}\right)-f\left(p^{\prime}, G^{\prime}, k_{10}, k_{20}\right)\right|<\epsilon
$$

(A10) then implies that

$$
f\left(p_{n}, G_{n}, k_{1 n}, k_{2 n}\right)<f\left(p^{\prime}, G^{\prime}, k_{1 n}, k_{2 n}\right)
$$

which contradicts with the fact that $\left(p_{n}, G_{n}, k_{1 n}, k_{2 n}\right) \in \mathcal{S}$. Therefore, \mathcal{S} is a closed set.
Now, we want to show that

$$
\begin{equation*}
\liminf _{\left(k_{1}, k_{2}\right) \rightarrow(0,0)} \alpha^{*} y\left(s^{*}, G^{*}\right)>0 . \tag{A11}
\end{equation*}
$$

Suppose, on the contrary, $\lim _{\inf }^{\left(k_{1}, k_{2}\right) \rightarrow(0,0)}, \alpha^{*} y\left(s^{*}, G^{*}\right)=0$. Then, there exists a sequence $\left(p_{n}, G_{n}, k_{1 n}, k_{2 n}\right) \in \mathcal{S}$ such that $\lim _{n \rightarrow \infty}\left(p_{n}, G_{n}, k_{1 n}, k_{2 n}\right)=\left(p_{0}, G_{0}, 0,0\right)$ and $\alpha_{0} y\left(s_{0}, G_{0}\right)=$ 0 , where $s_{0}=s\left(p_{0}, G_{0}, 0,0\right)$ and $\alpha_{0}=\phi\left(s_{0}, G_{0}\right)$. Since \mathcal{S} is a closed set, $\left(p_{0}, G_{0}, 0,0\right) \in \mathcal{S}$ and thus $\left(\alpha_{0}, p_{0}, s_{0}, G_{0}\right)$ is an equilibrium for the case of $\left(k_{1}, k_{2}\right)=(0,0)$. Proposition 2 implies that $\alpha_{0} y\left(s_{0}, G_{0}\right) \neq 0$. This is a contradiction. Therefore, $(A 11)$ holds.

[^0]: ${ }^{25}$ The constraint that $p \in[0,1]$ does not affect the argument and is thus omitted.

