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Appendix

Proof of Proposition 1: The HQ should (1) request the same level of goodwill effort from
all managers of L units, and (2) offer the same high-powered contract to all managers of
H units.

(1) Let {g(j)}jec be a profile of goodwill effort levels and g = [, g(j)dj/d(L), the average
of {g(j)}jec. Since y(s, G) is concave in s, y(T — g, @) is concave is g. Then by Jensen’s
Inequality,

L@ =9G),6)dj < [ y(T - g9,C)di.

Therefore, the solution to program (OP — G) is the choose g(j) to be a constant. That
is, The HQ should request the same level of goodwill effort from all managers of L units.
(2) Let us consider program (OP — HQ'). Assumptions 2 and 3 say that y(s, G) is concave
in s and lim,_,0 ys(s, G) = co. Therefore, incentive compatibility constraint (OP — s) can

be replaced by
a(i)ys(s(i), G) = ¢(s(i)).
By part (1) of this proposition, incentive compatibility constraint (OP — G) becomes
G . . N7 g
g =argmaxpy(T — -5 G) + [ [(1—a()y(s(), @) = B@)ldi,
where, G = pg. It is easy to show that, since y(s, G) is concave in (s, G),

py(T fj &)+ [ 10— ali)y(s(i), @) — Ai)di

I-L
is concave in G. Its derivative with respect to G is
G G . . .
pyG(T_ 77G> _yS(T_ 77G>+ (1—@(2))yg(8(2>,G>dl,
D D I-L

which decreases with G, by Assumption 3, goes to oo as G — 0, and goes to —oo as
G — pT. Therefore, (OP — G) can be replaced by

G G : : ,
(T = 0.6~ T =.6)+ [ (1= aa(s().G)di=0.  (FOC-G)
The objective function of program (OP — H(Q)') is now

1

py(T =g, G+ | [y(s(i). G) — e(s()) - 57”0204(2')2]%

which is also concave in G and the derivative of which with respect to G is positive for G
satisfying constraint (FFOC — G). Therefore, program (OP — HQ') can be rewritten as

max py(T — g,G) + Jz_,y(s(i), G) — c(s(i)) — sroa(i)?]di (OP — HQ')
s.t. pyG(T - %7 G) - ys(T - %7 G) + fI—E(l - a(i))yG(s(i), G)dl >0 (IC - G)
a(i)ys(s(i), G) = d(s(i)) (IC = s)
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When we change the equality sign in (FOC — G) to > in (IC — G), we expand the
feasible region of program (OP — HQ') to the left along the G-direction, as the left hand
side of (FOC — @) decreases with G. This does not change the optimum because the
objective function of (OP — HQ') decreases with G in the expanded feasible region. Let
(s,G) = (s)/ys(s,G). Then (IC —s) implies a(i) = ¢(s(i), G), which by Assumption 4
is convex in s(i). Substitute a(i) = ¢(s(i), G) into the objective function and constraint
(IC — G). Then the integrand in the objective function,

1

y(s(i), G) = e(s(i)) = Groali)’,

becomes a concave function of s(i). The integrand in constraint (IC — G),

(1 = a(2))ya(s(i), G),

is also concave in s(i) in the convex range {s(i) : ¢(s(7))/ys(s(i), G) < 1}, because (1 —
a(1)) is non-negative, concave and decreasing in s(i), and ye(s(7), G) is, by Assumption 5,
positive, concave and increasing in s(7); the product of two non-negative concave functlons
is concave if one of them is increasing and the other decreasing. Given a profile of sales
effort levels,

{s(i) }icz—r, let s = [;_,s(i)di/d(T — L), the average of {s(i)}icz—z. Then, for any
given (G, Jensen’s inequality implies

1

[ (60,6 = els(i) = Sro*a(?ldi < [ y(s,G) — e(s) — yro*o’ds,

and
pye(T — ,G) — ys(T z G) + Jr_p (1 = a(i)ya(s(i), G)di
< pya(T—3,G) = ys(T = ,G) + [z (1 = a)ya(s, G)di,

where o = ¢(s, G). Therefore, choosing the same « and s for all managers of H units is
better than choosing different ones. That is, the HQ should offer the same high-powered
contract to all managers of H units. B

Proof of Lemma 4: (1) s and G are continuous at « = 0. (2) When p = 0, s(«,0) is
uniquely determined by (FOC — s) and is continuous in c.

(1) We first prove that lim, p)—(0,p) s(a, p') = s(0,p) = T. By (FOC — s),

ays(s(a, 1), G) = c(s(a,p')).

Therefore,

0 < d(s(a,p')) = ¢(5(0,p)) = ays(s(a, 1), G) < ay(T,T) — 0

as @ — 0. The last inequality holds because s(a,p’) > T, G < T, and y,(s,G) increases
with G and decreases with s. Since ¢’ > 0 as t > T, (¢)~! is continuous in [0, c0) with
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d)71(0) = T. Therefore, ¢(s(a,p')) — ¢(s(0,p)) — 0 implies limq p)—(0p) S(o, ') =
s(0,p) =T, i.e., s is continuous at a = 0.
When p > 0,
0?11 1
oce = P¥ea — Wi+ ys + (1 =p)(1 —a)yge <0
by (FOC — G) and the concavity of y, where a function with a superscript H (L, resp.)
means that it is evaluated at (s, G) ((T' — %, G), resp.). Therefore (FOC — G) implies G
is a differentiable function of (s, a, p) when p > 0, by Implicit Function Theorem.
When p =0,
G(Oz,p) - G(0> 0) =pg — 0.

(2) Now we prove that s(«,0) is continuous in a. s(«,0) is defined by
ays(s(a,0),G) = c(s(w, 0)).

If y(7,0) = 0, then ys(s,0) = 0 for all s > T by the concavity of y, and therefore,
s(a,0) =T for all a.

If y5(T,0) # 0, then for @ > 0, s(a,0) > T" and thus ¢’(s(a, 0)) > 0. Implicit Function
Theorem then implies that s(a, 0) is differentiable with respect to . The continuity of
s(a,0) at a = 0 is implied by limy—o ¢ (s(/,0)) = a'ys(s(a/,0)) = 0. W

Proof of Proposition 2: At the optimum, o € (0, 1).

We first prove the result for the very special case of p = 1. In this case, (FOC — G)
becomes
yo(T — G,GQ) —ys(T — G,G) =0,

which implies that G does not depend on «. Therefore, a is chosen to

™ = max.s y(s,G) —c(s) — iro’a?

st.  ays(s,G)—d(s)=0 (1C)
The Lagrangian of the program is
L=y(s,G) — c(s) ;7’02&2 + Nas(s, G) — ¢(s)].
Differentiation yields

= —rofa+ \ys(s, Q),
= (1 —a)ys(s,G) + Nayss(s,G) — " (s)].

EISSIS

By the incentive compatibility constraint, s > T" > 0. Therefore, %IS‘ =0. If a =1, then
%IS‘ = 0 implies A = 0, which in turn implies g—i < 0. This is a contradiction. If a = 0,
the incentive compatibility constraint implies that s = T'. Therefore, %ﬁ =y:(T,G) > 0.

This is again a contradiction. Therefore, o € (0, 1).
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Now, we consider the more general case of p < 1. At a =1, (FOC — «) becomes

dIl dG
(=)ot + (1 —plE
o (A =pro”+ (1 -plye
Apply the implicit function theorem to (FOC — s) and (FOC — G). We have, at o = 1,
dG 1
- 1 _ H H A
dOz |J|( p)yG (yss c )7

where, the Jacobian matrix

J —c'(s) 0 N ayld aylL,
0 PYée — 2Yse + s 1-p)(1 -y 1-p)1-a)yls

is positive definite; it is the sum of a positive-definite matrix and a semipositive- definite
matrix. Therefore, at a = 1, % < 0, which implies that % < 0. Thus the optimal « is
not 1.

At a = 0, we cannot use the above argument anymore because the Jacobian becomes
singular. We need to utilize the interaction between o and p and therefore some results
from the next subsection. Suppose a = 0, then s = T by (FOC — s). Thus g—; =0 and
(FOC — p) becomes

arlr L H L
dp T =T +gys

= y(T—9,G)—y(T,G) + gys(T — g9.G) >0,

as g(s, @) is concave in s. This implies that the optimal p = 1. The first part of the proof
shows that in this case the optimal « is not 0, a contradiction to our assumption that
a = 0. Therefore, a € (0,1) for the case of p < 1 also. B

Proof of Proposition 3: For any given p, m° < wf at the corresponding HQ’s optimal

choice of o, denoted by o*(p). In particular, % < 78 holds in equilibrium.

Note from the discussion preceding Lemma 4 that, when o = 0, an H manager chooses
s=T,and (o = 0) = I (o — 0) = y(T, G). Now, we prove the result for two separate
cases:

Case 1: p<1
By the definition of 7%,

(= a"(p)) = y(T — g(a”), pg(a”)) < maxy(T — g, pg).
Since y(s, @) increases with s and p < 1,
max y(T — g,pg) < maxpy(T — g,pg) + (1 — p)y(T’, pg) = m(e = 0).
By the definition of a*(p),

m(a=0) <7(a=a*(p) = pr-(a=a’(p) + (1 —p)r (a = a*(p)).



Combining the above three inequalities, we have:

(= a*(p)) < pr™(a=a*(p)) + (1 — p)n(a = a*(p)),

which implies that 7L (a = a*(p)) < 78 (a = a*(p)).
Case 2: p=1

In this case, (FOC — G) implies that G, and thus 7%, is independent of .. Therefore,
the optimal o maximizes 7. Then 7% (a = a*(p)) > 7 (a = 0) = y(T,G) > y(T —
G,G)=7l.m

Proof of Lemma 5: liminf(y p)—(a,0) 11(e/,p) > II(c,0). Furthermore, if y(s,0) = 0, then
lim(a/’p)_)(a,o) H(O/, p) = H(Oé, 0) .
At (a,p =0), G =0 and s(a,p = 0) is determined by
ays(s,0) = d(s).
At (o/,p > 0), G >0 by (FOC — G) and s(d/, p) is determined by
o'y(s,G) = (). (A1)

Because ysc > 0, it is easy to see that s(a/,p) > s(a/,p = 0), for p > 0.
By the definition of II,

(o', p) = py(T — g,G) + (1 — p)[y(s(e/,p), G) — c(s(c,p)) — ;7‘020/2], (A2)

and
(@, 0) = y(s(a, 0),0) — c(s(a, 0)) — ;m?oﬂ]. (A3)

y (A2) and (A3) and rearrangement, we have,

(e, p) — (e, 0) = p[y(T — 9,G) — (e, 0)] + 5 (1 — p)ro’(a® — o)
+(1 = p)ly(s(a’,0),0) = c(s(a,0)) = y(s(a, 0),0) + ¢(s(a, 0))]
+(1 = p)ly(s(e,p),G) — c(s(c, p)) — y(s(a, 0),0) + c(s(c’, 0))].

In the above equation, as p — 0 and o/ — «, the first two terms go to 0. By Lemma 1(2),
s(a,0) is continuous in « and thus the third term goes to 0 as &’ — «a. Therefore, the
last term is crucial in determining the sign of II(/, p) — II(«,0). We want to show that
the last term is non-negative.

y(s(a/,p), > c(s(a/,p)) — y(s(a,0),0) + c(s(a’, 0))
y(0,G) + 5Py (s, Q) — ¢(s)]ds — y(0,0) — J3' " [ys(s,0) — (s)]ds

> i) lus(s, @) — ¢(s))ds (A4)
> [y (s(f,p), G) — ¢(s(o,p))]ds (A5)
= [s(c/,p) — s(c,0)](1 — a)ys(s(e, p), G) > 0. (A6)
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Inequality (A4) is because y(0,G) > y(0,0). Inequality (A5) holds because y;(s, G) —/(s
decreases in s. Equation (A6) is by (Al). Therefore, liminf (o ) (0,0 (e, p) > II(a, 0).
When y(s,0) =0, by (A2),

)

lim Sup(a/7p)_>(a’0) H(p, Oé,)
K supys 1) (a,0) PY(T — 9, G) + (1 = p)y(s(e’, p), G) — 3(1 — p)ro?a”
—Lrg202

2

I1(0, o).

VA VANIVAN

Combining this with the above result, we have limy p)—(a,0) IL(p, @) = I1(0, ). W

Proof of Proposition 4: It is optimal for the company to have some L units.

If y(s,0) = 0 for all s, we have argued in the text why the optimal p is positive. If
y(s,0) is not always zero, then the concavity, the monotonicity, and the non- negativity
of y implies that y(s,0) > 0 for all s > 0.

We consider the limit of % as p — 0. By (FOC — p),

un0s

oG
— 7T +gyF + (1 —p)aygafp +(1-p)(1—a)y! o

(FOC — @) implies that,

ys(T - g7G) > (1 —p)(l - a)yG(S7G)'

Since s > T and ys,g > 0,

(1 —p)(l - a)yG(S7G) > (1 —p)(l - Oz)va(T, G)7

the right hand side of which — oo because G = pg < pT, Assumption 3 says that
limg_ yo = oo, and Proposition 2 says that o < 1. Therefore, ys(T' — g, G) — oo, which
implies ¢ — T'. Then, by Assumption 6, the substitution effect in (FOC — p), gyX — oc;

limgyr = Tlimy,(T — 9,G) =T i 5(s,G) =

lim gy, =Thmy.(T —g,G) =T lim “ys(s,G) = o0
In (FOC — p), 7% — 7 is bounded. Then to determine the sign of % as p — 0, it is
sufficient to show that %—g > 0 and @ > 0 as p — 0. By Lemma 3, it suffices to show that

8‘128% > (. Substitute (FOC — G) 1nto aaaré; and rearrange. Then

821_[ . L (1 - p)

in which only the last term is negative. By Assumption 6, y; is weakly convex. Then

Ys(T,G) = ys(T — 9,G) > gyss(T — g, G),
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in which ys(T — g, G) — oo. Therefore,

—gyk = —gyss(T — 9, G) — <.

Rearranging (A7) yields

2
1-p)2ie = vb+ (1 -pgyly — gyl — gyea(T — 9.G) — y*
L - 2]")gyss ys(T, G) — oo.

%
<
h
+
=
|
I
Q
<
»
Q

In summary, we have shown that ‘fi—n — 00 as p — 0. Therefore, the optimal p is
positive unless the value of II at p = 0 is higher than lim,_,, I, which Lemma 5 excludes.
This completes the proof of the Proposition. B

—30%a? <0, d” = —roa’ <

0 and % = —c(s) — Ad(s) < 0, where X is the Lagrange multzplzer of the constmmt and
18 positive.

The Lagrangian of the program that chooses the optimal « and s is
1
L=y(s,G) — Kc(s) — 57’02042 + AMays(s, G) — Kd'(s)].

In the proof of Proposition 2, we showed that the optimal o € (0,1) and g—i = 0. There-
fore, A > 0 and the optimal s > T. .
By the envelope theorem, we have, ¥~ = —1o%a? < 0, i — _rga? < 0 and

dr do
% =—c(s) = Ad(s) < 0. m

Proof of Lemma 7: When p =1, if y(s,0) >0 for s > 0 and lims g)—(0,0) Gya(s,G) =0
then @ dp " |,=1< 0 for sufficiently small T.

AsT — 0, 7l = y(T — g, T) — y(0,0). When p = 1, gy* = Gy,(T — G,G). By (FOC-G),
This is Gyg(T — G, @), which, by the assumption of the Lemma, approaches 0 as both G

and T go to 0.
™ = maxq y(s,G)—c(s—T)— iro*a®
st. ays(s,G)—d(s—T)=0.

As T — 0, 7 approaches,

(T =0) = max, y(s,0)— c(s) — sro*a?
st.  ays(s,0) —d(s) =0,

which is independent of T" and greater than y(0,0). Therefore,

dr "
jl}ill()dp lp=1=9(0,0) — 7" (T"=0) <0,

that is, Z—; |p=1< 0 for sufficiently small 7. ®
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Proof of Proposition 9: For ki and ks sufficiently small, the high-powered incentive con-
tract is renegotiation-proof if and and if the manager owns the unit’s physical asset.

Consider the HQ’s optimization problem

max py(T — %, G) + (1= p)ly(s, G) — c(s) — jro%a’] (OP — HQ)

st ays(s,G) —d(s) =0 (FOC — )
pyG(T_%76’)_ys(T_%7G)+(1_p)(1_a)yG(saG):0 (FOC_G)

where y(s,G) = z(s,G) + k1ju(s) + kov(G). Let the solution to program (OP — HQ) be
denoted with a superscript *. We want to show that, for sufficiently small k; and ks,

a’y(s", G7) > y(s",0) = kyp(s”). (48)

The proof for the second inequality above Proposition 8 is similar.

If the solution to (OP — HQ), (a*,p*, s*,G*), is continuous in (ki,ks), then, as
(k1,k2) — (0,0), a*y(s*,G*) — a’y(s°,G°), where (a’, s G) is the equilibrium at
(k1, ko) = (0,0). By Proposition 2, a®y(s®, G°) > 0. As (k1,ks) — (0,0), kyu(s*) — 0.
Therefore, (A8) holds for sufficiently small k; and ks. Unfortunately, it is not easy to
show the continuity of the equilibrium because program (OP — H(Q) is in general not
concave.

To prove the inequality, we first perform an exercise similar to the proof of Proposition
1(2). Let ¢(s,G) = d(s)/ys(s,G). Then (FOC —s) becomes a = ¢(s, G). By Assumption
4, ¢ is convex in s. Substitute a = ¢(s,G) into the objective function and constraint

(FOC — @) in (OP — HQ). Then (OP — HQ) becomes

max py(T — $,G) + (1= p)ly(s, G) — c(s) — 5r0%p(s, G)’] (OP — HQ)

)
s.t. pyG(T - %7G) - ys(T - %7G) + (1 —p)(l - QS(S,G))va(S,G) >0 (FOO - G)

The reason why we can change the equality in (FOC — G) to inequality is the same as
that offered in the proof of Proposition 1(2). Now, given (p, G), (OP — HQ) is a concave
program that chooses the optimal s. The solution s = s(p, G, k1, ko) is differentiable. Sub-
stitute the solution into the objective function. We have an unconstrained optimization
problem??

maXf(p,G, k17k2)7 (Ag)
»,G

where f is differentiable. Again, we don’t know whether or not the solution to (A9) is
continuous in (ki, k2).
Define
S={(p,G ki, ko) : (p,G) = argrg%xf(p, G, k1, ka)}.

We claim that S is a closed set. Suppose this is not true. Then there exists a se-
quence (pn, Gp, kin, k2n) € S such that lim, . (pn, Gn, k1n, k2n) = (Po, Go, k10, k20) but
(po, Go, k10, k20) is not in S. There exists (p', G’) such that

f(po, Go, k1o, k20) < f(ply G, ko, kao). (A10)

%5 The constraint that p € [0, 1] does not affect the argument and is thus omitted.
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Let € € (0, %[f(p’, G', k10, k20) — f(po, Go, k10, k20)]). Since f is continuous, for sufficiently
large n,
|f(pn7 Gn7 klnv an) - .f(p07 G07 k107 k20)| <€

and
|f(pl7 Gl? kln? an) - .f(pl7 le klO; k20)| < €.

(A10) then implies that

f(pn7 Gn7 kln? k2n) < f(pl7 G,7 k1n7 k2n)7

which contradicts with the fact that (p,, Gy, kin, k2n) € S. Therefore, S is a closed set.
Now, we want to show that

liminf o*y(s*,G*) > 0. All
(k1,k2)—(0,0) y ) ( )

Suppose, on the contrary, lim inf x, ,)—(0,0) @*y(s*, G*) = 0. Then, there exists a sequence
(Pny Gy k1, k2n) € S such that lim,, e (P, Gn, Kin, k2n) = (po, Go, 0,0) and agy(so, Go) =
0, where so = s(po, Go,0,0) and ap = ¢(s0, Go). Since S is a closed set, (po, Go,0,0) € S
and thus (o, po, So, Go) is an equilibrium for the case of (k1, k2) = (0,0). Proposition 2
implies that agy(so, Go) # 0. This is a contradiction. Therefore, (A11) holds. ®
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