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Proof of Proposition 1: The HQ should (1) request the same level of goodwill e�ort from
all managers of L units, and (2) o�er the same high-powered contract to all managers of
H units.

g j g g j dj/d
g j y s,G s y T g,G g

y T g j ,G dj y T g,G dj.

OP G g j

OP HQ y s,G
s y s,G OP s

� i y s i , G c s i .

OP G

g py T
G

p
,G � i y s i , G � i di,

G pg y s,G s,G

py T
G

p
,G � i y s i , G � i di

G G

py T
G

p
,G y T

G

p
,G � i y s i , G di,

G G
G pT OP G

py T
G

p
,G y T

G

p
,G � i y s i , G di . FOC G

OP HQ

py T g,G y s i , G c s i r� � i di,

G G G
FOC G OP HQ

py T g,G y s i , G c s i r� � i di OP HQ
s.t. py T ,G y T ,G � i y s i , G di IC G

� i y s i , G c s i IC s

(1) Let ( ) be a pro�le of goodwill e�ort levels and ( ) ( ), the average
of ( ) . Since ( ) is concave in , ( ) is concave is . Then by Jensen’s
Inequality,

( ( ) ) ( )

Therefore, the solution to program ( ) is the choose ( ) to be a constant. That
is, The HQ should request the same level of goodwill e�ort from all managers of L units.
(2) Let us consider program ( ). Assumptions 2 and 3 say that ( ) is concave
in and lim ( ) = . Therefore, incentive compatibility constraint ( ) can
be replaced by

( ) ( ( ) ) = ( ( ))

By part (1) of this proposition, incentive compatibility constraint ( ) becomes

= arg max ( ) + [(1 ( )) ( ( ) ) ( )]

where, = . It is easy to show that, since ( ) is concave in ( ),

( ) + [(1 ( )) ( ( ) ) ( )]

is concave in . Its derivative with respect to is

( ) ( ) + (1 ( )) ( ( ) )

which decreases with , by Assumption 3, goes to as 0, and goes to as
. Therefore, ( ) can be replaced by

( ) ( ) + (1 ( )) ( ( ) ) = 0 ( )

The objective function of program ( ) is now

( ) + [ ( ( ) ) ( ( ))
1

2
( ) ]

which is also concave in and the derivative of which with respect to is positive for
satisfying constraint ( ). Therefore, program ( ) can be rewritten as

max ( ) + [ ( ( ) ) ( ( )) ( ) ] ( )
( ) ( ) + (1 ( )) ( ( ) ) 0 ( )

( ) ( ( ) ) = ( ( )) ( )
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Proof of Lemma 4: (1) and are continuous at . (2) When , is
uniquely determined by and is continuous in .

FOC G IC G
OP HQ G

FOC G G
OP HQ G

� s,G c s /y s,G IC s � i � s i , G
s i � i � s i , G

IC G

y s i , G c s i r� � i ,

s i IC G

� i y s i , G ,

s i s i c s i /y s i , G
� i s i y s i , G

s i

s i s s i di/d s i
G

y s i , G c s i r� � i di y s,G c s r� � di,

py T ,G y T ,G � i y s i , G di

py T ,G y T ,G � y s,G di,

� � s,G � s

s G � p s �,
FOC s �

s �, p s , p T FOC s

�y s �, p ,G c s �, p .

c s �, p c s , p �y s �, p ,G �y T, T

� s �, p T G T y s,G
G s c > t > T c ,

When we change the equality sign in ( ) to in ( ), we expand the
feasible region of program ( ) to the left along the -direction, as the left hand
side of ( ) decreases with . This does not change the optimum because the
objective function of ( ) decreases with in the expanded feasible region. Let

( ) ( ) ( ). Then ( ) implies ( ) = ( ( ) ), which by Assumption 4
is convex in ( ). Substitute ( ) = ( ( ) ) into the objective function and constraint
( ). Then the integrand in the objective function,

( ( ) ) ( ( ))
1

2
( )

becomes a concave function of ( ). The integrand in constraint ( ),

(1 ( )) ( ( ) )

is also concave in ( ) in the convex range ( ) : ( ( )) ( ( ) ) 1 , because (1
( )) is non-negative, concave and decreasing in ( ), and ( ( ) ) is, by Assumption 5,

positive, concave and increasing in ( ); the product of two non-negative concave functions
is concave if one of them is increasing and the other decreasing. Given a pro�le of sales
e�ort levels,

( ) , let ( ) ( ), the average of ( ) . Then, for any
given , Jensen’s inequality implies

[ ( ( ) ) ( ( ))
1

2
( ) ] ( ) ( )

1

2

and
( ) ( ) + (1 ( )) ( ( ) )

( ) ( ) + (1 ) ( )

where = ( ). Therefore, choosing the same and for all managers of H units is
better than choosing di�erent ones. That is, the HQ should o�er the same high-powered
contract to all managers of H units.

= 0 = 0 ( 0)
( )

(1) We �rst prove that lim ( ) = (0 ) = . By ( ),

( ( ) ) = ( ( ))

Therefore,

0 ( ( )) ( (0 )) = ( ( ) ) ( ) 0

as 0. The last inequality holds because ( ) , , and ( ) increases
with and decreases with . Since 0 as , ( ) is continuous in [0 ) with
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Proof of Proposition 2: At the optimum, .
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�y s �, , G c s �, .

y T, y s, s T y
s �, T �

y T, � > s �, > T c s �, >
s �, �

s �, � c s � , � y s � ,

� ,

p FOC G

y T G,G y T G,G ,

G � �

� y s,G c s r� �
s.t. �y s,G c s IC

L y s,G c s r� � � �y s,G c s .

r� � �y s,G ,
� y s,G � �y s,G c s .

s T > �
� < �

s T y T,G >
� ,

( ) (0) = . Therefore, ( ( )) ( (0 )) 0 implies lim ( ) =
(0 ) = , i.e., is continuous at = 0.

When 0,

�
= 2 +

1
+ (1 )(1 ) 0

by ( ) and the concavity of , where a function with a superscript ( , resp.)
means that it is evaluated at ( ) (( ), resp.). Therefore ( ) implies

is a di�erentiable function of ( ) when 0, by Implicit Function Theorem.
When = 0,

( ) (0 0) = 0

(2) Now we prove that ( 0) is continuous in . ( 0) is de�ned by

( ( 0) ) = ( ( 0))

If ( 0) = 0, then ( 0) = 0 for all by the concavity of , and therefore,
( 0) = for all .

If ( 0) = 0, then for 0, ( 0) and thus ( ( 0)) 0. Implicit Function
Theorem then implies that ( 0) is di�erentiable with respect to . The continuity of
( 0) at = 0 is implied by lim ( ( 0)) = ( ( 0)) = 0.

(0 1)

We �rst prove the result for the very special case of = 1. In this case, ( )
becomes

( ) ( ) = 0

which implies that does not depend on . Therefore, is chosen to

= max ( ) ( )
( ) ( ) = 0 ( )

The Lagrangian of the program is

= ( ) ( )
1

2
+ [ ( ) ( )]

Di�erentiation yields

= + ( )
= (1 ) ( ) + [ ( ) ( )]

By the incentive compatibility constraint, 0. Therefore, = 0. If = 1, then
= 0 implies = 0, which in turn implies 0. This is a contradiction. If = 0,

the incentive compatibility constraint implies that = . Therefore, = ( ) 0.
This is again a contradiction. Therefore, (0 1).
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Proof of Proposition 3: For any given , at the corresponding HQ’s optimal
choice of , denoted by . In particular, holds in equilibrium.

p < � FOC �

d

d�
p r� p y

dG

d�
.

FOC s FOC G �

dG

d� J
p y y c ,

J
c s

py y y
�y �y

p � y p � y

� < < �

�
� p

� s T FOC s

FOC p

� � gy

y T g,G y T,G gy T g,G > ,

g s,G s p
�

� � , p <

p � < �
� � p � < �

�
s T � � � y T,G

p <
�

� � � p y T g � , pg � y T g, pg .

y s, G s p <

y T g, pg < py T g, pg p y T, pg � � .

� p

� � � � � p p� � � p p � � � p .

Now, we consider the more general case of 1. At = 1, ( ) becomes

�
= (1 ) + (1 )

Apply the implicit function theorem to ( ) and ( ). We have, at = 1,

=
1

(1 ) ( )

where, the Jacobian matrix

=
( ) 0

0 2 +
+

(1 )(1 ) (1 )(1 )

is positive de�nite; it is the sum of a positive-de�nite matrix and a semipositive- de�nite
matrix. Therefore, at = 1, 0, which implies that 0. Thus the optimal is
not 1.

At = 0, we cannot use the above argument anymore because the Jacobian becomes
singular. We need to utilize the interaction between and and therefore some results
from the next subsection. Suppose = 0, then = by ( ). Thus = 0 and

( ) becomes

= +

= ( ) ( ) + ( ) 0

as ( ) is concave in . This implies that the optimal = 1. The �rst part of the proof
shows that in this case the optimal is not 0, a contradiction to our assumption that

= 0. Therefore, (0 1) for the case of 1 also.

( )

Note from the discussion preceding Lemma 4 that, when = 0, an H manager chooses
= , and ( = 0) � ( 0) = ( ). Now, we prove the result for two separate

cases:
Case 1: 1

By the de�nition of ,

( = ( )) = ( ( ) ( )) max ( )

Since ( ) increases with and 1,

max ( ) max ( ) + (1 ) ( ) = ( = 0)

By the de�nition of ( ),

( = 0) ( = ( )) = ( = ( )) + (1 ) ( = ( ))
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� � � p < � � � p
p

FOC G G � �
� � � � � p � � y T,G > y T

G,G � .

� , p �, y s,
� , p �,

�, p G s �, p

�y s, c s .

� , p > G > FOC G s � , p

� y s,G c s . A

y > s � , p > s � , p p >

� , p py T g,G p y s � , p ,G c s � , p r� � , A

�, y s �, , c s �, r� � . A

� , p �, p y T g,G �, p r� � �
p y s � , , c s � , y s �, , c s �,
p y s � , p , G c s � , p y s � , , c s � , .

p � �
s �, � � �

� , p �,

y s � , p , G c s � , p y s � , , c s � ,

y , G y s,G c s ds y , y s, c s ds

y s,G c s ds A

y s � , p ,G c s � , p ds A

s � , p s � , � y s � , p ,G . A

Combining the above three inequalities, we have:

( = ( )) ( = ( )) + (1 ) ( = ( ))

which implies that ( = ( )) ( = ( )).
Case 2: = 1

In this case, ( ) implies that , and thus , is independent of . Therefore,
the optimal maximizes . Then ( = ( )) ( = 0) = ( ) (

) =

lim inf �( ) �( 0) ( 0) = 0
lim �( ) = �( 0)

At ( = 0), = 0 and ( = 0) is determined by

( 0) = ( )

At ( 0), 0 by ( ) and ( ) is determined by

( ) = ( ) ( 1)

Because 0, it is easy to see that ( ) ( = 0), for 0.
By the de�nition of �,

�( ) = ( ) + (1 )[ ( ( ) ) ( ( ))
1

2
] ( 2)

and

�( 0) = ( ( 0) 0) ( ( 0))
1

2
] ( 3)

By (A2) and (A3) and rearrangement, we have,

�( ) �( 0) = [ ( ) �( 0)] + (1 ) ( )
+(1 )[ ( ( 0) 0) ( ( 0)) ( ( 0) 0) + ( ( 0))]
+(1 )[ ( ( ) ) ( ( )) ( ( 0) 0) + ( ( 0))]

In the above equation, as 0 and , the �rst two terms go to 0. By Lemma 1(2),
( 0) is continuous in and thus the third term goes to 0 as . Therefore, the

last term is crucial in determining the sign of �( ) �( 0). We want to show that
the last term is non-negative.

( ( ) ) ( ( )) ( ( 0) 0) + ( ( 0))

= (0 ) + [ ( ) ( )] (0 0) [ ( 0) ( )]

[ ( ) ( )] ( 4)

[ ( ( ) ) ( ( ))] ( 5)

= [ ( ) ( 0)](1 ) ( ( ) ) 0 ( 6)

37



2 2

′

′

′

′

′

→
′

→
′

→
′ ′

→
′

→

→ → →

( ) ( 0)

( ) ( 0)

( ) ( 0)
1
2

2 2

1
2

2 2

( ) ( 0)

�

0

0 0 ( ) (0 0)

�

� �

2

� �
�

� � � � �
� �
�

→ �

� � � �

�

� � � �

�

� � � � �

→ ∞ �
∞ � →∞

→ � →∞

� ∞

� � →
→

�

� � � � �

� � � �

Proof of Proposition 4: It is optimal for the company to have some L units.

s

� ,p �,

� ,p �,

� ,p �,

� ,p �,

d
dp

L H L
s

H
G

H
s

s G

sG

G G

G G s
L
s

p

L
s p

s
s,G ,

s

L H d
dp

∂G
∂p

∂s
∂p

∂
∂p∂G

∂
∂p∂G

L
G

L
sG

L
ss

L
s

s

s s ss

y ,G y , y s, G c s
s � , p �,

y s,

p, �
py T g,G p y s � , p ,G p r� �

r� �
, � .

p, � , �

y s, s p
y s,
y y s, > s >

p FOC p

d

dp
� � gy p �y

∂G

∂p
p � y

∂s

∂p
.

FOC G

y T g,G p � y s,G .

s T y >

p � y s,G p � y T,G ,

G pg pT
y � < y T g,G
g T FOC p gy

gy T y T g,G T y s,G .

FOC p � � p

> > p

> FOC G

p
∂

∂p∂G
y p gy

p

p
gy y , A

y

y T,G y T g,G gy T g,G ,

Inequality (A4) is because (0 ) (0 0). Inequality (A5) holds because ( ) ( )
decreases in . Equation (A6) is by (A1). Therefore, lim inf �( ) �( 0).

When ( 0) = 0, by (A2),

lim sup �( )
lim sup ( ) + (1 ) ( ( ) ) (1 )

�(0 )

Combining this with the above result, we have lim �( ) = �(0 ).

If ( 0) = 0 for all , we have argued in the text why the optimal is positive. If
( 0) is not always zero, then the concavity, the monotonicity, and the non- negativity

of implies that ( 0) 0 for all 0.
We consider the limit of as 0. By ( ),

�
= ( ) + + (1 ) + (1 )(1 )

( ) implies that,

( ) (1 )(1 ) ( )

Since and 0,

(1 )(1 ) ( ) (1 )(1 ) ( )

the right hand side of which because = , Assumption 3 says that
lim = , and Proposition 2 says that 1. Therefore, ( ) , which
implies . Then, by Assumption 6, the substitution e�ect in ( ), ;

lim = lim ( ) = lim ( ) =

In ( ), is bounded. Then to determine the sign of as 0, it is

su�cient to show that 0 and 0 as 0. By Lemma 3, it su�ces to show that

0. Substitute ( ) into and rearrange. Then

(1 )
�

= + (1 )
(1 )

( 7)

in which only the last term is negative. By Assumption 6, is weakly convex. Then

( ) ( ) ( )
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Proof of Lemma 6: When , the optimal . ,

and , where is the Lagrange multiplier of the constraint and
is positive.

Proof of Lemma 7: When , if for and ,
then for su�ciently small .

y T g,G

gy gy T g,G .

A

p y p gy gy gy T g,G y

y p gy gy y T,G .

p . p
p

p s > T � � < r�� <

c s �c s < �

� s

L y s,G Kc s r� � � �y s,G Kc s .

� ,
� > s > T

� � < r�� <

c s �c s <

p y s, > s > Gy s,G
< T

T � y T g, T y , p gy Gy T G,G
Gy T G,G G

T
� y s,G c s T r� �

s.t. �y s,G c s T .

T �

� T y s, c s r� �
s.t. �y s, c s ,

T y ,

d�

dp
y , � T < ,

< T

in which ( ) . Therefore,

= ( )

Rearranging ( 7) yields

(1 ) = + (1 ) ( )

+ (1 ) ( )

In summary, we have shown that as 0 Therefore, the optimal is
positive unless the value of � at = 0 is higher than lim �, which Lemma 5 excludes.
This completes the proof of the Proposition.

= 1 = 0 =

0 = ( ) ( ) 0

The Lagrangian of the program that chooses the optimal and is

= ( ) ( )
1

2
+ [ ( ) ( )]

In the proof of Proposition 2, we showed that the optimal (0 1) and = 0. There-
fore, 0 and the optimal .

By the envelope theorem, we have, = 0, = 0 and

= ( ) ( ) 0.

= 1 ( 0) 0 0 lim ( ) = 0
0

As 0, = ( ) (0 0). When = 1, = ( ). By (FOC-G),
This is ( ), which, by the assumption of the Lemma, approaches 0 as both
and go to 0.

= max ( ) ( )
( ) ( ) = 0

As 0, approaches,

( = 0) = max ( 0) ( )
( 0) ( ) = 0

which is independent of and greater than (0 0). Therefore,

lim = (0 0) ( = 0) 0

that is, 0 for su�ciently small .
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Proof of Proposition 9: For and su�ciently small, the high-powered incentive con-
tract is renegotiation-proof if and and if the manager owns the unit’s physical asset.

k k

py T ,G p y s,G c s r� � OP HQ

s.t. �y s,G c s FOC s
py T ,G y T ,G p � y s,G FOC G

y s,G z s,G k � s k � G OP HQ
k k

� y s ,G > y s , k � s . A

OP HQ � , p , s , G k , k
k , k , � y s ,G � y s ,G � , s , G
k , k , � y s ,G > k , k , k � s

A k k
OP HQ

� s,G c s /y s,G FOC s � � s,G
� s � � s,G

FOC G OP HQ OP HQ

py T ,G p y s,G c s r� � s,G OP HQ

s.t. py T ,G y T ,G p � s,G y s,G FOC G

FOC G
p,G OP HQ

s s s p,G, k , k

f p,G, k , k , A

f A
k , k

p,G, k , k p,G f p,G, k , k .

p , G , k , k p ,G , k , k p ,G , k , k
p ,G , k , k p ,G

f p ,G , k , k < f p ,G , k , k . A

Consider the HQ’s optimization problem

max ( ) + (1 )[ ( ) ( ) ] ( )

( ) ( ) = 0 ( )
( ) ( ) + (1 )(1 ) ( ) = 0 ( )

where ( ) = ( ) + ( ) + ( ). Let the solution to program ( ) be
denoted with a superscript *. We want to show that, for su�ciently small and ,

( ) ( 0) = ( ) ( 8)

The proof for the second inequality above Proposition 8 is similar.
If the solution to ( ), ( ), is continuous in ( ), then, as

( ) (0 0), ( ) ( ), where ( ) is the equilibrium at
( ) = (0 0). By Proposition 2, ( ) 0. As ( ) (0 0), ( ) 0.
Therefore, ( 8) holds for su�ciently small and . Unfortunately, it is not easy to
show the continuity of the equilibrium because program ( ) is in general not
concave.

To prove the inequality, we �rst perform an exercise similar to the proof of Proposition
1(2). Let ( ) ( ) ( ). Then ( ) becomes = ( ). By Assumption
4, is convex in . Substitute = ( ) into the objective function and constraint
( ) in ( ). Then ( ) becomes

max ( ) + (1 )[ ( ) ( ) ( ) ] ( )

( ) ( ) + (1 )(1 ( )) ( ) 0 ( )

The reason why we can change the equality in ( ) to inequality is the same as
that o�ered in the proof of Proposition 1(2). Now, given ( ), ( ) is a concave
program that chooses the optimal . The solution = ( ) is di�erentiable. Sub-
stitute the solution into the objective function. We have an unconstrained optimization
problem

max ( ) ( 9)

where is di�erentiable. Again, we don’t know whether or not the solution to ( 9) is
continuous in ( ).

De�ne
( ) : ( ) = arg max ( )

We claim that is a closed set. Suppose this is not true. Then there exists a se-
quence ( ) such that lim ( ) = ( ) but
( ) is not in . There exists ( ) such that

( ) ( ) ( 10)
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0 0 0 0 1 2

0 0 0

� , f p , G , k , k f p ,G , k , k f
n

f p ,G , k , k f p ,G , k , k < �,

f p ,G , k , k f p ,G , k , k < �.

A

f p ,G , k , k < f p ,G , k , k ,

p , G , k , k

� y s ,G > . A

� y s ,G .
p ,G , k , k p ,G , k , k p ,G , , � y s ,G

s s p ,G , , � � s ,G p ,G , ,
� , p , s , G k , k ,
� y s ,G A

Let (0 [ ( ) ( )]). Since is continuous, for su�ciently
large ,

( ) ( )

and
( ) ( )

( 10) then implies that

( ) ( )

which contradicts with the fact that ( ) . Therefore, is a closed set.
Now, we want to show that

lim inf ( ) 0 ( 11)

Suppose, on the contrary, lim inf ( ) = 0 Then, there exists a sequence
( ) such that lim ( ) = ( 0 0) and ( ) =
0, where = ( 0 0) and = ( ). Since is a closed set, ( 0 0)
and thus ( ) is an equilibrium for the case of ( ) = (0 0). Proposition 2
implies that ( ) = 0. This is a contradiction. Therefore, ( 11) holds.
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