
Chapter 2

Linear Equations

The linear equation is the most elementary problem that arises in computa-
tional economic analysis. In a linear equation, an n £ n matrix A and an
n-vector b are given, and one must compute the n-vector x that satis¯es

A ? x = b:

Linear equations arise, directly or indirectly, in most computational eco-
nomic applications. For example, a linear equation may be solved when
computing the steady-state distribution of a discrete-state stochastic eco-
nomic process or when computing the equilibrium prices and quantities of
a multicommodity market model with linear demand and supply functions.
Linear equations also arise as elementary tasks in solution procedures de-
signed to solve more complicated nonlinear economic models. For example,
a nonlinear partial equilibrium market model may be solved using Newton's
method, which involves solving a sequence of linear equations. And the Euler
functional equation of a rational expectations model may be solved using a
collocation method, which yields a nonlinear equation that in turn is solved
as a sequence of linear equations.

Various practical issues arise when solving a linear equation numerically.
Digital computers are capable of representing arbitrary real numbers with
only limited precision. Numerical arithmetic operations, such as computer
addition and multiplication, produce rounding errors that may, or may not,
be negligible. Unless the rounding errors are controlled in some way, the
errors can accumulate, rendering a computed solution that is far from correct.
Speed and storage requirements are also important considerations in the
design of a linear equation solution algorithm. In some applications, such as

1



the stochastic simulation of a rational expectations model, linear equations
may have to be solved millions of times. And in other applications, such as
computing option prices using ¯nite di®erence methods, linear equations of
extremely high order n may be encountered.

Over the years, numerical analysts have studied linear equations exten-
sively and have developed algorithms for solving them quickly, accurately,
and with a minimum of computer storage. In most applied work, one can
typically rely on Gaussian elimination, which may be implemented in various
di®erent forms depending on the structure of the linear equation. Iterative
methods o®er an alternative to Gaussian elimination and are especially e±-
cient if the A matrix is large and consists mostly of zero entries.

2.1 L-U Factorization

Some linear equations A ? x = b are relatively easy to solve. For example, if
A is a lower triangular matrix,

2 3
a 0 0 : : : 0116 76 7a a 0 : : : 021 226 76 7A = a a a : : : 0 ;31 32 336 76 74 5
a a a : : : an1 n2 n3 nn

then the elements of x can be computed recursively using forward-substitution:

x = b =a1 1 11

x = (b ¡ a x )=a2 2 21 1 22

x = (b ¡ a x ¡ a x )=a3 3 31 1 32 2 33

...

x = (b ¡ a x ¡ a x ¡ : : :¡ a x )=an n n1 1 n2 2 nn¡1 n¡1 nn

If A is an upper triangular matrix, then the elements of x can be computed
recursively using backward-substitution.

Most linear equations encountered in practice, however, do not have a
triangular A matrix. In such cases, the linear equation is often best solved
using the L-U factorization algorithm. The L-U algorithm is designed to
decompose the A matrix into the product of lower and upper triangular

2



matrices, allowing the linear equation to be solved using a combination of
backward and forward substitution.

The L-U algorithm involves two phases. In the factorization phase, Gaus-
sian elimination is used to factor the matrix A into the product

A = L ? U

of a row-permuted lower triangular matrix L and an upper triangular matrix
U . A row-permuted lower triangular matrix is simply a lower triangular
matrix that has had its rows rearranged. Any nonsingular square matrix can
be decomposed in this way.

In the solution phase of the L-U algorithm, the factored linear equation

A ? x = (L ? U) ? x = L ? (U ? x) = b

is solved by ¯rst solving

L ? y = b

for y using forward substitution, accounting for row permutations, and then
solving

U ? x = y

for x using backward substitution.
Consider, for example, the linear equation A ? x = b where

2 3 2 3¡3 2 3 10
6 7 6 7

A = ¡3 2 1 and b = 8 :4 5 4 5
3 0 0 ¡3

The matrix A can be decomposed into the product A = L ? U where
2 3 2 3

1 0 0 ¡3 2 3
6 7 6 7

L = 1 0 1 and U = 0 2 3 :4 5 4 5
¡1 1 0 0 0 ¡2

The matrix L is row-permuted lower triangular because upon interchanging
the second and third rows, a lower diagonal matrix results. The matrix
U is upper triangular. Solving L ¤ y = b for y using forward substitution
involves ¯rst solving for y , then for y , and ¯nally for y . Given the solution1 3 2

0y = (10; 7;¡2) , the linear equation U ? x = y can the be solved using

3



backward substitution, yielding the solution of the original linear equation,
x = (¡1; 2; 1).

The L-U factorization algorithm is faster than the linear equation solution
methods that are typically presented in elementary linear algebra courses.

3 2For large n, it takes approximately n =3+n long operations (multiplications
and divisions) to solve an n £ n linear equation using L-U factorization.

¡1Explicitly computing the inverse of A and then computing A ? b requires
3 2approximately n + n long operations. Solving the linear equation using

Cramer's rule requires approximately (n + 1)! long operations. To solve a
10£ 10 linear equation, for example, L-U factorization requires exactly 430
long operations, matrix inversion and multiplication requires exactly 1100
long operations, and Cramer's rule requires nearly 40 million long operations.

Linear equations arise so frequently in numerical analysis that most nu-
merical subroutine packages and software programs include either a basic
subroutine or an intrinsic function for solving a linear equation using L-U
factorization. In Matlab, the solution to the linear equation A ? x = b is
returned by the statement x = A n b. The `n', or \backslash", operator is
designed to solve the linear equation using L-U factorization, unless a special
structure for A is detected, in which case Matlab may use another, more
e±cient method. In particular, if Matlab detects that A is triangular or per-
muted triangular, it will dispense with L-U factorization and solve the linear
equation directly using forward or backward substitution. Matlab also uses
special algorithms when the A matrix is positive de¯nite or triangular.

In many numerical applications in economics, one encounters a situation
in which a series of linear equations must be solved, all having the same
A matrix, but di®erent b vectors, b ; b ; : : : ; b . When this situation arises,1 2 m

it is often computationally more e±cient to directly compute and store the
¡1inverse of A ¯rst and then compute the solutions x = A ? b by performingj

only simple matrix-vector multiplications. Whether explicitly computing the
inverse is faster than L-U factorization depends on the size of the linear equa-
tion system n and the number of times m an equation system is to be solved.

3mn 2Computing x = Anb a total of m times involves +mn long operations.j 3¡1 ¡1Computing A once and then computing A ?b a total of m times requiresj
3 2n +mn long operations. Thus explicit computation of the inverse should be

faster than L-U factorization whenever the number of equations to be solved
m is greater than three or four. The actual breakeven point will vary across
numerical analysis packages, depending on the computational idiosyncrasies
and overhead costs of the L-U factorization and inverse routines implemented

4



in the package.
An alternative to the matrix inversion strategy is to compute and store

the L-U factors of A ¯rst, and then repeatedly apply backward and forward
substitution by computing x = Ln(Unb ). In Matlab, the L-U factors of A arej

3n 2returned by the statement [L;U ] = lu(A). This approach requires +mn
3

long operations, fewer than the matrix inversion strategy. Both strategies
2involve n operations per equation after the factorization or inversion of A. In

Matlab, however, computing x = Ln(U nb) can often be more expensive than
¡1computing A ? b, despite the same operation count, because the operator

`n' expends e®ort to determine that L and U are triangular. Moreover,
the L-U approach requires two additional matrices to be stored, L and U ,
whereas the matrix inversion strategy requires only one additional matrix to

¡1be stored, A . For these reasons, matrix inversion is preferred over single
L-U factorization strategy in Matlab.

2.2 Gaussian Elimination

The L-U factors of a matrix A are computed using Gaussian elimination.
Gaussian elimination is based on two elementary row operations: subtract-
ing a constant multiple of one row of a linear equation from another row,
and interchanging two rows of a linear equation. Either operation may be
performed on a linear equation without altering its solution.

The Gaussian elimination algorithm begins with the matrices L and U
initialized as L = I and U = A, where I is the identity matrix. The al-
gorithm then uses elementary row operations to transform U into an upper
triangular matrix, while preserving the permuted lower diagonality of L and
the factorization A = L ? U :

Consider the matrix
2 3

2 0 ¡1 2
6 74 2 ¡1 46 7

A = 6 7 :4 52 ¡2 ¡2 3
¡2 2 7 ¡3

The ¯rst stage of Gaussian elimination is designed to nullify the subdiagonal
entries of the ¯rst column of the U matrix. The U matrix is updated by
subtracting 2 times ¯rst row from the second, subtracting 1 times the ¯rst
row from the third, and subtracting -1 times the ¯rst row from the fourth.

5



The L matrix, which initially equals the identity, is updated by storing the
multipliers 2, 1, and -1 as the subdiagonal entries of its ¯rst column. These
operations yield updated L and U matrices:

2 3 2 3
1 0 0 0 2 0 ¡1 2

6 7 6 72 1 0 0 0 2 1 06 7 6 7
L = 6 7 U = 6 7 :4 5 4 51 0 1 0 0 ¡2 ¡1 1

¡1 0 0 1 0 2 6 ¡1

After the ¯rst stage of Gaussian elimination, A = L ? U and L is lower
triangular, but U still is not upper triangular.

The second stage Gaussian elimination is designed to nullify the subdiag-
onal entries of the second column of the U matrix. The U matrix is updated
by subtracting -1 times second row from the third and subtracting 1 times
the second row from the fourth. The L matrix is updated by storing the
multipliers -1 and 1 as the subdiagonal elements of its second column. These
operations yield updated L and U matrices:

2 3 2 3
1 0 0 0 2 0 ¡1 2

6 7 6 72 1 0 0 0 2 1 06 7 6 7
L = 6 7 U = 6 7 :4 5 4 51 1 1 0 0 0 0 1

¡1 ¡1 0 1 0 0 5 ¡1

After the second stage of Gaussian elimination, A = L ? U and L is lower
triangular, but U still is not upper triangular.

In the third stage of Gaussian elimination, one encounters an apparent
problem. The third diagonal element of the matrix U is zero, making it
impossible to nullify the subdiagonal entry as before. This di±culty is easily
remedied, however, by interchanging the third and fourth rows of U . The
L matrix is updated by interchanging the previously computed multipliers
residing in the third and fourth rows. These operations yield updated L and
U matrices:

2 3 2 3
1 0 0 0 2 0 ¡1 2

6 7 6 72 1 0 0 0 2 1 06 7 6 7L = 6 7 U = 6 7 :4 5 4 51 1 0 1 0 0 5 ¡1
¡1 ¡1 1 0 0 0 0 1

The Gaussian elimination algorithm terminates with a permuted lower
triangular matrix L and an upper triangular matrix U whose product is the

6



matrix A. In theory, Gaussian elimination will compute the L-U factors
of any matrix A, provided A is invertible. If A is not invertible, Gaussian
elimination will detect this by encountering a zero diagonal element in the
U matrix that cannot be replaced with a nonzero element below it.

2.3 Rounding Error and Pivoting

In practice, Gaussian elimination performed on a computer can sometimes
render inaccurate solutions due to rounding errors. The e®ects of rounding
errors, however, can often be controlled by pivoting.

Consider the linear equation
" # " # " #¡1¡L 1 x 11 = :

1 1 x 22

where L is a large positive number.
To solve this equation via Gaussian elimination, a single row operation

is required: subtracting ¡L times the ¯rst row from the second row. In
principle, this operation yields the L-U factorization

" # " # " #¡1 ¡1¡L 1 1 0 ¡L 1
= :

1 1 ¡L 1 0 L+ 1

In theory, applying forward and backward substitution yields the solution
x = L=(L + 1) and x = (L+ 2)=(L+ 1), which are both very nearly one.1 2

In practice, however, Gaussian elimination may yield a very di®erent re-
sult. In performing Gaussian elimination, one encounters an operation that
cannot be carried out precisely on a computer, and which should be avoided
in computational work: adding or subtracting values of vastly di®erent mag-
nitudes. On a computer, it is not meaningful to add or subtract two values
whose magnitude di®er by more than the number of signi¯cant digits that
the computer can represent. If one attempts such an operation, the smaller
value is e®ectively treated as zero. For example, the sum of 0:1 and 0:0001
may be 0:1001, but on a hypothetical machine with three digit precision the
result of the sum is rounded to 0:1 before it is stored.

In the linear equation above, adding 1 or 2 to a su±ciently large L on a
computer simply returns the value L. Thus, in the ¯rst step of the backward
substitution, x is computed, not as (L + 2)=(L + 1), but rather as L=L,2

which is exactly one. Then, in the second step of backward substitution,

7



x = ¡L(1 ¡ x ) is computed to be zero. Rounding error thus produces1 2

computed solution for x that has a relative error of nearly 100 percent.1

Fortunately, there is a partial remedy for the e®ects of rounding error in
Gaussian elimination. Rounding error arises in the example above because

¡1the diagonal element ¡L is very small. Interchanging the two rows at
the outset of Gaussian elimination does not alter the theoretical solution to
the linear equation, but allows one to perform Gaussian elimination with a
diagonal element of larger magnitude.

Consider the equivalent linear equation system after the rows have been
interchanged:

" # " # " #
1 1 x 22 = :¡1¡L 1 x 11

After interchanging the rows, the new A matrix may be factored as
" # " # " #

1 1 1 0 1 1
= :¡1 ¡1 ¡1¡L 1 ¡L 1 0 L + 1

Backward and forward substitution yield the theoretical results x = 1 ¡2
¡1 ¡1 ¡1 ¡1L and x = L + 1 + L (1 ¡ L ). In evaluating these expressions on1

the computer, one again encounters rounding error. Here, x is numerically2

computed to be exactly one as before. However, x is also computed to be1

exactly one. The computed solution, though not exactly correct, is correct
to the precision available on the computer, and is certainly more accurate
than the one obtained without interchanging the rows.

Interchanging rows during Gaussian elimination in order to make the
magnitude of diagonal element as large as possible is called pivoting. Piv-
oting substantially enhances the reliability and the accuracy of a Gaussian
elimination routine. For this reason, all good Gaussian elimination routines,
including the ones implemented in Matlab, employ some form of pivoting.

2.4 Ill Conditioning

Pivoting cannot cure all the problems caused by rounding error. Some linear
equations are inherently di±cult to solve accurately on a computer, despite
pivoting. This occurs when the A matrix is structured in such a way that a
small perturbation ±b in the data vector b induces a large change ±x in the

8



solution vector x. In such cases the linear equation or, more generally, the
A matrix are said to be ill-conditioned.

One measure of ill-conditioning in a linear equation A ? x = b is the
\elasticity" of the solution vector x with respect to the data vector b

jj±xjj=jjxjj
² = sup :jj±bjj=jjbjjjj±bjj>0

The elasticity gives the maximum percentage change in the size of the solution
vector x induced by a one percent change the size of the data vector b. If
the elasticity is large, then small errors in the computer representation of the
data vector b can produce large errors in the computed solution vector x.
Equivalently, the computed solution x will have far fewer signi¯cant digits
than the data vector b.

The elasticity of the solution is expensive to compute and thus is virtually
never computed in practice. In practice, the elasticity is estimated using the
condition number of the matrix A, which for invertible A is de¯ned by

¡1· ´ jjAjj ¢ jjA jj:

The condition number of A is an upper bound of the elasticity of the solution.
The bound is tight in that for some data vector b, the condition number equals
the elasticity. The condition number is always greater than or equal to one.
Numerical analysts often use the rule of thumb that for each power of 10 in
the condition number, one signi¯cant digit is lost in the computed solution
vector x. Thus, if A has a condition number of 1000, the computed solution
vector x will have about three fewer signi¯cant digits than the data vector b.

n¡jConsider the linear equation A ? x = b where A = i and b =ij i
n(i ¡ 1)=(i ¡ 1). In theory, the solution x to this linear equation is a vector

containing all ones for any n. In practice, however, if one solves the linear
equation numerically using Matlab's `n' operator one can get quite di®erent
results. Below is a table that gives the supremum norm approximation error
in the computed value of x and the condition number of the A matrix for
di®erent n:

9



approx condition
n error number

1 0.0e+000 1.0e+000
2 0.0e+000 6.9e+000
3 8.9e-016 7.1e+001
4 6.7e-016 1.2e+003
5 2.5e-013 2.6e+004

10 5.2e-007 2.1e+012
15 1.1e+002 2.6e+021
20 9.6e+010 1.8e+031
25 8.2e+019 4.2e+040

In this example, the computed answers are accurate to seven decimal up to
n = 10. The accuracy, however, deteriorates rapidly after that. In this ex-
ample, the matrix A is a member of the a class of notoriously ill-conditioned
matrices called the Vandermonde matrices, which can arise in applied nu-
merical work if one is not careful.

Ill-conditioning ultimately can be ascribed to the limited precision of
computer arithmetic. The e®ects of ill-conditioning can often be mitigated
by performing computer arithmetic using the highest precision available on
the computer. The best way to handle ill-conditioning, however, is to avoid
it altogether. This is often possible when the linear equation problem is as an
elementary task in a more complicated solution procedure, such as solving
a nonlinear equation or approximating a function with a polynomial. In
such cases one can sometimes reformulate the problem or alter the solution
strategy to avoid the ill-conditioned linear equation. We will see several
examples of this avoidance strategy later in the book.

2.5 Special Linear Equations

Gaussian elimination can be accelerated for A matrices possessing certain
special structures. Two classes of A matrices that arise frequently in com-
putational economic analysis and for which such an acceleration is possible
are symmetric positive de¯nite matrices and sparse matrices.

Linear equations A ? x = b in which A is a symmetric positive de¯nite
arise frequently in least-squares curve-¯tting and optimization applications.
A special form of Gaussian elimination, the Cholesky factorization algorithm,

10



may be applied to such linear equations. Cholesky factorization requires only
half as many operations as general Gaussian elimination and has the added
advantage that it is less vulnerable to rounding error and does not require
pivoting.

The essential idea underlying Cholesky factorization is that any symmet-
ric positive de¯nite matrix A can be uniquely expressed as the product

0A = U ? U

of an upper triangular matrix U and its transpose. The matrix U is called
the Cholesky factor or square root of A. Given the Cholesky factor of A, the
linear equation

0 0A ? x = U ? U ? x = U ? (U ? x) = b

may be solved e±ciently by using forward substitution to solve

0U ? y = b

and then using backward substitution to solve

U ? x = y:

The Matlab `n' operator will automatically employ Cholesky factorization,
rather than L-U factorization, to solve the linear equation if it detects that
A is symmetric positive de¯nite.

Another situation that often arises in computational practice are linear
equations A ? x = b in which the A matrix is sparse, that is, consists largely
of zero entries. For example, in solving di®erential equations, one often en-
counters tridiagonal matrices, which are zero except on the diagonal and
immediately above and below the diagonal. When the A matrix is sparse,
the conventional Gaussian elimination algorithm consists largely of meaning-
less, but costly, operations involving either multiplication or addition with
zero. The Gaussian elimination algorithm in these instances can often be
dramatically increased by avoiding these useless operations.

Matlab has special routines for e±ciently storing sparse matrices and op-
erating with them. In particular, the Matlab command S=sparse(A) creates
a version S of the matrix A stored in a sparse matrix format, in which only
the nonzero elements of A and their indices are explicitly stored. Sparse
matrix storage requires only a fraction of the space required to store A in

11



standard form if A is sparse. Also, the operator `n' is designed to recog-
nize whether a sparse matrix is involved in the operation and adapts the
Gaussian elimination algorithm to exploit this property. In particular, both
x = S n b and x = A n b will compute the answer to A ? x = b. However, the
former express will be executed substantially faster by avoiding meaningless
operations with zeros.

2.6 Iterative Methods

Algorithms based on Gaussian elimination are called exact methods because
they would generate exact solutions for the linear equation A ? x = b after a
¯nite number of operations, if not for rounding error. Such methods are ideal
for moderately-sized linear equations, but may be impractical for large ones.
Other methods, called iterative methods can often be used to solve large linear
equations more e±ciently if the A matrix is sparse, that is, if A is composed
mostly of zero entries. Iterative methods are designed to generate a sequence
of increasingly better approximations to the solution of a linear equation, but
generally do not yield an exact solution after a prescribed number of steps.

The most widely-used iterative methods for solving a linear equation A?
x = b are developed by choosing an invertible matrix Q and writing the linear
equation in the equivalent form

Q ? x = b+ (Q¡ A) ? x

or

¡1 ¡1x = Q ? b+ (I ¡Q ? A) ? x:

This form of the linear equation suggests the iteration rule

(k+1) ¡1 ¡1 (k)x Ã Q ? b+ (I ¡Q ? A) ? x ;

which, if convergent, must converge to a solution of the linear equation.
Ideally, the so-called splitting matrix Q will satisfy two criteria. First,
¡1 ¡1Q ? b and Q ? A should be relatively easy to compute. This is true if Q

is either diagonal or triangular. Second, the iterates should converge quickly
to the true solution of the linear equation. The iteration rule constitutes a
contraction mapping, and thus converges to the unique solution of the linear
equation from any initial value, if

¡1jjI ¡Q ? Ajj < 1

12



¡1in any matrix norm. The smaller the value of jjI ¡ Q ? Ajj, the faster
the guaranteed rate of convergence of the iterates when measured in the
subordinate vector norm.

The two most popular iterative methods are the Gauss-Jacoby and Gauss-
Seidel methods. The Gauss-Jacoby method lets Q be the diagonal matrix
formed from the diagonal entries of A. The Gauss-Seidel method letsQ be the
upper diagonal matrix formed from the upper diagonal entries of A. Using
the row-sum matrix norm to test the convergence criterion, both methods are
guaranteed to converge from any starting value if A is diagonally dominant,
that is, if

nX
jA j > jA j 8i:ii ij

i=1
i6=j

Diagonally dominant matrices arise naturally in a many computational eco-
nomic applications, including the solution of di®erential equations and the
approximation of functions using cubic splines, both of which will be dis-
cussed in later sections.

The algorithms begin with a guess, typically the zero vector, for the
solution x of the linear equation. Iteration continues until the norm of the
change ±x in the iterate falls below a speci¯ed convergence tolerance ¿ or until
the maximum number M of allowable iterations are performed. A typical
Gauss-Jacoby solution routine is given by:

x = gjacoby(A; b; x; n;M; ¿)
for k = 1 : M

±x = (b+A ? x) :=diag(A)
x = x+ ±x
if jj±xjj < ¿, exit

end

The Gauss-Seidel method is similar to the Gauss-Jacoby method, except that
it updates the values of the x immediately after computing ±x :i i

x = gseidel(A; b; x; n;M; ¿)
for k = 1 : M

for i = 1 : n³ ´Pn±x = b + A x =Ai i ij j iij=1

13



x = x + ±xi i i

end

if jj±xjj < ¿, exit

end do

A general rule of thumb is that if A is large and sparse, then the lin-
ear equation is a good candidate for iterative methods. This is true, how-
ever, only if the sparse matrix storage functions are used to reduce stor-
age requirements and computational e®ort. In a vector processing language
such as Matlab, the Gauss-Jacoby algorithm will typically be faster than the
Gauss-Seidel algorithm because the former can vectorized, that is, written
compactly as a sequence of vector and matrix operations that avoid do-loops.
This is not true of the Gauss-Seidel algorithm, which requires a do-loop to
update individual elements of x one at a time.

14


