
Chapter 3

Nonlinear Equations

Nonlinear equations can take one of two forms. In the nonlinear root¯nding
n nproblem, a function f from < to < is given, and one must compute an

n-vector x, called a root of f , that satis¯es

f(x) = 0:

n nIn the nonlinear ¯xed-point problem, a function g from < to < is given, and
one must compute an n-vector x, called a ¯xed-point of g, that satis¯es

g(x) = x:

The two forms are equivalent. The root¯nding problem may be recast as a
¯xed-point problem by letting g(x) = x ¡ f (x); conversely, the ¯xed-point
problem may be recast as a root¯nding problem by letting f (x) = x¡ g(x).

Nonlinear equations arise in many economic applications. For example,
the typical static equilibrium model characterizes market prices and quanti-
ties with an equal number of supply, demand, and market clearing equations.
If one or more of the equations is nonlinear, a nonlinear root¯nding problem
arises. One also encounters a nonlinear root¯nding problem when attempt-
ing to maximize a real-valued function by setting its ¯rst derivative to zero.
Yet another way in which nonlinear equations arise in computational eco-
nomic applications are as elementary tasks in solution procedures designed
to solve more complicated functional equations. For example, the Euler func-
tional equation of a dynamic optimization problem might be solved using a
collocation method, which gives rise to a nonlinear equation.

Various practical problems arise with nonlinear equations. In many ap-
plications, it is not possible to solve the nonlinear equation analytically. In

1



these instances, the solution is often computed numerically using an iterative
method that reduces the nonlinear problem to a sequence of linear problems.
Such methods can be very sensitive to initial conditions and inherit many
of the potential problems of linear equation methods, most notably round-
ing error and ill-conditioning. Nonlinear equations also present the added
problem that they may have more than one solution.

Over the years, numerical analysts have studied nonlinear equations ex-
tensively and have devised algorithms for solving them quickly and accu-
rately. In applied work, one can often rely on Newton and quasi-Newton
methods, which use derivatives or derivative estimates to help locate the
root or ¯xed-point of a function. Another technique, the function iteration
method, is applicable to a nonlinear equation expressed as a ¯xed-point prob-
lem. Yet another method, the bisection method, is very simple to implement,
but is applicable only to univariate problems.

3.1 Bisection Method

The bisection method is perhaps the simplest and most robust method for
computing the root of a continuous real-valued function de¯ned on an interval
of the real line. The bisection method is based on the Intermediate Value
Theorem. According to the theorem, if a continuous function de¯ned on
an interval assumes two distinct values, then it must assume all values in
between. In particular, if f is continuous, and f (a) and f(b) have di®erent
signs, then f must have at least one root x in [a; b].

The bisection method is an iterative procedure. Each iteration begins
with an interval known to contain or to `bracket' a root of f . The interval
is bisected into two subintervals of equal length. One of two subintervals
must contain a root of f . This subinterval is taken as the new interval
with which to begin the subsequent iteration. In this manner, a sequence
of intervals is generated, each half the width of the preceding one, and each
known to contain a root of f . The process continues until the width of the
interval known to contain a root of f shrinks below an acceptable convergence
tolerance.

The following code segment computes the root of a univariate function
f using the bisection method. The code segment assumes that the user has
speci¯ed a convergence tolerance tol and two points, a and b, at which the
function has di®erent signs. It calls a user-de¯ned routine f that computes

2



the value of the function at a point and an intrinsic function sign that returns
¡1, 0, or 1 if its argument is negative, zero, or positive, respectively:

sa = sign(f(a));

sb = sign(f(b));

if sa=sb, error('same sign at endpoints');

while abs(b-a)>tol;

x = (a+b)/2;

sx = sign(f(x));

if sx == sa;

a = x;

else

b = x;

end

end

x = (a+b)/2;

The bisection method's greatest strength is its robustness: In contrast to
other root¯nding methods, the bisection method is guaranteed to compute
a root to a prescribed tolerance in a known number of iterations, provided
valid data are input. Speci¯cally, the method computes a root to a preci-
sion ¿ in no more than in log((b ¡ a)=¿)= log(2) iterations. The bisection
method, however, typically requires more iterations than other root¯nding
methods to compute a root to a given precision, largely because it ignores
information about the function's curvature. Given its relative strengths and
weaknesses, the bisection method is often used in conjunction with other
root¯nding methods. In this context, the bisection method is ¯rst used to
obtain a crude approximation for the root. This approximation then becomes
the starting point for a more precise root¯nding method that is sensitive to
starting point. The more precise method is then used to compute a sharper,
¯nal approximation to the root.

3.2 Newton's Method

In practice, most nonlinear equations are solved using Newton's method or
one of its variants. Newton's method is based on the principle of successive
linearization. Successive linearization calls for a hard nonlinear problem to
be replaced with a sequence of simpler linear problems whose solutions con-
verge to the solution of the nonlinear problem. Newton's method is typically

3



formulated as a root¯nding technique, but may be used to solve a ¯xed-point
problem g(x) = x by recasting it as the root¯nding problem x¡ g(x) = 0.

The univariate Newton method is graphically illustrated in ¯gure 1. The
algorithm begins with the analyst supplying a guess x for the root of f . The0

function f is approximated by its ¯rst-order Taylor series expansion about
x , which is graphically represented by the line tangent to f at x . The root0 0

x of the tangent line is then accepted as an improved estimate for the root1

of f . The step is repeated, with the root x of the line tangent to f at x2 1

taken as an improved estimate for the root of f , and so on. The process
continues until the roots of the tangent lines converge.

Figure 3.1: Newton's method.

More generally, the multivariate Newton method begins with the analyst
supplying a guess x for the root of f . Given x , the subsequent iterate x0 k k+1

is computed by solving the linear root¯nding problem obtained by replacing
f with its ¯rst order Taylor approximation about x :k

0f(x) ¼ f (x ) + f (x )(x¡ x ) = 0:k k k

This yields the iteration rule

0 ¡1x Ã x ¡ [f (x )] f(x ):k+1 k k k

In theory, Newton's method converges if f is continuously di®erentiable
and if the initial value of x supplied by the analyst is \su±ciently" close to a

0root of f at which f is invertible. There is, however, no generally practical
formula for determining what su±ciently close is. Typically, an analyst makes
a reasonable guess for the root f and counts his blessings if the iterates
converge. If the iterates do not converge, then the analyst must look more
closely at the analytic properties of f to ¯nd a better starting value, or change
to another root¯nding method. Newton's method can be robust to starting
value if f is well behaved, for example, if f has monotone second derivatives.
Newton's method can be very sensitive to starting value, however, if the
function behaves erratically, for example, if f has high derivatives that change

0sign frequently. Finally, in practice it is not su±cient for f to be merely

4



0invertible at the root. If f is invertible but ill-conditioned, then rounding
errors in the vicinity of the root can make it di±cult to compute a precise
approximation.

The following code segment computes the root of a function f using
Newton's method. It assumes that the user has provided an initial guess x

for the root, a convergence tolerance tol, and an upper limit maxit on the
number of iterations. It calls a user-supplied routine func that computes the
value f and Jacobian d of the function at an arbitrary point x. To conserve
on storage, only the most recent iterate is stored:

for it=1:maxit

[f,d] = func(x);

x = x - dnf;
if norm(f)<tol, break, end;

end

If the initial estimate of the root is poor, then Newton's method may
diverge. In these instances, the stability of Newton's method can often be
enhanced, at a cost, by monitoring the iterates to ensure that they improve
rather than deteriorate with each iteration. Since the norm of the function
value jjf(x)jj is precisely zero at a root, one may view an iterate as yielding
an improvement if it reduces this norm. If an iterate increases the norm of
the function value, then one can cut the step length prescribed by the Newton
method in half, and continue cutting it in half, until the revised iterate yields
an improvement. Cutting the step length in half, when necessary, prevents
Newton's method from taking a large step in the wrong direction, something
that can occur early in execution if the starting value is poor or the function
is irregular. Newton methods that implement this feature are said to be
`safeguarded'.

The following code segment computes the root a function using safe-
guarded Newton's method. It assumes that the user has speci¯ed a maximum
number of cuts in the step length maxcut:

[f,d] = func(x);

normf = norm(f);

for it=1:maxit

xold = x;

normfold = normf;

delx = - dnf;
for ic=1:maxcut;

5



x = xold + delx;

[f,d] = func(x);

normf = norm(f);

if normf > normfold

delx = delx/2

else

break

end;

end

if normf < tol, break, end;

end

In practice, the most common cause of convergence failure in Newton's
method is not a poor starting value, but rather a programming error by the
analyst. While Newton's method tends to be far more robust to initializa-
tion than the underlying theory suggests, the iterates can easily explode or
begin to jump around wildly if either the user-supplied function and deriva-
tive evaluation routines contain a coding error. For this reason, the analyst
should always verify his or her code by comparing the derivatives computed
by the derivative evaluation routine with those computed using ¯nite di®er-
encing and the function routine. Typically, a programming error in either
the function value code or the derivative code will show up clearly in such a
comparison.

3.3 Quasi-Newton Methods

Quasi-Newton methods are based on the same successive linearization princi-
ple as the Newton method, except that they replace the derivative of f with
an estimate that is easier to compute. Quasi-Newton methods are less likely
to fail due to programming errors than Newton's method because the analyst
need not code the derivative expressions. Quasi-Newton methods, however,
often converge more slowly than Newton's method and additionally require
the analyst to supply an initial estimate of the function's derivative. Quasi-
Newton methods are typically formulated as root¯nding techniques, but can
be used to solve a ¯xed-point problem g(x) = x by recasting it as the equiv-
alent root¯nding problem x¡ g(x) = 0.

The secant method is the quasi-Newton method most commonly used to
solve univariate root¯nding problems. The secant method is identical to the

6



univariate Newton method, except that it replaces the derivative of f with
a ¯nite-di®erence approximation constructed from the function values at the
two previous iterates:

f (x )¡ f (x )k k¡10f (x ) ¼ :k
x ¡ xk k¡1

This yields the iteration rule

x ¡ xk k¡1
x Ã x ¡ f(x ):k+1 k k

f (x )¡ f(x )k k¡1

Unlike the Newton method, the secant method requires two, rather than one
starting value.

The secant method is graphically illustrated in ¯gure 2. The algorithm
begins with the analyst supplying two distinct guesses x and x for the root0 1

of f . The function f is approximated using the secant line passing through
x and x , whose root x is accepted as an improved estimate for the root of0 1 2

f . The step is repeated, with the root x of the secant line passing through3

x and x taken as an improved estimate for the root of f , and so on. The1 2

process continues until the roots of the secant lines converge.

Figure 3.2: Secant method.

Broyden's method is the most popular multivariate generalization of the
univariate secant method. Broyden's method generates a sequence of vectors

0x and matrices A that approximate the root of f and the derivative fk k

at the root, respectively. Broyden's method begins with guesses x and A0 0

supplied by the analyst. Given x and A , one solves the root¯nding problemk k

obtained by replacing f with the linear approximation:

f(x) ¼ f (x ) +A (x¡ x ) = 0:k k k

This yields the root approximation iteration rule

¡1x Ã x ¡A f(x ):k+1 k kk

7



Broyden's method updates the derivative approximant A by making thek

smallest possible change that is consistent with the ¯nite-di®erence derivative
in the direction of change in x . This condition yields the iteration rulek

0f (x )±xk+1 kA Ã A +k+1 k 0±x ±xkk

0where ±x = x ¡ x . Note that f(x )±x is an outer product of twok k+1 k k+1 k

n-vectors, and thus is an n by n matrix.
In theory, Broyden's method converges if f is continuously di®erentiable,

0if the initial values of x is \su±ciently" close to a root of f at which f is
invertible, and if A is \su±ciently" close to the derivative at that root. There
is, however, no generally practical formula for determining what su±ciently
close is. Typically, an analyst makes a reasonable guess for the root f and
initializes A by setting it equal to a rescaled identity matrix. A safer ap-
proach is to initialize A by setting it equal to a ¯nite di®erence estimate of
the derivative of f at the initial root estimate. Like Newton's method, the
stability of Broyden's method depends on the regularity of f and its deriva-
tives. Broyden's method may also have di±culty computing a precise root

0estimate if f is ill-conditioned near the root. And ¯nally, the sequence ap-
proximants A need not, and typically does not, converge to the derivativek

of f at the root, even if the x converge to a root of f .k

The following code segment computes the root of a multivariate function
f using Broyden's method. It assumes that the user has speci¯ed an initial
guess x for the root, an initial guess A for the derivative of the function at
x, a convergence tolerance tol, and an upper limit maxit on the number
of iterations. The routine calls a user-supplied routine f that evaluates the
function at an arbitrary point. To conserve on storage and computational
e®ort, the routine stores only the most recent iterates x and A:

v = f(x);

for it=1:maxit

if norm(v)<tol, break, end;

delx = -Anv;
x = x + delx;

v = f(x);

A = A + v*delx'/(delx'*delx);

end

8



As with Newton's method, the convergence properties of Broyden's method
can often be enhanced by cutting the step size in half if the iterate does not
yield a reduction in the norm of the function value jjf(x)jj.

3.4 Function Iteration

Function iteration is a relatively simple technique that in many applications
can be used to solve a ¯xed-point problem g(x) = x. Function iteration can
also be applied to a root¯nding problem f(x) = 0 by recasting it as the
equivalent ¯xed-point problem x¡ f(x) = x.

Function iteration begins with the analyst supplying a guess x for the0

¯xed-point of g. Subsequent iterates are generated using the simple iteration
rule

x Ã g(x ):k+1 k

Clearly, if g is continuous and the iterates converge, then they converge to a
¯xed-point of g.

The function iteration method for a univariate function g is graphically
¤illustrated in ¯gure 3. In this example, g possesses an unique ¯xed-point x ,

which is graphically characterized by the intersection of g and the dashed
45-degree line. The method begins with the analyst supplying a guess x0

for the ¯xed-point of g. Starting from x , the next iterate x is obtained by0 1

projecting upwards to the g function and then rightward to the 45-degree
line. Subsequent iterates are obtained by repeating the projection sequence,
tracing out a step function. The process continues until the iterates converge.

Figure 3.3: Function iteration.

In theory, function iteration is guaranteed to converge to a ¯xed-point of
g if g is di®erentiable and if the initial value of x supplied by the analyst is

¤ 0 ¤\su±ciently" close to a ¯xed-point x of g at which jjg (x )jj < 1. Function
iteration, however, often converges even when the su±ciency conditions are
not met. Given that the method is relatively easy to implement, it is often

9



worth trying before attempting to use a more complex Newton or quasi-
Newton method.

The following code segment computes the ¯xed-point of a function g using
function iteration. It assumes that the user has provided an initial guess x

for the ¯xed-point, a convergence tolerance tol, and an upper limit maxit

on the number of iterations. It calls a user-supplied routine g that computes
the value of the function at an arbitrary point:

for it=1:maxit;

xold = x;

x = g(xold);

if norm(x-xold) < tol, break, end;

end;

3.5 Choosing a Solution Method

Numerical analysts have special terms that they use to classify the rates at
which iterative routines converge. Speci¯cally, a sequence of iterates x isk

¤said to converge to x at a rate of order p if there is constant C > 0 such
that

¤ ¤ pjjx ¡ x jj · Cjjx ¡ x jjk+1 k

for su±ciently large k. In particular, the rate of convergence is said to be
linear if C < 1 and p = 1, superlinear if 1 < p < 2, and quadratic if p = 2.

The asymptotic rates of convergence of the nonlinear equation solution
methods discussed earlier are well known. The bisection method converges at
a linear rate with C = 1=2. The function iteration method converges at a lin-

0 ¤ear rate with C equal to jjf (x ). The secant and Broyden methods converge
at a superlinear rate, with p ¼ 1:62. And Newton's method converges at a
quadratic rate. The rates of convergence are asymptotically valid, provided
that the algorithms are given \good" initial data.

0:5Consider a simple example. The function g(x) = x has an unique ¯xed-
¤point x = 1. Function iteration may be used to compute the ¯xed-point.

One can also compute the ¯xed-point by applying either Newton's method
0:5or the secant method to the equivalent root¯nding problem x¡ x (x) = 0.

After algebraic reduction, the iteration rules for these three methods are:

10



0:5Function iteration x Ã xk+1 k
0:5 0:5 0:5 0:5Secant method x Ã x x =(x + x ¡ 1)k+1 k k¡1 k k¡1

0:5Newton's method x Ã x =(2x ¡ 1)k+1 k k

Starting from x = 0:5, and using a ¯nite di®erence derivative for the0
¤¯rst secant method iteration, the approximation error jx ¡ x j a®orded byk

the three iteration methods are:

Function Secant Newton's
k Iteration Method Method

+00 ¡01 ¡011 0:3£ 10 0:9£ 10 0:9£ 10
+00 ¡01 ¡022 0:2£ 10 0:1£ 10 0:2£ 10
¡01 ¡03 ¡063 0:8£ 10 0:3£ 10 0:9£ 10
¡01 ¡06 ¡124 0:4£ 10 0:9£ 10 0:2£ 10
¡01 ¡105 0:2£ 10 0:6£ 10 No Change
¡016 0:1£ 10 No Change No Change
¡027 0:5£ 10 No Change No Change
¡028 0:3£ 10 No Change No Change
¡029 0:1£ 10 No Change No Change
¡0310 0:7£ 10 No Change No Change
¡0415 0:2£ 10 No Change No Change
¡0620 0:7£ 10 No Change No Change
¡0725 0:2£ 10 No Change No Change

This simple experiment generates convergence patterns that are typical
for the various iterative nonlinear equation solution algorithms used in prac-
tice. Newton's method converges in fewer iterations than the quasi-Newton
method, which in turn converges in fewer iterations than function iteration.
Both the Newton and quasi-Newton methods converge to machine precision
very quickly, in this case 5 or 6 iterations. As the iterates approach the
solution, the number of signi¯cant digits in the Newton and quasi-Newton
approximants begin to double with each iteration.

The rate of convergence, however, is only one determinant of the compu-
tational e±ciency of a solution algorithm. Algorithms di®er in the number of
arithmetic operations, and thus the computational e®ort, required per iter-
ation. For multivariate problems, function iteration requires only a function
evaluation, Broyden's method requires a function evaluation and the solution
of a linear equation, and Newton's method requires a function evaluation, a

11



derivative evaluation, and the solution of a linear equation. In practice,
function iteration tends to require the most overall computational e®ort to
achieve a given accuracy than the other two methods. However, whether
Newton's method or Broyden's method requires the most overall computa-
tional e®ort to achieve convergence in a given application depends largely
on the dimension of x and complexity of the derivative. Broyden's method
will tend to be computationally more e±cient than Newton's method if the
derivative involves many complex and irregular expressions.

An important factor that must be considered when choosing a nonlinear
equation solution method is developmental e®ort. Developmental e®ort is
the e®ort exerted by the analyst to produce a viable, convergent computer
code|this includes the e®ort to write the code, the e®ort to debug and verify
the code, and the e®ort to ¯nd suitable starting values. Function iteration
and quasi-Newton methods involve the least developmental e®ort because
they do not require the analyst to correctly code the derivative expressions.
Newton's method typically requires more developmental e®ort because it
additionally requires the analyst to correctly code derivative expressions. The
developmental cost of Newton's method can be quite high if the derivative
matrix involves many complex or irregular expressions.

Experienced analysts use certain rules of thumb when selecting a nonlin-
ear equation solution method. If the nonlinear equation is of small dimension,
say univariate or bivariate, or the function derivatives follow a simple pattern
and are relatively easy to code, then development costs will vary little among
the di®erent methods and computational e±ciency should be the main con-
cern, particularly if the equation is to be solved many times. In this instance,
Newton's method is usually the best ¯rst choice.

If the nonlinear equation involves many complex or irregular function
derivatives, or if the derivatives are expensive to compute, then the New-
ton's method it less attractive. In such instances, quasi-Newton and func-
tion iteration methods may make better choices, particularly if the nonlinear
equation is to be solved very few times. If the nonlinear equation is to be
solved many times, however, the faster convergence rate of Newton's method
may make the development costs worth incurring.

12


