
Chapter 4

Complementarity and
Optimization

n nIn a complementarity problem, one is given a function f from < to < and
two n-vectors a and b, and asked to compute an n-vector x that satis¯es

a · x · bi i i

x > a =) f (x) ¸ 0i i i

x < b =) f (x) · 0i i i

for all i = 1; 2; : : : ; n. We write the complementarity problem in abbreviated
form:

f(x) ? a · x · b:
In some applications, x is bounded only on one side. If x is unbounded below,
we write f(x) ? x · b; if x is unbounded above, we write f (x) ? x ¸ a. If
x is unbounded in both directions, the complementarity problem reduces to
a standard root¯nding problem f (x) = 0.

Complementarity problems arise naturally when economic variables are
subject to bounds. Consider, for example, the single-good static price equi-
librium model commonly encountered in introductory economics courses. In
the model, equilibrium price p is characterized by equality of quantity sup-
plied S(p) and quantity demanded D(p). The equilibrium price is therefore
the root of the excess demand function E(p) = D(p)¡ S(p). Suppose, how-
ever, that the government imposes a price ceiling ¹p, which it enforces through
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¯at or direct market intervention. Then it is possible for excess demand to
be positive in equilibrium, but only if price has hit the ceiling. In the pres-
ence of a price ceiling, computation of equilibrium price is not a root¯nding
problem, but rather a complementarity problem:

E(p) ? p · ¹p:

Most complementarity problems encountered in economics and ¯nance
have natural interpretations as conditions for an arbitrage-free equilibrium.
In such applications, x is a vector of economic activities and f(x) is the vector
of marginal pro¯ts for each of the activities. If f (x) is positive, then pro¯tsi

may be increased by raising the level of activity x , unless x is at its upperi i

bound b . In f (x) is negative, then pro¯ts may be increased by loweringi i

the level of activity x , unless x is at its lower bound a . Arbitrage pro¯ti i i

opportunities are nonexistent, that is, an arbitrage-free equilibrium exists, if,
and only if, x solves the complementarity problem f(x) ? a · x · b.

Another problem that arises often in economic applications is the ¯nite-
dimensional constrained optimization problem. In the constrained optimiza-

ntion problem one is given a real-valued function f on < and asked to ¯nd
its maximum (or minimum) subject to a series of constraints, as in:

max f(x):
a·x·b

The constrained optimization problem is very closely related to the com-
plementarity problem. By the Karush-Kuhn-Tucker theorem, a constrained
optimum must satisfy certain complementarity conditions. These conditions
typically admit an arbitrage-free equilibrium interpretation.

Complementarity and constrained optimization problems can also arise in
more complicated economic models. For example, a ¯nite-dimensional con-
strained optimization problem is often embedded within the Bellman func-
tional equation that characterizes the dynamic optimum. If one solves the
Euler functional equation of a dynamic optimization problem using colloca-
tion methods, one can encounter a complementarity problem if the optimal
action is subject to constraints. Complementarity problems can also arise
in computational procedures when the economic variables are not subject to
bounds or when existing bounds are known a priori to be nonbinding at the
solution. Even when variables are unbounded, it is not uncommon for an
analyst to introduce arti¯cial bounds on variables to preclude the iterates
generated by the solution algorithm from straying into regions in which the
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underlying objective or arbitrage pro¯t functions are unde¯ned or poorly
behaved.

The existence of bounds make complementarity and constrained opti-
mization problems fundamentally more di±cult to solve than root¯nding and
unconstrained optimization problems. Complementarity and constrained op-
timization problems, however, have been actively researched by numerical
analysts for many years. Today, a variety of algorithms exist for solving lin-
ear complementarity problems. Nonlinear complementarity problems can be
solved iteratively by reducing them to a sequence of linear complementar-
ity problems. Constrained optimization problem may be solved by deriving
their ¯rst-order necessary conditions and converting them into complemen-
tarity problems.

4.1 Linear Complementarity

In a linear complementarity problem, one is given an n by n matrix M , and
n-vectors q, a, and b, and asked to compute an n-vector x that satis¯es

M ? x+ q ? a · x · b:

Consider ¯rst the univariate linear complementarity problem and, for the
sake of discussion, think of mx + q as measuring the unit pro¯t from some
activity whose level is x. The case m < 0 is illustrated in ¯gure 4.1. We
consider three subcases. If mx + q > 0 everywhere on [a; b], then there is
always an incentive to increase x and the unique solution is to raise x to its
maximum allowable value b. If mx+ q < 0 everywhere on [a; b], on the other
hand, then there is always an incentive to decrease x and the unique solution
is to lower x to its minimum allowable value a. If mx + q can be either
positive and negative throughout [a; b], then there will be a single point in
the interior of [a; b] at which mx+ q = 0. This point is the unique solution
to the linear complementarity problem. It is a \stable" solution in the sense
that for levels of x near the solution, the pro¯t incentives are to move toward
the solution.

Figure 4.1: Univariate Linear Complementarity, m < 0
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The case m > 0 is illustrated in ¯gure 4.2. As before, if mx + q > 0
everywhere on [a; b] the unique solution is to increase x to its maximum
allowable value b. And if mx+q < 0 everywhere on [a; b], the unique solution
is to decrease x to its minimum allowable value a. If mx + q can be both
positive and negative on [a; b], there will three solutions. The lower bound
x = a is one solution, since for x slightly above a, there is an incentive to
decrease x. The upper bound x = b is a second solution, since for x slightly
below b there is an incentive to increase x. There is a point in the interior
of [a; b] at which mx + q = 0. This point is a third solution to the linear
complementarity problem. It is an \unstable" solution in the sense that
for levels of x just o® the solution, the incentive is to move away from the
solution until a bound is encountered.

Figure 4.2: Univariate Linear Complementarity, m > 0

Thus, if m < 0, the univariate linear complementarity problem is \well-
behaved", in the sense that it always has an unique, stable solution. If
m > 0, on the other hand, the problem may possess multiple and unstable
solutions. Fortunately, in most economic and dynamic equilibrium models,
the pro¯tability of an activity usually decreases with the level of the activ-
ity. In other words, in most economic equilibrium models, m < 0 and the
equilibrium is well-de¯ned.

Establishing the existence and uniqueness of solutions for multivariate
linear complementarity problems is a bit more complicated. Generally, exis-
tence and uniqueness can be guaranteed only if the M matrix satis¯es some
condition that is a multivariate generalization of negativity. For example, a
solution is known to exist for the linear complementarity problem if a · b
and either

0² M is negative semide¯nite, that is, x ?M ? x · 0 for all x;

0² M is strictly co-negative, that is, x ? M ? x · 0 for all x ¸ 0, x6= 0.

An unique solution exists for the linear complementarity problem if a · b
and either

0² M is negative de¯nite, that is, x ?M ? x < 0 for all x6= 0;
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² M is an N-matrix, that is, the principal minors of ¡M are all positive;
P² M is diagonally dominant, that is, jM j > jM j and M < 0 forii ij iij6=i

all i.

Perhaps the simplest way to solve a linear complementarity problem is
to test all \basic" vectors. A vector x if basic if it satis¯es the necessary,
but not su±cient, conditions for a solution of the linear complementarity
problem that, for every i = 1; 2; : : : ; n, either x = a , x = b , or z = 0,i i i i i

where z = M ? x+ q. If all principal minors of M are invertible, then there
ncan be at most 3 basic vectors. Thus, if n is small, one could easily solve

the linear complementarity problem by enumerating all the basic vectors and
testing to see which, if any, satisfy the full complementarity conditions.

More speci¯cally, to solve a linear complementarity problem by com-
nplete enumeration, one sifts systematically through all 3 tripartite parti-

tions (®; ¯; °) of the index set f1; 2; : : : ; ng, computing, for each partition,
the associated basic vector x, which is given by

x = a ;® ®

x = b ;¯ ¯

x = ¡M [M a +M b + q ];° °° °® ® °¯ ¯ °

If the basic vector satis¯es z · 0, z ¸ 0, and a · x · b , then it is a® ¯ ° ° °

solution to the linear complementarity problem.
Complete enumeration has some desirable properties for a linear comple-

mentarity solution algorithm. First, if the complementarity problem has a
solution, the algorithm is guaranteed to ¯nd it. Second, if the complemen-
tarity problem has more than one solution, the algorithm will ¯nd all such
solutions if allowed to test all basic vectors. Unfortunately, the complete
enumeration algorithm is not practical if n is large. However, for moder-
ate to large n, there exists other algorithms based on pivoting that will be
substantially faster.

The Baard principal pivoting algorithm is an relatively simple example
of a linear complementarity algorithm. The Baard algorithm is an iterative
procedure. Given the current iterate x, the subsequent iterate is the basic
vector associated with the partition (®;¯; °), where ® = fijw · a g, ¯ =i i

fijw ¸ b g, and ° = fija < w < b g, where w = x + M ? x + q. If ani i i i i

iterate remains unchanged in two consecutive iterations, it must solve the
linear complementarity problem. The following code captures the essence of
the Baard algorithm:
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for it=1:maxit

w = x+M*x+q;

i = find(w<=a);

j = find(a<w & w<b);

k = find(w>=b);

x(i) = a(i);

x(k) = b(k);

x(j) = -M(j,j)n(q(j)+M(j,i)*x(i)+M(j,k)*x(k));
z = M*x+q;

if all(z(i)<=0)&all(z(k)=>0)&(a<=x)&(x<=b), return, end;

end

The Baard algorithm is simple and often outperforms other algorithms in
the applications most commonly encountered in dynamic economic analysis.
The Baard algorithm, however, is prone to cycling. Cycling occurs when
the algorithm repeatedly returns to the same basic vector without converg-
ing. Cycling can be remedied, however, by keeping track of the basic vectors
visited by the algorithm and, when a basic vector is encountered for a sec-
ond time without converging, jumping to another, previously unvisited basic
vector using an arbitrary selection rule.

The most commonly used linear complementarity algorithm is Lemke's
method. Over time, Lemke's method has proven to be the fastest and safest
method for solving general linear complementarity problems. For this reason,
it is the algorithm most commonly employed in general purpose commercial
code. Lemke's algorithm outperforms the Baard method as n becomes larger
than 10 or 15. However, because the linear complementarity problems en-
countered in this book tend to be small, we have elected to stick with the
Baard method throughout and say little more about Lemke's method.

4.2 Nonlinear Complementarity

The nonlinear complementarity problem takes the general form

f(x) ? a · x · b:

In practice, most nonlinear complementarity problems are solved using the
Josephy-Newton method. The Josephy-Newton method is a generalization
of the Newton root¯nding method. Like the Newton method, the Josephy-
Newton method employs the principle of successive linearization. Successive
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linearization calls for the nonlinear complementarity problem to be replaced
with a sequence of simpler linear complementarity problems whose solutions,
under certain conditions, converge to the solution of the nonlinear problem.

The Josephy-Newton method begins with the analyst supplying a guess
thx for the solution to the problem. Given the k iterate x , the subsequent0 k

iterate x is computed by solving the linear complementarity problemk+1

L f (x) ? a · x · bk

where

0L f (x) = f(x ) + f (x )(x¡ x )k k k k

is the Taylor linear approximation to f about x . Iterates are generatedk

sequentially until the change in successive iterates becomes acceptably small.
Univariate nonlinear complementarity problems are relatively easy to

solve. Assume that the user has provided an initial guess x for the solu-
tion, a convergence tolerance tol, an upper limit maxit on the number of
iterations, and a routine func that computes the value f and derivative d

of the function f at an arbitrary point. Then the following code segment
executes the Josephy-Newton method for the univariate problem:

for it=1:maxit

xold = x;

[f,d] = func(xold);

x = xold - dnf;
x = max(x,a);

x = min(x,b);

if norm(x-xold)<tol, break, end;

end

The univariate Josephy-Newton method is graphically illustrated in ¯gure
4.3. The algorithm begins with the analyst supplying a guess x for the0

solution. The function f is approximated by its ¯rst-order Taylor series
expansion about x , which is graphically represented by the line tangent to0

f at x . The solution x to the resulting linear complementarity problem,0 1

which in this case is internal to the interval [a; b], is then accepted as an
improved estimate for the solution to the original nonlinear problem. In the
second step, the line tangent to f at x is constructed and the resulting1

linear complementarity problem is solved for the subsequent iterate, which
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in this case will be x = b. In the third step, the line tangent to f at x is2 2

constructed and the resulting linear complementarity problem is solved for
the subsequent iterate, which in this case will again be x = b. Because third3

iterate is unchanged from the second, the Josephy-Newton algorithm stops,
having found the solution x = b to the original nonlinear complementarity
problem.

Figure 4.3: Josephy-Newton method.

More generally, solving a multivariate nonlinear complementarity prob-
lems using the Josephy-Newton method requires a specialized routine for
solving linear complementarity problems. Suppose the function lcpsolve
solves the linear complementarity problem M ? x + q ? a · x · b using
the call

x = lcpsolve(xinit,a,b,M,q);

where xinit is an initial guess for the solution. Then the nonlinear comple-
mentarity problem f(x) ? a · x · b can be solved via the Josephy-Newton
method using the following code segment:

for it=1:maxit

xold = x;

[f,d] = func(xold);

x = lcpsolve(xold,a,b,d,f-d*xold);

if norm(x-xold)<tol, break, end;

end

Here, the user must provide an initial guess x for the solution, a convergence
tolerance tol, an upper limit maxit on the number of iterations, and a
routine func that computes the value f and Jacobian d of the function f at
an arbitrary point.

Like the Newton method, the Josephy-Newton method converges if f
is continuously di®erentiable and if the initial value of x supplied by the
analyst is \su±ciently" close to a solution of the nonlinear complementarity
problem. There is, however, no generally practical formula for determining
what su±ciently close is. Typically, an analyst makes a reasonable guess for
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the solution and counts his blessings if the iterates converge. If the iterates
do not converge, then the analyst must look more closely at the analytic
properties of f to ¯nd a better starting value. The Josephy-Newton method
can be robust to starting value if f is well behaved, for example, if f is
strictly concave. The Josephy-Newton method, however, can also be very
sensitive to starting value, for example, if f has high derivatives that change
sign frequently.

In practice, the most common cause of convergence failure in Josephy-
Newton method is not a poor starting value, but rather a programming error
by the analyst. While the Josephy-Newton method tends to be far more ro-
bust to initialization than the underlying theory suggests, particularly when
f is concave, the iterates can easily explode or begin to jump around wildly
if either the user-supplied function and derivative evaluation routines con-
tain a coding error. For this reason, the analyst should always verify his or
her code by comparing the derivatives computed by the derivative evalua-
tion routine with those computed using ¯nite di®erencing and the function
routine. Typically, a programming error in either the function or derivative
code will show up clearly in such a comparison.

An alternative to the Josephy-Newton method that does not require the
explicit computation of the Jacobian is a Josephy-quasi-Newton method. A
generalization of Broyden's root¯nding method to the nonlinear complemen-
tarity problem, for example, takes the form:

f = func(x);

for it=1:maxit

x = xold;

x = lcpsolve(xold,a,b,d,f-A*xold);

delx = x - xold;

if norm(delx)<tol, break, end;

f = func(x);

A = A + f*delx'/(delx'*delx);

end

This method, which can be called the Josephy-Broyden method, requires
the analyst to provide both an initial estimate of the solution x and an
initial guess for the Jacobian at the solution A. Often, A is initialized as
the identity matrix, although using a ¯nite-di®erence approximation to the
Jacobian at the initial x may be a safer choice. As is the case with its
root¯nding counterparts, the Josephy-Broyden method typically take more
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iterations than the Josephy-Newton method, but requires less computation
per iteration.

4.3 Finite-Dimensional Optimization

In the general ¯nite-dimensional optimization problem, one is given a real-
n ¤valued function f de¯ned on X ½ < , and asked to ¯nd an x 2 X such that

¤f(x ) ¸ f(x) for all x 2 X . We denote this problem

max f(x)
x2X

¤and call f the objective function, X the feasible set, and x , if it exists,
an optimum. By the Theorem of Wieirstrass, if f is continuous and X is
nonempty, closed, and bounded, then f has an optimum on X .

¤A point x 2 X is a local maximum of f if there is an ²-neighborhood N
¤ ¤ ¤of x such that f(x ) ¸ f(x) for all x 2 N \X . The point x is a strict local

¤ ¤ ¤maximum if, additionally, f(x ) > f (x) for all x6= x inN\X . If x is a local
maximum of f that resides in the interior of X and f is twice di®erentiable

0 ¤ 00 ¤there, then f (x ) = 0 and f (x ) is negative semide¯nite. Conversely, if
0 ¤ 00 ¤f (x ) = 0 and f (x) is negative semide¯nite in an ²-neighborhood of x

¤ 00 ¤contained in X, then x is a local maximum; if f (x ) is negative de¯nite,
¤then x is a strict local maximum. By the Local-Global Theorem, if f is

¤ ¤concave, X is convex, and x is a local maximum of f , the x is a global
maximum of f on X .

For most optimization problems encountered in computational economics
applications, the constraint set is typically characterized through a series of
inequalities. The simplest constrained optimization problem is the bound-
constrained optimization problem

max f(x)
a·x·b

nwhere a and b are vectors in < such that a · b. According to the Karush-
¤Kuhn-Tucker theorem, if f is di®erentiable on [a; b], then x is an constrained

optimum of f only if it solves the nonlinear complementarity problem

0f (x) ? a · x · b:

¤Conversely, if f is concave on [a; b] and x solves the nonlinear complemen-
tarity problem, then it is an constrained optimum of f ; if additionally f is
strictly concave on [a; b], then the optimum is unique.
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¤The sensitivity of the optimal value of the objective function f to changes
in the bounds of a bound-constrained optimization problem are relatively
easy to characterize. According to the Envelope theorem,

¤df 0 ¤= minf0; f (x )g
da
¤df 0 ¤= maxf0; f (x )g:

db

More generally, if f , a, and b all depend on some parameter p, then

¤df @f @f da @f db
= + minf0; g + maxf0; g ;

dp @p @x dp @x dp

¤where the derivatives of f , a, and b are evaluated at (x ; p).
One way to solve a bound-constrained optimization problem is to solve its

Karush-Kuhn-Tucker complementarity conditions using the Josephy-Newton
method. The analyst begins by supplying an initial guess for the optimum

thx . Given the k iterate x , one then computes the subsequent iterate x0 k k+1

by solving the linear complementarity problem

0 00f (x ) + f (x )(x¡ x ) ? a · x · b:k k k

Iterates are generated until a convergence criterion is satis¯ed. This ap-
proach to solving the bound-constrained optimization problem is also known
as the method of successive quadratic programming, because it is equivalent
to solving the sequence of quadratic programs

max Q f(x)k
a·x·b

where

0 0 00Q f(x) = f (x ) + f (x )(x¡ x ) + 0:5(x¡ x ) f (x )(x¡ x )k k k k k k k

is the Taylor quadratic approximation to f about x .k
The general constrained optimization problem allows for nonlinear in-

equality constraints, as in

max f(x)
nx2<

s:t: g(x) · b
x ¸ 0;
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n mwhere g is an arbitrary map from < to < .
¤According to the Karush-Kuhn-Tucker Theorem, a regular point x max-

¤ m ¤ ¤imizes f only if there is a vector ¸ 2 < such that x and ¸ satisfy the
so-called Karush-Kuhn-Tucker complementarity conditions

0 ¤ ¤ 0 ¤ ¤f (x )¡ ¸ g (x ) ? x ¸ 0
¤ ¤g(x )¡ b ? ¸ ¸ 0:

A point x is regular if the gradients of all constraint functions g that satisfyj
¤g (x ) = b are linearly independent. The condition of regularity may bej j

omitted from the statement of the theorem if either the constraint functions
are all linear, or if f is concave, the g are convex, and the feasible regionj

has a nonempty interior. Conversely, if f is concave, the g are convex,j
¤ ¤ ¤and (x ; ¸ ) satisfy the Karush-Kuhn-Tucker conditions, then x solves the

general constrained optimization problem.
¤In the Karush-Kuhn-Tucker complementarity conditions, the ¸ are calledj

Lagrangian multipliers or shadow prices. The signi¯cance of the shadow
prices is given by the Envelope Theorem, which asserts that under mild
regularity conditions,

¤@f ¤= ¸ ;
@b

¤that is, ¸ is the rate at which the optimal value of the objective will changej

with changes in the right-hand-side constant b .j
The Karush-Kuhn-Tucker complementarity conditions have a natural ar-

bitrage interpretation. Suppose x ; x ; : : : ; x are levels of certain economic1 2 n

activities and the objective is to maximize pro¯t f(x) generated by those
activities subject to resource availability constraints of the form g (x) · b .j j

¤Then ¸ represents the opportunity cost or shadow price of the jth resourcej

and

X@f @gj¤MP = ¡ ¸i j@x @xi ij

represents the economic marginal pro¯t of the ith activity, accounting for
the opportunity cost of the resources used in activity i. The Karush-Kuhn-
Tucker conditions may thus be interpreted as follows:
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x ¸ 0 Activity levels are nonnegative.i

MP · 0 All pro¯t opportunities eliminated.i

MP < 0) x = 0 Avoid unpro¯table activities.i i

¤¸ ¸ 0 Shadow price of resource is nonnegative.j

g (x) · b Resource use cannot exceed availability.j j

g (x) < b ) ¸ = 0 Surplus resource has no economic value.j j j

General constrained optimization problems with nonlinear constraints are
fundamentally more di±cult to solve than simple bound-constrained opti-
mization problems. Since we will encounter only bound-constrained opti-
mization later in the book, we will not discuss general nonlinear constrained
optimization algorithms. The interested reader is referred to the many good
references currently available on the subject.

13


