
Chapter 5

Function Approximation

In many computational economic applications, one must approximate an
intractable real-valued function f with a computationally tractable function
f̂ .

Two types of function approximation problems arise often in computa-
tional economic applications. In the interpolation or `data ¯tting' problem
one uncovers some properties satis¯ed by the function f and then selects an

^approximant f from a family of `nice' functions that satis¯es those proper-
ties. The data available about f is often just its value at a set of speci¯ed
points. The data, however, could include the ¯rst or second derivative of f at
some of the points. Interpolation methods were historically developed to ap-
proximate the value of mathematical and statistical functions from published
tables of values. In most modern computational economic applications, how-
ever, the analyst is free to chose what data to obtain about the function to be
approximated. Modern interpolation theory and practice is concerned with
ways to optimally extract data from a function and with computationally
e±cient methods for constructing and working with its approximant.

In the functional equation problem, one must ¯nd a function f that sat-
is¯es

Tf = g

where T is an operator that maps a vector space of functions into itself and
g is a known function in that space. In the equivalent functional ¯xed-point
problem, one must ¯nd a function f such that

Tf = f:

1

Functional equations are common in dynamic economic analysis. For exam-
ple, the Bellman equations that characterize the solutions of dynamic opti-
mization models are functional ¯xed-point equations. Euler equations and
fundamental asset pricing di®erential equations are also functional equations.

Functional equations are di±cult to solve because the unknown is not
nsimply a vector in < , but an entire function f whose domain contains an

in¯nite number points. Moreover, the functional equation typically imposes
an in¯nite number of conditions on the solution f . Except in special cases,
functional equations lack analytic closed-form solutions and thus cannot be

^solved exactly. One must therefore settle for an approximate solution f that
satis¯es the functional equation as closely as possible. In many cases, one
can compute accurate approximate solutions to functional equations using
techniques that are natural extensions interpolation methods.

Numerical analysts have studied function approximation and functional
equation problems extensively and have acquired substantial experience with
di®erent techniques for solving them. Below, the two most generally prac-
tical techniques for approximating functions are discussed: polynomial and
spline interpolation. Univariate function interpolation methods are devel-
oped ¯rst and then are generalized to multivariate function methods. In the
¯nal section, we introduce the collocation method, a natural generalization
of interpolation methods that may be used to solve a variety of functional
equations.

5.1 Interpolation Principles

Interpolation is the most generally practical method for approximating a real-
valued function f de¯ned on an interval of the real line <. The ¯rst step in
designing an interpolation scheme is to specify the properties of the original

^function f that one wishes the approximant f to replicate. The easiest and
most common conditions imposed on the approximant is that it interpolate
or match the value of the original function at selected interpolation nodes
x ; x ; : : : ; x . The number n of interpolation nodes is called the degree of1 2 n

interpolation.
The second step in designing an interpolation scheme is to specify an

n-dimensional subspace of functions from which the approximant is to be
drawn. The subspace is characterized as the space spanned by the linear
combinations of n linearly independent basis functions Á ;Á ; : : : ; Á selected1 2 n

2

by the analyst. In other words, the approximant is of the form

nX
f̂(x) = c Á (x);j j

i=1

where c ; c ; : : : ; c are basis coe±cients to be determined. As we shall see,1 2 n

polynomials of increasing order are often used as basis functions, although
other types of basis functions are also commonly used.

Given n interpolation nodes and n basis functions, constructing the ap-
proximant reduces to solving a linear equation. Speci¯cally, one ¯xes the n

^unknown coe±cients c ; c ; : : : ; c of the approximant f by solving the inter-1 2 n

polation conditions

nX
c Á (x) = f(x) = y 8i = 1; 2; : : : ; n:j j i i i

j=1

Using matrix notation, the interpolation conditions equivalently may be writ-
ten as the matrix linear interpolation equation whose unknown is the vector
of basis coe±cients c:

©c = y:

Here,

© = Á (x)ij j j

is the typical element of the interpolation matrix ©. Equivalently, the inter-
polation conditions may be written as the linear transformation

c = P ? y

¡1where P = © is the projection matrix. For an interpolation scheme to
be well-de¯ned, the interpolation nodes and basis functions must be chosen
such that the interpolation matrix is nonsingular and the projection matrix
exists.

Interpolation schemes are not limited to using only function value infor-
mation. In many applications, one may wish to interpolate both function
values and derivatives at speci¯ed points. Suppose, for example, that one

^wishes to construct an approximant f that replicates the function's values
0 0 0at nodes x ; x ; : : : ; x and its ¯rst derivatives at nodes x ; x ; : : : ; x . This1 2 n1 1 2 n2

may be accomplished by selecting n = n + n basis functions and ¯xing the1 2

3

basis coe±cients c ; c ; : : : ; c of the approximant by solving the interpolation1 2 n

conditions

nX
c Á (x) = f (x); 8i = 1; : : : ; nj j i i 1

j=1

nX 0 0 0 0c Á (x) = f (x); 8i = 1; : : : ; nj 2j i i
j=1

for the unknown coe±cients c .j
In developing an interpolation scheme, the analyst should chose inter-

polation nodes and basis functions that satisfy certain criteria. First, the
approximant should be capable of producing an accurate approximation for
the original function f . In particular, the interpolation scheme should allow
the analyst to achieve, at least in theory, an arbitrarily accurate approxima-
tion by increasing the degree of approximation. Second, the approximant
should be easy to compute. In particular, the interpolation equation should
be well-conditioned and should possess a special structure that allows it to
be solved quickly|diagonal, near diagonal, or orthogonal interpolation ma-
trices are best. Third, the approximant should be easy to work with. In
particular, the basis functions should be easy to evaluate, di®erentiate, and
integrate.

Interpolation schemes may be classi¯ed as either spectral methods or ¯nite
element methods. A spectral method uses basis functions that are nonzero
over the entire domain of the function being approximated. In contrast,
a ¯nite element method uses basis functions that are nonzero over only a
subinterval of the domain of approximation. Polynomial interpolation, which
uses polynomials of increasing degree as basis functions, is the most common
spectral method. Spline interpolation, which uses basis functions that are
polynomials of small degree over subintervals of the approximation domain,
is the most common ¯nite element method. Polynomial interpolation and
two variants of spline interpolation are discussed below.

5.2 Polynomial Interpolation

According to the Weierstrass Theorem, any continuous real-valued function
f de¯ned on a bounded interval [a; b] of the real line can be approximated to
any degree of accuracy using a polynomial. More speci¯cally, if ² > 0, there

4

exists a polynomial p such that

jjf ¡ pjj = sup jf (x)¡ p(x)j < ²:
x2[a;b]

The Weierstrass theorem provides strong motivation for using polynomials to
approximate continuous functions. The theorem, however, is not very prac-
tical. It gives no guidance on how to ¯nd a good polynomial approximant. It
does not even state what order polynomial is required to achieve the required
level of accuracy.

thOne apparently reasonable way to construct a n -degree polynomial ap-
thproximant for f is to form the (n¡ 1) -order polynomial

2 n¡1p(x) = c + c x+ c x + : : :+ c x1 2 3 n

that interpolates f at the n uniformly spaced interpolation nodes

i¡ 1
x = a+ ¢ (b¡ a) 8i = 1; 2; : : : ; n:i

n¡ 1

Given the function values y = f(x) at the interpolation nodes, the basisi i

coe±cient vector c is computed by solving the linear interpolation equation

c = © n y;
where

j¡1© = x :ij i

In practice, however, this interpolation scheme is very ill-advised for two
reasons. First, interpolation at uniformly spaced nodes often does not pro-
duce an accurate polynomial approximant. In fact, there are well-behaved
functions for which uniform-node polynomial approximants rapidly deterio-
rate, rather than improve, as the degree of approximation n rises. A well

2 ¡1known example is Runge's function, f(x) = (1 + 25x) on [¡1; 1]. Second,
the interpolation matrix © is a so-called Vandermonde matrix. Vandermonde
matrices are notoriously ill-conditioned. Thus, e®orts to compute the basis
coe±cients often fail due to rounding error, particularly as the degree of
approximation is increased.

Numerical analysis theory and empirical experience both suggest that
polynomial interpolation over a bounded interval [a; b] should be performed
using the Chebychev nodes

a+ b b¡ a n ¡ i+ 0:5
x = + cos(¼); 8i = 1; 2; : : : ; n:i

2 2 n

5

As illustrated in ¯gure 5.1, Chebychev nodes are not equally spaced. They
are more closely spaced near the endpoints of the interpolation interval and
less so near the center.

Figure 5.1: Chebychev nodes.

Chebychev-node polynomial approximants possess some strong theoret-
ical properties. According to Rivlin's Theorem, Chebychev polynomial ap-
proximants are very nearly optimal polynomial approximants. Speci¯cally,

ththe approximation error associated with the n -degree Chebychev polyno-
mial approximant cannot larger than 2¼ log(n) + 2 times the lowest error
attainable with any other polynomial approximant of the same order. For
n < 100, this factor is less than 5, which is very small when one considers
that other polynomial interpolation schemes typically produce approximants
with errors that are orders of magnitude, that is, powers of 10, larger. In
practice, the accuracy a®orded by the Chebychev polynomial approximant
is often much better than indicated by Rivlin's bound.

Another theorem, Jackson's theorem, implies a more useful result. Specif-
ically, if f is continuously di®erentiable, then the approximation error af-

thforded by the n -degree Chebychev polynomial approximant p can be boundedn

above:

6 0jjf ¡ p jj · jjf jj(b¡ a)(log(n)=¼ + 1):n
n

This error bound can often be accurately estimated in practice, giving the
analyst a good indication of the accuracy a®orded by the Chebychev polyno-
mial approximant. More importantly, however, the error bound goes to zero
as n rises. That is, unlike for uniform-node polynomial interpolation, one can
achieve any desired degree of accuracy with a Chebychev-node polynomial
interpolation by increasing the degree of approximation.

The best known basis for expressing polynomials is the monomial basis,
2 3 nwhich consists of the simple power functions 1; x; x ; x ; : : : ; x . However,

other polynomial bases exist. In particular, any sequence of n polynomials
having exact orders 0; 1; 2; : : : ; n can serve as a basis for all polynomials
of order n or less. This raises the question of whether some basis other

6

than the monomials makes a better choice for representing Chebychev-node
polynomial approximants. Ideally, the interpolation equation associated with
a basis should be well-conditioned and easy to solve.

Numerical analysis theory and practice suggest that Chebychev-node
polynomial approximants should be expresses as linear combinations of the
Chebychev polynomials, which are de¯ned recursively as:

x¡ a
Á (x) = T (2 ¡ 1)j j

b¡ a
where, for z 2 [¡1; 1],

T (z) = 11

T (z) = z2

2T (z) = 2z ¡ 13

3T (z) = 4z ¡ 3z4

...

T (z) = 2zT (z)¡ T (z):j j¡1 j¡2

The Chebychev polynomials also possess the alternate trigonometric de¯ni-
tion

T (z) = cos((j ¡ 1) ¢ arccos(z)):j

Chebychev polynomials are an excellent basis for interpolating functions
at the Chebychev nodes because they yield extremely well-conditioned linear
interpolation equation that can be accurately and e±ciently solved, even for
high degrees of interpolation. The interpolation matrix © associated with
the Chebychev polynomial basis at the Chebychev nodes has typical element

© = cos((n¡ i+ 0:5)(j ¡ 1)¼=n):ij

This matrix is orthogonal:

0© © = diagfn; n=2; n=2; : : : ; n=2g:

Moreover, for any degree of approximation n, the 2-norm condition numberp
of the interpolation matrix © is 2, which is a very small condition num-
ber. This implies that the Chebychev basis coe±cients can be computed
accurately, regardless of the degree of interpolation.

7

Chebychev Nodes and Uniform Nodes and
Chebychev Basis Monomial Basis

Approximation Condition Approximation Condition
Nodes Error Number Error Number

5 5.7e-01 1.414 6.2e+02 9.0e+02
10 3.2e-01 1.414 1.7e+06 5.1e+06
15 3.7e-02 1.414 5.9e+09 4.7e+10
20 1.1e-02 1.414 1.8e+13 4.9e+14
25 6.4e-04 1.414 5.7e+16 Inf

2Table 5.1: Polynomial Approximation of exp(¡x) on [¡1; 1]

Table 5.1 gives the approximation errors associated with Chebychev inter-
2polation and uniform-node monomial interpolation of the function exp(¡x)

for di®erent number of nodes. The table also gives the 2-norm condition of
the associated interpolation matrix. As one can see, the Chebychev approxi-
mation error falls with the number of interpolation nodes. The uniform-node
monomial approximation error, on the other hand, grows with the number
of nodes. This is largely due to the di±culty in accurately computing the
coe±cient vector as the condition of the interpolation matrix deteriorates.

Two computer routines for forming and evaluating Chebychev polyno-
mial approximants are for computational economic analysis. One routine
computes the vector of Chebychev nodes xnodes given the endpoints of the
interpolation interval a and b and the degree of interpolation n:

function xnodes = nodecheb(n,a,b)

xnodes = 0.5*((a+b)-(b-a)*cos(((1:n)-0.5)*pi/n)');

The second routine takes as input an arbitrary vector x, the endpoints of the
interpolation interval a and b, and the degree of interpolation n, and returns
the values phi of the Chebychev basis functions in matrix form:

function phi = basecheb(x,n,a,b);

z = 2*(x-a)/(b-a) - 1;

phi = [ones(size(z)) z];

for j=3:n

phi = [phi 2*z.*phi(:,j-1)-phi(:,j-2)];

8

end

The code can also be adapted to compute the ¯rst derivatives phider of the
Chebychev basis polynomials at x by appending the following segment:

phi = [ones(size(z)) z];

phider = [zeros(size(z)) ones(size(z))];

for j=3:n

phider = [phider 2*z.*phider(:,j-1)+2*phi(:,j-1)-phider(:,j-2)];

end

phider = phider*2/(b-a);

Given the Chebychev node and Chebychev basis polynomial routines,
Chebychev interpolation of a univariate function f on an interval [a; b] in
practice becomes straightforward. First, one selects the degree of interpola-
tion n, and computes the Chebychev nodes xnodes using nodecheb:

xnodes = nodecheb(a,b,n)

Assuming that func is a Matlab function that returns a vector of values of
the univariate function f at each element of an arbitrary vector x, one then
computes the vector c of basis coe±cients as follows:

c = basecheb(xnodes,n,a,b)nfunc(xnodes)

Once the basis coe±cient vector c has been computed, the Chebychev ap-
proximant can subsequently be evaluated at an arbitrary vector of values x

by evaluating the Chebychev basis functions at x and postmultiplying the
resulting matrix by the coe±cient vector:

y = basecheb(x,n,a,b)*c.

5.3 Linear Spline Interpolation

Splines are a rich, °exible class of functions that may be used instead of
polynomials to approximate a real-valued function over a bounded interval.

thGenerally, a k order spline consists of segments of polynomials of order k
spliced together so as to preserve continuity of derivatives of order k¡1. Two
classes of splines are often employed in practice. A ¯rst-order or linear spline
is a series of line segments spliced together to form a continuous function. A

9

third-order or cubic spline is a series of cubic polynomials segments spliced
together to form a twice continuously di®erentiable function.

Linear spline approximants are the easiest approximants to construct and
evaluate in practice, which largely explains their widespread popularity. An
thn -degree linear spline on the interval [a; b] is any linear combination

nX
f̂(x) = c Á (x)i i

i=1

of the basis functions:
(jx¡t jj1¡ if jx¡ t j · wjwÁ (x) =j

0 otherwise

j¡1Here, w = (b¡ a)=(n¡ 1) and t = a+ (b¡ a) , j = 1; 2; : : : ; n, are calledj n¡1
ththe knots of the n -degree linear spline. By construction, a linear spline

is continuous on the interval [a; b] and is linear on each subinterval [t ; t]i i+1

de¯ned by the knots.
The linear spline basis functions are popularly called the \hat" functions,

for reasons that are made obvious in ¯gure 5.2. Each hat function is zero
everywhere, except over a narrow support element of width 2w. The basis
function achieves a maximum of 1 at the midpoint of its support element.
At any point of [a; b], at most two hat functions are nonzero.

Figure 5.2: Hat functions.

thOne can construct an n -degree linear spline approximant for a function
f by interpolating its values at any n points of its domain, provided that the
resulting interpolation matrix is nonsingular. However, if the interpolation
nodes x ; x ; : : : ; x are chosen to coincide with the spline knots t ; t ; : : : ; t ,1 2 n 1 2 n

then computing the basis coe±cients of the linear spline approximant be-
comes a trivial matter. If the interpolation nodes and knots coincide, then
Á (x) equals one if i = j, but equals zero otherwise. That is, the interpola-i j

tion matrix © is simply the identity matrix and the interpolation equation
reduces to the trivial identity c = y where y is the vector of function values

10

at the interpolation nodes. The linear spline approximant of f when nodes
and knots coincide thus takes the form

nX
f̂(x) = f(x)Á (x):i i

i=1

When interpolation nodes and knots coincide, no computations other than
function evaluations are required to form the linear spline approximant. For
this reason linear spline interpolation nodes in practice are always chosen to
be the spline's knots.

Evaluating a linear spline approximant and its derivative at an arbitrary
point x is also very easy. Since at most two basis functions are nonzero at
any point, only two basis function evaluations are required. Speci¯cally, if
i is the greatest integer less than 1 + (x ¡ a)=w, then x lies in the interval
[x ; x]. Thus,i i+1

f̂(x) = (c (x¡ x) + c (x ¡ x))=wi+1 i i i+1

and

0̂f (x) = (c ¡ c)=w:i+1 i

Higher order derivatives are zero, except at the knots, where they are unde-
¯ned.

Two computer routines for forming and evaluating linear spline approx-
imants are indispensable for computational economic analysis. One routine
computes the vector of uniformly spaced nodes xnodes given the endpoints
of the interpolation interval a and b and the degree of interpolation n:

function xnodes = nodeunif(n,a,b)

xnodes = a+(0:n-1)'*(b-a)/(n-1);

The second routine takes as input an arbitrary vector x, the endpoints of the
interpolation interval a and b, and the degree of interpolation n, and returns
the values phi of the linear spline basis functions in matrix form:

function phi = baselspl(x,n,a,b);

m = length(x);

xwid = (b-a)/(n-1);

j = floor((x-a)/xwid) + 1;

j = min(j,n-1); j = max(j,1);

theta = (x-a)/xwid - (j-1);

11

phi = zeros(m,n);

for i=1:m

phi(i,j(i)+1) = theta(i);

phi(i,j(i)) = 1 - theta(i);

end

The Matlab code employs the library subroutine floor, which gives the
greatest integer that is less than or equal to its argument. The code can also
be adapted to compute the ¯rst derivatives phider of the linear spline basis
functions at x by appending the following segment:

phider = zeros(m,n);

for i=1:m

phider(i,j(i)+1) = 1/xwid;

phider(i,j(i)) = -1/xwid;

end

Given the uniform node and linear spline basis function routines, linear
spline interpolation of a univariate function f on an interval [a; b] in practice
becomes straightforward. First, one selects the degree of interpolation n, and
computes the uniformly spaced nodes xnodes using nodeunif:

xnodes = nodeunif(a,b,n)

Assuming that func is a Matlab function that returns a vector of values of
the univariate function f at each element of an arbitrary vector x, one then
computes the vector c of basis coe±cients, which are simply the function
values at the nodes, as follows:

c = func(xnodes)

Once the basis coe±cient vector c has been computed, the linear spline ap-
proximant can subsequently be evaluated at an arbitrary vector of values x

by evaluating the linear spline basis functions at x and postmultiplying the
resulting matrix by the coe±cient vector:

y = baselspl(x,n,a,b)*c.

Linear splines are attractive for their simplicity, but have certain limita-
tions that sometimes make them a poor choice for computational economic
applications. By construction, linear splines produce ¯rst derivatives that

12

are discontinuous step functions and second derivative that are zero every-
where, except at the interpolation nodes. Linear spline approximants thus
typically do a very poor job of approximating the ¯rst derivative of a non-
linear function and are incapable of approximating its second derivative. In
some economic applications, the derivative represents a measure of marginal-
ity that is of as much interest to the analyst as the function itself. In other
applications, the derivative of the function may be needed to solve an itera-
tive root¯nding problem. In such applications, linear spline functions are ill
suited for function approximation.

5.4 Cubic Spline Interpolation

Cubic splines are piecewise cubic functions with continuous ¯rst and second
derivatives. Cubic spline approximants o®er a reasonable balance between
the smoothness of polynomial approximants and the °exibility of linear spline
approximants, and typically produce good approximations for both the func-
tion and its ¯rst and second derivatives.

Cubic spline basis functions are de¯ned in terms of the canonical cubic
B-spline

8
0 if z · ¡2>>>> 4 3> (1 + z) if ¡2 · z · ¡1>> 3> 2< 2(1¡ 6z (1 + z)) if ¡1 · z · 0
3B(z) = 2 2> (1¡ 6z (1¡ z)) if 0 · z · 1> 3>> 4 3>> (1¡ z) if 1 · z · 2> 3>:
0 if z ¸ 2

The cubic B-spline, which is pictured in ¯gure *, is clearly piecewise cubic.
Moreover, it may be easily veri¯ed that the cubic B-spline is twice continu-
ously di®erentiable at the splice points -2, 1, 0, 1, and 2.

Figure 5.3: Canonical Cubic B-Spline.

Two types of cubic splines are used frequently in computational economic
analysis. The \natural" spline is characterized by the additional condition

13

that the second derivatives vanish at the endpoints of the approximation
thinterval. An n -degree natural cubic spline on the interval [a; b] is any linear

combination of the basis functions:
8
> B((x¡ t)=w) + 2B((x¡ t)=w) if j = 11 0>>>>> B((x¡ t)=w)¡ 1B((x¡ t)=w) if j = 22 0<
B((x¡ t)=w) if 1 < j < nÁ (x) =j j>>> B((x¡ t)=w)¡ 1B((x¡ t)=w) if j = n¡ 1> n¡1 n+1>>: B((x¡ t)=w) + 2B((x¡ t)=w) if j = nn n+1

j¡1Here, w = (b ¡ a)=(n ¡ 1) and t = a + (b ¡ a) , j = 1; 2; : : : ; n, arej n¡1

called the knots of the spline. By construction, a natural cubic spline is
twice continuous on the interval [a; b], is cubic on each subinterval [t ; t]i i+1

de¯ned by the knots, and has vanishing second derivatives at the knots t1
and t .n

The \not-a-knot" spline is characterized by the additional condition that
ththe third derivatives at the outermost interior knots be continuous. An n -

degree not-a-knot cubic spline on the interval [a; b] is any linear combination
of the basis functions:

8
B((x¡ t)=w) + 4B((x¡ t)=w) if j = 1> 1 0>>>> B((x¡ t)=w)¡ 6B((x¡ t)=w) if j = 2> 2 0>>>> B((x¡ t)=w) + 4B((x¡ t)=w) if j = 33 0>>>>> B((x¡ t)=w)¡ 1B((x¡ t)=w) if j = 44 0<
B((x¡ t)=w) if 4 < j < n¡ 3Á (x) =j j>>> B((x¡ t)=w)¡ 1B((x¡ t)=w) if j = n¡ 3> n¡3 n+1>>>> B((x¡ t)=w) + 4B((x¡ t)=w) if j = n¡ 2> n¡2 n+1>>>> B((x¡ t)=w)¡ 6B((x¡ t)=w) if j = n¡ 1> n¡1 n+1>:
B((x¡ t)=w) + 4B((x¡ t)=w) if j = nn n+1

By construction, a not-a-knot cubic spline is twice continuous on the interval
[a; b], is cubic on each subinterval [t ; t] de¯ned by the knots, and has con-i i+1

tinuous third derivatives at the knots t and t . As illustrated in ¯gure 5.3,2 n¡1

the not-a-knot cubic spline basis functions are each nonzero over a support
element of width 4w. Thus, at any point of [a; b], at most four basis functions
are nonzero.

Figure 5.4: Cubic spline basis functions.

14

thOne can construct an n -degree cubic spline approximant for a function
f by interpolating its values at any n points of its domain, provided that the
resulting interpolation matrix is nonsingular. However, if the interpolation
nodes x ; x ; : : : ; x are chosen to coincide with the spline knots t ; t ; : : : ; t ,1 2 n 1 2 n

then it becomes much easier to compute the basis coe±cients of the cubic
spline approximant. If the interpolation nodes and knots coincide, the in-
terpolation matrix © will be nearly tridiagonal, that is, for the most part,
only the elements of the matrix one index removed from the diagonal will be
nonzero.

The band diagonality of the interpolation matrix assures that the inter-
polation equation will be well-conditioned and allows sparse matrix storage
and computation to be used to form and evaluate cubic spline approximants,
substantially speeding up the process. If the interpolation matrix must be
reused, one must resist the temptation to form and store its inverse, par-
ticularly if the size of the matrix is large. Inversion destroys the sparsity
structure. More speci¯cally, the inverse of the interpolation matrix will be
dense, even though the interpolation matrix is not. When n is large, solving
the sparse n by n linear equation using sparse L-U factorization will gener-
ally be less costly than performing the matrix-vector multiplication required
with the dense inverse interpolation matrix.

Two computer routines for forming and evaluating cubic spline approxi-
mants are indispensable for computational economic analysis. One routine,
previously introduced in the linear spline section under the name nodeunif

computes the vector of uniformly spaced nodes xnodes given the endpoints
of the interpolation interval a and b and the degree of interpolation n. The
second routine takes as input an arbitrary vector x, the endpoints of the
interpolation interval a and b, and the degree of interpolation n, and re-
turns the values phi of the cubic spline basis functions in matrix form. The
subroutine has a calling sequence of the form:

phi = basecspl(x,n,a,b);

The code can also be adapted to compute the ¯rst derivatives phider of the
cubic spline basis functions at x. In the Matlab m-¯le subroutines accompa-
nying this textbook, the not-a-knot condition is used to well-de¯ne the cubic
spline approximant.

Given the uniform node and cubic spline basis routines, cubic spline in-
terpolation of a univariate function f on an interval [a; b] in practice becomes

15

straightforward. First, one selects the degree of interpolation n, and com-
putes the uniform nodes xnodes using nodeunif:

xnodes = nodeunif(a,b,n)

Assuming that func is a Matlab function that returns a vector of values of
the univariate function f at each element of an arbitrary vector x, one then
computes the vector c of basis coe±cients as follows:

c = basecspl(xnodes,n,a,b)nfunc(xnodes)

Once the basis coe±cient vector c has been computed, the cubic spline ap-
proximant can subsequently be evaluated at an arbitrary vector of values x

by evaluating the cubic spline basis functions at x and postmultiplying the
resulting matrix by the coe±cient vector:

y = basecspl(x,n,a,b)*c.

5.5 Choosing an Approximation Method

The most signi¯cant di®erence between spline and polynomial interpolation
methods is that spline basis functions have narrow supports, but polynomial
basis functions have supports that cover the entire interpolation interval.
This can lead to big di®erences in the quality of approximation when the
function being approximated is irregular. Discontinuities in the ¯rst or sec-
ond derivatives can create problems for all interpolation schemes. However,
spline functions, due to their narrow support, can often contain the e®ects
of such discontinuities. Polynomial approximants, on the other hand, allow
the ill e®ects of discontinuities to propagate over the entire interval of inter-
polation. Thus, when a function exhibits kinks, spline interpolation may be
preferable to polynomial interpolation.

In order to illustrate the di®erences between spline and polynomial inter-
polation, we compare in table 5.2 the approximation error for four di®erent
functions and four di®erent approximation schemes: linear spline interpo-
lation, cubic spline interpolation, uniform node polynomial interpolation,
and Chebychev polynomial interpolation. The results presented in the table
lend support to certain rules of thumb used by experienced computational
analysts. When comparing interpolation schemes of the same degree of ap-
proximation:

16

Linear Cubic Uniform Chebychev
Function Degree Spline Spline Polynomial Polynomial

1 + x 10 0.10E+00 0.30E¡08 0.22E¡14 0.89E¡14
2 3+2x ¡ 3x 20 0.26E¡01 0.15E¡08 0.10E¡12 0.75E¡14

30 0.12E¡01 0.10E¡08 0.67E¡10 0.30E¡13

exp(¡x) 10 0.12E¡01 0.11E¡04 0.24E¡09 0.27E¡10
20 0.32E¡02 0.70E¡06 0.24E¡12 0.33E¡14
30 0.15E¡02 0.14E¡06 0.26E¡10 0.16E¡13

2 ¡1(1 + 25x) 10 0.67E¡01 0.22E¡01 0.19E+01 0.11E+00
20 0.42E¡01 0.32E¡02 0.60E+02 0.15E¡01
30 0.23E¡01 0.82E¡03 0.24E+04 0.21E¡02

0:5jxj 10 0.11E+00 0.18E+00 0.22E+01 0.22E+00
20 0.79E¡01 0.12E+00 0.45E+03 0.16E+00
30 0.65E¡01 0.10E+00 0.18E+06 0.13E+00

Table 5.2: Approximation Error for Selected Interpolation Methods

17

1. Chebychev node polynomial interpolation dominates uniform node poly-
nomial interpolation.

2. Cubic spline interpolation dominates linear spline interpolation, except
where the approximant exhibits a profound discontinuity.

3. Chebychev polynomial interpolation dominates cubic spline interpola-
tion if the approximant is smooth and monotonic; otherwise, cubic or
even linear spline interpolation may be preferred.

5.6 Multidimensional Interpolation

Interpolation schemes for multivariate functions may be developed by form-
ing the appropriate products of univariate bases and nodes.

Consider ¯rst the problem of approximating a bivariate real-valued func-
tion f(x; y) de¯ned on a bounded interval I = f(x; y) j a · x · b ; a · y ·x x y

y2 xb g in < . Suppose that Á , i = 1; 2; : : : ; n and Á , j = 1; 2; : : : ; n are basisy x yji

functions for univariate functions de¯ned on [a ; b] and [a ; b], respectively.x x y y

Then an n = n n degree basis for f on I may be constructed by lettingx y

yxÁ (x; y) = Á (x)Á (y) 8i = 1; : : : ; n ; j = 1; : : : ; n :ij x yji

Similarly, a grid of n = n n interpolation nodes can be constructed byx y

taking the Cartesian product of univariate interpolation nodes. More specif-
ically, if x ; x ; : : : x and y ; y ; : : : ; y are n and n interpolation nodes in1 2 n 1 2 n x yx y

[a ; b] and [a ; b], respectively, then n nodes for interpolating f on I mayx x y y

be constructed by letting

f(x ; y) j i = 1; 2; : : : ; n ; j = 1; 2; : : : ; n g:i j x y

For example, suppose one wishes to approximate a function using a cubic
polynomial in the x direction and a quadratic polynomial in the y direction.
A tensor product basis constructed from the simple monomial basis of x and
y comprises the following functions

2 2 2 2 2 2 3 3 3 21; x; y; xy; x ; y ; xy ; x y; x y ; x ; x y; x y :

The dimension of the basis is 12. An approximant expressed in terms of the
tensor product basis would take the form

3 2XX
i¡1 j¡1f̂(x; y) = c x y :ij

i=1 j=1

18

Typically, tensor product node-basis schemes inherit the favorable quali-
ties of their univariate node-basis parents. For example, if a bivariate linear
spline basis is used and the interpolation nodes fx ; y g are chosen such thati j

the x are uniformly spaced on [a ; b] and the y are uniformly spaced oni x x j

[a ; b], then the interpolation matrix will be the identity matrix, just likey y

in the univariate case. Also, if a bivariate Chebychev polynomial basis is
used, and the bivariate nodes fx ; y g are chosen such that the x are thei j i

Chebychev nodes on [a ; b] and the y are the Chebychev nodes on [a ; b],x x j y y

then the interpolation matrix will be orthogonal.
Tensor product schemes can be developed similarly for higher than two di-

mensions. Consider the problem of interpolating a d-variate function f(x ; x ; : : : ; x)1 2 d

on a d-dimensional interval I = f(x ; x ; : : : ; x) j a · x · b ; i = 1; 2; : : : ; dg.1 2 d i i i

If Á , j = 1; :::; n is a n degree univariate basis for real-valued functions ofij i i

on [a ; b], then an approximant for f in the tensor product basis would takei i

the following form:

nn n1 2 dX X X
^ ^f(x) = f (x ; x ; : : : ; x) = : : : Á (x)Á (x) : : : Á (x):1 2 d 1j 1 2j 2 dj d1 1 1

j =1 j =1 j =11 2 d

Using tensor notation the approximating function an be written

f̂(x) = [Á (x)­ Á (x)­ : : :­ Á (x)] ? c:1 1 2 2 d d

dwhere c is a column vector with n = ¦ n elements.ii=1

To implement interpolation in multiple dimensions it is necessary to eval-
uate solve the interpolation equation. If © is the degree n interpolationi i

matrix associated with variable x , then the interpolation conditions for thei

multivariate function can be written

[© ­ © ­ : : :­ ©)] ? c = f (x)1 2 d

where f(x) is an n by 1 vector of function values evaluated at the interpola-
tion nodes x, properly stacked. Using a standard result from tensor matrix
algebra, the this system may be solved by forming the projection matrix and
postmultiplying it by the data vector:

¡1 ¡1 ¡1c = [© ­ © ­ : : :­ ©] ? f(x);1 2 d

Hence there is no need to invert an n by nmultivariate interpolation matrix to
determine the interpolating coe±cients. Instead, each of the univariate inter-
polation matrices may be inverted individually and then multiplied together.

19

This leads to substantial savings in storage and computational e®ort. For
example, if the problem is 3-dimensional and the are 10 evaluation points in
each dimension, to obtain the projection matrix for interpolation only three
10 by 10 matrices need to be inverted, rather than a single 1000 by 1000
matrix.

However, interpolation using tensor product schemes tends to become
computationally more challenging as the dimensions rise. With a one-dimensional
argument the number of interpolation nodes and the dimension of the inter-
polation matrix can generally be kept small with good results. For a rela-
tively smooth function, Chebychev polynomial approximants of order 10 or
less can often provide extremely accurate approximations to a function and
its derivatives. If the function's argument is d-dimensional one could approx-
imate the function using the same number of points in each dimension, but

dthis increases the number of interpolation nodes to 10 and the size of the
2dinterpolation matrix to 10 elements. Storing the interpolation matrix alone

may be thus become di±cult, to say nothing about the problems of inverting
it.

The tendency of computational e®ort to grow exponentially with the di-
mension of the function being interpolated is known as the curse of dimen-
sionality. In order to mitigate the e®ects of the curse requires that careful
attention be paid to both storage and computational e±ciency. A natural
way to address both issues and one that is, in addition, a straightforward
extension of one-dimensional problems, is to use tensor product bases.

20

