
Chapter 7

Discrete-Time Discrete-Space
Dynamic Models

With this chapter, we begin our study of dynamic economic models. Many
economic models are inherently dynamic in that an agent or group of agents
must make decisions over time such that an action taken at one date may
a®ect or constrain the actions that may be taken at a later date. Dynamic
models arise in many areas of economics. For example, dynamic models have
been used to study consumption-savings decisions by individuals, production-
investment decisions by ¯rms, and arbitrage pricing in markets for physical
and ¯nancial assets.

Dynamic economic models often present three complications rarely en-
countered together in static economic models or dynamic physical science
models. First, humans are cogent, future-regarding beings capable of assess-
ing how their actions will a®ect their future well-being as well as their present
well-being. Thus, most useful dynamic economic models are future-looking
as opposed to simply forward-moving. Second, human behavior is to a great
extent unpredictable. Thus, most useful dynamic economic models are in-
herently stochastic. Third, the predictable component of human behavior is
often complex. Thus, most useful dynamic economic models are inherently
nonlinear.

The complications inherent in forward-looking, stochastic, nonlinear dy-
namic models render the classical tools of Algebra, Calculus, and Analysis of
limited usefulness in solving and analyzing dynamic economic models. How-
ever, the proliferation of a®ordable personal computers and their phenomenal
increase in speed over the last decade now make it possible for economists

1

to analyze dynamic economic models using numerical methods. The tools
of numerical analysis have been applied extensively to dynamic models in
the physical sciences, particularly in engineering, physics, and chemistry.
Economists can draw many lessons from the experiences of computational
physical scientists. However, Economists must also develop novel numerical
methods and strategies to solve their own unique problems.

The next three chapters are devoted to the numerical analysis of stochas-
tic dynamic economic models in discrete time. In this chapter we study
the simplest such model: the discrete-time, discrete-space Markov decision
model. In the discrete Markov decision model, an agent controls an eco-
nomic process that can attain only ¯nitely many states by choosing from
among ¯nitely many possible actions. The discrete Markov decision model
is relatively simple to analyze conceptually and numerically. The methods
used to analyze the model, moreover, lay the foundations for the methods
developed in subsequent chapters to analyze models in continuous time and
space.

7.1 Discrete Dynamic Programming

The discrete-time, discrete-space Markov decision model has the following
structure: In every period t, an agent observes the state of an economic
process s , takes an action x , and earns a reward f(s ; x) that dependst t t t

on both the state of the process and the action taken. The state space
S, which contains all the states attainable by the process, and the action
space X, which contains all actions that may be taken by the agent, are
both ¯nite. The state of the economic process follows a controlled Markov
probability law. That is, the distribution of next period's state conditional
on all currently available information depends only on the current state of
the process and the agent's action:

0 0Pr(s = s js = s; x = x; other information at t) = P (s js; x):t+1 t t

¤ ¤ TThe agent seeks a policy or rule x = fx g of state-contingent actionst t=1
¤x = x (s) that maximizes the present value of current and expected futuret tt

rewards over time, discounted at a per-period factor ±:
X

tE ± f(s ; x):t t
t

2

A discrete Markov decision model may have an in¯nite horizon, T =1,
or may have a ¯nite horizon, T <1. A discrete Markov decision model may
also be stochastic or deterministic. A Markov decision model is deterministic
if next period's state is known with certainty once the current period's state
and action are known. In this case, it is sometimes bene¯cial to dispense
with the probability transition law as a description of how the state evolves
over time and use instead a deterministic state transition function g:

s = g(s ; x):t+1 t t

Discrete Markov decision models may be analyzed using the dynamic
programming principle developed by Richard Bellman (1956). Dynamic pro-
gramming is a strategy for analyzing dynamic optimization models that is
applicable not only to discrete Markov decision problems, but also to Markov
decision models in continuous time and space. Dynamic programming e®ec-
tively decomposes a dynamic optimization problem into a sequence of two
period optimization problems. Dynamic programming is based on the Prin-
ciple of Optimality, which was ¯rst articulated by Bellman as follows:

\An optimal policy has the property that, whatever the initial
state and decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the ¯rst
decision."

The Principle of Optimality can be formally expressed in terms of the
value functions V . For each period t and state s, V (s) speci¯es the maximumt t

attainable sum of current and expected future rewards, given that the process
is in state s in period t. The Principle of Optimality implies that the value
functions must satisfy Bellman's recursion equation

X 0 0V (s) = max ff (s; x) + ± P (s js; x)V (s)g s 2 S:t t+1
x2X(s) 0s 2S

Bellman's equation captures the essential problem faced by a dynamic, future-
regarding optimizing agent: the need to balance the immediate reward f(s ; x)t t

against expected future rewards ±E V (s). Given the value function, thet t+1 t+1
¤optimal policy x (s) is simply the optimal solution to the optimization prob-t

lems embedded in Bellman's equation.
For the discrete Markov decision model, the value function is simply a real

vector and Bellman's equation is a nonlinear equation of real vectors. Since

3

the number of states n is ¯nite, the number of values is also ¯nite. More
speci¯cally, if the n states are identi¯ed with the ¯rst n positive integers,

nthen V 2 < in a natural way. Bellman's equation then asserts that thet

n-vector V is a function of the n-vector V . The function does not have at+1 t

conventional analytic form, but is a function just the same. For each possible
n-vector V , there is one and only one possible n-vector V .t t+1

For the ¯nite horizon discrete Markov decision model to be well posed,
a post-terminal value function V must be speci¯ed by the analyst. TheT+1

post-terminal value function is ¯xed by some economically relevant terminal
condition. In many applications, V is identically zero, indicating that noT+1

rewards are earned by the agent beyond the terminal decision period. In
other applications, V may specify a salvage value earned by the agentT+1

after making his ¯nal decision. By convention, the agent makes no decision
after the terminal period T , but may earn a ¯nal reward in the post-terminal
period T + 1.

Given the post-terminal value function, the ¯nite horizon decision model
in principle may be solved recursively by repeatedly solving Bellman's equa-
tion: Having V , solve for V (s) for all states s; having V , solve for V (s)T+1 T T T¡1

for all states s; having V , solve for V (s) for all states s; and so on. TheT¡1 T¡2

process continues until V (s) is derived for all states s. Because only ¯nitely1

many actions are possible in a discrete Markov decision problem, the opti-
mization problem embedded in Bellman's equation can always be solved by
performing ¯nitely many arithmetic operations. Thus, the value function of
a ¯nite horizon discrete Markov decision model is always well-de¯ned, al-
though in some cases more than one policy of state-contingent actions may
yield the maximum expected stream of rewards.

If the discrete Markov decision model is in¯nite horizon then the value
functions are the same for every period and thus may be commonly denoted
simply by V . The in¯nite horizon value function V satis¯es the n-vector
¯xed-point equation

X 0 0V (s) = max ff (s; x) + ± P (s js; x)V (s)g s 2 S:
x2X(s) 0s 2S

If the discount factor ± is less than one, the mapping underlying Bellman's
equation is a strong contraction. The Contraction Mapping Theorem thus
guarantees the existence and uniqueness of the in¯nite horizon value function.

4

7.2 Economic Examples

7.2.1 Mine Management

A mine operator must determine how to optimally extract ore for a mine that
will be shut down and abandoned at the end of year T . The market price of
one ton of ore is p and the total cost of extracting x tons of ore in any year

2is c = x =(1 + s) where s is the stock of ore available at the beginning of the
year in tons. The mine currently contains ¹s tons of ore. Assuming the tons
of ore extracted in any year must be an integer, what extraction schedule
maximizes pro¯ts?

This is a ¯nite horizon, deterministic model with time t = f1; 2; : : : ; Tg
measured in years. The state is

s = tons of ore in mine at beginning of year tt

s 2 S = f0; 1; 2; : : : ; ¹sgt

and the action is

x = tons of ore extracted in year tt

x 2 X(s) = f0; 1; 2; : : : ; s g:t t t

The deterministic state transition function is

s = g(s ; x) = s ¡ xt+1 t t t t

and the reward function is

2f(s; x) = px¡ x =(1 + s):

The value function

V (s) = value of mine with s tons of ore at tt

satis¯es Bellman's equation

2V (s) = max fpx¡ x =(1 + s) + ±V (s¡ x)g; s 2 St t+1
x=0;1;2;:::;s

subject to the post-terminal condition

V (s) = 0; s 2 S:T+1

5

7.2.2 Deterministic Asset Replacement

At the end of each lactation cycle a dairy producer must decide whether to
lactate a cow again or replace it with a new one. A cow yields y tons ofi

thmilk over lactation cycle i, up to ten lactations. Upon completion of the 10
lactation, a cow becomes unproductive and must be replaced. The net cost
of replacing a cow is c dollars and the pro¯t contribution of milk is p dollars
per ton. What replacement policy maximizes pro¯ts?

This is an in¯nite horizon, deterministic model with time t measured in
lactation cycles. The state is

i = lactation number of cow in cycle tt

i 2 S = f1; 2; : : : ; 10gt

and the action is

k = replacement decision in cycle tt (
f1 = lactate; 2 = replaceg i < 10tk 2 X(i) =t t f2 = replaceg i = 10:t

The deterministic state transition function is
(
i + 1 k = 1 (lactate)t ti = g(i ; k) =t+1 t t 1 k = 2 (replace)t

and the reward function is
(
py k = 1 (lactate)if(i; k) =
py ¡ c k = 2 (replace).i

The value function

V (i) = value of cow entering lactation i;

must satisfy Bellman's equation
(

maxfpy + ±V (i+ 1); py ¡ c + ±V (1)g; i < 10;i iV (i) =
py ¡ c+ ±V (1); i = 10:i

Bellman's equation asserts that if we decide to keep the cow at the end of
lactation i, we receive net earnings py and begin the subsequent cycle withi

a cow worth V (i+ 1); if we decide to replace the cow at the end of lactation
i, we receive net earnings of py ¡ c and begin the subsequent cycle with ai

cow worth V (1).

6

7.2.3 Stochastic Asset Replacement

Suppose now that dairy cows vary in productivity. Each cow belongs to one of
m productivity classes. A cow in productivity class j yields q y tons of milkj i

over lactation cycle i, where q is a quality multiplier and y is an industryj i

baseline yield. When replacing a dairy cow, the farmer will not know how
productive the new cow will be until the end of its ¯rst lactation. Cows of
quality class j are obtained from the replacement pool with probability w .j
What is the optimal lactation-replacement policy?

This is an in¯nite horizon, stochastic model with time t measured in
lactation cycles. The two-dimensional state is

i = lactation number of cowt

i 2 I = f1; 2; : : : ; 10gt

and

j = quality class of cowt

j 2 J = f1; 2; : : : ;mgt

and the action is

k = replacement decision in cycle tt (
f1 = lactate; 2 = replaceg i < 10tk 2 X(i) =t t f2 = replaceg i = 10:t

The state transition probability rule is
8 0 0> 1 i = i+ 1; j = j; k = 1<

0 0 00w i = 1; k = 2P (i ; j ji; j; k) = j>: 0 otherwise

and the reward function is
(
pq y k = 1 (lactate)j if(i; j; k) =
pq y ¡ c k = 2 (replace).j i

The value function

V (i; j) = value of cow of quality j entering lactation i

7

must satisfy Bellman's equation
X 00V (i; j) = maxfpq y + ±V (i+ 1; j); pq y ¡ c+ ± w V (1; j)g;j i j i j
0j 2J

for i < 10 and
X 00V (i; j) = pq y ¡ c+ ± w V (1; j)j i j
0j 2J

for i = 10.

7.2.4 Bioeconomic Model

In order to survive, an animal must forage for food in one of m distinct areas.
In area k, the animal survives predation with probability p , ¯nds food withk

probability q , and, if it ¯nds food, gains e energy units. The animal expendsk k

one energy unit every period and has a maximum energy carrying capacity
¹s. If the animal's energy stock drops to zero, it dies. What foraging pattern
maximizes the animal's probability of surviving to reproduce after period T ?

This is a ¯nite horizon, stochastic model with time t = f1; 2; : : : ; Tg
measured in foraging periods. The state is

s = stock of energy at beginning of period tt

s 2 S = f0; 1; 2; : : : ; ¹sg;t

the action is

x = foraging area in tt

x 2 X = f1; 2; : : : ;mg:t

The state transition probability rule is
8 0> p q s > 0; s = s¡ 1 + e (survives, ¯nds food)x x x>>> 0>> p (1¡ q) s > 0; s = s¡ 1 (survives, ¯nds no food)x x<

0 0(1¡ p) s > 0; s = 0 (victim of predator)P (s js; x) = x>> 0> 1 s = 0; s = 0 (death is permanent)>>>: 0 otherwise;

and the reward function is

f(s; x) = 0:

8

The value function

V (s) = probability of procreating, given energy stocks s in period t;t

must satisfy Bellman's equation

V (s) = maxfp q V (min(¹s; s¡ 1 + e)) + p (1¡ q)V (s¡ 1)g;t x x t+1 x x t+1
x2X

subject to the post-terminal condition
(

1 s > 0
V (s) =T+1 0 s = 0

Note that in this problem, the value function is just a conditional expec-
tation of survival until the post-terminal period, and Bellman's equation is
just an application of the Law of iterated expectations. The post-terminal
value function simply asserts that in the post-terminal period, an animal
with positive energy stocks will be alive with probability one and one with
zero energy stocks will be dead with probability one.

7.2.5 Option Pricing

An American put option gives the holder the right, but not the obligation,
to sell a speci¯ed quantity of a commodity at a speci¯ed strike price prior
to or on a speci¯ed expiration date. In the Cox-Ross-Rubenstein binomial
option pricing model, the price of the commodity is assumed to follow a two-
state discrete jump process. Speci¯cally, if the price of the commodity is p
in period t, then its price in period t + 1 will be pu with probability q and
p=u with probability 1¡ q where:

0:5u = exp(¾¿) > 1
0:5 2q = 0:5 + ¿ (r ¡ ¾ =2)=(2¾)

± = exp(¡r¿):

Here, r is the annualized interest rate, continuously compounded, ¾ is the
annualized volatility of the commodity price, and ¿ is the length of a period
in years. Assuming the current price of the commodity is p , what is the1

value of an American put option if it has a strike price ¹p and if it expires N
periods from today?

9

This is a ¯nite horizon, stochastic model where time t 2 f1; 2; : : : ; Ng is
measured in periods of length ¿ years each. The state is

p = commodity price in period tt

ip 2 S = fp u ji = ¡N; : : : ; 0; : : : ; Ngt 1

and the action is

k = decision to keep or exercise at tt

k 2 X = f1 = keep; 2 = exerciseg:t

The state transition probability rule is
8 0> q p = pu<

0 0P (p jp; k) = 1¡ q p = p=u>: 0 otherwise

and the reward function is
(

0 k = 1 (keep)
f(p; k) =

¹p¡ p k = 2 (exercise)

The value function

V (p) = option value at t, if commodity price is p.t

must satisfy Bellman's equation

V (p) = maxf ¹p¡ p; q±V (pu) + (1¡ q)±V (p=u) gt t+1 t+1

subject to the post-terminal condition

V (p) = maxf ¹p¡ p; 0 gN+1

Note that if the option is exercised in period t, then the owner receives ¹p¡p .t
If he does not exercise the option, however, he earns no immediate reward
but will have an option in hand the following period worth V (p u) witht+1 t

probability q and V (p =u) with probability 1 ¡ q. In the post-terminalt+1 t

period, the option is exercised if the commodity price is below the strike
price; otherwise the option is allowed to expire.

10

7.2.6 Job Search

At the beginning of each week, an in¯nitely-lived worker ¯nds himself either
employed or unemployed and must decide whether to be active in the labor
market over the coming week by working, if he is employed, or by searching
for a job, if he is unemployed. An active employed worker earns a wage w.
An active unemployed worker earns an unemployment bene¯t u. An inactive
worker earns a psychic bene¯t v from additional leisure, but no income. An
unemployed worker that looks for a job will ¯nd one with probability p by
the end of the week. An employed worker that remains at his job will be
¯red with probability q at the end of the week. What is the worker's optimal
labor policy?

This is a in¯nite horizon, stochastic model with time t = f1; 2; : : : ;1g
measured in weeks. The state is

s = employment state at beginning of tt

s 2 S = f1 = unemployed; 2 = employedgt

and the action is

x = labor force participation decision tt

x 2 X = f1 = inactive; 2 = activeg:t

The state transition probability rule is
8 01 x = 1; s = 1 (inactive worker)>>>> 0> 1¡ p x = 2; s = 1; s = 1 (searches, ¯nds no job)>>>< 0p x = 2; s = 1; s = 2 (searches, ¯nds job)0P (s js; x) = 0> q x = 2; s = 2; s = 1 (works, loses job)>>> 0>> 1¡ q x = 2; s = 2; s = 2 (works, keeps job)>>:

0 otherwise;

and the reward function is8
> v x = 1 (inactive, receives leisure)<

f(s; x) = u x = 2; s = 1 (searching, receives bene¯t)>: w x = 2; s = 2 (working, receives wage)

The value function

V (s) = Value of being in employment state s at beginning of week;

must satisfy Bellman's equation
(

maxfv + ±V (1); u+ ±pV (2) + ±(1¡ p)V (1)g; s = 1
V (s) =

maxfv + ±V (1); w + ±qV (1) + ±(1¡ q)V (2)g; s = 2

11

7.2.7 Optimal Irrigation

Water from a dam can be used for either irrigation or recreation. Irriga-
tion during the spring bene¯ts farmers, but reduces the dam's water level
during the summer, damaging recreational users. Speci¯cally, farmer and
recreational user bene¯ts in year t are, respectively, F (x) and G(y), wheret t

x are the units of water used for irrigation and y are the units of watert t

remaining for recreation. Water levels are replenished by random rainfall
during the winter. With probability p, it rains one unit; with probability
1 ¡ p is does not rain at all. The dam has a capacity of M units of water
and excess rainfall °ows out of the dam without bene¯t to either farmer or
recreational user. Derive the irrigation °ow policy that maximizes the sum
of farmer and recreational user bene¯ts over an in¯nite time horizon.

This is a in¯nite horizon, stochastic model with time t = f1; 2; : : : ;1g
measured in years. The state is

s = units of water in dam at beginning of year tt

s 2 S = f0; 1; 2; : : : ;Mgt

and

x = units of water released for irrigation in year tt

x 2 X(s) = f0; 1; 2; : : : ; s g:t t t

The state transition probability rule is
8 0> p s = min(s¡ x+ 1;M) (rain)<

0 0P (s js; x) = 1¡ p s = s¡ x; (no rain)>: 0 otherwise

and the reward function is

f(s; x) = F (x) +G(s¡ x):

The value function

V (s) = Value of s units of water in dam at beginning of year t:

must satisfy Bellman's equation:

V (s) = max ff (s; x) + ±pV (min(s¡ x+ 1;M)) + ±(1¡ p)V (s¡ x)g:
x=0;1;:::;s

12

7.3 Solution Algorithms

Below, we develop numerical solution algorithms for stochastic discrete-time,
discrete-space Markov decision models. The algorithms apply to determinis-
tic models as well, provided one views a deterministic model as a degenerate
special case of the stochastic model for which the transition probabilities are
all zeros or ones.

To develop solution algorithms, we must introduce some vector notation
and operations. Assume that the states S = f1; 2; : : : ; ng and actions X =
f1; 2; : : : ;mg are indexed by the ¯rst n and m integers, respectively. Also,

nlet v 2 < denote an arbitrary value vector:

v 2 < = value in state i;i

nand let x 2 X denote an arbitrary policy vector:

x 2 X = action in state i:i

nFor each action k 2 X, let f(k) 2 < denote the vector of rewards at
di®erent states, given the action:

f (k) = reward in state i, given action k takeni

n£nand let P (k) 2 < denote the transition probability matrix, given the
action:

P (k) = probability of jump from state i to j, given action k taken:ij

n nFor each policy x 2 X , let f(x) 2 < denote the vector of rewards under
the prescribed policy:

f (x) = reward in state i, given action x taken;i i

n£nand let P (x) 2 < denote the transition probability matrix under the
prescribed policy:

P (x) = probability of jump from state i to j, given action x is taken:ij i

nFinally, given m vectors v ; v ; : : : ; v in < , let1 2 m

nv = maxfv ; v ; : : : ; v g 2 <1 2 m

13

be the vector that contains the row-wise maxima of the v vectors; that is,k

v = max (v) for i = 1; 2; : : : ; n. Also, leti k ki

nx = argmaxfv ; v ; : : : ; v g 2 X1 2 m

be the vector that contains the indices of the row-wise maximal elements;
that is, x = minfk j v = v g for i = 1; 2; : : : ; n. For example,i i ki

Ã ! (Ã ! Ã ! Ã !)
7 1 7 7

= max ; ;
9 9 2 8

and
Ã ! (Ã ! Ã ! Ã !)

2 1 7 7
= argmax ; ; :

3 9 2 8

Given this notation, it is possible to express Bellman's equation precisely
as a vector equation suitable for numerical analysis using a vector processing

nlanguage. Speci¯cally, if v 2 < denotes the value function in period t, thent

v = maxff(k) + ±P (k)v g:t t+1
k

All solution algorithms for discrete Markov decision model are based on Bell-
man's equation. The speci¯c details vary according to whether the model is
¯nite or in¯nite horizon.

For an in¯nite horizon model, Bellman's equation reduces to ¯nding a
n n¯xed-point of a function that maps < into itself. Speci¯cally, let F : < 7!

n< be de¯ned as follows:

F (v) = maxff(k) + ±P (k)vg:
k

Then Bellman's equation simply asserts that the in¯nite horizon value func-
tion v is a ¯xed-point of F :

F (v) = v:

If the discount factor ± is less than one, the nonlinear map F can be shown to
be a contraction map. Thus, the in¯nite-horizon value function exists and is
unique, and may be computed to an arbitrary accuracy using either function
iteration or Newton's method.

14

7.3.1 Backward Recursion

The ¯nite horizon discrete Markov decision model is solved by deriving the
value functions in reverse order, beginning with the terminal decision period
T value function. To execute the backward recursion algorithm, one must
specify the rewards f , the transition probabilities P , the discount factor
±, the decision horizon T , and the post-terminal value function v . TheT+1

backward recursion algorithm computes the value functions v and optimalt

policies x as follows:t

Algorithm: Backward Recursion.

0. Initialization: Enter f , P , ±, T and v , and set tÃ T .T+1

1. Recursion Step: Given v , compute v and x :t+1 t t

v Ã maxff (k) + ±P (k)v gt t+1
k

x Ã argmaxff (k) + ±P (k)v g:t t+1
k

2. Termination Check: If t = 1, stop; otherwise set t Ã t¡ 1 and return
to step 1.

Each iteration of the backward recursion algorithm involves a ¯nite num-
ber of well-de¯ned matrix-vector operations, implying that the value func-
tions are also well-de¯ned for every period. Note however, that it may be
possible to have more than one sequence of optimal policies if ties occur
in Bellman's equation. Since the algorithm requires exactly T iterations, it
terminates in ¯nite time with the value function precisely computed and at
least one optimal policy obtained.

7.3.2 Function Iteration

To execute the function iteration algorithm, one must specify the rewards f ,
the transition probabilities P , the discount factor ±, and an initial guess for
the value function v. Since function iteration does not guarantee an exact
answer in ¯nitely many iterations, a convergence tolerance ¿ must also be
speci¯ed. Given the data for the problem, the function iteration algorithm
computes successive approximations to the value function v and optimal
policy x as follows:

15

Algorithm: Function Iteration.

0. Initialization: Enter f , P , ±, ¿ and v.

1. Function Iteration: Update the value function v:

v Ã maxff (k) + ±P (k)vg:
k

2. Termination Check: If jj¢vjj < ¿ , set

xÃ argmaxff (k) + ±P (k)vg
k

and stop; otherwise return to step 1.

Because function iteration does not generally compute the value function
exactly, it is reassuring that one can compute an upper bound on the error
associated with the ¯nal value function iterate. Speci¯cally, if the algorithm
terminates at iteration n, then

±¤jjv ¡ v jj · jjv ¡ v jjn n n¡1 1
1¡ ±

¤where v is the true value function.

7.3.3 Policy Iteration

The function iteration algorithm is relatively easy to implement, but may
converge slowly in some applications. Policy iteration o®ers an alternative to
function iteration for solving the in¯nite horizon Markov decision model. The
policy iteration algorithm designed to yield a sequence of successively supe-
rior policies, and in many cases will converge quicker than function iteration.
Policy iteration is based on the observation that if a (possibly suboptimal)
policy x is followed inde¯nitely, then the associated value v of doing so must
satisfy

v = f(x) + ±P (x)v;

or, equivalently,

¡1v = (I ¡ ±P (x)) f(x):

16

Note that because P (x) is a probability matrix, the matrix I¡±P (x) is always
invertible, implying that the value associated with any policy is well-de¯ned.

To execute the policy iteration algorithm, one must specify the rewards
f , the transition probabilities P , the discount factor ±, and an initial guess
for the policy function x. Given the data for the problem, the policy iteration
computes the optimal value function v and policy x as follows:

Algorithm: Policy Iteration.

0. Initialization: Enter f , P , ±, ¿ , and an initial guess for x.

1. Value Computation: Given x, the current approximant to the policy
function, compute the associated value function v:

¡1v Ã (I ¡ ±P (x)) f (x):

2. Policy Iteration: Given v, the current approximant to the value func-
tion, update the policy x:

xÃ argmaxff (k) + ±P (k)vg:
k

3. Termination Check: If ¢x = 0, stop; otherwise return to step 1.

At each iteration, policy iteration either ¯nds the optimal policy or o®ers
a strict improvement in the value function. Because the total number of
states and actions is ¯nite, the total number of admissible policies is also
¯nite, guaranteeing that policy iteration will terminate after ¯nitely many
iterations with an exact optimal solution. Note however, that each policy
iteration requires the solution of a linear equation system. If P (x) is large
and dense, the linear equation could be expensive to solve, making policy
iteration slow and possibly impracticable.

7.4 Dynamic Analysis

The optimal value and policy functions provide some insight into the nature
of the controlled dynamic economic process. The optimal value function
describes the bene¯ts of being in a given state and the optimal policy function
prescribes the optimal action to be taken there. However, the optimal value

17

and policy functions provide only a partial, essentially static, picture of the
controlled dynamic process. Typically, one wishes to analyze the controlled
process further to learn about its dynamic properties. Furthermore, one often
wishes to know how the process is a®ected by changes in model parameters.

To analyze the dynamics of the controlled process, one will typically per-
form dynamic path analysis and steady-state analysis. Dynamic path anal-
ysis examines how the controlled dynamic process evolves over time starting
from some initial state. Speci¯cally, dynamic path analysis describes the
path or expected path followed by the state or some other endogenous vari-
able and how the path or expected path will vary with changes in model
parameters.

Steady-state analysis examines the longrun tendencies of the controlled
process over an in¯nite horizon, without regard to the path followed over
time. Steady-state analysis of a deterministic model seeks to ¯nd the values
to which the state or other endogenous variables will converge over time,
and how the limiting values will vary with changes in the model parameters.
Steady-state analysis of a stochastic model requires derivation of the steady-
state distribution of the state or other endogenous variable. In many cases,
one is satis¯ed to ¯nd the steady-state means and variances of these variables
and their sensitivity to changes in exogenous model parameters.

The path followed by a controlled, ¯nite horizon, deterministic, discrete,
Markov decision process is easily computed. Given the state transition func-

¤tion g and the optimal policy functions x , the path taken by the state fromt

an initial point s can be computed as follows:1

¤s = g(s ; x (s))2 1 11
¤s = g(s ; x (s))3 2 22
¤s = g(s ; x (s))4 3 33

...
¤s = g(s ; x (s)):T+1 T TT

Given the path of the controlled state, it is straightforward to derive the
¤path of actions through the relationship x = x (s). Similarly, given thet tt

path taken by the controlled state and action allows one to derive the path
taken by any function of the state and action.

A controlled, in¯nite horizon, deterministic, discrete Markov decision pro-
cess can be analyzed similarly. Given the state transition function g and

¤optimal policy function x , the path taken by the controlled state from an

18

initial point s can be computed from the iteration rule:1

¤s = g(s ; x (s)):t+1 t t

The steady-state of the controlled process can be computed by continuing to
form iterates until they converge. The path and steady-state values of other
endogenous variables, including the action variable, can then be computed
from the path and steady-state of the controlled state.

Analysis of controlled, stochastic, discrete Markov decision processes is
a bit more complicated because such processes follow a random, not deter-

¤ministic, path. Consider a ¯nite horizon process whose optimal policy xt
has been derived for each period t. Under the optimal policy, the controlled
state will follow a ¯nite horizon Markov chain with nonstationary transition
probabilities:

¤Pr(s = jjs = i) = P (x):t+1 t ij t

¤Here, P (x) is a probability matrix whose row i, column j element gives thet

probability of jumping from state i in period t to state j in period t+1, given
¤that the optimal policy x (i) is followed in period t.t

The controlled state of an in¯nite horizon, stochastic, discrete Markov
decision model with optimal policy x will follow a in¯nite horizon stationary
Markov chain with transition probability matrix

¤Pr(s = jjs = i) = P (x);t+1 t ij

¤which will be designated P for short. Given the transition probability matrix
¤P for the controlled state it is possible to simulate a representative state

path, or, for that matter, many representative state paths, by performing
Monte Carlo simulation. To perform Monte Carlo simulation, one picks an
initial state, say s . Having the simulated state s = i, one may simulate a1 t

¤jump to s by randomly picking a new state j with probability P . Routinest+1 ij

for simulating discrete random variables are generally available.
The path taken by the controlled state of an in¯nite horizon, stochastic,

discrete Markov model may also be described probabilistically. To this end,
let Q denote the matrix whose row i, column j entry gives the probabilityt

that the process will be in state j in period t, given that it is in state i in
period 1. Then the t-period transition probability matrices Q are recursivelyt

de¯ned by

¤Q = P Qt+1 t

19

where Q = I . Given the t-period transition probability matrices Q , one1 t

can fully describe, in a probabilistic sense, the path taken by the controlled
thprocess from any initial state s = i by looking at the i rows of the matrices1

Q .t
In most economic applications, the multiperiod transition matrices Qt

will converge to a matrix Q. In such cases, each entry of Q will indicate the
relative frequency with which the controlled decision process will visit a given
state in the longrun, when starting from given initial state. In the event that
all the columns of Q are identical and the longrun probability of visiting a
given state is independent of initial state, then we say that the controlled state
process possesses a steady-state distribution. The steady state distribution
is given by the probability vector ¼ that is the common row of the matrix Q.
Given the steady-state distribution of the controlled state process, it becomes
possible to compute summary measures about the longrun behavior of the
controlled process, such as its longrun mean or variance. Also, it is possible
to derive the longrun probability distribution of the optimal action variable
or the longrun distribution of any other variables that are functions of the
state and action.

7.5 Numerical Implementation

Discrete Markov decision models of all kinds may be routinely solved with two
standard computer routines. One routine solves the optimization problem
embedded in Bellman's equation. The second routine computes the state
reward and transition probability matrix induced by any given policy.

In Matlab, it is simple to write a routine that solves the optimization
problem embedded in Bellman's equation for any n-state, m-action discrete
Markov decision model. Such a routine is valmax:

function [v,x] = valmax(v,f,P,delta)

[m,n]=size(f);

[v,x]=max(f+delta*reshape(P*v,m,n),[],2);

The routine requires as input:

v An n by 1 vector containing next period's value function. Speci¯-
cally, v(i) is the value of arriving in state i next period.

f An n by m matrix of rewards whose rows represent states and
columns represent actions.

20

P An mn by n matrix of state transition probabilities whose rows rep-
resent this period's state and columns represent next period's state.
The state transition probability matrices for the various actions are
stacked vertically on top of each other, with the n by n transition
probability matrix associated with action 1 at the top and the n
by n transition probability matrix associated with action m at the
bottom.

delta The discount factor, a scalar.

The routine returns as output:

v An n by 1 vector containing this period's value function. Speci¯-
cally, v(i) is the value of being in state i this period.

x An n by 1 vector containing this period's optimal policy. Speci¯-
cally, x(i) is the action that maximizes the value of being in state
i this period.

In Matlab it is also simple to write a routine that computes the provi-
sional value function, state reward function, and transition probability matrix
induced by a arbitrary prescribed policy. Such a routine is valpol:

function [v,pstar,fstar] = valpol(x,f,P,delta)

[n,m]=size(f); i=(1:n)';

pstar = P(n*(x(i)-1)+i,:);

fstar = f(n*(x(i)-1)+i);

v = (eye(n,n)-delta*pstar)\fstar;

The routine takes as input the reward matrix f, the state transition proba-
bility matrix P, and a policy vector x, in the format described above. The
routine then returns as output:

v An n by 1 vector specifying the value of di®erent states under policy
x. Speci¯cally, v(i) is the value of being in state i given policy x
is followed inde¯nitely.

fstar An n by 1 vector specifying the rewards obtained under policy x.
Speci¯cally, fstar(i) is the reward obtained in state i if the process
is in state i and action x(i) is taken.

21

Pstar An n by n matrix specifying the probability of jumping from one
state to another under policy x. Speci¯cally, Pstar(i,j) is the
probability of jumping from state i to state j if the process is in
state i and action x(i) is taken.

Given the two subroutines, it is straightforward to implement the back-
ward recursion, function iteration, and policy iteration algorithms used to
solve discrete Markov decision models. As a practical matter, the greatest
di±cultly typically encountered when solving discrete Markov decision mod-
els using the two subroutines is correctly initializing the reward and state
transition matrices. Consider the following examples:

7.5.1 Mine Management

Consider the mine management model with market price p = 1, initial stock
of ore ¹s = 100, and annual discount factor ± = 0:95.

The ¯rst step required to solve the model numerically is to enter the
model parameters and construct the state and action spaces:

delta = 0.95; % discount factor

price = 1; % price of ore

sbar = 100; % initial ore stock

s = (0:sbar)'; % vector of states

n = length(s); % number of states

x = (0:sbar)'; % vector of actions

m = length(x); % number of actions

Next, one constructs the reward and transition probability matrices:

f = zeros(n,m); P = [];

for k=1:m

f(:,k) = price*x(k)-(x(k)^2)./(1+s);

i = find(x(k)>s); if ~isempty(i), f(i,k) = -inf; end;

Pk = sparse(zeros(n,n));

j = max(0,s-x(k)) + 1;

for i=1:n

Pk(i,j(i)) = 1;

end

P = [P;Pk];

end

22

Here, a reward matrix element is set to negative in¯nity if the extraction level
exceeds the available stock. This guarantees that the value maximization
algorithm will not chose an infeasible action. Also note that because the
probability transition matrix contains mostly zeros, it is stored in sparse
matrix format to speed up subsequent computations.

To solve the ¯nite horizon model via backward recursion, one must set
the terminal decision period and supply the post-terminal value function.
Also, after each step one must store the optimal policy vector because it
varies from period to period. The matrices vout and xout are created for
this purpose.

T=11; % terminal period

v = zeros(n,1); % post-terminal value

xout = []; % initial policy matrix

for t=T:-1:1 % backward recursion

[v,ix] = valmax(v,f,P,delta); % Bellman equation

xout = [x(ix) xout]; % store optimal policy

end

Upon completion, xout is an n by T matrix containing the optimal ore ex-
traction policy for all possible initial ore stock values and periods 1 to T. The
columns of xout represent periods and its rows represent states.

To solve the in¯nite horizon model via function iteration, one must set a
maximum number of iterations and a convergence tolerance, and must supply
an initial guess for the in¯nite horizon value function. Because function itera-
tion generates successive approximants to the in¯nite horizon value function,
an approximant may be discarded once a new one is generated.

maxit = 300; % maximum iterations

tol = 1.e-8; % convergence tolerance

v = zeros(n,1); % initial value

for it=1:maxit % function iteration

vold = v; % store old value

[v,ix] = valmax(v,f,P,delta); % Bellman equation

change = norm(v-vold); % change in policy

fprintf ('\n%5i %10.1e',it,change) % print progress

if change<tol, break, end; % convergence check

end

Upon convergence, v will be n by 1 matrix containing the value function and

23

ix will be n by 1 matrix containing the indices of the optimal ore extractions.
The optimal ore extractions may be recovered by typing x(ix).

To solve the in¯nite horizon model via policy iteration, one must set a
maximum number of iterations and a convergence tolerance, and must supply
an initial guess for the optimal extraction policy indices.

maxit = 300; % maximum iterations

tol = 1.e-8; % convergence tolerance

ix = ones(n,1); % initial policy indices

for it=1:maxit % policy iteration

ixold = ix; % store old policy indices

v = valpol(ix,f,P,delta); % implied value

[v,ix] = valmax(v,f,P,delta); % update policy

change = norm(ix-ixold); % change in policy indices

fprintf ('\n%5i %10.1e',it,change) % print progress

if ix==ixold, break, end; % convergence check

end

Upon convergence, v will be n by 1 matrix containing the value function and
ix will be n by 1 matrix containing the indices of the optimal ore extractions.
The optimal ore extractions may be recovered by typing x(ix). Note that
the intermediate value functions v computed by valmax are not used by the
algorithm.

Once the optimal solution has been computed, one may plot the optimal
value and extraction policy functions:

figure(1); plot(s,x(ix)); xlabel('Stock'); ylabel('Optimal Extraction');

figure(2); plot(s,v); xlabel('Stock'); ylabel('Optimal Value');

One may also plot the optimal path of the stock level over time, starting
from the initial stock level:

st = sbar;

splot = [];

maxtime = 20;

for t=0:maxtime;

[serr,is] = min(abs(s-st)); % Find stock index

splot = [splot st]; % Record stock

st = st - x(ix(is)); % Update stock

end

figure(3); plot(0:maxtime,splot); xlabel('Year'); ylabel('Stock');

24

As seen in ¯gure *, optimal extraction plan thus calls for the mine's ore to
be completely extracted by the end of year 20.

7.5.2 Deterministic Asset Replacement

Consider the deterministic cow replacement model with yield function y =i
28 + 2i¡ 0:25i , replacement cost c = 500, milk price p = 150, and a per-cycle

discount factor ± = 0:9.
The ¯rst step required to solve the model numerically is to enter the

model parameters and construct the state space:

delta = 0.9; % discount factor

cost = 500; % replacement cost

price = 150; % milk price

s = (1:10)'; % lactation states

There is no need to explicitly de¯ne an action space since actions are repre-
sented by integer indices.

Next, one constructs the reward and transition probability matrices: Here,
action 1 is to keep the cow and action 2 is to replace the cow after the current
lactation:

y = (-0.2*s.^2+2*s+8); % Yield per lactation

f = [price*y price*y-cost]; % Net revenue by action

i = find(s==10); f(i,1) = -999; % Replace after lactation 10

P1 = zeros(10,10); P2 = zeros(10,10);

for i=1:10

if i<10

P1(i,i+1) = 1; % Up lactation number, if keep

else

P1(i,1) = 1; % Replace after lactation 10

end

P2(i,1) = 1; % Go to lactation 1, if replace

end

P = [P1;P2];

Here, a reward matrix element is set to negative in¯nity for a keep decision in
the tenth and ¯nal lactation to ensure that the value maximization algorithm
will elect replacement after the tenth lactation.

To solve the in¯nite horizon model via function iteration, one must set a
maximum number of iterations and a convergence tolerance, and must supply

25

an initial guess for the in¯nite horizon value function. Because function
iteration generates successive approximants to the one in¯nite horizon value
function, an approximant may be discarded once a new one is generated.

maxit = 300; % maximum iterations

tol = 1.e-8; % convergence tolerance

v = zeros(n,1); % initial value

for it=1:maxit % function iteration

vold = v; % store old value

[v,x] = valmax(v,f,P,delta); % Bellman equation

change = norm(v-vold); % change in policy

fprintf ('\n%5i %10.1e',it,change) % print progress

if change<tol, break, end; % convergence check

end

If convergence is reached, v will be n by 1 matrix containing the value function
and x will be n by 1 matrix containing optimal replacement policy. Note how
this code segment is identical to that used solve the in¯nite horizon mine
management model via function iteration, except that the optimal policy
and its index are one and the same.

To solve the in¯nite horizon model via policy iteration, one must set a
maximum number of iterations and a convergence tolerance, and must supply
an initial guess for the optimal extraction policy indices.

maxit = 300; % maximum iterations

tol = 1.e-8; % convergence tolerance

x = ones(n,1); % initial policy indices

for it=1:maxit % policy iteration

xold = x; % store old policy indices

v = valpol(x,f,P,delta); % implied value

[v,x] = valmax(v,f,P,delta); % update policy

change = norm(x-xold); % change in policy indices

fprintf ('\n%5i %10.1e',it,change) % print progress

if x==xold, break, end; % convergence check

end

If convergence is reached, v will be n by 1 matrix containing the value function
and x will be n by 1 matrix containing optimal replacement policy. Note how
this code segment is identical to that used solve the in¯nite horizon mine
management model via function iteration, except that the optimal policy
and its index are one and the same.

26

Once the optimal solution has been computed, one may plot the optimal
value and extraction policy functions:

figure(1); plot(s,v); xlabel('Age'); ylabel('Optimal Value');

figure(2); bar(s,x); xlabel('Age'); ylabel('Optimal Decision');

As seen in ¯gure *, the optimal policy is to replace a cow after its ¯fth
lactation.

7.5.3 Stochastic Asset Replacement

Suppose now that dairy cows vary in productivity. Each cow belongs to one
of 3 productivity classes, yielding 0.8, 1.0, and 1.2 times the industry baseline,
respectively. Also suppose that cows from these three classes are obtained
from the replacement pool with probabilities 0.2, 0.6, and 0.2, respectively.

The ¯rst step required to solve the model numerically is to enter the
model parameters: parameters:

delta = 0.9; % discount factor

cost = 500; % replacement cost

price = 150; % milk price

Next, one constructs the state space grid by computing the vectors of val-
ues attainable by each of the two state variables and forming their Cartesian
product:

scoord{1} = (1:10)'; % lactation states

scoord{2} = [0.8;1.0;1.2]; % productivity states

s = cartgrid(scoord); % combined state grid

n = length(s) % number of states

There is no need to explicitly de¯ne an action space since actions are repre-
sented by integer indices.

One then constructs the reward matrix, identifying action 1 with `keep'
and action 2 with `replace':

y = (-0.2*s(:,1).^2+2*s(:,1)+8).*s(:,2); % yield per lactation

f = [price*y price*y-cost]; % net revenue by action

i = find(s(:,1)==10); f(i,1) = -999; % force replace at lactation 10

27

Constructing the state transition probability matrix is a bit involved due
to the multidimensional state space. Here, we set up, for each action, a four
dimensional transition probability array - two dimensions for the current
values of the two state variables and two dimensions for the future values of
the two state variables. The four dimensional arrays are then reshaped into
two-dimensional probability transition matrices and stacked for subsequent
computation.

P1 = zeros(3,10,3,10); P2 = zeros(3,10,3,10);

for i=1:3

for j=1:10

if j<10

P1(i,j,i,j+1) = 1; % Increment lactation, if keep

else

P1(i,j,1,1) = 0.2; % Replace after lactation 10

P1(i,j,2,1) = 0.6;

P1(i,j,3,1) = 0.2;

end

P2(i,j,1,1) = 0.2; % Elected replacement

P2(i,j,2,1) = 0.6;

P2(i,j,3,1) = 0.2;

end

end

P1 = reshape(P1,30,30);

P2 = reshape(P2,30,30);

P = [P1;P2];

To solve the in¯nite horizon model via function iteration, one must set a
maximum number of iterations and a convergence tolerance, and must supply
an initial guess for the in¯nite horizon value function. Because function
iteration generates successive approximants to the one in¯nite horizon value
function, an approximant may be discarded once a new one is generated.

maxit = 300; % maximum iterations

tol = 1.e-8; % convergence tolerance

v = zeros(n,1); % initial value

for it=1:maxit % function iteration

vold = v; % store old value

[v,x] = valmax(v,f,P,delta); % Bellman equation

change = norm(v-vold); % change in policy

fprintf ('\n%5i %10.1e',it,change) % print progress

28

if change<tol, break, end; % convergence check

end

Upon convergence, v will be n by 1 matrix containing the value function
and x will be n by 1 matrix containing optimal replacement policy. Note
how this code segment is identical to that used solve the deterministic cow
replacement problem. The only signi¯cant di®erence between solving up
the deterministic and stochastic problems comes in the construction of the
reward and transition probability matrices.

To solve the in¯nite horizon model via policy iteration, one must set a
maximum number of iterations and a convergence tolerance, and must supply
an initial guess for the optimal replacement policy.

maxit = 300; % maximum iterations

tol = 1.e-8; % convergence tolerance

x = ones(n,1); % initial policy

for it=1:maxit % policy iteration

xold = x; % store old policy

v = valpol(x,f,P,delta); % implied value

[v,x] = valmax(v,f,P,delta); % update policy

change = norm(x-xold); % change in policy

fprintf ('\n%5i %10.1e',it,change) % print progress

if x==xold, break, end; % convergence check

end

If convergence is reached, v will be n by 1 matrix containing the value function
and x will be n by 1 matrix containing optimal replacement policy.

Once the optimal solution has been computed, one may plot the optimal
value and replacement policy functions:

figure(1); bar(scoord{1},reshape(x,3,10)')

xlabel('Age'); ylabel('Optimal Decision');

legend('Low','Med','Hi')

set(gca,'YTick',[0 1 2]);

figure(2); plot(scoord{1},reshape(v,3,10)')

xlabel('Age'); ylabel('Optimal Value');

legend('Low','Med','Hi')

To perform dynamic analysis, one ¯rst computes the probability transi-
tion and payo® matrices for the optimally controlled state process:

[vstar,Pstar,fstar] = valpol(x,f,P,delta);

29

Given Pstar and fstar, it is straight forward to plot the expected net revenue
over time given that cow is in lactation 1 and has low productivity at present

figure(3)

pi = zeros(size(s(:,1))); pi(1)=1; % Current state with certainty

maxtime = 20;

for t=0:maxtime;

exprevenue(t+1) = pi'*fstar; % Compute expected revenue

pi = Pstar'*pi; % Update conditional distribution

end

plot(0:maxtime,exprevenue); xlabel('Year'); ylabel('Expected Revenue');

If the probability vector pi has converged to its steady-state, then one can
further compute the average age and productivity of cows in the longrun:

avgage = pi'*s(:,1); fprintf('\nSteady-state Age %8.2f\n',avgage)

avgpri = pi'*s(:,2); fprintf('\nSteady-state Productivity %8.2f\n',avgpri)

7.5.4 Bioeconomic Model

Consider the bioeconomic model with three foraging areas, predation sur-
vival probabilities p = 1, p = 0:98, and p = 0:90, and foraging success1 2 3

probabilities q = 0, q = 0:3, and q = 0:8. Also assume that successful1 2 3

foraging delivers e = 4 units of energy in all areas and that the procreation
horizon is 10 periods.

The ¯rst step required to solve the model numerically is to enter the
model parameters and construct the state and action spaces:

T = 10; % foraging periods

eadd = 4; % energy from foraging

emax = 10; % energy capacity

s = 0:emax; % energy levels

n = length(s); % number of states

m = 3; % number of forage areas

There is no need to explicitly de¯ne an action space since actions are repre-
sented by integer indices.

Next, one constructs the reward and transition probability matrices:

f = zeros(n,m);

p = [1 .98 .9]; % predation survival prob.

30

q = [0 .30 .8]; % foraging success prob.

P = [];

for k=1:m

Pk = zeros(n,n);

Pk(1,1) = 1;

for i=2:n;

Pk(i,min(n,i-1+eadd)) = p(k)*q(k);

Pk(i,i-1) = p(k)*(1-q(k));

Pk(i,1) = Pk(i,1) + (1-p(k));

end

P = [P ; Pk];

end

The reward matrix is zero because the reward is not earned until the post-
terminal period. Upon the reaching the post-terminal period, either the
animal is alive, earning reward of 1, or is dead, earning a reward of 0.

To solve the ¯nite horizon model via backward recursion, one must set the
terminal decision period and supply the post-terminal value function. Also,
after each step one must store the optimal value and policy vectors because
they vary from period to period. Cell arrays v and x are created for this
purpose:

x = cell(T,1); v = cell(T+1,1); % declare cell arrays

v{T+1} = zeros(n,1); % preallocate post-terminal value

v{T+1}(2:n) = 1; % post-terminal value: survive

for t=T:-1:1 % backward recursion

[v{t},x{t}] = valmax(v{t+1},f,P,1); % Solve Bellman's equation

end

Upon completion, x is an T by 1 cell array, one cell for each foraging period,
with each cell an n by 1 matrix containing the optimal foraging policy for all
possible initial energy stock levels.

Once the optimal solution has been computed, one may print out the
survival probabilities:

fprintf('\nProbability of Survival\n')

fprintf('\n Stocks\n')

fprintf('Period ');fprintf('%5i ',s);fprintf('\n');

for t=1:T

fprintf('%5i ',t);fprintf('%6.2f',v{t}');fprintf('\n')

end

A similar script can be executed to print out the optimal foraging strategy.

31

7.5.5 Option Pricing

Consider the binomial option pricing model with current asset price p =1

2:00, strike price ¹p = 2:10, annual interest rate r = 0:05, annual volatility
¾ = 0:2, and time to expiration T = 0:5 years that is to be divided into
N = 50 intervals.

The ¯rst step required to solve the model numerically is to enter the
model parameters:

T = 0.5; % years to expiration

sigma = 0.2; % annual volatility

r = 0.05; % annual interest rate

strike = 2.1; % option strike price

p1 = 2; % current asset price

N = 200; % number of time intervals

tau = T/N; % length of time intervals

delta = exp(-r*tau); % discount factor

u = exp(sigma*sqrt(tau)); % up jump factor

q = 0.5+tau^2*(r-(sigma^2)/2)/(2*sigma); % up jump probability

The next step is to construct the state space:

price = p1*(u.^(-N:N))'; % asset prices

n = length(price); % number of states

There is no need to explicitly de¯ne an action space since actions are repre-
sented by integer indices.

Next, one constructs the reward and transition probability matrices:

% Construct reward function (actions exercise=1, hold=2)

f = [strike-price zeros(n,1)];

P = zeros(n,n);

for i=1:n

P(i,min(i+1,n)) = q;

P(i,max(i-1,1)) = 1-q;

end

P = [zeros(n,n); P];

P = sparse(P);

Here, action 1 is identi¯ed with the exercise decision and action 2 is identi¯ed
with the hold decision. Note how the transition probability matrix associ-
ated with the decision to exercise the option is identically the zero matrix.

32

This is done to ensure that the expected future value of an exercised option
always computes to zero. Also note that because the probability transition
matrix contains mostly zeros, it is stored in sparse matrix format to speed
up subsequent computations.

To solve the ¯nite horizon model via backward recursion, one must set the
terminal decision period and supply the post-terminal value function. Since
one is interested only in pricing the option in the current period, period 1, the
last value function produced by the backward recursion algorithm contains
all necessary information, and other value and optimal policy functions may
be discarded once new ones are generated. Thus one only needs single arrays
v and x to keep track of the optimal value and policy functions, respectively.

v = max(0,strike-price); % post-terminal value

for t=N:-1:1 % backward recursion

[v,x] = valmax(v,f,P,delta); % Bellman equation

end

Upon completion, v is an n by 1 array that contains the value of the American
option in period 1 for di®erent asset prices.

Once the optimal solution has been computed, one may plot the optimal
value function.

plot(price,v); axis([0 strike*2 -inf inf]);

xlabel('Asset Price'); ylabel('Put Option Premium');

7.5.6 Job Search

Consider the job search model with weekly wage w = 100, unemployment
bene¯t u = 55, and psychic bene¯t from leisure v = 60. Also assume the
probability of ¯nding a job is p = 0:90 and the probability of being ¯red is
q = 0:05. Further assume a weekly discount rate of ± = 0:99.

The ¯rst step required to solve the model numerically is to enter the
model parameters:

w = 100; % weekly wage

u = 55; % weekly unemp. benefit

v = 60; % weekly value of leisure

pfind = 0.90; % prob. of finding job

pfire = 0.05; % prob. of being fired

delta = 0.99; % discount factor

33

Note that by identifying both states and actions with their integer indices,
one does not need to explicitly generate the state and action space.

Next, one constructs the reward and transition probability matrices. Here,
we identify state 1 with joblessness and state 2 with employment, and identify
action 1 with inactivity and action 2 with activity:

% Construct reward function

f(:,1) = v; % gets leisure

f(1,2) = u; % gets benefit

f(2,2) = w; % gets wage

P1 = zeros(2,2); P2 = zeros(2,2);

P1(:,1) = 1; % remains unemployed

P2(1,1) = 1-pfind; % finds no job

P2(1,2) = pfind; % finds job

P2(2,1) = pfire; % gets fired

P2(2,2) = 1-pfire; % keeps job

P = [P1;P2];

To solve the in¯nite horizon model via policy iteration, one must set a
maximum number of iterations and a convergence tolerance, and must supply
an initial guess for the labor policy indices.

maxit = 1000; % maximum iterations

tol = 1.e-8; % convergence tolerance

x = ones(2,1); % initial policy

for it=1:maxit % policy iteration

xold = x; % store old policy

v = valpol(x,f,P,delta); % implied value

[v,x] = valmax(v,f,P,delta); % update policy

change = norm(x-xold); % change in policy

if x==xold, break, end; % convergence check

end

If convergence is reached, v will be n by 1 matrix containing the value function
and x will be n by 1 matrix containing optimal labor policy.

7.5.7 Optimal Irrigation

The ¯rst step required to solve the model numerically is to enter the model
parameters and construct the state and action spaces:

34

delta = 0.9; % discount factor

irrben = [-3;5;9;11]; % Irrigation Benefits to Farmers

recben = [-3;3;5;7]; % Recreational Benefits to Users

maxcap = 3; % maximum dam capacity

n = maxcap+1; % number of states

s = (0:1:maxcap)'; % vector of states

m = maxcap+1; % number of actions

x = (0:1:maxcap)'; % vector of actions

Next, one constructs the reward matrix:

f = zeros(n,m);

for i=1:n;

for k=1:m;

if k>i

f(i,k) = -inf;

else

f(i,k) = irrben(k) + recben(i-k+1);

end

end

end

Here, a reward matrix element is set to negative in¯nity if the irrigation level
exceeds the available water stock. This guarantees that the value maximiza-
tion algorithm will not chose an infeasible level.

Next, one constructs the transition probability matrix:

P = [];

for k=1:m

Pk = sparse(zeros(n,n));

for i=1:n;

j=i-k+1; j=max(1,j); j=min(n,j);

Pk(i,j) = Pk(i,j) + 0.4;

j=j+1; j=max(1,j); j=min(n,j);

Pk(i,j) = Pk(i,j) + 0.6;

end

P = [P;Pk];

end

To solve the in¯nite horizon model via function iteration, one must set a
maximum number of iterations and a convergence tolerance, and must supply

35

an initial guess for the in¯nite horizon value function. Because function
iteration generates successive approximants to the one in¯nite horizon value
function, the old approximant may be discarded once a new one is generated:

maxit = 300; % maximum iterations

tol = 1.e-8; % convergence tolerance

v = zeros(length(s),1); % initial value

for it=1:maxit % function iteration

vold = v; % store old value

[v,ix] = valmax(v,f,P,delta); % Bellman equation

change = norm(v-vold); % change in policy

fprintf ('\n%5i %10.1e',it,change) % print progress

if change<tol, break, end; % convergence check

end

Upon convergence, v will be n by 1 matrix containing the value function and
ix will be n by 1 matrix containing optimal irrigation policy indices. The
optimal irrigation levels may be recovered by typing x(ix).

To solve the in¯nite horizon model via policy iteration, one must set a
maximum number of iterations and a convergence tolerance, and must supply
an initial guess for the optimal irrigation policy indices.

maxit = 300; % maximum iterations

tol = 1.e-8; % convergence tolerance

ix = ones(length(s),1); % initial policy

for it=1:maxit % policy iteration

ixold = ix; % store old policy

v = valpol(ix,f,P,delta); % implied value

[v,ix] = valmax(v,f,P,delta); % update policy

change = norm(ix-ixold); % change in policy

fprintf ('\n%5i %10.1e',it,change) % print progress

if ix==ixold, break, end; % convergence check

end

Upon convergence, v will be n by 1 matrix containing the value function and
ix will be n by 1 matrix containing optimal irrigation level indices. The irri-
gation levels may be recovered by typing x(ix). Note that the intermediate
value functions v computed by valmax are not used by the algorithm.

Once the optimal solution has been computed, one may plot the optimal
value and irrigation policy functions:

36

figure(1); plot(s,x(ix)); xlabel('Stock'); ylabel('Optimal Irrigation');

figure(2); plot(s,v); xlabel('Stock'); ylabel('Optimal Value');

One can also produce a picture of the expected net social bene¯t over
time beginning from a stock level of, say, zero:

figure(3)

[vstar,Pstar,fstar] = valpol(ix,f,P,delta);

pi = zeros(size(s)); pi(1)=1; % Current state with certainty

maxtime = 20;

for t=0:maxtime;

expbenefit(t+1) = pi'*fstar; % Compute expected benefit

pi = Pstar'*pi; % Update conditional distribution

end

plot(0:maxtime,expbenefit); xlabel('Year'); ylabel('Expected Benefit');

37

