
Chapter 8

Discrete Time Continuous
State Dynamic Models: Theory

We now turn our attention to discrete time dynamic economic models whose
state spaces are closed convex sets in Euclidean space. Three classes of
discrete time, continuous state dynamic economic models are examined. One
class includes models of centralized decisionmaking by individuals, ¯rms, or
institutions. Examples include a central planner managing the harvest of a
natural resource so as to maximize social welfare, an entrepreneur planning
production and investment so as to maximize the present value of her ¯rm,
and a consumer making consumption and savings decisions so as to maximize
his expected lifetime utility.

A second class of discrete time continuous state dynamic model examined
includes models of strategic gaming between a small number of individuals,
¯rms, or institutions. Dynamic game models attempt to capture the behavior
of a small group of dynamically optimizing agents when the policy pursued
by one agent directly a®ects the welfare of another. Examples include a two
national grain marketing boards deciding quantities of grain to sell on world
markets and two individuals deciding how much to work and invest in the
presence of co-insurance.

A third class of discrete time continuous state dynamic economic model
examined includes partial and general equilibrium models of collective, de-
centralized economic behavior. Dynamic equilibrium models characterize
the behavior of a market, economic sector, or entire economy through in-
tertemporal arbitrage conditions that are enforced by the collective action
of atomistic dynamically optimizing agents. Often the behavior of agents at
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a given date depends on their expectations of what will happen at a future
date. If it is assumed that agent's expectations are consistent with the im-
plications of the model as a whole, then agents are said to possess rational
expectations. Examples of rational expectations models include arbitrage
pricing models for ¯nancial and physical assets.

Dynamic optimization and equilibrium models are closely related. The so-
lution to a continuous state dynamic optimization may often be equivalently
characterized by ¯rst-order intertemporal equilibrium conditions obtained
by di®erentiating Bellman's equation. Conversely, many dynamic equilib-
rium problems can be \integrated" into equivalent optimization formulations.
Whether cast in optimization or equilibrium form, most discrete time con-
tinuous state dynamic economic models pose in¯nite-dimensional ¯xed-point
problems that lack closed-form solution. This chapter provides an intro-
duction to the theory of discrete time continuous state dynamic economic
models. The subsequent chapter is devoted to numerical methods that may
be used to solve and analyze such models.

8.1 Continuous State Dynamic Programming

The discrete time, continuous state Markov decision model has the following
structure: In every period t, an agent observes the state of an economic
process s , takes an action x , and earns a reward f (s ; x ) that depends ont t t t

nboth the state of the process and the action taken. The state space S 2 < ,
which contains all the states attainable by the process, is a closed convex

mnonempty set. The action space X 2 < , which contains all actions that
may be taken by the agent, may be either a ¯nite set or a closed convex set.
The state of the economic process follows a controlled Markov probability
law. Speci¯cally, the state of the economic process in period t+1 will depend
on the state and action in period t and an exogenous random shock ² thatt+1

is unknown in period t:

s = g (s ; x ; ² ):t+1 t t t t+1

¤ T ¤The agent seeks a policy fx g of state-contingent actions x = x (s ) thatt tt t=1 t

will maximize the present value of current and expected future rewards over
time, discounted at a per-period factor ±:

X
tE ± f(s ; x ):t t

t
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Discrete time, continuous state Markov decision models also may have
a ¯nite or in¯nite horizon, and may be stochastic or deterministic. If the
model is stochastic, the exogenous random shocks ² are assumed identicallyt

distributed over time, mutually independent, and independent of past states
and actions. Also, ± is assumed to be less than one.

Continuous space Markov decision models may be classi¯ed according to
the cardinality of their action spaces. If the action space is ¯nite, the model
is said to be a discrete choice model. If the action space is a closed convex
set, the model is said to be a continuous choice model. In some instances, the
set of actions available to the agent may vary with the state of the process
s . In such cases, the restricted action space will be denoted X(s ).t t

Like the discrete Markov decision problem, the discrete time continuous
state Markov decision problem may be analyzed using dynamic programming
methods based on Bellman's Principle of Optimality. The Principle of Opti-
mality applied to the discrete time continuous state Markov decision model
yields Bellman's recursive functional equation:

V (s) = max ff (s; x) + ±E V (g(s; x; ²))g; s 2 S:t ² t+1
x2X(s)

Here, the value function V (s) speci¯es the maximum attainable sum of cur-t

rent and expected future rewards, given that the process is in state s in
t.

For the ¯nite horizon discrete time continuous state Markov decision
model to be well posed, a post-terminal value function V must be speci-T+1

¯ed by the analyst. The post-terminal value function is ¯xed by some eco-
nomically relevant terminal condition. In many applications, V will beT+1

identically zero, indicating that no rewards are earned by the agent beyond
the terminal decision period; while in other applications, V may specify aT+1

salvage value earned by the agent after making his ¯nal decision. Given the
post-terminal value function, the ¯nite horizon discrete time continuous state
Markov decision model may be solved recursively, at least in principle, by
repeated application of Bellman's equation: Having V , solve for V (s) forT+1 T

all states s; having V , solve for V (s) for all states s; having V , solveT T¡1 T¡1

for V (s) for all states s; and so on, until V (s) is derived for all states s.T¡2 1

The value function of the in¯nite horizon discrete time continuous state
Markov decision model will the same for every period and thus may be de-
noted simply by V . The in¯nite horizon value function V is characterized as
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the solution to the Bellman functional ¯xed-point equation

V (s) = max ff (s; x) + ±E V (g(s; x; ²))g; s 2 S:²
x2X(s)

If the discount factor ± is less than one and the reward function f is bounded,
the mapping underlying Bellman's equation is a strong contraction on the
space of bounded continuous functions and, thus, by The Contraction Map-
ping Theorem, will possess an unique solution.

In practice, however, solving the Bellman equation for either the ¯nite
or in¯nite horizon discrete-time continuous state Markov decision problem
is not analytically straightforward. The problem lies with the state space,
which contains an in¯nite number of points. Except in rare special cases, it
is not possible to derive analytically an explicit closed form expression for
the period t value function of the ¯nite horizon model, even if the period
t + 1 value function is known and possesses a closed-form. Thus, in the
typical case, solving the Bellman's equation requires explicitly solving an
in¯nite number of optimization problems, one for each state. This is an
impracticable task. As a rule, one can only solve a discrete time continuous
state Bellman equation numerically, a matter that we take up the following
chapter.

8.2 Euler Equilibrium Conditions

Like many optimization problems, the solution to a continuous state contin-
uous choice Markov decision problem can often be characterized by \¯rst-
order" equilibrium conditions. Characterizing the solution to a Markov de-
cision problem through its equilibrium conditions, widely called the Euler
conditions, serves two purposes. First, the Euler conditions admit an in-
tertemporal arbitrage interpretation that help the analyst understand and
explain the essential features of the optimized dynamic economic process.
Second, the Euler conditions can, in many instances, be solved more eas-
ily than Bellman's equation for the optimal solution of the Markov decision
model.

The equilibrium conditions of the continuous state continuous choice
Markov decision problem involve, not the value function, but its derivative

0¸ (s) = V (s):t t
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We call ¸ the shadow price function. It represents the value of the marginalt

unit of state variable to the optimizer or, equivalently, the price that the
optimizer imputes to the state variable.

Assume that both the state and action spaces are closed convex nonempty
sets ant that the reward functions f and the state transition functions g are
continuously di®erentiable of all orders there. The equilibrium conditions for
discrete time continuous state continuous choice Markov decision problem are
derived by applying the Karush-Kuhn-Tucker and Envelope Theorems to the
optimization problem embedded in Bellman's equation. Assuming actions
are unconstrained, the Karush-Kuhn-Tucker conditions for the embedded
unconstrained optimization problem imply that the optimal action x, given
state s in period t, satis¯es the equimarginality condition:

f (s; x) + ±E [¸ (g(s; x; ²))g (s; x; ²)] = 0:x ² t+1 x

The Envelope Theorem applied to the same problem implies:

¸ (s) = f (s; x) + ±E [¸ (g(s; x; ²)) ¢ g (s; x; ²)] :t s ² t+1 s

Here, f , g , f , and g denote partial derivatives. If the horizon is in¯nite,x x s s

then the shadow price functions ¸ will be the same in every period and thet

time subscript may be deleted.
The Euler conditions take a di®erent form when actions are subject to

constraints. Suppose, for example, that feasible actions are described by the
constrained action set

X(s) = fxjh(s; x) · 0g;

where h is a smooth function on S and X. Then the Karush-Kuhn-Tucker
and Envelope theorems imply that the optimal action x, given state s in
period t, satis¯es the complementarity conditions:

f (s; x) + ±E [¸ (g(s; x; ²)) ¢ g (s; x; ²)]¡ ¹h (s; x) = 0x ² t+1 x x

h(s; x) ? ¹ ¸ 0

¸ (s) = f (s; x) + ±E [¸ (g(s; x; ²)) ¢ g (s; x; ²)]¡ ¹h (s; x)t s ² t+1 s s

where ¹ is the shadow price associated with the inequality constraints at the
optimal action for the given state. Similar conditions can be obtained when
equality constraints are present.
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In many applications, the constraints on the actions are simple bounds
of the form

X(s) = fx j a(s) · x · b(s)g;

where a and b are di®erentiable functions of the state s. In these instances,
the Euler conditions simplify to the complementarity conditions:

f (s; x) + ±E [¸ (g(s; x; ²)) ¢ g (s; x; ²)] ? a(s) · x · b(s)x ² t+1 x

¡ 0 + 0¸ (s) = f (s; x) + ±E [¸ (g(s; x; ²)) ¢ g (s; x; ²)] + ¹ a (s) + ¹ b (s):t s ² t+1 s

where

¹ = f (s; x) + ±E [¸ (g(s; x; ²)) ¢ g (s; x; ²)]x ² t+1 x

is the marginal value of increasing the action level. The positive and negative
+ ¡parts of ¹, ¹ = max(0; ¹) and ¹ = min(0; ¹), are the shadow prices of the

upper and lower bounds, respectively.
An analyst is often interested with the longrun tendencies of the opti-

mized process. If the model is deterministic, it may possess a well-de¯ned
steady-state to which the process will converge over time. The steady-state is
characterized by the solution to a nonlinear equation. More speci¯cally, the
steady-state of an unconstrained deterministic problem, if it exists, consists

¤ ¤ ¤of a state s , an action x , and shadow price ¸ such that

¤ ¤ ¤ ¤ ¤f (s ; x ) + ±¸ g (s ; x ) = 0x x

¤ ¤ ¤ ¤ ¤ ¤¸ = f (s ; x ) + ±¸ g (s ; x )s s

¤ ¤ ¤s = g(s ; x ):

The steady-state of a constrained deterministic dynamic optimization prob-
lem can be similarly stated, except that it takes the form of a nonlinear
complementarity problem, rather than a nonlinear equation.

Knowledge of the steady-state of a deterministic Markov decision prob-
lem is often very useful. For most well-posed deterministic problems, the
optimized process will converge to the steady-state, regardless of initial con-
dition. For this reason, the analyst will often be satis¯ed to understand the
dynamics of the process around the steady-state. The steady-state condi-
tions, moreover, are equations or complementarity conditions that can be
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analyzed algebraically. In particular, the derivative of the longrun value of
an endogenous variable with respect to model parameters can often be de-
rived using standard di®erential calculus, even if the dynamic model itself
lacks a closed-form solution.

If the discrete time continuous state model is stochastic, the model will
not converge to a speci¯c state and action and the longrun behavior of
the model can only be described probabilistically. In these cases, how-
ever, it is often practically useful to derive the steady-state of the determin-
istic \certainty-equivalent" problem obtained by ¯xing all exogenous ran-
dom shocks at their respective means. Knowledge o the certainty-equivalent
steady-state can assists the analyst by providing a reasonable initial guess for
the optimal policy, value, and shadow price functions in iterative numerical
solution algorithms. Also, one can often solve a hard stochastic dynamic
model by ¯rst solving the certainty-equivalent model, and then solving a se-
ries of models obtained by gradually perturbing the variance of the shock
from zero back to its true level, always using the solution of one model as
the starting point for the algorithm used to solve the subsequent model.

8.3 Linear-Quadratic Control

Before proceeding to more complicated continuous state Markov decision
models we discuss a special case: the linear-quadratic control model. The
linear quadratic control problem is a Markov decision model with a quadratic
reward function

0 0 0f(s; x) = F + F s+ F x+ 0:5s F s+ s F x+ 0:5x F x0 s x ss sx xx

and a linear state transition function with additive shock

g(s; x; ²) = G +G s+G x+ ²:0 s x

Here, s is an n-by-1 state vector, x is an m-by-1 action vector, F is a known0

constant, F is a known n-by-1 vector, F is a known m-by-1 vector, F is as x ss

known n-by-n matrix, F is a known n-by-m matrix, F is a known m-by-msx xx

matrix, G is a known constant, G is a known n-by-1 vector, and G is a0 s x

known m-by-1 vector. Without loss of generality, the shock ² is assumed
to have a mean of zero. The linear-quadratic control problem admits no
constraints on the action.
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The linear-quadratic is of special importance because it is one of the
few discrete time continuous state Markov decision models with known ana-
lytic solution. By a conceptually simple but algebraically burdensome proof
omitted here, one can show that the solution to the in¯nite horizon linear
quadratic control model takes a particularly simple form. Speci¯cally, both
the optimal policy and shadow price functions are linear in the state variable:

x(s) = X +X s0 s

¸(s) = ¤ + ¤ s:0 s

Here, X is an m-by-1 vector, X is an m-by-n matrix, ¤ is an n-by-1 vector,0 s 0

and ¤ is an n-by-n matrix.s

The parameters of the shadow price function are characterized by the
nonlinear vector-¯xed point equations

0 0 0 ¡1 0¤ = ¡[±G ¤ G + F ][±G ¤ G + F ] [±G [¤ G + ¤ ] + F ]0 s x sx s x s 0 0 xs x xx x
0+±G [¤ G + ¤ ] + Fs 0 0 ss
0 0 0 ¡1 0 0¤ = ¡[±G ¤ G + F ][±G ¤ G + F ] [±G ¤ G + F ]s s x sx s x s ss x xx x sx
0+±G ¤ G + F :s s sss

These ¯xed-point equations can typically be solved in practice using a sim-
ple function iteration scheme. One ¯rst solves for ¤ by applying functions

iteration to the second equation, and then solves for ¤ by applying func-0

tion iteration to the ¯rst equation. Once the parameters of the shadow price
function have been computed, one can easily compute the parameters of the
optimal policy:

0 0 ¡1 0X = ¡[±G ¤ G + F ] [±G [¤ G + ¤ ] + F ]0 s x s 0 0 xx xx x

0 0 ¡1 0 0X = ¡[±G ¤ G + F ] [±G ¤ G + F ]s s x s sx xx x sx

The relative simplicity of the linear quadratic control problem derives
from the fact that the optimal policy and shadow price functions are known
to belong to a ¯nite parameter family. The parameters, moreover, are charac-
terized as the solution to a well-de¯ned nonlinear vector ¯xed-point equation.
Thus, the apparently in¯nite dimensional Euler functional ¯xed-point equa-
tion is converted into ¯nite dimensional vector ¯xed-point equation that may
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be solved using standard nonlinear equation solution methods. This simpli-
¯cation, unfortunately, is not generally possible for other types of discrete
time continuous state Markov decision models.

A second simplifying feature of the linear-quadratic control problem is
that the shadow price and optimal policy functions do not depend on the
distribution of the state shock. This is known as the certainty-equivalence
property of the linear quadratic control problem. It asserts that the solution
of the stochastic problem is the same as the solution of the deterministic
problem obtained by ¯xing the state shock ² at its mean of zero. Certainty
equivalence also is not a property of more general discrete time continuous
state Markov decision models.

Because linear quadratic control models are easy to solve, many analysts
compute approximate solutions to more general Markov decision models us-
ing the method of linear quadratic approximation. Linear quadratic approxi-
mation calls for all constraints of the general problem to be discarded, for its
reward function to be replaced with its second-order quadratic approximation
about the steady-state

0f(s; x) ¼ f + f (s¡ ¹s) + f (x¡ ¹x) + 0:5(x¡ ¹x) f (x¡ ¹x)0 s x xx

0 0+0:5(s¡ ¹s) f (s¡ ¹s) + (s¡ ¹s) f (x¡ ¹x)ss sx

and for its state transition function to be replaced with its ¯rst-order, certainty-
equivalent linear approximation about the steady state

g(s; x; ²) ¼ ¹s+ g (s¡ ¹s) + g (x¡ ¹x):s x

¹Here, ¹s, ¹x, and ¸ denote the steady-state state, action, and shadow price of
the original model, f represents the value of the of the reward at the steady0

state, and f , f , f , f , f , g , and g , represent derivatives of the rewards x ss sx xx s x

and state transition functions at the steady state.
Exploiting properties of the derivative of the reward and state transition

functions at the steady state, the solution to the linear quadratic approxi-
mation may be simpli¯ed to

¹¸(s) = ¸+ ¤ (s¡ ¹s)s

x(s) = ¹x+X (s¡ ¹s)s
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where

0 0 0 ¡1 0 0¤ = ¡[±g ¤ g + f ][±g ¤ g + f ] [±g ¤ g + f ]s s x sx s x s ss x xx x sx
0+±g ¤ g + fs s sss
0 0 ¡1 0 0X = ¡[±g ¤ g + f ] [±g ¤ g + f ]s s x s sx xx x sx

These equations can be easily solved using function iteration methods.

8.4 Economic Examples

8.4.1 One Sector Optimal Growth

Consider an economy comprising a single composite good. Each year t be-
gins with a predetermined amount of the good s , of which an amount xt t

is invested and the remainder is consumed. The social welfare derived from
consumption in year t is u(s ¡ x ). The amount of good available in yeart t

t + 1 is s = °x + ² f(x ) where ° is the capital survival rate, f is thet+1 t t+1 t

aggregate production function, and ² is a positive production shock witht+1

mean 1. What consumption-investment policy maximizes the sum of current
and expected future welfare over an in¯nite horizon?

This is an in¯nite horizon, stochastic model with time t 2 f0; 1; 2; : : :g
measured in years. The model has a single state variable

s = stock of good at beginning of year tt

s 2 [0;1)t

and a single action variable

x = amount of good invested in year tt

subject to the constraint

0 · x · s :t t

The reward earned by the optimizing agent is

u(s ¡ x ) = social utility in t:t t

State transitions are governed by

s = °x + ² f(x )t+1 t t+1 t
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where

² = productivity shock in year t:t

The value function

V (s) = sum of current and expected future social welfare

satis¯es Bellman's equation

V (s) = max fu(s¡ x) + ±EV (°x+ ²f(x))g; s > 0:
0·x·s

0Assuming u (0) = ¡1 and f (0) = 0, the solution to Bellman's equation
will always be internal, and the shadow price function

¸(s) = shadow price of stock

satis¯es the Euler equilibrium conditions:

0 0u (s¡ x)¡ ±E [¸(°x+ ²f(x)) ¢ (° + ²f (x))] = 0

0¸(s) = u (s¡ x):

Thus, along the optimal path,
h i

0 0 0u = ±E u ¢ (° + ² f )t t+1t t+1 t

0 0where u is marginal utility and ² f is the ex-post marginal product oft+1t t

capital. That is, on the margin, the utility derived from a unit of good today
must equal the discounted expected utility derived from investing the good
and consuming it and its product tomorrow.

The certainty-equivalent steady-state is obtained by ¯xing ², its mean 1.
¤ ¤The certainty-equivalent steady-state stock of good s , investment level x ,

¤and shadow price ¸ are characterized by the nonlinear equation system

0 ¤ ¤ ¤ 0 ¤u (s ¡ x ) = ±¸ (° + f (x ))

¤ 0 ¤ ¤¸ = u (s ¡ x )

¤ ¤ ¤s = °x + f(x ):

The certainty-equivalent steady-state conditions imply the golden rule:
0 ¤1 ¡ ° + r = f (x ). That is, in deterministic steady-state, the marginal
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product of capital equals the capital depreciation rate plus the interest rate.
Totally di®erentiating the equation system above with respect to the interest
rate r:

¤@s 1 + r
= < 000@r f

¤@x 1
= < 000@r f

00¤@¸ u r
= > 0:00@r f

That is, a one-time rise in the interest rate will reduce the deterministic
steady-state supply and investment, and will raise the shadow price.

8.4.2 Nonrenewable Resource Problem

A social planner wishes to maximize the discounted sum of net social surplus
from harvesting a nonrenewable resource over an in¯nite horizon. For year
t, let s denote the resource stock at the beginning of the year, let x denotet t

the amount of the resource harvested, let c = c(x ) denote the total cost oft t

harvesting, and let p = p(x ) denote the market clearing price. What is thet t

socially optimal harvest policy?
This is an in¯nite horizon, deterministic model with time t 2 f0; 1; 2; : : :g

measured in years. There is one state variable,

s = stock of resource at beginning of year tt

s 2 [0;1);t

and one action variable,

x = amount of resource harvested in year t,t

subject to the constraint

0 · x · s :t t

The reward earned by the optimizing agent is
Z xt

p(») d» ¡ c(x ):t
0
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State transitions are governed by

s = s ¡ x :t+1 t t

The value function

V (s) = net social value of resource stock

satis¯es Bellman's equation
Z x

V (s) = max f p(») d» ¡ c(x) + ±V (s¡ x)g; s ¸ 0:
0·x·s 0

Assuming p(0) = 1 and g(0) = 0, the solution to the optimization
problem embedded in Bellman's equation will be internal. Under these as-
sumptions, the shadow price function

¸(s) = shadow price of resource

satis¯es the Euler conditions, which stipulate that for every stock level s > 0
there is a harvest level x such that

0p(x) = c (x) + ±¸(s¡ x)

¸(s) = ±¸(s¡ x):

Thus, along the optimal path

0p = c + ¸t tt

¸ = ±¸t t+1

0where p is the market price and c is the marginal harvest cost at t. That is,t t

the market price of the harvested resource equals the marginal value of the
unharvested resource plus the marginal cost of harvesting it. Also, the price
of the harvested resource grows at the rate of interest. The steady-state,

¤which occurs when stock is s = 0, is an uninteresting case.

Figure. Optimal harvest path of a renewable resource.
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8.4.3 Renewable Resource Problem

A social planner wishes to maximize the discounted sum of net social surplus
from harvesting a renewable resource over an in¯nite horizon. For year t,
let s denote the resource stock at the beginning of the year, let x denotet t

the amount of the resource harvested, let c = c(x ) denote the total cost oft t

harvesting, and let p = p(x ) denote the market clearing price. Growth int t

the stock level is given by s = g(s ¡ x ). What is the socially optimalt+1 t t

harvest policy?
This is an in¯nite horizon, deterministic model with time t 2 f0; 1; 2; : : :g

measured in years. There is one state variable,

s = stock of resource at beginning of year tt

s 2 [0;1);t

and one action variable,

x = amount of resource harvested in year t,t

subject to the constraint

0 · x · s :t t

The reward earned by the optimizing agent is
Z xt

p(») d» ¡ c(x ):t
0

State transitions are governed by

s = g(s ¡ x ):t+1 t t

The value function

V (s) = net social value of resource stock

satis¯es Bellman's equation
Z x

V (s) = max f p(») d» ¡ c(x) + ±V (g(s¡ x))g:
0·x·s 0

Assuming p(0) = 1 and g(0) = 0, the solution to the optimization
problem embedded in Bellman's equation will be internal. Under these as-
sumptions the shadow price function

¸(s) = shadow price of resource
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satis¯es the Euler conditions, which stipulate that for every stock level s > 0
there is a harvest level x such that

0 0p(x) = c (x) + ±¸(g(s¡ x))g (s¡ x)

0¸(s) = ±¸(g(s¡ x))g (s¡ x):

Thus, along the optimal path

0p = c + ¸t tt

0¸ = ±¸ gt t+1 t

0 0where p is the market price, c is the marginal harvest cost, and g is thet t t

marginal future yield of stock in t. Thus, the market price of the harvested
resource must cover both the marginal value of the unharvested resource and
the marginal cost of harvesting it. Moreover, the value of one unit of resource
today equals the discounted value of its yield tomorrow.

¤ ¤ ¤The steady-state resource stock s , harvest x , and shadow price ¸ solve
the equation system

¤ 0 ¤ ¤ 0 ¤ ¤p(x ) = c (x ) + ±¸ g (s ¡ x )

¤ ¤ 0 ¤ ¤¸ = ±¸ g (s ¡ x )

¤ ¤ ¤s = g(s ¡ x ):

0 ¤ ¤These conditions imply g (s ¡ x ) ¡ 1 = r. That is, in steady-state, the
marginal yield equals the interest rate.

Totally di®erentiating the equation system above:

¤@s 1 + r
= < 000@r g

¤@x r
= ¡ < 000@r g

00¤ 0@¸ (c ¡ p )r
= < 0:00@r g

That is, as the interest rate rises, the steady-state stock, the steady-state
harvest, and the steady-state shadow price all fall.
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Figure. Steady-state optimal harvest of a renewable resource.

8.4.4 Feedstock Problem

An animal weighing s pounds in period t = 1 is to be fed up to period T +1,1

at which time it will be sold at a price of p dollars per pound. The cost of
increasing the animal's weight by an amount x during period t is given byt

c(s ; x ) where s is the animal's weight at the beginning of t. What feedingt t t

strategy maximizes the present value of pro¯t?
This is a ¯nite horizon, deterministic model with time t 2 f1; 2; : : : ; Tg

measured in feeding periods. There is one state variable,

s = weight of animal at beginning of period tt

s 2 [0;1);t

and one action variable,

x = weight gain during period t;t

subject only to a nonnegativity constraint.
The reward earned by the hog farmer in feeding periods is

¡c(s ; x ):t t

State transitions are governed by

s = s + x :t+1 t t

The value function

V (s) = value of animal weighing pounds s in period tt

satis¯es Bellman's equation

V (s) = maxf¡c(s; x) + ±V (s+ x)g;t t+1
x¸0

subject to the terminal condition

V (s) ´ ps:T+1

The shadow price function

¸ (s) = shadow price of animal mass in period tt
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satis¯es the Euler conditions, which stipulate that for each decision period t
and weight level s > 0, the optimal weight gain x satis¯es

±¸ (s+ x)¡ c (s; x) ? x ¸ 0t+1 x

¸ (s) = ¡c (s; x) + ±¸ (s+ x):t s t+1

For the post-terminal period,

¸ (s) = p:T+1

Thus, along an optimal path, assuming an internal solution, we have:

±¸ = c (s ; x )t+1 x t t

c (s ; x ) = ¸ ¡ ±¸ :s t t t t+1

In other words, the marginal cost of feeding the animal this period must
equal the discounted value of the additional body mass obtained the following
period. Also, the marginal value of body mass declines at the same rate at
which it weight gains become increasingly more costly.

Figure. Feedstock problem dynamics.

8.4.5 Optimal Growth with Debt

Reconsider the optimal growth problem when the central planner can carry
an external debt load d whose unit cost ´ +´ q rises with the debt to assett 0 1 t

ratio q = d =s .t t t

This is an in¯nite horizon, stochastic model with time t 2 f0; 1; 2; : : :g
measured in years. There are two state variables:

s = stock of good at beginning of year tt

s 2 [0;1)t

and

d = debt load at beginning of year tt

d 2 (¡1;1):t

17



Here, d < 0 implies that the economy runs a surplus. There are two actiont

variables:

x = amount of good invested in year tt

c = amount of good consumed in year t;t

both subject to nonnegativity constraints.
The reward earned by the optimizing agent is

u(c) = social utility in t:

Supply state transitions are governed by

s = °x + ² f(x )t+1 t t+1 t

where

² = productivity shock in year t:t

Debt state transitions are governed by

d = d + b ;t+1 t t

where

b = c + x + (´ + ´ d =s ) ¢ d ¡ s ;t t t 0 1 t t t t

indicates net borrowing in year t.
The value function

V (s; d) = sum of current and expected future social welfare

satis¯es Bellman's equation

V (s; d) = max fu(c) + ±EV (°x+ ²f(x); d+ b)g
x¸0;c¸0

where b = x+ c+ (´ + ´ d=s) ¢ d¡ s) is net borrowing.0 1
0Assuming u (0) = ¡1 and f (0) = 0, the solution to Bellman's equation

will always be internal, and the shadow price and cost functions

@V
¸(s; d) = (s; d) = shadow price of stock

@s
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and

@V
¹(s; d) = (s; d) = shadow cost of debt

@d

satisfy the Euler equilibrium conditions, which stipulate that for every stock
level s > 0 and debt level d,

0u (c) + ±E¹(°x+ ²f(x); d + b) = 0

0±E [¸(°x+ ²f(x); d+ b) ¢ (° + ²f (x))] + ±E¹(°x+ ²f (x); d + b) = 0

2¸(s; d) = ¡±E[¹(°x+ ²f(x); d + b) ¢ (1 + ´ q )]1

¹(s; d) = ±E[¹(°x+ ²f(x); d+ b) ¢ (1 + ´ + 2´ q)]0 1

where q = d=s is the debt to asset ratio.
The certainty-equivalent steady-state is obtained by assuming ² = 1 with

¤probability 1. The certainty-equivalent steady-state stock of good s , debt
¤ ¤ ¤ ¤ ¤load d , debt-asset ratio q = d =s , investment level x , consumption level

¤ ¤ ¤c , stock shadow price ¸ , and debt shadow cost ¹ solve the equation system

0 ¤u (c) + ±¹ = 0

¤ 0 ¤ ¤±¸ (° + f (x )) + ±¹ = 0

¤ ¤ ¤2¸ = ¡±¹ (1 + ´ q )1

¤ ¤ ¤¹ = ±¹ (1 + ´ + 2´ q )0 1

¤ ¤ ¤s = °x + f(x )

¤ ¤ ¤ ¤ ¤s = x + c + (´ + ´ q )d0 1

¤ ¤ ¤q = d =s :

¤These conditions imply a steady-state optimal debt load q = (r¡´ )=(2´ ),0 1

which increases with the discount rate r but falls with the base cost of debt
´ .0
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8.4.6 A Production-Inventory Problem

The output price faced by a competitive ¯rm follows a ¯rst-order autoregres-
sive process:

p = ®+ °p + ² ; j°j < 1; ² i.i.d.t+1 t t+1 t

The cost of producing q units in period t is c(q ). The ¯rm may store acrosst t

periods at a constant unit cost k. Assuming p is known at the time thet

period t production-inventory decision is made, what production-inventory
policy maximizes the sum of current and expected future pro¯ts?

This is an in¯nite horizon, stochastic model with time t 2 f0; 1; 2; : : :g
measured in years. There are two state variables:

b = beginning inventories;t

p = current market price:t

There are two action variables:

q = current productiont

x = ending inventoriest

subject to the constraints

q ¸ 0t

x ¸ 0t

x · q + b ;t t t

that is, production, inventories, and deliveries must be nonnegative.
The reward earned by the optimizing agent is

p ¢ (q + b ¡ x )¡ c(q )¡ kx :t t t t t t

State transitions are governed by

p = ®+ °p + ²t+1 t t+1

where

² = price process innovation in year tt
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and

b = x :t+1 t

The value function

V (b; p) = value of ¯rm given inventories b and price p

satis¯es Bellman's equation

V (b; p) = max fp(q + b¡ x)¡ c(q)¡ kx+ ±EV (x; ®+ °p + ²)g:
0·q;0·x·q+b

The shadow price function

¸(b; p) = V (b; p) = marginal value of inventoriesb

satis¯es the Euler conditions, which require that for every beginning inven-
tory level b and price p, there is a production level q, ending inventory level
x, and material balance shadow price ¹ such that

±E¸(b; ® + °p+ ²)¡ p¡ k ¡ ¹ ? x ¸ 0

0p¡ c (q) ? q ¸ 0

q + b¡ x ? ¹ ¸ 0

¸(b; p) = p¡ ¹

Along the optimal path, if deliveries and storage are positive,

±E p ¡ p ¡ k = 0t t+1 t

0p = c :t t

That is, marginal revenue equals the marginal production cost and the dis-
counted expected future price equals the current output price plus the cost
of storage.

The certainty-equivalent deterministic problem is obtained by assuming p
is ¯xed at its longrun mean ®=(1¡°). The certainty-equivalent steady-state
inventories are 0 and production is constant and implicitly de¯ned by the
short-run pro¯t maximization condition:

0p = c (q):
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8.5 Rational Expectations Models

By de¯nition, agents in rational expectations models take into account how
their actions will a®ect them in the future and form expectations that coin-
cide with those implied by the model as a whole. Most discrete time rational
expectation models take the following form: At the beginning of period t, an
economic system emerges in a state s . The agents in the economic systemt

observe the state of the system and, by pursuing their individual objectives,
formulate a collective behavioral response x . The economic system thent

evolves to a new state s that depends on the current state s and responset+1 t

x , and an exogenous random shock ² that is realized only after the agentst t+1

respond at time t.
More formally, the behavioral responses of economic agents and the state

transitions of the economic system are governed by a structural law of the
form

f(s ; x ; E x ) = 0;t t t t+1

and the dynamic law

s = g(s ; x ; ² ):t+1 t t t+1

The stipulation that only the expectation of the subsequent period's behav-
ioral response is relevant to the current response of agents is more general
than ¯rst appears. By introducing new accounting variables, the current re-
sponse can be made to depend on the expectation of any function of future
states and responses, including states and responses more than one period
into the future.

nThe state space S 2 < , which contains all the states attainable by
mthe economic system, and the response space X 2 < , which contains all

behavioral responses that may be made by the economic agents, are both
assumed to be closed convex nonempty sets. In some instances, the range of
admissible responses may vary with the state of the process s . In such cases,t

the restricted response space will be denoted X(s ) and will be assumed tot

be a closed convex nonempty set. The structure f and dynamic law g are
assumed to be twice continuously di®erentiable on S and X and the per-
period discount factor ± is assumed to be less than one. The exogenous
random shocks ² are assumed identically distributed over time, mutuallyt

independent, and independent of past states and responses.

22



The primary task facing an economic analyst is to explain the behavioral
response x = x(s) of agents in each state s attainable by the process. The re-
sponse function x(¢) is characterized implicitly as the solution to a functional
equation:

f(s; x(s);Ex(g(s; x(s); ²)) = 0 8s 2 S:
In many instances, this functional equation will not possess a closed-form
solution and can only be solved numerically.

8.5.1 Lucas-Prescott Asset Pricing Model

The basic rational expectations asset pricing model has been studied ex-
tensively by macroeconomists. The model assumes the existence of a pure
exchange economy in which a representative in¯nitely-lived agent allocates
real wealth between immediate consumption q and investment in an indext

asset i . The agent's objective is to maximize expected lifetime utility subjectt

to an intertemporal budget constraint:
1X

kmax E f ± u(q )g (8.1)t t+k

k=0

s.t. q + i = i r :t t t¡1 t

Here, E is the conditional expectation operator given information availablet

at time t, ± is the agent's subjective discount rate, i is the amount of assett

held by the agent at the end of period t, and r is the asset's return in periodt

t.
Under mild regularity conditions, the agent's dynamic optimization prob-

lem has an unique solution that satis¯es the ¯rst-order Euler condition:
0 0±E [u (q )r ] = u (q ):t t+1 t+1 t

The Euler condition asserts that along an optimal consumption path the
marginal utility of consuming one unit of wealth today equals the marginal
bene¯t of investing the unit of wealth and consuming it and its dividends
tomorrow.

The asset pricing model may be completed by specifying the utility func-
tion, introducing a production sector, and imposing a market clearing con-
dition. Assume that the agent's preferences exhibit constant relative risk-
aversion ° > 0:

1¡°q
u(q) = :

1¡ °
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We assume that aggregate output y is exogenous and follows a stationaryt

¯rst-order autoregressive process whose innovation ² is normally distributedt

white noise with standard deviation ¾ :²

y = ®+ ¯y + ² :t t¡1 t

And we assume that output is consumed entirely in the period that it is
produced:

y = q :t t

A formal solution to the rational expectations asset pricing model is a rule
that gives the equilibrium asset return r as a function of current and pastt

realizations of the driving exogenous output process. Lucas demonstrated
that when the output process is stationary and ¯rst-order Markovian, as
assumed here, the rule is well-de¯ned. In particular, the equilibrium return
in period t will be a stationary deterministic function of the contemporaneous
output level y :t

r = ¸(y ):t t

From the dynamic equilibrium conditions, it follows that the asset return
function ¸ is characterized by the equilibrium condition:

¡° ¡°E ±(®+ ¯y + ²) ¸(®+ ¯y + ²) = y 8y:²

The Euler functional equation of the asset pricing model is nonlinear and
lacks a known a closed-form solution. It can only be solved approximately
using numerical functional equation methods.

8.5.2 Competitive Storage Under Uncertainty

The centerpiece of the classical theory of storage is the competitive intertem-
poral arbitrage equation

±E p ¡ p = c(x ):t t+1 t t

The intertemporal arbitrage equation asserts that, in equilibrium, expected
appreciation in the commodity price p must equal the unit cost of storaget

c(x ). Dynamic equilibrium in the commodity market is enforced by compet-t

itive expected-pro¯t-maximizing storers. Whenever expected appreciation
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exceeds the storage cost, the attendant pro¯ts induce storers to increase
their stockholdings until the equilibrium is restored. Conversely, whenever
the storage cost exceeds expected appreciation, the attendant loses induce
storers to decrease their stockholdings until the equilibrium is restored.

According to the classical theory, the unit storage cost c(x ) is a nonde-t

creasing function of the amount stored x . The unit storage cost representst

the marginal physical cost of storage less the marginal \convenience yield",
which is the amount processors are willing to pay to have su±cient stocks
available to avoid costly production adjustments. If stock levels are high,
the marginal convenience yield is zero and the unit storage cost equals the
physical storage cost. As stock levels approach zero, however, the marginal
convenience yield rises, eventually resulting in a negative unit storage cost.
The classical storage model has received strong empirical support over the
years and captures the key stylized fact of markets for storable commodities:
the coincidence of negative intertemporal price spreads and low, but positive,
stock levels.

The modern theory of storage extends the classical model to a partial equi-
librium model of price-quantity determination by appending supply, demand,
and market clearing conditions to the intertemporal arbitrage equation. For
the sake of discussion, let us consider a simple agricultural commodity market
model with exogenous production. Denote quantity consumed by q , quan-t

tity harvested h , available supply by s , and the per-period discount factort t

by ±. Assume that the market clearing price is a decreasing function of the
quantity consumed:

p = p(q );t t

that available supply is either consumed in the current period or stored:

s = q + x ;t t t

and that the supply available next period will be the sum of current carryout
and next period's harvest:

s = x + h :t+1 t t+1

The modern storage model is closed by assuming that price expectations are
consistent with the other structural assumptions of the model. The so-called
rational expectations assumption endogenizes the expected future price while
preserving internal consistency of the model.
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The solution of the nonlinear rational expectations commodity market
model is illustrated in ¯gures (*)-(*). These ¯gures show, respectively, equi-
librium price and carryout in terms of available supply. For comparison,
the ¯rst ¯gure also shows the inverse consumption demand function p(¢),
which gives the market price that would prevail in the absence of storage.
At low supply levels, there is e®ectively no storage and the equilibrium price
coincides with the inverse consumption demand function. Over this range,
acreage supply is not signi¯cantly a®ected by variations in available supply.
At su±ciently high supply levels, incentives for speculative storage begin to
appear. Over this range, the equilibrium price, which re°ects both consump-
tion and storage demand, exceeds the inverse consumption demand function.

The nonlinear rational expectations commodity market model cannot be
solved using standard algebraic techniques. To see this, let ¸(s) denote the
equilibrium price implied by the model for a given available supply s. Having
the equilibrium price function ¸(¢), the rational ex-ante expected price could
be computed by integrating over the harvest distribution:

E p = E ¸(x + h )t t+1 y t t+1

Appending this equation to the previous three market equations would result
in a system of four nonlinear algebraic equations that in principle could be
solved for all the unknowns.

Unfortunately, the equilibrium price function ¸(¢) is not known a priori
and deriving it, the key to solving the commodity market model, is a non-
trivial functional equation problem. Combining all the behavioral relations,
we see that ¸(¢) must simultaneously satisfy an in¯nite number of conditions.
Speci¯cally, for every realizable supply s,

¸(s) = p(s¡ x)

where stock x solves

±E ¸(x+ h)¡ p(s¡ x) = c(x)y

In the general framework developed for rational expectations models above,
available supply is only state variable, price and carryout are the response
variables, and harvest is the random driving shock. Only the relationship
between price and supply needs to be derived, since only future price ex-
pectations a®ect behavior, and once the price and supply are known, the
carryout may be computed from the inverse demand function.
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An alternative way to pose the rational expectations commodity storage
model is to integrate it into an equivalent optimization problem. Consider
the problem of maximizing the discounted expected sum of consumer surplus
less storage costs. The resulting dynamic optimization problem, with state
variable s and action variable x, yields the following Bellman equation:

Z Zs¡x x

V (s) = max f p(») d» ¡ c(») d» + ±EV (x+ h)g; s ¸ 0:
0·x·s 0 0

One may verify that the Euler equilibrium conditions for this dynamic op-
timization problem are precisely the equilibrium conditions of the original
rational expectations model, provided that the shadow price of the optimiza-
tion problem is identi¯ed with the rational expectations equilibrium market
price.

¤Finally, one might compute certainty-equivalent steady-state supply s ,
¤ ¤storage x , and price p by solving the equation system

¤ ¤ ¤ ¤±p = f(s ¡ x ) + c(x )

¤ ¤ ¤p = f(s ¡ x )

¤ ¤ ¤s = x + h

¤where h is the expected harvest.

8.5.3 Spatial-Temporal Equilibrium

8.6 Dynamic Games

Dynamic game models attempt to capture strategic interactions among a
small number of dynamically optimizing agents when the actions of one agent
a®ects the welfare of another. For the sake of brevity, we consider only two
agent games. The theory and methods developed below, however, can be
generalized to accommodate an arbitrary number of agents.

Denote by s the state of the process controlled by agent i, and denote byi

x the action taken by agent i. In a dynamic game setting, agent i receives ai

reward that depends not only on the state of his own process and the action
he takes, but also the state s of the other agent's process and the action xj j

that he takes. Speci¯cally, the reward earned by agent i at any point in time
is f (s ; s ; x ; x ).i i j i j
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As with a static game, the equilibrium solution to a dynamic game de-
pends on the information available to the agents and the class of strategies
they are allowed to pursue. For simplicity, we consider only the most com-
mon game structure. Speci¯cally, we will seek a noncooperative Nash game
equilibrium under the assumption that each agent knows the other agent's
state at any point in time, and that each agent also knows the policy fol-
lowed by the other agent. A dynamic Nash game equilibrium exists when
each agent's policy maximizes his own stream of current and expected future
rewards given that the other agent follows his policy.

The dynamic Nash game equilibrium may be formally expressed by a pair
of Bellman equations, one for each agent. The Bellman equation for agent i
takes the form

V (s ; s ) = max ff (s ; s ; x ; x ) + ±E V (g (s ; x ; ² ); g (s ; x ; ² ))g;i i j i i j i j ² i 1 1 1 1 2 2 2 2
x2X(s ;s )i j

for s ; s 2 S. Here, V (s ; s ) denotes the maximum current and expectedi j i i j

future rewards that can be earned by agent i, given that agent j remains
committed to his policy. Solving for the Nash equilibrium involves ¯nding
policies x and x for every state that solve the Bellman equations of bothi j

agents simultaneously.
Let ¸ denote the partial derivative of agent i's value function with re-ii

spect to the state controlled by him:

@Vi
¸ (s ; s ) = (s ; s ) 8s ; s :ii 1 2 1 2 1 2

@si

Also, let ¸ denote the partial derivative of agent i's value function withij

respect to the state controlled by agent j:

@Vi
¸ (s ; s ) = (s ; s ) 8s ; s :ij 1 2 1 2 1 2

@sj

The shadow price function ¸ represents agent i's valuation of a marginalii

unit of the state controlled by him; the shadow price function ¸ representsij

agent i's valuation of a marginal unit of the state controlled by his rival.
The ¯rst-order equilibrium conditions for the Nash dynamic game are de-

rived by applying the Karush-Kuhn-Tucker and Envelope Theorems to the
optimization problems embedded in the two Bellman equations. Assuming
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actions are unconstrained, the Karush-Kuhn-Tucker conditions for the em-
bedded unconstrained optimization problems imply that the optimal action
x for agent i, given state s ; s , must satisfy the equimarginality condition:i i j

" #
@f @gi i0 0(s ; s ; x ; x ) + ±E ¸ (s ; s ) (s ; x ; ² ) = 01 2 1 2 ² ii i i i1 2@x @xi i

0where s = g (s ; x ; ² ). The Envelope Theorem applied to the same problemi i i ii

implies:

@f @f @xi i j
¸ (s ; s ) = (s ; s ; x ; x ) + (s ; s ; x ; x ) (s ; s )+ii 1 2 1 2 1 2 1 2 1 2 1 2

@s @x @si j i

" #
@g @g @xi j j0 0 0 0±E ¸ (s ; s ) (s ; x ; ² ) + ¸ (s ; s ) (s ; x ; ² ) (s ; s )² ii i i i ij j j j 1 21 2 1 2@s @x @si j i

@f @f @xi i j
¸ (s ; s ) = (s ; s ; x ; x ) + (s ; s ; x ; x ) (s ; s )+ij 1 2 1 2 1 2 1 2 1 2 1 2

@s @x @sj j j

" #
@g @g @xj j j0 0 0 0±E ¸ (s ; s ) (s ; x ; ² ) + ¸ (s ; s ) (s ; x ; ² ) (s ; s ) :² ij j j j ij j j j 1 21 2 1 2@s @x @sj j j

The Euler conditions for a two agent dynamic game thus comprise six func-
tional equations in six unknown functions: the two own-shadow price func-
tions, the two cross-shadow price functions, and the two optimal policy func-
tions.

8.6.1 Redistribution Game

Consider an economy comprising two agents and a single composite good.
Each year t begins with predetermined amounts of the good s and s held1t 2t

by the two agents, respectively. Given the amounts on hand, each agent
selects an amount x to be invested, and consumes the rest. The utilityit

derived from consumption in year t by agent i is u (s ¡ x ). Given eachi it it

agent's investment decision, the amount of good available in year t + 1 to
agent i will be s = g (x ; ² ) = °x + ² f (x ) where ° is thei;t+1 i it i;t+1 it i;t+1 i it

capital survival rate, f is agent i's production function, and ² is a positivei i;t+1

production shock with mean 1 that is speci¯c to agent i.
Suppose now that the two agents agree to insure against a string of pro-

duction disasters by entering into a contract to share collective wealth in
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perpetuity. Speci¯cally, the agents agree that, in any given period t, the
wealthier of the two agents will transfer a certain proportion ¾ of the wealth
di®erential to the poorer agent. Under this scheme, if agent i begins period t
with wealth s , his post-transfer wealth will be ŝ = s ¡ ¾(s ¡ s ). If theit it it it jt

wealth transfer is enforceable, but agents are free to pursue consumption and
investments freely, moral hazard will arise. In particular, both agents will
have incentives to change their consumption and investment policies upon
introduction of insurance. How will insurance a®ect the agents' investment
behavior, and for what initial wealth states s and s and share parameter1t 2t

¾ will both agents be willing to enter into the insurance contract?
The essence of the dynamic Nash game equilibrium for the redistribution

game is captured by a pair of Bellman equations, one for each agent. The
Bellman equation for agent i takes the form

V (s ; s ) = max fu (ŝ ¡ x ) + ±E V (g (x ; ² ); g (x ; ² ))g;i i j i i i ² i i i i j j j
0·x ·ŝi i

where ŝ = s ¡¾(s +s ), for s ; s 2 S. Here, V (s ; s ) denotes the maximumi i i j i j i i j

current and expected future rewards that can be earned by agent i, given that
agent j remains committed to his policy.

The ¯rst-order equilibrium conditions for the Nash dynamic game are
derived by applying the Karush-Kuhn-Tucker and Envelope Theorems to the
optimization problems embedded in the two Bellman equations. Assuming
an internal solution to each agent's investment problem, the Karush-Kuhn-
Tucker conditions imply that the optimal investment x for agent i, giveni

wealths s ; s , must satisfy the equimarginality condition:i j " #
@gi0 0 0¡u (ŝ ¡ x ) + ±E ¸ (s ; s ) (x ; ² ) = 0i i ² ii i ii 1 2 @xi

0where s = g (x ; ² ). The Envelope Theorem applied to the same problemi i ii

implies:
" #

@g @xj j0 0 0¸ (s ; s ) = (1¡ ¾)u (ŝ ¡ x ) + ±E ¸ (s ; s ) (x ; ² ) (s ; s )ii 1 2 i i ² ij j j 1 2i 1 2 @x @sj i
" #

@g @xj j0 0 0¸ (s ; s ) = ¾u (ŝ ¡ x ) + ±E ¸ (s ; s ) (x ; ² ) (s ; s ) ;ij 1 2 i i ² ij j j 1 2i 1 2 @x @sj j

The Euler conditions for a two agent dynamic game thus comprise six func-
tional equations in six unknown functions: the two own-shadow price func-
tions, the two cross-shadow price functions, and the two optimal policy func-
tions.
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8.6.2 Marketing Board Game

Assume that there are only two countries that can supply a given commodity
on the world market. In each country, a government marketing board has
the exclusive power to sell the commodity on the world market. The mar-
keting boards compete with each other, using storage as a strategy variable
to maximize the present value of current and expected future income from
commodity sales.

For each exporting country i = 1; 2 and period t, let s denote the supplyit

available at the beginning of period, let q denote the quantity exported,it

let x denote the stocks held at the end of the period, let y denote newit it

production, let p denote the world price, let c denote total storage costs,t it

and let ± denote the discount factor.
Formally, each marketing board i = 1; 2, solves

1X
maxE ±[p q ¡ c ]t it it

t=0

subject to the following conditions: Available supply is the sum of beginning
stocks and new production:

s = x + y :it it¡1 it

Available supply is either exported or stored:

s = q + x :it it it

The world market clearing price p is a decreasing function ¼(¢) of the totalt

amount exported:

p = ¼(q + q ):t 1t 2t

The cost of storage is an increasing function c (¢) of the quantity stored:i

c = c (x ):it i it

And production y is exogenous, stochastic, independently distributed acrossit

countries, and independently and identically distributed across time.
Each marketing board faces a dynamic optimization problem subject to

the constraints. The price, and thus the payo®, for each country at time
t is simultaneously determined by the quantities marketed by both boards.
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In making its storage decision, each board must anticipate the storage de-
cision of its rival. The two optimization problems must therefore be solved
simultaneously to determine the equilibrium levels of stocks, exports, and
price.

The noncooperative Nash equilibrium is characterized by a pair of Bell-
man equations, which for country i takes the form

V (s ; s ) = max[pq ¡ c + ±E V (x + y ; x + y )] 8s ; si 1 2 i i y i 1 1 2 2 1 2
xi

where q = s ¡ x , p = ¼(q + q ), and c = c (x ).i i i 1 2 i i i
¤For each combination of i = 1; 2 and j = 1; 2, let ¸ denote the partialij

derivative of country i's value function with respect to the supply in country
j:

@Vi
¸ (s ; s ) = (x + y ; x + y ) 8s ; s :ij 1 2 1 1 2 2 1 2

@sj

The shadow price function ¸ represents country i's valuation of a marginalij

unit of stock in country j.
Applying the to Envelope Theorem to Bellman equation, the own shadow

price function must satisfy

@x @xj j0¸ (s ; s ) = p + p q [1¡ ] + ±E ¸ (x + y ; x + y ) 8s ; sii 1 2 i y ij 1 1 2 2 1 2
@s @si i

and the cross shadow price function must satisfy

@x @xj j0¸ (s ; s ) = p q [1¡ ] + ±E ¸ (x1 + y ; x2 + y ) 8s ; sij 1 2 i y ij 1 2 1 2
@s @sj j

0 0where p = ¼ (q + q ).1 2

Another necessary condition for the dynamic feedback Nash equilibrium
can be obtained by deriving the ¯rst-order condition for the optimization
problem embedded in Bellman's equation:

0 0p+ p q = ±E ¸ (x + y ; x + y )¡ c 8s ; si y ii 1 1 2 2 1 2i

0 0where c = c (x ). This condition asserts that along an equilibrium path,ii i
0the marginal payo® from selling this period p+ p q must equal the expectedi

0marginal payo® from storing and selling next period ±E ¸ ¡ c .y ii i

The noncooperative feedback Nash equilibrium for the game between the
two marketing boards is characterized by six functional equations in six un-
knowns: the equilibrium feedback strategies x and x and the equilibrium1 2

shadow price functions ¸ , ¸ , ¸ , and ¸ .11 12 21 22
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