
Chapter 9

Discrete Time Continuous
State Dynamic Models:
Methods

This chapter discusses numerical methods for solving discrete time continuous
state dynamic economic models, with particular emphasis on Markov decision
and rational expectations models.

Continuous state dynamic models give rise to functional equations whose
unknowns are functions de¯ned on closed convex subsets of Euclidean space.
For example, the unknown of a Bellman equation

V (s) = max ff (s; x) + ±E V (g(s; x; ²))g; s 2 S;²
x2X(s)

is the value function V (¢). The unknown of the Euler conditions

0 = f (s; x(s)) + ±E [¸(g(s; x(s); ²)) ¢ g (s; x(s); ²)] ; s 2 S;x ² x

¸(s) = f (s; x(s)) + ±E [¸(g(s; x(s); ²)) ¢ g (s; x(s); ²)] ; s 2 S;s ² s

are the shadow price and policy functions ¸(¢) and x(¢). And the unknown
of a rational expectations intertemporal equilibrium condition

f(s; x(s);Ex(g(s; x(s); ²))); s 2 S;

is the response function x(¢). In most applications, these functional equations
do not have known closed form analytic solutions and can only be solved only
numerically.

1



For over three decades, Economists have been solving continuous state
dynamic economic models numerically, relying mostly on linear-quadratic ap-
proximation and space discretization methods. However, for many economic
applications these numerical techniques are inadequate. Linear quadratic
approximation forces the analyst to impose conditions, such as a linear state
transition or unbounded actions, that in many economic applications are
unrealistic. Although linear quadratic approximation can make a dynamic
model easier to solve, it will often yield economic predictions that are unreli-
able, if not completely useless. Space discretization, in which the continuous
state model is reformulated as a discrete state model, is also problematic.
Space discretization generates approximate solutions that lack the smooth-
ness and di®erentiability of the true solution. Yet in many applications, it
is the derivative, which yields information about shadow prices or marginal
bene¯ts and costs, which is the object of central interest to the economic
analyst. Space discretization can also be computationally ine±cient, mak-
ing it di±cult to solve models, particularly high-dimensional models, to an
acceptable degree of accuracy in a reasonable amount of time.

Over the same thirty year period, there have also been signi¯cant advance-
ments in the theory and methods of numerical analysis and many computa-
tional techniques for solving nonlinear functional and di®erential equations
have been developed and improved. Concurrent with these developments
was the enthusiastic adoption of numerical analysis methods by engineers
and physical scientists to address the complex dynamic models encountered
in their disciplines. Among the many methods developed to solve functional
equations, Galerkin and ¯nite di®erence methods have proven extremely pow-
erful for solving dynamic models.

Galerkin methods can be straightforwardly adapted to discrete time dy-
namic models encountered in economics and ¯nance. Of the various versions
of the Galerkin techniques, the collocation method stands out as the singly
most powerful technique for solving discrete time continuous state dynamic
economic models. The collocation method is highly °exible. It may be used
to solve discrete and continuous choice Markov decision models and rational
expectations models. Bounds and general constraints on variables can also
be handled easily.

The collocation method is relatively easy to understand because it in-
volves only the combination of elementary numerical integration, approxima-
tion, and root¯nding methods. Speci¯cally, the collocation method employs
the following general strategy for solving the functional equations underlying

2



dynamic economic models:

² Approximate the unknown function (value, shadow price, or response
function) using a ¯nite linear combination of n known basis functions.

² Require the function approximant to satisfy the functional equation
(Bellman, Euler, or intertemporal equilibrium equation) at only n pre-
scribed points of the domain.

This strategy replaces the functional equation with a ¯nite-dimensional non-
linear equation that can be solved using basic nonlinear equation techniques.
In most applications, the global approximation error associated with the
solution function approximant can be reduced to an arbitrary prescribed
tolerance by increasing the number of basis functions and nodes.

The collocation method is a solution strategy rather than a speci¯c tech-
nique. Upon electing to use the collocation method, the analyst still faces
a number of numerical modeling decisions. For example, the analyst must
choose the basis function and collocation nodes. Numerical approximation
theory o®ers guidance here, suggesting a Chebychev polynomial basis cou-
pled with Chebychev collocation nodes, or a spline basis coupled with equally
spaced nodes will often be good choices. Also, the analyst must chose an al-
gorithm for solving the resulting nonlinear equation. Nonlinear equation the-
ory o®ers numerous choices, including Newton, quasi-Newton, and function
iteration schemes. A careful analyst will often try a variety of basis-node
combination, and may employ more than one iterative scheme in order to
assure the robustness of the results.

Although the collocation method is general in its applicability, the details
of implementation vary with the functional equation being solved. Below,
the collocation method is developed in greater detail for Bellman equations,
Euler conditions, and rational expectations equilibrium conditions.

9.1 Traditional Solution Methods

Before introducing collocation methods for continuous state Markov decision
models, let us brie°y examine the two numerical techniques that have been
used most often by economists over the past thirty years to compute approx-
imate solutions to such models: space discretization and linear-quadratic
approximation.

3



9.1.1 Space Discretization

One way to compute an approximate solution for a continuous state Markov
decision problem is to solve a discrete Markov decision problem that closely
resembles it. To \discretize" a continuous state Markov decision problem,
one partitions the state and action spaces S into ¯nitely many regions,
S ;S ; : : : ; S . If the action space X is also continuous, it too is partitioned1 2 n

into ¯nitely many regions X ;X ; : : : ; X . Once the space and action spaces1 2 m

have been partitioned, the analyst selects representative elements, s 2 S andi i

x 2 X , from each region. The nodes serve as the state and action spaces ofj j

the discrete problem. The transition probabilities of the discrete problem are
computed by integrating with respect to the density of the random shock:

0 0P (s js ; x ) = Pr[g(s ; x ; ²) 2 S ]:i i j i j i

When the state and action spaces are intervals, say, S = [s ; s ]min max

and X = [x ; x ], it is often easiest to partition the spaces so thatmin max

the nodes are equally-spaced and the ¯rst and ¯nal nodes correspond to
the endpoints of the intervals. Speci¯cally, we set s = s + (i ¡ 1)wi min s

and x = x + (j ¡ 1)w , for i = 0; 1; : : : ; n and j = 0; 1; : : : ;m, wherej min x

w = (s ¡s )=(n¡1) and w = (x ¡x )=(m¡1). In this instances max min x max min

the transition probabilities are given by

0 0 0P (s js ; x ) = Pr[s ¡w =2 · g(s ; x ; ²) · s + w =2]:i i j i s i j i s

9.1.2 Linear-Quadratic Approximation

Because linear quadratic control models have ¯nite-dimensional solutions and
can be directly solved using nonlinear equation methods, many analysts com-
pute approximate solutions to more general Markov decision models using
the method of linear quadratic approximation. Linear quadratic approxima-
tion calls for all constraints of the original problem to be discarded, for its
reward function to be replaced with a second-order quadratic approximation,
and for its transition function to be replaced with a ¯rst-order linear approx-
imation. The solution of the linear quadratic control problem is taken as an
approximate solution for the more original problem.

The ¯rst step in constructing a linear-quadratic approximation is to form
the linear and quadratic approximant of the transition and reward functions,
respectively. Typically, the approximants are formed, respectively, by taking

4



the ¯rst and second order Taylor series approximant about the certainty
equivalent steady state. One ¯nds the certainty equivalent steady state state

¹¹s, optimal action ¹x, and shadow price ¸ by solving the nonlinear equation
system

¹f (¹s; ¹x) + ±¸g (¹s; ¹x; ¹²) = 0x x

¹ ¹¸ = f (¹s; ¹x) + ±¸g (¹s; ¹x; ¹²)s s

¹s = g(¹s; ¹x; ¹²):

Here, ¹² denotes the mean of ², and f , f , f , f , f , g , and g , represents x ss sx xx s x

partial derivatives of the reward and state transition functions. The nonlinear
equation system may be solved using standard nonlinear equation methods.

Once the certainty equivalent steady-state has been computed, the Taylor
series approximations of the reward and transition functions are formed as
follows:

0 0 0f(s; x) ¼ f + f (s¡ ¹s) + f (x¡ ¹x) + 0:5(x¡ ¹x) f (x¡ ¹x)0 xxs x
0 0+0:5(s¡ ¹s) f (s¡ ¹s) + (s¡ ¹s) f (x¡ ¹x)ss sx

g(s; x; ²) ¼ ¹s+ g (s¡ ¹s) + g (x¡ ¹x):s x

Here, f represents the value of the reward function at the certainty equiv-0

alent steady state, and f , f , f , f , f , g , and g , represent partials x ss sx xx s x

derivatives of the reward and state transition functions evaluated at the cer-
tainty equivalent steady state.

Using the results from section 8.3, one can derive expressions for the opti-
mal shadow price and policy function for the approximating linear quadratic
optimization problem. Exploiting properties of the derivative of the reward
and state transition functions at the steady state, these expressions may be
simpli¯ed to

¹¸(s) = ¸+ ¤ (s¡ ¹s)s

x(s) = ¹x+X (s¡ ¹s)s

where

0 0 0 ¡1 0 0¤ = ¡[±g ¤ g + f ][±g ¤ g + f ] [±g ¤ g + f ]s s x sx s x s ss x xx x sx
0+±g ¤ g + fs s sss
0 0 ¡1 0 0X = ¡[±g ¤ g + f ] [±g ¤ g + f ]s s x s sx xx x sx

5



These ¯rst equation can be easily solved for ¤ using function iteration.s

Once ¤ has been computed, X can be computed directly without using as s

function iteration technique. If the problem has one dimensional state and
2action spaces, and if f f = f , a condition often encountered in economicss xx sx

problems, then the slope of the shadow price function may be computed
analytically as follows:

2 2 2¤ = [f g ¡ 2f f g g + f g ¡ f =±]=gs ss ss xx s x xx xxx s x

For example, consider stochastic optimal growth problem of the preced-
ing chapter under the assumption that social utility is a function u(c) =

1¡®c =(1¡ ®) of current consumption and next period's certainty equivalent
¯production is a function f (x) = x of current investment. After some alge-

braic simpli¯cation of the Euler condition, the certainty equivalent steady-
state state, action, and shadow price may be computed in sequence as follows:

1Ã !
¯¡11¡ ±°

¹x =
±¯

¯¹s = °¹x+ ¹x

¡®¹̧ = (¹s¡ ¹x) :

Given these results, and the above relations, the shadow price and optimal
policy function approximant are thus:

¡®¡1¹¸(s) = ¸¡ (1¡ ±)®(¹s¡ ¹x) (s¡ ¹s)

x(s) = ¹x+ ±(s¡ ¹s):

More speci¯cally, if ® = 0:2, ¯ = 0:5, ° = 0:9, and ± = 0:9, then

¸(s) = 0:8884¡ 0:0098(s¡ 7:4169)

x(s) = 5:6094 + 0:9000(s¡ 7:4169):

As another example, consider the renewable resource problem of the pre-
¡°ceding chapter under the assumptions that p(x) = x , c(x) = kx, and

2g(s¡x) = ®(s¡x)¡0:5¯(s¡x) . To solve the renewable resource model by

6



linear quadratic approximation one ¯rst computes the certainty equivalent
steady state state, action, and shadow price in sequence:

2 ¡2® ¡ ±
¹s =

2¯

±® ¡ 1
¹x = ¹s¡

±¯

¡°¹̧ = ¹x ¡ k:

Using the results above, it then follows that the shadow price and optimal
policy function approximant are:

1¡ ±¹¸(s) = ¸¡ (s¡ ¹s)
1+°°(¹x)

x(s) = ¹x+ (1¡ ±)(s¡ ¹s):

More speci¯cally, if ° = 0:5, ® = 4, ¯ = 1, k = 0:2, and ± = 0:9, then

¸(s) = 0:2717¡ 0:0053(s¡ 7:3827)

x(s) = 4:4938 + 0:1000(s¡ 7:3827):

9.2 Bellman Equation Collocation Methods

Consider Bellman's equation for an in¯nite horizon discrete time continuous
state dynamic decision problem:

V (s) = max ff (s; x) + ±E V (g(s; x; ²))g s 2 S:²
x2X(s)

To compute an approximate solution to Bellman's equation via colloca-
tion, one employs the following strategy: First, one approximates the un-
known value function V using a linear combination of known basis functions
Á ; Á ; : : : ; Á whose coe±cients c ; c ; : : : ; c are to be determined:1 2 n 1 2 n

nX
V (s) ¼ c Á (s):j j

j=1

7



Second, the basis function coe±cients c ; c ; : : : ; c are ¯xed by requiring the1 2 n

approximant to satisfy Bellman's equation, not at all possible states, but
rather at n states s ; s ; : : : ; s , called the collocation nodes. Many colloca-1 2 n

tion node and basis function schemes are available to the analyst, including
Chebychev polynomials and nodes, and spline functions and uniform nodes.

The collocation strategy replaces the Bellman functional equation with
a system of n nonlinear equations in n unknowns. Speci¯cally, to compute
the approximate solution to the Bellman equation, or more precisely, to com-
pute the n basis coe±cients c ; c ; : : : ; c in the basis representation of the1 2 n

approximant, one solves the n collocation equations:

nX X
c Á (s ) = max ff(s ; x) + ±E c Á (g(s; x; ²))g i = 1; 2; : : : ; n:j j i i ² j j

x2X(s )ij j=1

The collocation equation can be more compactly written in the form

©c = v(c):

thHere, ©, the collocation matrix, is the n by n matrix whose typical ij
th thelement is the j basis function evaluated at the i collocation node

© = Á (s )ij j i

n nand v, the conditional value function, is a function from < to < whose
thtypical i element is

nX
v (c) = max ff(s ; x) + ±E c Á (g(s ; x; ²))g:i i ² j j i

x2X(s )i j=1

The conditional value function gives the maximum value obtained when solv-
ing the optimization problem embedded in Bellman's equation at each collo-
cation node, taking the current coe±cient vector c as given.

In principle, the collocation equation may be solved using any nonlinear
equation solution method. For example, one could write the collocation

¡1equation in the equivalent ¯xed-point form c = © v(c) and use function
iteration, which employs the iterative update rule

¡1cÃ © v(c):

At each function iteration, the conditional value v (c) must be computed ati

every i, that is, the optimization problem embedded in Bellman's equation

8



must be solved at every collocation node s , taking the current coe±cienti

vector c as ¯xed. The coe±cient vector is then updated by premultiplying
the vector of the updated optimal values obtained by the inverse of the
collocation matrix.

Alternatively, one may write the collocation equation as a root¯nding
problem ©c ¡ v(c) = 0 and solve for c using Newton's method. Newton's
method uses the iterative updating rule

0 ¡1cÃ c¡ [©¡ v (c)] [©c¡ v(c)]:

0were v (c) is the n by n Jacobian of the conditional value function v at c. The
0typical element of v may be computed by applying the Envelope Theorem

to the optimization problem that de¯nes v (c):i

@vi0v c = (c) = ±E Á (g(s ; x ; ²))² j i iij @cj

where x is the optimal argument in the maximization problem in the de¯ni-i

tion of v (c) above. As a variant to Newton's method one could also employi

a quasi-Newton method to solve the collocation equation. Both Newton and
quasi-Newton methods, like function iteration, require that the optimization
problem embedded in Bellman's equation to be solved for every collocation
node with each iteration. The Newton method has the additional requirement
of computing the derivative of v at c. Computing the derivative, however,
comes at only a small additional cost because most of the e®ort required to
compute the derivative comes from solving the optimization problem embed-
ded in Bellman's equation, at task that must be performed regardless of the
solution method used.

Of course, in any collocation scheme, if the model is stochastic and not
deterministic, one must handle the expectation operation in a numerically
feasible way. Based on numerical analysis theory and practice, a Gaussian
quadrature scheme is strongly recommended in collocation schemes. When
using a Gaussian quadrature scheme, the continuous random variable ² in
the state transition function is replaced with a discrete approximant, say,
one that assumes values ² ; ² ; : : : ; ² with probabilities w ;w ; : : : ; w , re-1 2 m 1 2 m

spectively. In this instance, the conditional value function v takes the form

m nXX
v (c) = max ff(s ; x) + ± w c Á (g(s ; x; ² ))g:i i k j j i k

x2X(s )i j=1k=1

9



and its Jacobian takes the form

mX0v c = ± w Á (g(s ; x ; ² )):k j i i kij
k=1

The critical step in numerically implementing the collocation method to
solve Bellman's equation is to evaluate the conditional value function v(c) and
its Jacobian. This, in turn, requires the analyst to write a subroutine to solve
the maximization problem embedded in Bellman's equation. For reasons
that will be made clear shortly, one should write a subroutine that solves
the optimization problem embedded in Bellman's equation, not just at the
collocation nodes, but any arbitrary vector of states. More speci¯cally, given
an n-degree interpolation scheme selected by the analyst, the subroutine
should solve the optimization problem

nX
max ff(s ; x) + ±E c Á (g(s ; x; ²))g:i ² j j i
x2X(s )i j=1

for every element of an arbitrary vector s of state nodes and any n-vector c
of basis coe±cients. The subroutine should also return the optimal policy at
each of the states and the derivatives with respect to the basis coe±cients.

The speci¯c form of the maximization routine written by the analyst
will di®er according to the dimensionality of the state and action spaces and
whether the action space is discrete or continuous. For the moment, however,
assume that such a subroutine has been written. In its minimal form, the
subroutine will have the following calling sequence:

[v,vc] = vmax(c,s).

Here, on input, s is an m-vector of states, and c is an n-vector of basis
coe±cients of the current value function approximant. On output, v is the
m-vector of optimal values obtained by solving the optimization embedded in
Bellman's equation for each state in the vector s, x is the m-vector of optimal
policies for each of these optimization problems, and vc is the m-by-n vector
of partial derivatives of the values with respect to the basis coe±cients.

Given the optimization routine, implementation of a collocation scheme
to solve Bellman's equation in Matlab is straightforward. First, the ana-
lyst must chose an underlying interpolation scheme by specifying the basis
functions and collocation nodes to be used|we will assume a Chebychev
approximation scheme for the purposes of illustration. More speci¯cally, the

10



analyst must specify the lower bound of the state interval smin, the upper
bound of the state interval smax, the degree of interpolation n, and form the
collocation nodes

s = nodecheb(n,smin,smax);

Given the collocation nodes, one then forms the interpolation matrix by
evaluating the basis functions at the collocation nodes:

phi = basecheb(s,n,smin,smax);

After choosing the Gaussian nodes and weights for the random shock, if
the model is stochastic, one may implement either a function iteration or
Newton iteration scheme. To implement the function iteration scheme one
initializes the basis function coe±cients by setting them equal to zero

c = zeros(n,1);

or by making some other good guess, if readily available. The basic structure
of function iteration takes the form:

for it=1:maxit

cold = c;

v = vmax(c,s);

c = phinv;
change = norm(c-cold);

if change<tol, break, end;

end

Here, tol and maxit are iteration control parameters set by the analyst. The
basic structure of Newton iteration takes the form:

for it=1:maxit

cold = c;

[v,vc] = vmax(c,s);

c = cold - [phi-vc]n[phi*c-v];
change = norm(c-cold);

if change<tol, break, end;

end

Once convergence has apparently been achieved, the analyst must per-
form two essential diagnostic checks. First, since interpolants may provide

11



inaccurate approximations when evaluated outside the interpolation interval,
one must check to ensure that all possible state transitions from the colloca-
tion nodes remain within the interpolation interval. This can be done easily
as follows:

g = [];

for k=1:m;

g = [g gfunc(s,x,e(k))];

end

if min(min(g))<smin, disp('Warning: reduce smin'), end;

if max(max(g))>smax, disp('Warning: increase smax'), end;

Here, gfunc is an user supplied routine that evaluates the state transition
function at an arbitrary vector of states, actions, and shocks.

Next, one must check to see that value function approximant solves Bell-
man's equation to an acceptable degree of accuracy over the entire approx-
imation interval. Since, by construction, the approximant generated by the
solving the collocation equation must solve Bellman's equation exactly at the
collocation nodes, this amounts to checking the approximation error at non
node points. The easiest way to do this is to plot, over a ¯ne grid spanning
the interpolation interval, the residual between the values obtained from the
approximant and the values obtained by directly solving the optimization
problem embedded in Bellman's equation. For example, if 50 Chebychev col-
location nodes are use to interpolate the value function, the approximation
residual could be checked at 500 equally spaced nodes as follows:

nplot = 500;

splot = nodeunif(nplot,smin,smax);

resid = vmax(c,splot) - basecheb(splot,n,smin,smax)*c;

plot(splot,resid)

If the residual appears to be reasonably small throughout the entire approx-
imation interval, the computed value function approximant is accepted, oth-
erwise it is rejected and a new one is computed using either more collocation
nodes or an alternative interpolation scheme. Notice how vmax was evaluated
at states that are not collocation nodes|this is why vmax was constructed
to accept an arbitrary vector of states, not just the collocation nodes.

12



9.2.1 Example: In¯nite Put Option

The simplest continuous state Markov decision model encountered in prac-
tice involve binary choice. Dynamic binary choice models come in various
form, including the optimal stopping problem and the optimal replacement
problem. Consider the optimal stopping problem. At each point in time t
the agent is o®ered a one-time reward f(s ) that depends on the state oft

some purely exogenous stochastic economic process s . The agent must thent

decide whether to accept the o®er, receiving the reward, or decline the o®er,
forgoing the reward and waiting another period for a better reward. As-
suming that the economic process s is a continuous state Markov processt

with transition function s = g(s ; ² ), the agent's decision problem ist+1 t t+1

captured by the Bellman equation

V (s) = maxff (s); ±E V (g(s; ²))g; s 2 S;²

To solve this Bellman equation numerically by collocation, one ¯rst uses
Gaussian quadrature methods to replace the shock ² with a discrete ran-
dom variable, say, one that assumes values ² ; ² ; : : : ; ² with probabilities1 2 m

w ;w ; : : : ; w , respectively. If the transition function g is monotonic in ²,1 2 m

say, increasing in ², then one can easily compute a minimum and maximum
state for the value function interpolation interval by solving the two ¯xed
point problems

s = g(s ; ² )min min min

s = g(s ; ² )max max max

These two state values de¯ne an interval I = [s ; s ] with the propertymin max

that g(s; ² ) 2 I for all j whenever s 2 I . That is, given the shock discretiza-j

tion, the interval will not be extrapolated by the numerical collocation routine
if the collocation nodes are chosen within the interval.

To compute an approximate solution to Bellman's equation via collo-
cation, one employs the following strategy: One approximates the unknown
value function V using a linear combination of known basis functions Á ; Á ; : : : ; Á1 2 n

de¯ned on I, whose basis coe±cients c ; c ; : : : ; c are to be determined:1 2 n

nX
V (s) ¼ c Á (s):j j

j=1

13



One then ¯xes the basis function coe±cients c ; c ; : : : ; c by requiring the ap-1 2 n

proximant to satisfy Bellman's equation at n collocation nodes s ; s ; : : : ; s1 2 n

in I. Speci¯cally, one solves the nonlinear vector collocation equation

©c = v(c)

where © is the interpolation matrix associated with the underlying basis-node
interpolation scheme and

m nXX
v (c) = max ff(s ); ± c Á (g(s ; ² ))g:i i j j i k

x2X(s )i j=1k=1

To solve the collocation equation via Newton's method further requires one
to compute the Jacobian of v, which is given by

(
@v 0 v (c) > f(s )i i i0 Pv (c) = (c) = mij ± Á (g(s ; ² )) otherwise@c j i kj k=1

The Bellman equation for an in¯nite put option is solved via collocation
in the Matlab routine Opt1.m supplied with these lecture notes.

9.2.2 Example: Stochastic Optimal Growth

Consider the problem of numerically solving the stochastic optimal growth
1¡®problem of the preceding chapter under the assumption that u(c) = c =(1¡

¯ 2®), f(x) = x , and log(² ) is i.i.d Normal(0; ¾ ) with ® = 0:2, ¯ = 0:5,t

° = 0:9, and ± = 0:9.
To solve the optimal growth model using collocation, one selects a series of

n basis functions Á and n collocation nodes s , and writes an approximationj i

nX
V (s) ¼ c Á (s):j j

j=1

The unknown vector of basis coe±cients c is computed by solving the collo-
cation equation

©c = v(c)

where © is the interpolation matrix constructed by evaluating the basis func-
tions at the collocation nodes and

nX
1¡® ¯v (c) = max f(s ¡ x) =(1¡ ®) + ±E c Á (°x+ ²x )g:i i ² j j

0·x·si j=1

14



To solve the collocation equation via Newton's method further requires one
to compute the Jacobian of v, which is given by

@vi ¯0v (c) = (c) = ±E Á (°x + ²x )² j i iij @cj

where x solves the optimization problem above. To compute the expecta-i

tion, one uses Gaussian quadrature scheme to replace the stochastic shock
with a discrete approximant, say, one that assumes values ² ; ² ; : : : ; ² with1 2 m

probabilities w ;w ; : : : ; w , respectively.1 2 m

The Bellman equation of the stochastic optimal growth model is solved
via collocation in the Matlab routine Growval.m supplied with these lecture
notes.

9.2.3 Example: Renewable Resource Problem

Consider the renewable resource problem under the assumptions that p(x) =
¡° 2x , c(x) = kx, and g(s; x) = ®(s¡ x)¡ 0:5¯(s¡ x) where ° = 0:5, ® = 4,
¯ = 1, k = 0:2, and ± = 0:9.

To solve the renewable resource problem using collocation, one selects
a series of n basis functions Á and n collocation nodes s , and writes anj i

approximation

nX
V (s) ¼ c Á (s):j j

j=1

The unknown vector of basis coe±cients c is computed by solving the collo-
cation equation

©c = v(c)

where © is the interpolation matrix constructed by evaluating the basis func-
tions at the collocation nodes and

nX
1¡° 2v (c) = max fx =(1¡ °) ¡ kx+ ±E c Á (®(s ¡ x)¡ 0:5¯(s ¡ x) )g:i ² j j i i

0·x·si j=1

To solve the collocation equation via Newton's method further requires one
to compute the Jacobian of v, which is given by

@vi0 2v (c) = (c) = ±E Á (®(s ¡ x ) ¡ 0:5¯(s ¡ x ) )² j i i i iij @cj

15



where x solves the maximization problem above.i

The Bellman equation of the renewable resource problem is solved via
collocation in the Matlab routine Renrval.m supplied with these lecture notes.

9.2.4 Example: Nonrenewable Resource Problem

Consider the mine management problem under the assumption that c(s; x) =
2x =(s+ ¯) where ® = 1, ¯ = 10, and ± = 0:9.

To solve the nonrenewable resource problem using collocation, one selects
a series of n basis functions Á and n collocation nodes s , and writes anj i

approximation
nX

V (s) ¼ c Á (s):j j

j=1

The unknown vector of basis coe±cients c is computed by solving the collo-
cation equation

©c = v(c)

where © is the interpolation matrix constructed by evaluating the basis func-
tions at the collocation nodes and

nX
2v (c) = max f®x¡ x =(s+ ¯) + ±E c Á (s ¡ x)g:i ² j j i

0·x·si j=1

To solve the collocation equation via Newton's method further requires one
to compute the Jacobian of v, which is given by

@vi0v (c) = (c) = ±E Á (s ¡ x )g² j i iij @cj

where x solves the maximization problem above.i

The Bellman equation of the nonrenewable resource problem is solved
via collocation in the Matlab routine Mineval.m supplied with these lecture
notes.

9.3 Solving Euler Equations via Collocation

Euler equation methods call for solving the ¯rst-order Euler equilibrium con-
ditions of the continuous-space decision problem for the unknown shadow
price function ¸. Since I did not cover collocation for Euler equations in
depth in class, I will not expect you to know them for the exam.

16



9.3.1 Example: Stochastic Optimal Growth

9.3.2 Example: Renewable Resource Problem

9.3.3 Example: Nonrenewable Resource Problem

9.4 Solving Rational Expectation Models via

Collocation

I did not get to cover these methods in su±cient depth in class. I will not
exam you on them.

9.4.1 Example: Commodity Storage

9.4.2 Example: Asset Pricing Model

9.5 Comparison of Solution Methods

In developing a numerical approximation strategy for solving Bellman's equa-
tion, one pursues a series of multiple, sometimes con°icting goals. First, the
algorithm should o®er a high degree of accuracy for a minimal computational
e®ort. Second, the algorithm should be capable of yielding arbitrary accu-
racy, given su±cient computational e®ort. Third, the algorithm should yields
answers with minimal convergence problems. Fourth, it should be possible
to code the algorithm relatively quickly with limited chances for programmer
error.

Space discretization has some major advantages for computing approxi-
mate solutions to continuous-space dynamic decision problems. The biggest
advantage to space discretization is that it is easy to implement. In particu-
lar, the optimization problem embedded in Bellman's equation is solved by
complete enumeration, which is easy to code and numerically stable. Also,
constraints are easily handled by the complete enumeration algorithm. Each
time a new action is examined, one simply tests whether the action satis¯es
the constraint, and rejects it if it fails to do so. Finally, space discretization
can provide an arbitrarily accurate approximation by increasing the number
of state nodes.

Space discretization, however, has several major disadvantages. The
biggest disadvantage is that complete enumeration is extremely slow. Com-

17



plete enumeration mindlessly examines all possible actions, ignoring the
derivative information that would otherwise help to ¯nd the optimal ac-
tion. Another drawback to space discretization is that it uses discontinuous
step functions to approximate the value and policy functions. The approxi-
mate optimal solution generated by space discretization will not possess the
smoothness and curvature properties of the true optimal solution. Finally,
because the states and actions are forced to coincide with speci¯ed nodes, the
accuracy a®orded by space discretization will be limited by the coarseness of
the state and action space grids.

Linear-quadratic approximation is perhaps the method easiest to imple-
ment. The solution to the approximating problem is a linear function whose
coe±cients can be derived analytically using the methods discussed in sec-
tion (*). Alternatively, the coe±cients can easily be computed numerically
using a successive approximation scheme that is typically free of convergence
problems.

Linear-quadratic approximation, however, has some severe shortcomings.
The basic problem with linear-quadratic approximation is that it relies on
Taylor series approximations that are accurate only in the vicinity of the
steady-state, and then only if the process is deterministic or nearly so. Linear-
quadratic approximation will yield poor results if random shocks repeatedly
throw the state variable far from the steady-state and if the reward and
state transition functions are not accurately approximated by second- and
¯rst-degree polynomials over their entire domains. Linear-quadratic approx-
imation will yield especially poor approximations if the true optimal process
is likely to encounter any inequality and nonnegativity constraints, which
must be discarded in passing to a linear-quadratic approximation.

Collocation methods address many of the shortcomings of linear-quadratic
approximation and space discretization methods. Unlike linear-quadratic ap-
proximation, collocation methods employ global, rather than local, function
approximation schemes and, unlike space discretization, they approximate
the solution using a smooth, not discontinuous, function. Chebychev collo-
cation methods, in particular, are motivated by the Wieirstrass polynomial
approximation theorem, which asserts that a smooth function can be ap-
proximated to any level of accuracy using a polynomial of su±ciently high
degree. A second important advantage to collocation methods is that they
may employ root¯nding or optimization that exploit derivative information.
A di®erentiable approach can help pinpoint the equilibrium solution at each
state node faster and more accurately than the complete enumeration scheme

18



of discrete dynamic programming.
The collocation method replaces the inherently in¯nite-dimensional func-

tional equation problem with a ¯nite-dimensional nonlinear equation problem
that can be solved using standard nonlinear equation methods. The accu-
racy a®orded by the computed approximant will depend on a number of
factors, most notably the number of basis functions and collocation nodes
n. The greater the degree of approximation n, the more accurate the re-
sulting approximant, but the more expensive is its computation. For this
reason choosing a good set of basis functions and collocation nodes is critical
for achieving computational e±ciency. Approximation theory suggests that
Chebychev polynomials basis functions and Chebychev collocation points will
often make superior choices, provided the solution to the functional equation
is relatively smooth. Otherwise, linear or cubic basic splines with equally
spaced collocation nodes may provide better approximation.

In using collocation schemes, one might be tempted to choose equally
spaced points and to represent the interpolating polynomial as the linear
combination of the standard monomials. However, as seen in Chapter 3, uni-
form node polynomial interpolation can yield extremely poor global approx-
imations and can produce explosive approximation error. Also, computing
the monomial coe±cients of an interpolating polynomial is an ill-conditioned
process that is highly vulnerable to rounding error and convergence failure.

Numerical analysis theory suggest that the Chebychev interpolation nodes
and Chebychev polynomials are nearly optimal choices for forming polyno-
mial interpolants. Accuracy and e±ciency with Chebychev nodes and poly-
nomials are guaranteed by Chebychev polynomial approximation theorem,
which asserts that, for a given degree, the best approximating polynomial is
the one that interpolates the function at the Chebychev nodes. The theorem
also asserts that such approximation error will tend to disappear if the degree
of approximation is increased. Also, using this combination of nodes and ba-
sis polynomials will ensure that the interpolating matrix will be orthogonal.
Thus, computing the coe±cients c of the interpolating polynomial will bej

faster and numerically more stable than for other polynomial bases.
Chebychev collocation, however, is not without its disadvantages. First,

polynomial interpolants can behave strangely outside the range of interpo-
lation and should be extrapolated with extreme caution. Even when state
variable bounds for the model solution are known, states outside the bounds
can easily be generated in the early stages of the solution algorithm, leading
to convergence problems. Also, polynomial interpolants can behave strangely

19



in the vicinity of nondi®erentiabilities in the function being interpolated. In
particular, interpolating polynomials can fail to preserve monotonicity prop-
erties near such points, undermining the root¯nding algorithm used to com-
pute the equilibrium at each state node. Finally, inequality constraints, such
as nonnegativity constraints, require the use of special methods for solving
nonlinear complementarity problems.

Table 1 gives the execution time and approximation error associated with
four solution schemes, including uniform polynomial and Chebychev collo-
cation, as applied to the commodity storage model examined in section (*).
Approximation error is de¯ned as the maximum absolute di®erence between
the \true" price function and the approximant at points spaced 0.001 units
apart over the approximation interval [0:5; 2:0]. Execution times are based on
the successive approximation algorithm implemented on an 80486 50 mega-
hertz Gateway 2000 personal microcomputer.

The superiority of the Chebychev collocation for solving the storage model
is evident from table 1. The accuracy a®orded by Chebychev collocation
exceeded that of space discretization by several orders of magnitude. For ex-
ample, the accuracy achieved by space discretization in nearly ¯ve minutes
of computation was easily achieved by Chebychev collocation in less than
one-tenth of a second. In the same amount of time, the linear-quadratic
approximation method a®orded an approximation that was three orders of
magnitude worse than that a®orded by Chebychev collocation. The ap-
proximation a®orded by linear-quadratic approximation, moreover, was not
subject to improvement by raising the degree of the approximation, which is
¯xed. Finally, as seen in table 1, when using uniform node, monomial col-
location, the approximation error actually increased as the number of nodes
doubled from 10 to 20; the algorithm, moreover, would not converge for more
than 23 nodes. The example thus illustrates once again the inconsistency and
instability of uniform node monomial interpolation.

20



Number Execution Maximum
of Time Absolute

Method Nodes (seconds) Error

Chebychev 10 0.1 4.7E¡02
Polynomial 20 0.4 1.1E¡02
Collocation 30 0.7 2.7E¡03

40 1.1 5.9E¡04
50 1.6 3.3E¡04

100 5.8 3.1E¡06
150 12.5 2.3E¡08

Uniform 10 0.1 1.4E¡01
Polynomial 20 0.3 1.7E+00
Collocation 30 N.A. N.A.

Space 10 2.0 4.5E+00
Discretization 20 7.5 1.7E+00

30 16.9 8.6E¡01
40 31.0 5.3E¡01
50 32.3 3.5E¡01

100 124.6 9.7E¡02
150 292.2 4.5E¡02

L-Q Approximation 0.1 2.8E+01

Table 9.1: Execution Times and Approximation Error for Selected
Continuous-Space Approximation Methods

21


