
Appendix A

Mathematical Background

A.1 Normed Linear Spaces

A linear space or vector space is a nonempty set X endowed with two oper-
ations, vector addition + and scalar multiplication ¢, that satisfy

² x+ y = y + x for all x; y 2 X

² (x+ y) + z = x+ (y + z) for all x; y; z 2 X

² there is a µ 2 X such that x+ µ = x for all x 2 X

² for each x 2 X there is a y 2 X such that x+ y = µ

² (®¯) ¢ x = ® ¢ (¯ ¢ x) for all ®; ¯ 2 < and x 2 X

² ® ¢ (x+ y) = ® ¢ x+ ® ¢ y for all ® 2 < and x; y 2 X

² (®+ ¯) ¢ x = ® ¢ x+ ¯ ¢ y for all ®;¯ 2 < and x 2 X

² 1 ¢ x = x for all x 2 X .

The elements of X are called vectors.
A normed linear space is a linear space endowed with a real-valued func-

tion jj ¢ jj on X, called a norm, which measures the size of vectors. By
de¯nition, a norm must satisfy

² jjxjj ¸ 0 for all x 2 X;

² jjxjj = 0 if and only if x = µ;

1



² jj® ¢ xjj = j®j jjxjj for all ® 2 < and x 2 X;

² jjx+ yjj · jjxjj+ jjyjj for all x; y 2 X.

Every norm on a linear space induces a metric that measures the distance
d(x; y) between arbitrary vectors x and y. The induced metric is de¯ned via
the relation d(x; y) = jjx¡yjj. It meets all the conditions we normally expect
a distance function to satisfy:

² d(x; y) = d(y; x) ¸ 0 for all x; y 2 X;

² d(x; y) = 0 if and only if x = y 2 X;

² d(x; y) · d(x; z) + d(z; y) for all x; y; z 2 X .

Norms and metrics play a critical role in numerical analysis. In many
numerical applications, we do not solve a model exactly, but rather compute
an approximation via some iterative scheme. The iterative scheme is usually
terminated when the change in successive iterates becomes acceptably small,
as measured by the norm of the change. The accuracy of the approximation
or approximation error is measured by the metric distance between the ¯nal
approximant and the true solution. Of course, in all meaningful applications,
the distance between the approximant and true solution is unknown because
the true solution is unknown. However, in many theoretical and practical
applications, it is possible to compute upper bounds on the approximation
error, thus giving a level of con¯dence in the approximation.

In this book we will work almost exclusively with three classes of normed
nlinear spaces. The ¯rst normed linear space is the familiar < , the space

m£nof all real n-vectors. The second normed linear space is < , the space of
all real m-by-n matrices. We will use a variety of norms for real vector and
matrix spaces, all of which are discussed in greater detail in the following
section.

A second class of normed linear space is C(S), the space of all bounded
mcontinuous real-valued functions de¯ned on S ½ < . Addition and scalar

multiplication in this space are de¯ned pointwise. Speci¯cally, if f; g 2 C(S)
and ® 2 <, then f + g is the function whose value at x 2 S is f(x) + g(x)
and ®f is the function whose value at x 2 S is ®f (x). We will use only one
norm, called the sup or supremum norm, on the function space C(S):

jjf jj = supfjf(x)j j x 2 Sg:

2



nIn most applications, S will be a bounded interval of < .
A subset Y of a normed linear space X is called a subspace if it is closed

under addition and scalar multiplication, and thus is a normed linear space
in its own right. More speci¯cally, Y is a subspace of X if x + y 2 Y and
®x 2 Y whenever x; y 2 Y and ® 2 <. A subspace Y is said to be dense
in X if for any x 2 X and ² > 0, we can always ¯nd a y 2 Y such that
jjx ¡ yjj < ². Dense linear subspaces play an important role in numerical
analysis. When constructing approximants for elements in a normed linear
space X , drawing our approximants from a dense linear subspace guarantees
that an arbitrarily accurate approximation can always be found, at least in
theory.

Given a nonempty subset S of X, span(S) is the set of all ¯nite linear
combinations of elements of S:

nX
span(S) = f ® x j® 2 <; x 2 X;n an integerg:i i i i

i=1

We say that a subset B is a basis for a subspace Y if Y = span(B) and if no
proper subset of B has this property. A basis has the property that no ele-
ment of the basis can be written as a linear combination of the other elements
in the basis. That is, the elements of the basis are linearly independent.

Except for the trivial subspace fµg, a subspace Y will generally have many
distinct bases. However, if Y has a basis with a ¯nite number of elements,
then all bases have the same number of nonzero elements and this number
is called the dimension of the subspace. If the subspace has no ¯nite basis,
it is said to be in¯nite dimensional.

Consider some examples. Every normed linear space X, has two trivial
0 0subspaces: fµg, whose dimension is zero, and X. The sets f(0; 1) ; (1; 0) g

0 0 2and f(2; 1) ; (3; 4) g both are bases for < , which is a two-dimensional space;
0 2the set f(®; 0:5 ¢ ®) j® 2 <g is a one-dimensional subspace of < . In general,

n< is an n-dimensional space with many possible bases; moreover, the span of
any k < n linearly independent n-vectors constitutes a proper k-dimensional

nsubspace of < .
The function space C(S) of all real-valued bounded continuous functions

on an interval S ½ < is an in¯nite-dimensional space. This space has a
number of subspaces that are important in numerical analysis. The set of all
polynomials on S of degree at most n forms an n + 1 dimensional subspace

2 nof C(S) with one basis being f1; x; x ; : : : ; x g. The set of all polynomials,
regardless of degree, is also a subspace of C(S). It is in¯nite-dimensional.

3



Other subspaces of C(S) interest include the space of piecewise polynomials
splines of a given order. These subspaces are ¯nite-dimensional and are
discussed further in the text.

¤A sequence fx g in a normed linear space X converges to a limit x ink
¤ ¤X if lim jjx ¡ x jj = 0. We write lim x = x to indicate that thek¡!1 k k¡!1 k

¤sequence fx g converges to x . If a sequence converges, its limit is necessarilyk

unique.
An open ball centered at x 2 X is a set of the form fy 2 X j jjx¡yjj < ²g,

where ² > 0. A set S in X is open if every element of S is the center
of some open ball contained entirely in S. A set S in X is closed if its
complement, that is, the set of elements of X not contained in S, is an open
set. Equivalently, a set S is closed if it contains the limit of every convergent
sequence in S.

The Contraction Mapping Theorem has many uses in computational eco-
nomics, particularly in existence and convergence theorems: Suppose that X
is a complete normed linear space, that T maps a nonempty set S ½ X into
itself, and that, for some ± < 1,

jjT (x)¡ T (y)jj · ±jjx¡ yjj; for all x; y 2 S:
¤ ¤ ¤Then, there is an unique x 2 S such that T (x ) = x . Moreover, if x 2 S0

¤and x = T (x ), then fx g necessarily converges to x andk+1 k k

±¤jjx ¡ x jj · jjx ¡ x jj:k k k¡1
1¡ ±

When the above conditions hold, T is said to be a strong contraction on S
¤and x is said to be a ¯xed-point of T in S.

We shall not de¯ne what we mean by a complete normed linear space,
nsave to note that < , C(S), and all their subspaces are complete.

A.2 Matrix Algebra

n thWe write x 2 < to denote that x is an n-vector whose i entry is x . Ai

vector is understood to be in column form unless otherwise noted.
If x and y are n-vectors, then their sum z = x+ y is the n-vector whose

thi entry is z = x + y . Their inner product or dot product, x ? y, is the reali i iP
number x ¢ y . And their array product, z = x: ? y, is the n-vector whosei ii
thi entry is z = x ¢ y .i i i

4



If ® is a scalar, that is, a real number, and x is an n-vector, then their
thscalar sum z = ® + x = x+ ® is the n vector whose i entry is z = ®+ x .i i

thTheir scalar product, z = ® ? x = x ? ®, is the n-vector whose i entry is
z = ® ¢ x .i i

The most useful vector norms are, respectively, the 1-norm or sum norm,
the 2-norm or Euclidean norm, and the in¯nity or max norm:

Pjjxjj = jx j;1 iiqP
2jjxjj = jx j ;2 ii

jjxjj = maxfjx j; jx j; : : : ; jx jg:1 1 2 n

In Matlab, the norms may be computed for any vector x, respectively, by
writing: norm(x,1), norm(x,2), and norm(x,inf). If we simply write norm(x),
the 2-norm or Euclidean norm is computed.

nAll norms on < are equivalent in the sense that a sequence converges in
one vector norm, if and only if it converges in all other vector norms. This
is not true of generally of all normed linear spaces.

¤A sequence of vectors fx g converges to x at a rate of order p ¸ 1 if fork

some c ¸ 0 and for su±ciently large n,

¤ ¤ pjjx ¡ x jj · cjjx ¡ x jj :k+1 k

If p = 1 and c < 1 we say the convergence is linear; if p > 1 we say the
convergence is superlinear; and if p = 2 we say the convergence is quadratic.

m£nWe write A 2 < to denote that A is an m-row by n-column matrix
thwhose row i, column j entry, or, more succinctly, ij entry, is A .ij

If A is an m by n matrix and B is an m by n matrix, then their sum
thC = A+B is the m by n matrix whose ij entry is C = A +B . If A isij ij ij

an m by p matrix and B is a p by n matrix, then their product C = A ? BPpthis the m by n matrix whose ij entry is C = A B : If A and B areij ik kjk=1

both m by n matrices, then their array product C = A: ? B is the m by n
thmatrix whose ij entry is C = A B .ij ij ij

A matrix A is square if it has an equal number of rows and columns. A
square matrix is upper triangular if A = 0 for i > j; it is lower triangularij

if A = 0 for i < j; it is diagonal if A = 0 for i6= j; and it is tridiagonal ifij ij

A = 0 for ji¡ jj > 1. The identity matrix, denoted I, is a diagonal matrixij

whose diagonal entries are all 1. In Matlab, the identity matrix of order n
may is generated by the statement eye(n).

0The transpose of an m by n matrix A, denoted A , is the n by m matrix
th thwhose ij entry is the ji entry of A. A square matrix is symmetric if

5



0A = A , that is, if A = A for all i and j. A square matrix A is orthogonalij ji
0 0 0 0if A ? A = A ? A is diagonal, and orthonormal if A ? A = A ? A = I . In

0Matlab, the transpose of a matrix A is generated by the statement A .
¡1A square matrix A is invertible if there exists a matrix A , called the

¡1 ¡1inverse of A, such that A ? A = A ? A = I. If the inverse exists, it is
unique. In Matlab, the inverse of a square matrix A can be generated by the
statement inv(A).

The most useful matrix norms, and the only ones used in this book,
are constructed from vector norms. A given n-vector norm jj ¢ jj induces a
corresponding matrix norm for n by n matrices via the relation

jjAjj = max jjA ? xjjjjxjj=1

or, equivalently,

jjA ? xjjjjAjj = max :jjxjj6=0 jjxjj
Given corresponding vector and matrix norms,

jjA ? xjj · jjAjj ¢ jjxjj:
Moreover, if A and B are square matrices,

jjA ? Bjj · jjAjj ¢ jjBjj:
Common matrix norms include the matrix norms induced by the sup,

sum, and Euclidean vector norms:

jjAjj = max jjA ? xjjp jjxjj =1 pp

for p = 1; 2;1. In Matlab, these norms may be computed for any matrix
A, respectively, by writing: norm(A,1), norm(A,2), and norm(A,inf). The
Euclidean matrix norm is relatively expensive to compute. The sum and
max norms, on the other hand, take a relatively simple form:

PnjjAjj = max jA j1 1·j·n iji=1PnjjAjj = max jA j:1 1·i·n ijj=1

The spectral radius of a square matrix A, denoted ½(A), is the in¯mum
1 kof all the matrix norms of A. We have lim A = 0 if and only if ½(A) < 1,k=1P1¡1 kin which case (I ¡ A) = A . Thus, if jjAjj < 1 in any vector norm,k=1

kA converges to zero.

6



0A square symmetric matrix A is negative semide¯nite if x ? A ? x · 0
0for all x; it is negative de¯nite if x ? A ? x < 0 for all x 6= 0; it is positive

0 0semide¯nite if x ?A?x ¸ 0 for all x; and it is positive de¯nite if x ?A?x > 0
for all x6= 0.

A.3 Real Analysis

n mThe gradient or Jacobian of a vector-valued function f : < 7! < is the m
by n matrix-valued function of ¯rst partial derivatives of f . More speci¯cally,

0the gradient of f at x, denoted by either f (x) or f (x), is the m by n matrixx
@fth iwhose ij entry is the partial derivative (x). More generally, if f(x ; x )1 2@xj

n n1 2is an n-vector-valued function de¯ned for x 2 < and x 2 < , then f (x)1 2 x1

is the m by n matrix of partial derivatives of f with respect to x and f (x)1 1 x2

is the m by n matrix of partial derivatives of f with respect to x .2 2
nThe Hessian of the real-valued function f : < 7! < is the n by n matrix-

valued function of second partial derivatives of f . More speci¯cally, the
00Hessian of f at x, denoted by either f (x) or f (x), is the symmetric nxx

2@ fthby n matrix whose ij entry is (x). More generally, if f(x ; x ) is a1 2@x @xi j
n n1 2real-valued function de¯ned for x 2 < and x 2 < , where n + n = n,1 2 1 2

00then f (x) is the n by n submatrix of f (x) obtained by extracting thex x i ji j

rows corresponding to the elements of x and the columns corresponding toi

the columns of x .j
nA real-valued function f : < 7! < is smooth on a convex open set S

if its gradient and Hessian are de¯ned and continuous on S. By Taylor's
theorem, a smooth function may be approximated locally by either a linear
or quadratic function. More speci¯cally, for all x in S,

f(x) = f(x ) + f (x ) ? (x¡ x ) + o(jjx¡ x jj)0 x 0 0 0

and

f(x) = f(x ) + f (x ) ? (x¡ x )0 x 0 0
1 0 2+ (x¡ x ) ? f (x ) ? (x¡ x ) + o(jjx¡ x jj )0 xx 0 0 02

where o(t) denotes a term with the property that lim (o(t)=t) = 0.t¡!0

The Intermediate Value Theorem asserts that if a continuous real-valued
function attains two values, then it must attain all values in between. More

nprecisely, if f continuous on a convex set S 2 < and f(x ) · y · f (x ) for1 2

some x 2 S, x 2 S, and y 2 <, then f (x) = y for some x 2 S.1 2

7



The Implicit Function Theorem gives conditions under which a system
of nonlinear equations will have a locally unique solution that will vary con-

m+n ntinuously with some parameter: Suppose F : < 7! < is continuously
m ndi®erentiable in a neighborhood of (x ; y ), x 2 < and y 2 < , and that0 0 0 0

F (x ; y ) = 0. If F (x ; y ) is nonsingular, then there is an unique function0 0 y 0 0
m nf : < 7! < de¯ned on a neighborhood N of x such that for all x 2 N ,0

F (x; f(x)) = 0. Furthermore, the function f is continuously di®erentiable
0 ¡1on N and f (x) = ¡F (x; f(x)) ? F (x; f(x)).xy

A subset S is bounded if it is contained entirely inside some ball centered
at zero. A subset S is compact if it is both closed and bounded. A continuous
real-valued function de¯ned on a compact set has well-de¯ned maximum and
minimum values; moreover, there will be points in S at which the function
attains its maximum and minimum values.

nA real-valued function f : < 7! < is concave on a convex set S if
® f(x ) + ® f(x ) · f (® x + ® x ) for all x ; x 2 S and ® ; ® ¸ 0 with1 1 2 2 1 1 2 2 1 2 1 2

® + ® = 1. It is strictly concave if the inequality is always strict. A1 2
00smooth function is concave (strictly concave) if and only if f (x) is negative

semide¯nite (negative de¯nite) for all x 2 S. A smooth function f is convex
if and only ¡f is concave. If a function is concave (convex) on an convex
set, then its maximum (minimum), if it exists, is unique.

A.4 Markov Chains

A Markov process is a sequence of random variables fX j t = 0; 1; 2; : : :gt

with common state space S whose distributions satisfy

PrfX 2 A j X ;X ;X ; : : :g = PrfX 2 A j X g A ½ S:t+1 t t¡1 t¡2 t+1 t

A Markov process is often said to be memoryless because the distribution
X conditional on the history of the process through time t is completelyt+1

determined by X and is independent of the realizations of the process priort

to time t.
A Markov chain is a Markov process with a ¯nite state-space S = f1; 2; 3; : : : ; ng.

A Markov chain is completely characterized by its transition probabilities

P = PrfX = j j X = ig; i; j 2 S:tij t+1 t

A Markov chain is stationary if its transition probabilities

P = PrfX = j j X = ig; i; j 2 Sij t+1 t

8



are independent of t. The matrix P , called the transition probability matrix.
The steady-state distribution of a stationary Markov chain is a probability

distribution f¼ ji = 1; 2; : : : ; ng on S, such thati

¼ = lim PrfX = j j X = ig i; j 2 S:j ¿ t
¿!1

The steady-state distribution ¼, if it exists, completely characterizes the
longrun behavior of a stationary Markov chain.

A stationary Markov chain is irreducible if for any i; j 2 S there is some
k ¸ 1 such that PrfX = j j X = ig > 0, that is, if starting from any statet+k t

there is positive probability of eventually visiting every other state. Given
an irreducible Markov chain with transition probability matrix P , if there is
an n-vector ¼ ¸ 0 such that

0P ? ¼ = ¼P
¼ = 1;ii

then the Markov chain has a steady-state distribution ¼.
In computational economic applications, one often encounters irreducible

Markov chains. To compute the steady-state distribution of the Markov
chain, one solves the n+ 1 by n linear equation system

" # " #0I ¡ P 0
? ¼ =0i 1

where P is the probability transition matrix and i is the vector consisting
of all ones. Due to linear dependency among the probabilities, any one of
the ¯rst n linear equations is redundant and may be dropped to obtain an
uniquely soluble matrix linear equation.

Consider a stationary Markov chain with transition probability matrix
2 3

0:5 0:2 0:3
6 70:0 0:4 0:6P = 4 5

0:5 0:5 0:0

Although one cannot reach state 1 from state 2 in one step, one can reach
it with positive probability in two steps. Similarly, although one cannot
return to state 3 in one step, one can return in two steps. The steady-state
distribution ¼ of the Markov chain may be computed by solving the linear
equation

2 3 2 3
0:5 0:0 ¡0:5 0

6 7 6 7¡0:2 0:6 ¡0:5 ? ¼ = 0 :4 5 4 5
1:0 1:0 1:0 1

9



The solution is
2 3

0:316
6 7

¼ = 0:368 :4 5
0:316

Thus, over the long run, the Markov process will spend about 32.6 percent
of its time in state 1, 36.8 percent of its time in state 2, and 31.6 percent of
its time in state 3.

10



Appendix B

Computer Programming

B.1 Computer Arithmetic

Some knowledge of how computers perform numerical computations and how
programming languages work is useful in applied numerical work, especially
if one is to write e±cient programs. It often comes as an unpleasant surprise
to many people to learn that exact arithmetic and computer arithmetic do
not always give the same answers, even in programs without programming
errors.

For example, consider the following two statements

x = (1e¡ 20 + 1)¡ 1

and

x = 1e¡ 20 + (1¡ 1):

¡20Here, 1e-20 is computer shorthand for 10 . Mathematically the two state-
ments are equivalent because addition and subtraction are associative. A
computer, however, would evaluate these statements di®erently. The ¯rst
statement would likely result in x = 0, whereas the second would result in
x = 1e¡ 20. The reason has to do with how computers represent numbers.

Typically, computer languages such as Fortran and C allow several ways
of representing a number. Matlab makes things simple by only have one rep-
resentation for a number. Matlab uses what is often called a double precision
°oating point number. The exact details of the representation depends on
the hardware but there are several features in common. First, the represen-
tation has three parts, a sign bit, an exponent, a mantissa. Consider the

11



3number ¡3210:4. This can be equivalently written as ¡3:2104 £ 10 . The
mantissa is 3.2104, the exponent is 3, and the sign bit is 1.

The computer has only a prede¯ned set of storage elements (bytes) for a
number. On most personal computers a number has 8 bytes. If the mantissa
is very long it gets truncated by rounding or chopping, depending on the
hardware. For example, suppose only 5 places are allocated for the mantissa.

3A number like ¡3210:48 might be represented as ¡3:2104£ 10 , that is, the
lowest digit may be chopped o®.

In our original example, when the computer processes x = (1e¡20+1)¡1
it ¯rst adds 1 to 1e-20, which is the number 1:000000000000000000001. Un-
fortunately, most computers cannot handle this long a mantissa and truncate
the result to 1. The computer then subtracts 1 from the ¯rst sum, which
results in 0. On the other hand, with the statement x = 1e¡20+(1¡1), the
subtraction in parenthesis occurs ¯rst, resulting in 0, which is then added to
1e¡ 20.

To understand more fully how numbers are stored in a computer, let us
examine a few numbers in their so-called hexadecimal form. Hexadecimal
numbers are numbers expressed in base 16; this is a useful base for computer
arithmetic because it is a power of base 2, which is the form in which numbers
are ultimately stored in a computer. Hexadecimal numbers use the usual
digits 0 through 9 and supplement them with the letters a through f; a=10,
b=11,..., f=15. An 8-byte °oating point number (i.e., \double-precision")
looks something like:

3ff1000000000000:

The hexadecimal representation makes clear some of the problems that
arise in °oating point arithmetic. Suppose one compared the values derived
by the following expressions

1=3 + 1=2

and

5=6:

The ¯rst operation results in

3feaaaaaaaaaaaaa

12



whereas the second results in

3feaaaaaaaaaaaab:

We know that these operations should result in the same number but the
computer represents them in a way that di®ers by a single bit in the lowest
order byte. Although this may not seem like a big deal, if one were to test
the expression

1=3 + 1=2 = 5=6;

the expression would be deemed false.
Similar problems arise in other case as well. For example,

¡207 = 3c6ce5e856164656

whereas

¡197 =7 = 3c6ce5e856164655;

even though in exact arithmetic these two quantities are theoretically the
same.

Reversing a mathematical operation sometimes does not work either. In
general, one should be careful when a number is raised to a large power and
then to a very small power or vice versa. For example,

^ ^(1:1 (10e¡ 12)) (10e+ 12)

should result in 1.1. However, on many computers the operation will result
in 1.09941652517756.

Roundo® error is only one of the pitfalls of computer programming. In
numerical computations, error is also introduced by the computer's inherent
inability to evaluate certain mathematical expressions exactly. For all its
power, a computer can only perform a limited set of arithmetic operations
directly. Essentially this list includes the four arithmetic operations of addi-
tion, subtraction, multiplication and division, as well as logical operations of
comparison. Other common functions, such as exponential, logarithmic, and
trigonometric functions cannot be evaluated directly using computer arith-
metic. They can only be evaluated approximately using algorithms based on
the four basic arithmetic operations.

13



For the common functions very e±cient algorithms typically exist and
these are sometimes \hardwired" into the computer's processor or coproces-
sor. An important area of numerical analysis involves determining e±cient
approximations that can be computed using basic arithmetic operations. For
example, the exponential function has the series representation

1X
nexp(x) = x =n!:

i=0

Obviously one cannot compute the in¯nite sum, but one could compute a
¯nite number of these terms, with the hope that one will obtain su±cient
accuracy for the purpose at hand. The result, however, will always be inexact.

B.2 Data Storage

Matlab's basic data type is the matrix, with a scalar just a 1 by 1 matrix
and an n-vector an n by 1 or 1 by n matrix. Actually, the basic data type
in Matlab also contains additional information that is stored along with the
matrix itself. In particular, Matlab attaches the row and column information
about the matrix. This is a signi¯cant advantage over writing in low level
language like Fortran or C because it relieves one of the necessity of keeping
track of array size and memory allocation.

When one wants to represent an m by n matrix of numbers in a computer
there are a number of ways to do this. The most simple way is to store all
the elements sequentially in memory, starting with the one indexed (1,1) and
working down successive columns or across successive rows until the (m,n)th
element is stored. Di®erent languages make di®erent choices about how to
store a matrix. Fortran stores matrices in column order, whereas C stores in
row order. Matlab, although written in C, stores in column order, thereby
conforming with the Fortran standard.

Many matrices encountered in practice are sparse, meaning that they
consist mostly of zero entries. Clearly, it is a waste of memory to store all of
the zeros, and it is time consuming to process the zeros in arithmetic matrix
operations. Matlab allows one to store a sparse matrix e±ciently by keeping
track of only the non-zero elements of the original matrix and their location.
In this storage scheme, the row indices and non-zero entries are stored in
a two-column vector. A separate vector is used to keep track of where the
¯rst element in each column is located. If one wants to access element (i; j),

14



Matlab check the jth element of the column indicator vector to ¯nd where
the jth column starts and then searches the row column for the ith element
(if one is not found then the element must be zero).

Although sparse matrix representations are useful, their use incurs a cost.
To access element (i; j) of a full matrix, one simply goes to element (i-1)*m+j
storage location the. To access an element in a sparse matrix involves a search
over row indices and hence can take longer. This additional overhead can
add up signi¯cantly and actually slow down a computational procedure.

A further consideration in using sparse matrices concerns memory allo-
cation. If a procedure repeatedly alters the contents of a sparse matrix, the
memory needed to store the matrix may change, even if its dimension does
not. This means that more memory may needed each time the number of
non-zero elements increases. This memory allocation is both time consuming
and may eventually exhaust computer memory. This problem does not arise
with full matrices because mn elements are stored in ¯xed locations from the
beginning.

The decision whether to use a sparse or full matrix representation depends
on a balance between a number of factors. Clearly for very sparse matrices
(less than 10% non-zero) one is better o® using sparse matrices and anything
over 67% non-zeros one is better o® with full matrices (which actually require
less storage space at that point). In between, some experimentation may be
required to determine which is better for a given application.

B.3 Programming Style

In general there are di®erent ways to write a program that produce the same
end results. Algorithmic e±ciency refers to the execution time and memory
used to get the job done. In many cases, especially in a matrix processing
language like Matlab, there are important trade-o®s between execution time
and memory use. Often, however, the trade-o®s are trivial and there so one
way of writing the code may be unambiguously better than another.

In Matlab, the rule of thumb is to avoid loops where possible. Matlab is
a hybrid language that is both interpreted and complied. A loop executed
by the interpreter is generally slower than direct vector operations that are
implemented in compiler code. For example, suppose one had a scalar x that
one wanted to multiply by the integers from 1 to n to create a vector y whose
th ii entry is y = x . Both of the following code segments produce the desiredi

15



result:

for k = 1 : n
^y(i) = x i;

end

and

^y = x: (1 : n);

The second way avoids the looping of the ¯rst and hence executes substan-
tially faster.

Programmer development e®ort is another critical resource required in
program construction that is sometimes ignored in discussions of e±ciency.
One reason for using high level language such as Matlab, rather than a low
level language such as Fortran, is that programming time is often greatly
reduced. Matlab carries out many of the housekeeping tasks that the pro-
grammer must deal with in lower level languages. Even in Matlab, however,
one should consider carefully how important it is to write very e±cient code.
If the code will be used infrequently, less e®ort should be devoted to mak-
ing the code computationally e±cient than if the code will be used often or
repeatedly.

Furthermore, computationally e±cient code can sometimes be fairly dif-
¯cult to read. If one plans to revise the code at a later date or if someone
else is going to use it, it may be better to approach the problem in a simpler
way that is more transparent, though possibly slower. The proper balance of
computational e±ciency versus clarity and development e®ort is a judgment
call. A good idea, however, is embodied in the saying \Get it to run right,
then get it to run fast." In other words, get one's code to do what one what
it to do ¯rst, then look for ways to improve its e±ciency.

It is especially important to document one's code. It does not take long
for even an experienced programmer to forget what a piece of code does if
it is undocumented. We suggest that one get in the habit of writing headers
that explain clearly what the code in a ¯le does. If it is a function, the
header should contain details on the input and output arguments and on the
algorithm used (as appropriate), including references. Within the code it is a
good idea to sprinkle reminders about what the code is doing at that point.

Another good programming practice is modularity. Functions that per-
form a simple well de¯ned task that is to be repeated often should be written

16



separately and called from other functions as needed. The simple functions
can be debugged and then depended on to perform their job in a variety of
applications. This not only saves program development time, but makes the
resulting code far easier to understand. Also, if one decides that there is a
better way to write such a function, one need only make the changes in one
place. An example of this principle is a function that computes the deriva-
tives of a function numerically. Such a function will be used extensively in
this book.

17


