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Spatial Statistics Toolbox
I. Why the Toolbox Exists

Many problems of practical importance generate large spatial data sets. Obvious examples
include census data (over 200,000 block groups for the US) and housing sales (many millions sold
per year). Almost any model fitted to these data will produce spatially correlated errors. Ignoring
the spatial correlation among errors results in inefficient parameter estimation, biased inference,
and ignores information which can greatly improve prediction accuracy.

Historically, spatial statistics software floundered with problems involving even thousands of
observations. For example, Li (1995) required 8515 seconds to compute a 2,500 observation
spatial autoregression using an IBM RS6000 Model 550 workstation. The culprit for the difficulty
lies in the maximum likelihood estimator’s need for the determinant of the » by n matrix of the
covariances among the spatially scattered observations.

The two most capable software packages which estimate these spatial autoregressions,
SpaceStat and S+SpatialStats, improve upon the historical level of performance through the use
of sparsity, simultaneously advocated by Barry and Pace (1997) and Pace and Barry (1997a,b,
1998).! Dense matrices require O(n”) operations to compute determinants while sufficiently
sparse matrices (large enough proportion of zeros) can require as few as O(n) operations to
compute determinants. However, the commercial software packages do not fully exploit the
advantages of sparsity (they ignore the reordering of the rows and columns which can greatly
improve performance) and do not take advantage of some of the other techniques advocated in

the Pace and Barry articles such as quick identification of neighboring observations, determinant

I Naturally there are other software packages. These are especially numerous for geostatistical estimation. Also for Matlab,
the Mapping Toolbox contains some kriging functions and Lafleur and Gatton at University of Quebec have a toolbox
with kriging and other geostatistical functions. LeSage has a comprehensive Econometrics Toolbox for Matlab with many
interesting spatial routines.
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reuse, the use of a grid of determinant values for direct computation of the full profile likelihood,
and vectorizing the sum-of-squared error computations in the log-likelihood. Table 1, which
compares the spatial statistics toolbox estimates and timings with those from S+SpatialStats
provides a striking illustration of the potential gains of these techniques. For this data set of 3,107
observation with five variables and eight neighbors used in the computation of the inverse
variance-covariance matrix, S+SpatialStats was slower than the Spatial Statistic Toolbox by a
factor of 38.05. Specifically, it took 1304.83 seconds for S+SpatialStats to compute the estimates
while it took only 34.29 seconds for the Spatial Statistics Toolbox (based on Matlab 5.2) to
perform the same operation. The timings are on a dual Pentium Pro 200 Mhz computer with 256
megabytes of RAM. In passing, the Spatial Statistics Toolbox used much less memory (less than
64MB) than S-Plus (more than 128MB) in arriving at these results.

The Spatial Statistics Toolbox uses a grid of 100 values for the autoregressive parameter, a,
for most of the maximum likelihood estimation and log-determinant functions. We restrict o to
lie in [0,1) because almost all practical problems exhibit positive autocorrelation.? The minor
differences in the coefficient estimates arise due to the discrete approximation of the continuous
a. Also, the spatial statistics toolbox, in line with its likelithood orientation, provides likelihood
ratio (LR) as opposed to ¢ statistics. This applies even to the OLS non-spatial routine.

Version 1.1 of the Spatial Statistics Toolbox adds two functions relating to the very nearest
neighbor (or closest neighbor) spatial dependence. The log-determinant in this case has an

amazingly simple form which permits development of a closed-form maximum likelihood spatial

2 Theoretically, one can have negative values for the autoregressive parameter. In practice, we have never observed
negative estimates across the many datasets we have examined. For row stochastic matrices, a singularity exists for
autoregressive parameter values of 1 (the log-determinant approaches negative infinity as the autoregressive parameter
approaches 1). Accordingly, we restrict the maximum value of the autoregressive parameter to lie below 1. A user could
easily modify the source code to handle negative values of the autoregressive parameter.
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estimator. One function finds the closest neighbor and the other estimates a mixed regressive
spatially autoregressive model using closest neighbor spatial dependence. It takes under 3.5
minutes to find the neighbors and estimate the model for a data set with 500,000 observations
(Pentium III 500).

We have used these techniques to compute spatial autoregressions of over 500,000
observations and wish to provide others with the Spatial Statistics Toolbox to aid the widespread
application of spatial statistics to large-scale projects. In addition, the toolbox can greatly help

with simulations and other applications involving numerous estimations of spatial statistical data.



Table 1 — Splusand Spatial Toolbox Estimatesand Timingsfor a SAR Estimate on a Problem
with 3,107 Observations, 5 Variables, and 8 Neighbors
(Splusreportsasymptotic t tests, Spatial Toolbox reportsLikelihood Ratio tests)

Intercept

In(Population > 18 years of Age)
In(Population with Education > 12 years)
In(Owner Occupied Housing Units)
In(Aggregate Income)

Optimal a

SSE
Median ||
Log(Likelihood)

n
k
Number of Neighbors

Time to compute Nearest Neighbor Matrix
Time to compute Determinants

Time to compute SAR

Time to compute SAR and Determinants

Total Time Needed
Ratio of time S-Plus/Spatial Toolbox
Machine: Pentium Pro 200 dual

Bsplus

0.5178
-0.7710
0.2598
0.4495
0.0129
0.7583

34.4415
0.0594
-5646

3107

27.83

1277

1304.83

tspl us

9.1337
-35.1633
12.1428
29.0240
0.5998

not
reported

seconds

seconds

seconds

Bspacetool

0.5164

-0.7707
0.2590
0.4496
0.0132
0.76

34.4212
0.0594
-5646.46

3107
5
8

247
29.84
1.98

34.29
38.05

-2L Rspacetool

77.84
1022.93
128.29
741.33
0.38
1321.23

seconds
seconds
seconds

seconds
times



I1. Using the Toolbox

A. Hardware and Software Requirements

The toolbox requires Matlab 5.0 or later. Unfortunately, previous editions of Matlab did not
contain the Delaunay command and others needed for the toolbox. The total installation takes
around 15 megabytes. The routines have been tested on PC compatibles — the routines should

run on other platforms, but have not been tested on non-PC compatibles.
B. Installation

For users who can extract files from zip archives, follow the instructions for your product (e.g.,
Winzip) and extract the files into the directory in which you wish to install the toolbox. The
installation program will create the following directory structure in whichever drive and directory

you choose.



DRIVE:.

——datasets

| ——geo_analysis

| F——harrison_rubinfeld
| L—statprob_Tletters
——document

F——EXAMPLES

| F——XARY1
| ——XCAR1
| F—xcTosestmixl

| F——XDELW1
| F—xh&r_data
| F—xTagx1

| F—xTagx2
| ——XMCCARL

| F——XMCMIX1
| ——XMCPARL
| ——XMCSARL

| F—XMIX1

| F—XMIX2

| F——xnnasyml

| F——XNNDEL1

| F—xo1s1

| F—XPAR1

| F—~xs&p_data

| L—XSAR1

——FUNDIR

L——manuscripts



———closest_neighbor

——geo_analysis
F—IJEEM

L—statistics_prob_lets

To see if the installation has succeeded, change the directory in Matlab to one of the supplied
examples and type run “m-file name”. For example, go to the ..\examples\xcarl subdirectory and
type run xcarl. This should cause the script xcarl.m containing the example to run. If it does not,
check the file attributes as described below. All the example scripts should follow the form x*.m
(e.g., xsarl.m, xols1.m). Functions follow the form f*.m (e.g., fsarl.m, folsl.m). Matlab matrix files (which
may include multiple matrices) have the form *mat. ASCII files have the form *.asc, text files have
the form *.txt, postscript files have the form *.ps, Adobe Acrobat files have the form *.pdf, and
html files naturally have the form *.html.

For non-PC platforms or if you have directly copied the files from the CD-ROM without using
the installation program, it may still have the “read-only” file attribute. If so, change this
manually. On the PC, for those who have not used the installation program, run Explorer, select
the file menu, go to the Properties item, and you can change the file attributes this way. Again,
this should not be a problem for those who used the installation program under Windows 95 or
Windows N'T. However, If the example fails, you should check to see if it has the “read-only” file
attribute.

The examples that do not write to files can be run directly off the CD-ROM. For example, go
to the stoolbox\examples\xcarl subdirectory and type run xcarl. This should cause the script
xcarl.m containing the CAR estimation example to run.

C. Using the Toolbox
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Typical sessions with the toolbox proceed in four steps. First, import the data into Matlab, a
fairly easy step. If the file is fixed-format or tab-delimited ASCII, load filename (whatever that
filename may be) will load this into memory. Saving it will convert it into a matlab file (e.g., save a
awill save variable a into matrix a — failure to specify both names will result in saving all defined
variables into one file). The data would include the dependent variable, the independent
variables, and the locational coordinates.

Second, create a spatial weight matrix. One can choose ones based upon nearest neighbors
(symmetric or asymmetric) and Delaunay triangles (symmetric). In almost all cases, one must
make sure each location is unique. One may need to add slight amounts of random noise to the
locational coordinates to meet this restriction (some of the latest versions of Matlab do this
automatically — do not dither the coordinates in this case). Note, some estimators only use
symmetric matrices. You can specify the number of neighbors used and their relative weightings.

Note, the Delaunay spatial weight matrix leads to a concentration matrix or a variance-
covariance matrix that depends upon only one-parameter (o, the autoregressive parameter). In
contrast, the nearest neighbor concentration matrices or variance-covariance matrices depend
upon three parameters (o, the autoregressive parameter; m, the number of neighbors; and p,
which governs the rate weights decline with the order of the neighbors with the closest neighbor
given the highest weighting, the second closest given a lower weighting, and so forth). Three
parameters should make this specification sufficiently flexible for many purposes.

Third, one computes the log-determinants for a grid of autoregressive parameters
(prespecified by the routine). We suggest the use of the determinant routines which interpolate to
save time. The interpolation precision is very high relative to the statistical imprecision of the

estimated SSE and should not affect the results. Determinant computations proceed faster for
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symmetric matrices. You must choose the appropriate log-determinant routines for the type of
spatial weight matrix you have specified. Table 2 provides more detail on the relations among the
routines. Computing the log-determinants is the slowest step but only needs to be done once for

most problems (the same applies to creating the spatial weight matrix).



Table 2 — Relations Among Weight Matrix Routines, Log-Determinant Routines and
Output
Weight Routines Log-Dets Output
Delaunay fdetfill or wswdel (symmetric Delaunay
weight matrix) or wwsdel
fdelwl fdetinterpl (similar row-stochastic
weight matrix) and
associated log-determinants
detvalzdel
Nearest Neighbors Symmetric Weight fdetfill or wswnn (symmetric NN
weight matrix) or wwsnn
Matrix fdetinterpl (similar row-stochastic NN
weight matrix) and
fnandell (uses fdelwl) + fansym1 associated log-determinants
detvalznn
Nearest Neighbors Asymmetric Weight fdetinterpasym1 wwsnn (fundamentally
asymmetric, row-stochastic
Matrix NN weight matrix) and
associated log-determinants
fandell (uses fdelwl) + fnnasym1 detvalznn

Fourth, pick a statistical routine to run given the data matrices, the spatial weight matrix, and
the log-determinant vector. One can choose among conditional autoregressions (CAR),
simultaneous autoregressions (SAR), mixed regressive spatially autoregressive estimators, pure
autoregressive estimators, spatially lagged independent variable models, and OLS. These
routines require little time to run. One can change models, weightings, and transformations and
reestimate in the vast majority of cases without rerunning the spatial weight matrix or log-
determinant routines (you may need to add another simple Jacobian term when performing
weighting or transformations). This aids interactive data exploration. The closest neighbor
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functions seem well-suited to exploratory work due to their speed. In addition, they provide an
excellent naive model useful as a benchmark for more elaborate models.

Fifth, these procedures provide a wealth of information. Typically they yield the profile
likelihood in the autoregressive parameter for each submodel (corresponding to the deletion of
individual variables or pairs of a variable and its spatial lag). All of the inference, even for the
OLS routine, uses likelihood ratio statistics. This facilitates comparisons among the different

models. Note, the routines append the intercept as the last (as opposed to the usual first) variable.
D. Included Examples

The Spatial Statistics Toolbox comes with many examples. These are found in the
subdirectories under ...\EXAMPLES. To run the examples, change the directory in Matlab into
the many subdirectories that illustrate individual routines. Look at the documentation in each
example directory for more detail. Almost all of the specific models have examples. In addition,
the simulation routine examples serve as minor Monte Carlo studies which also help verify the
functioning of the estimators. The examples use the 3,107 observation dataset from the Pace and

Barry (1997) Geographical Analysis article.
E. Included Datasets

The ..\DATASETS subdirectory contains subdirectories with individual data sets in Matlab
file formats as well as their documentation. One can obtain ascii versions of these data from the

website www.spatial-statistics.com. The data sets include:
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Table 3 — Included Data Sets and their Characteristics

n Dependent Variable Spatial Area Initial Appearances
506 | housing prices Boston SMSA 1970 Harrison and Rubinfeld (1978), JEEM
census tracts Gilley and Pace (1996), JEEM
(added spatial coordinates to HR data)
3,107 | election turnout US Counties Pace and Barry (1997), Geographical
Analysis
20,640 | housing prices California Census Block | Pace and Barry (1997), Statistics and

Groups

Probability Letters

The datasets also have example programs and output.

incorporated into the Spatial Statistics Toolbox over time,

Note, due to the many improvements

the running times have greatly

improved over those in the articles. For example, the California census block group data set with

20,640 observations now requires less than one minute to compute the spatial weight matrix,

calculate the log-determinants, and to estimate the model. The original paper took around 19

minutes to perform just one estimate (given the weight matrix). Also, the original paper

performed inference via ¢ ratios conditional upon the autoregressive parameter while the new

procedures yield likelihood ratio statistics for almost any hypothesis of interest. Table 4 shows

typical time requirements for datasets of differing sizes.
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Table 4 — Timings Across Datasets

Time (in seconds) Harrison Data used in Data used in

Needed to and Geographical Statistics and
Rubinfeld Analysis Article Probability Letters
Data (n=3,107) Article (n=20,640)
(n=506)

Create Delaunay weight 0.14 0.57 4.48

matrix

Compute Interpolated 3.41 6.36 44.86

Log-determinant

Estimate Mixed 0.12 0.17 1.98

Regressive Spatially

Autoregressive Model

Estimate SAR 0.85 1.96 19.42

Estimate CAR 0.45 1.61 11.25

Pentium 233Mhz
machine

Hopefully, these data sets should provide a good starting point for exploring applications of

spatial statistics.

In the manuscript subdirectory we provide html and postscript versions of the Geographical
Analysis, Journal of Environmental and Economic Management (JEEM), and Statistics and Probability
Letters articles. The copyrights for these articles are owned by the respective publishers. We thank

the publishers for having given us copyright permission to distribute these works.

F. Included Manuscripts

ITI. An Extremely Brief and Limited Introduction to Spatial Statistics

Much of the effort in spatial statistics has gone into modeling the dependence of errors

among different locations. The n by n variance-covariance matrix ¥ expresses such a
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dependence where W, represents the covariance of the ith and jth errors. Ex-ante, the magnitude
of the covariance between any two errors & and ¢; declines as distance (given some metric)

increases between location ¢ and location j. If the covariance depends strictly upon the distance
between two observations (relative position) and not upon their absolute position, the errors are
isotropic. Violation of this leads to anisotropy, a more difficult modeling problem. Just as with time
series, various forms of stationarity are important.

The means of modeling the estimated variance-covariance matrix or functions of the
estimated variance-covariance matrix and the method of prediction (BLUP or other method)

distinguishes many of the strands of the spatial statistics literature.

Given an estimated variance-covariance matrix ¥, one could compute estimated generalized

least squares (EGLS).

A

B =(XP X)X @YY (1)

The maximum likelihood estimate appears similar to EGLS but introduces a log-determinant
term which penalizes the use of more singular estimated variance-covariance matrices (higher
correlations among the observations cause the covariances (off-diagonal elements) to rise relative

to the variances (diagonal elements) and this also makes the matrix more singular).

In L = constant + (%) ln‘qj'l‘ ~(#)In(Y -XB,) %7 - XB,) ©
B, =(XPxX) xPly

), this

If one uses a sum-of-squared error criteria alone in computing the estimates (e.g., use 8

egls
can lead to pathological results. Consider the extreme but illustrative example of employing W7

comprised of all ones. Premultiplication of Y and X by this matrix would result in a vector and a
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matrix of constants. The associated regression would display 0 error. Naturally, W7 is singular in
this case. The log-determinant term correctly penalizes such singular transformations.
Misspecifying the variance-covariance matrix results in loss of efficiency, predictive accuracy,
and biased inference. In the case of positive spatial autocorrelation, the OLS standard errors have
a downward bias. Since the true information content in the spatially correlated observations is less
than in the same number of independent observations, OLS overstates the precision of its
estimates. Note, this statement may depend upon the mechanism which leads to spatial
autocorrelation. If the observed autocorrelation arises due to omitted variables or
misspecification, the parameter estimates may be inconsistent relative to the perfectly specified
model. Note, the maximum likelihood spatial model has an instrumental variable interpretation.

To see this write the maximum likelihood estimator in (2) as,

~

B =(ZX)'ZY

- (3)
Z=WY7X

where Z represents the instrumental variables (Pace and Gilley (1998)). To the degree the spatial
transformations construct good instruments, one suspects some of the favorable bias properties of
instrumental variable estimators may carry through.3 Finally, for individual estimates for a given
dataset, inefficiency can be just as fatal as bias.

Prediction with correlated data becomes somewhat more complex than for the independent
observation case. The best linear unbiased predictor (BLUP) for the case of spatial correlation

and no measurement error equals,

Y, = X+ WY - XB) (4)

3 See Kelejian and Prucha (forthcoming) for a more on spatial instrumental variables.
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where ¢, represents an n by 1 vector of covariances between the error for observation o and the
errors on the sample observations. If no measurement error exists and X, 1s ith sample
observation, the prediction will be exactly equal to the sample value y, and hence the method
produces identically 0 errors for sample observations. This occurs because the covariance vector
multiplied by the inverse covariance matrix will result in a vector of all zeros except for a 1 in the
ith position and hence y, =¥, . Thus, BLUP for the case of spatial correlation with no
measurement error produces an exact interpolator — 0 error at each sample observation.

In the case of pure measurement error with no spatial autocorrelation, the BLUP becomes
the familiar y, = x;,f? . In the case of measurement error and spatial autocorrelation, the BLUP
becomes a smoothing and not an exact interpolation procedure at the sample points. Conditional
autoregression (CAR) predictions can be BLUP under this these conditions. Simultaneous
autoregressions (SAR) predictions are not BLUP, but do use the correlation structure to improve
prediction. The SAR predictions resemble those used from semiparametric (with space as the
nonparametric component) estimators. Mixed regressive spatially autoregressive models also fall
into this category. Table 5 provides a brief annotated bibliography of some easy-to-read materials

as well as reference resources. The bibliography provides additional references.
A. Lattice Models

A set of observations located on a plane forms a lattice. Lattice models directly approximate
Win the case of conditional autoregressions or W™ in the case of simultaneous autoregressions

or models with lagged spatial dependent variables.* The CAR model usually specifies W™ =1 -¢C

and SAR specifies W = [ —aD, where C, D represent spatial weight matrices and ¢,a represent
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the relevant autoregressive parameters.> Positive C,

;» D;correspond to asserting that some form of

direct dependency exists between observation ¢ and j.¢ One can determine which C;,D;>0

through cardinal distance or through ordinal distance (e.g., the eight closest neighbors).
Typically, C and D have zeros on the diagonal and are non-negative matrices. In addition, C must
possess symmetry. The zeros on the diagonal means that observations are not used to predict
themselves. Hence, lattice models do not attempt to exactly interpolate (exhibit zero error at all
the sample points).

Often the rows of D sum to 1 (row-stochastic) which gives them a filtering interpretation.
Hence, DY would contain the average value of the neighboring Y for each observation. For row-

stochastic matrices, the log-determinants In|/ - ¢C|, In|l —aD| will be defined for autoregressive

parameters less than 1. Also, matrices similar (in the linear algebra sense) to these will have the
same eigenvalues and hence log-determinants. If one begins from a symmetric matrix, one can
reweight this to form either a symmetric matrix with a maximum eigenvalue of 1 or a similar row-
stochastic matrix with a maximum eigenvalue of 1. Ord (1975) discussed the similarity between
the row-stochastic weighting of a symmetric matrix and a symmetric weighting of the same
matrix. Pace and Barry (1998) discuss this in more detail. As log-determinants are easier to
compute for symmetric matrices, the toolbox may use symmetric matrices to compute the log-
determinants and use the similar row-stochastic matrix for estimation.

Lattice models have close analogs in time series. For example, SAR models subtract the

average of the surrounding observations (scaled by the autoregressive parameter a ) from each

4 In the time series analysis literature, simultaneous and conditional autoregressions are identical. This identity breaks
down for the spatial literature.

5 For CAR, see Besag (1974, 1975).

6 For CAR, a zero element specifies conditional independence.
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observation. This resembles the operation in time series for an AR(1) process of subtracting from
an observation the previous observation scaled by an autoregressive constant (e.g., Y, = g¥,_,

X, = pX,_)). As the log-determinant is equal to 0 when dealing strictly with past data, this term
does not present the same challenge for time series analysis as it does for spatial statistics.
However, spatial statistics has the advantage of having observations in different directions near
each observation while time series always deals with purely past data. Hence, the greater
symmetry and additional observations around each observation aids spatial statistics in prediction

relative to the fundamental asymmetry of time series analysis.
B. Geostatistical Models

Effectively, geostatistical models directly estimate the variance-covariance matrix.”

Geostatistical techniques, such as kriging (named after Krige, a South African mining engineer)

rely upon an estimated variance-covariance matrix, W, followed by EGLS (estimated generalized
least squares), and BLUP (best linear unbiased prediction). The simplest case assumes one can
specify correctly the variance-covariance matrix as a function of distance only (isotropy). The most
typical application involves the smooth interpolation of a surface at points other than those
measured. Usually, the method assumes errors are 0 at the measured points but modifications

allow for measurement errors at the sample points (nugget effect).

7 Actually, the standard practice involves estimation of a variogram which implies a variance-covariance matrix for
stationary data. One can directly compute the kriging estimates based on the variogram and this approach has validity
even in the presence of some forms of non-stationarity.
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IV. Conclusion and Future Plans

The spatial statistics toolbox provides very rapid maximum likelihood estimation and
likelihood-based inference for a variety of models (with a heavy emphasis upon lattice models).
The toolbox particularly excels at spatial estimation with large data sets. The slow parts of the
estimation (log-determinants) are usually run only once and subsequent interactions with the data
and models require little time. This aids experimentation with spatial estimation, a goal of the
Toolbox. Use of the closest neighbor functions (which uses a closed-form log-determinant
formula) can provide benchmarks useful in assessing the contribution of more elaborate models.

At the moment the toolbox does not include any geostatistical routines. We have some of
these, but we wish to refine these to increase the level of performance before adding them to the
toolbox.

We also have routines to estimate the log-determinant, a procedure which can save great
amounts of time for large matrices. We described the algorithm in Barry, Ronald, and R. Kelley
Pace, “A Monte Carlo Estimator of the Log Determinant of Large Sparse Matrices,” Linear Algebra
and its Applications, Volume 289, Number 1-3, 1999, p. 41-54. We may wish to later add some
spatio-temporal estimation routines which we presented in Pace, R. Kelley, Ronald Barry, John
Clapp, and M. Rodriguez, (1998), “Spatio-Temporal Estimation of Neighborhood Effects,”
Journal of Real Estate Finance and Economics. Naturally, we have current research projects which will
augment the present set of routines. We plan to provide additional datasets as well.

We welcome any comments you might have. We hope you will find these routines useful and
encourage others to use these. If you would like to keep current on this product or any other
spatial statistics software product we provide (e.g., we have a some of these routines available in

Fortran 90 source code with PC executable files, a product we call SpaceStatPack), you might
19



examine our web site at www.spatial-statistics.com from time to time. We have the latest version of
this product there available for downloading. If you use the product, please send an email
message to either kelley@spatial-statistics.com with the first word in the subject field as
“spacetoolbox” which will allow us to do a quick search to form a mailing list when we wish to
communicate with interested individuals. We will try to assist individuals interested in using the
toolbox. However, we request you read the documentation and experiment with the product
before requesting help. We do not charge for the product and so cannot afford to provide
extensive support. If you need extensive support, you probably should pay for one of the
commercial products. These have more extensive documentation, have undergone more testing,

and provide on-going technical support.
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Table 5 — Some Spatial Statistics Selections

Anselin (1988)

This provides the most detailed exposition of simultaneously
specified lattice models from a geographic and econometric

perspective.

Anselin and Hudak
(1992)

Good description of the basic estimation problem. This appears in a

special issue containing a number of interesting articles.

Bailey and Gatrell
(1995)

Albeit limited, this is the easiest introduction to the various spatial
statistical methods. As a bonus, the text comes with DOS software for

estimating some of the models.

Besag (1975)

A clear exposition of the conditional approach.

Christensen (1991)

Provides an easy-to-read discussion of kriging with measurement

€rror.

Cressie (1993)

This voluminous text treats both lattice and geostatistical models and

serves as a standard reference for the field.

Dubin (1988)

This provides one of the clearest expositions of spatial statistical

estimation.

Goldberger (1962)

The easiest-to-read derivation of best linear unbiased prediction

(BLUP) from an econometric perspective and notation.

Griffith (1992)

An interesting, non-technical discussion of the various causes and

implications of spatial autocorrelated data.

Haining (1990)

A well-written, comprehensive survey of the field. Inexpensive.

Ord (1975)

A starting point for simultaneous geographical lattice modeling.

Ripley (1981)

This develops SAR and CAR lattice models as well as geostatistical

ones. A standard reference in the field.
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Spatial Statistics Toolbox Reference

Spatial Weight Matrix Functions

fclosestnnl.m — Finds closest neighbor to each observation.

fdelwl.m — Creates spatial weight matrix using Delaunay triangles.

fnndell.m - Creates individual neighbor weight matrices from first and second order Delaunay neighbors.
fnnsym1.m - Takes individual neighbor weight matrices, smats, and forms overall symmetric weight matrices.
fnnasym1.m - Takes individual neighbor weight matrices, smats, and forms overall asymmetric weight matrices.

Spatial Jacobian Computations

fdetfill.m — Computes In|l-aD| where D is a symmetric spatial weight matrix.
fdetinterpl.m — like fdetfil1.m, but uses spline interpolation to reduce determinant computations.
fdetinterpasyml.m — like fdetinterpl but handles asymmetric weight matrices.

Spatial Autocorrelation Testing
faryl.m — Rapidly computes ML for Y=intercept+alpha*Y+e. This can work with a single vector or collection of vectors.
Lattice Model Estimation Functions

fcarl.m — Computes Maximum Likelihood Estimates for CAR errors.

fclosestmix1.m — Computes Closed-Form Maximum Likelihood Estimates when using only the nearest neighbor.

fsarl.m — Computes Maximum Likelihood Estimates for SAR errors.

fmix1.m — Computes Maximum Likelihood SAR estimates with spatially lagged X and Y.

fparl.m — Computes Maximum Likelihood SAR estimates with spatially lagged Y but not spatially lagged X.

flagx1.m — Computes Maximum Likelihood SAR estimates with spatially lagged X, likelihood ratios for hypothesis that a
variable and its spatial lag have no effect.

flagx2.m — Computes Maximum Likelihood SAR estimates with spatially lagged X, likelihood ratios for hypothesis that
each individual variable (lagged or not lagged) has no effect.

Lattice Model Simulation Functions

fsimcarl.m — Simulates CAR random variables.

fsimsarl.m — Simulates SAR random variables.

fsimmix1.m — Simulates Mixed and Pure SAR random variables.

Non-spatial Estimation Functions

fols1.m — Computes OLS with likelihood ratios in the same form as fcarl, fsarl, etc.
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FARY1

Syntax
[alphamax,loglik,emax,bmax,likratios,prhigher]=fary1(y,detvalz,wws)

Input Arguments

y n by ¢ matrix containing observations on the ¢ dependent variable series

detvalz iter by 2 matrix containing the grid of values for the autoregressive parameter o in
column 1 and the associated values of log|l —aD| in column 2.

wws row-stochastic n by n spatial weighting matrix

Output Arguments

alphamax a’, a g element vector containing the optimal values of the autoregressive
parameter o for each of the ¢ series

loglik iter by ¢ matrix of profile likelihoods over the uer grid of values for a. Each column
is the unrestricted model profile log-likelihood for that series

emax n by ¢ matrix of AR errors with each column corresponding to one of the ¢ series

bmax q element vector with each element representing the average of (I —aD)y, for
i=1..9g

likratios g element vector of twice difference between the unrestricted log-likelithood from

the overall model and the log-likelihood for a=0 (e.g., the restricted model is OLS
or the sample average for each series). Hence, this is really the deviance (-2log(LR)).
Individually these have a chi-squared distribution with 1 degree-of-freedom under
the null hypothesis of no effect.

prhigher g element vector of the probability of obtaining a higher chi-squared test statistic
under the null hypothesis of no effect.

Description

For a n element vector of observations on the dependent variable, y; (for j=1...g), this function
fits the simple autoregressive model y; =intercept + Dy, +& via maximum likelihood. This function

can handle g vectors at the same time by supplying a matrix of observations on the ¢ dependent
variables. One could use this as a way of testing for autocorrelation for any given variable or set of
variables. In other words, this provides a maximum likelithood alternative to estimators like the

Moran’s 1.
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FCAR1

Syntax
[alphamax,loglik,emax,bmax,likratios,prhigher]=fcarl(xsub,y,detvalz,wsw)

Input Arguments

xsub n by p matrix where n represents the number of observations and p represents the
number of non-constant independent variables

y n element vector containing observations on the dependent variable

detvalz iter by 2 matrix containing the grid of values for the autoregressive parameter o in

column 1 and the associated values of log|l —aD| in column 2.

wsw Symmetric n by n spatial weighting matrix

Output Arguments

alphamax a’, scalar optimal value of the autoregressive parameter o

loglik iter by (k+1) matrix of profile likelihoods over the ier grid of values for a. The first
column is the unrestricted model profile log-likelihood followed by the respective
delete-1 variable subset restricted profile log-likelihoods

emax n element vector of the errors from CAR prediction
bmax k element vector of CAR parameter estimates
likratios k element vector of twice difference between the unrestricted log-likelihood from

the overall model and the % delete-1 variable subset restricted log-likelihoods.
Hence, this is really the deviance (-2log(LR)). Individually these have a chi-squared
distribution with 1 degree-of-freedom under the null hypothesis of no effect.

prhigher k element vector of the estimated probability of obtaining a higher chi-squared test
statistic under the null hypothesis of no effect.

Description

For the conditional autoregression model (CAR), Q™" = (I —aD) where D represents an n by n

symmetric matrix with zeros on the diagonal and non-negative elements elsewhere. The CAR

prediction 18 Yy = XBear +a D(y - X8, ) and hence e =(I —a'D)(y - XB,,) -
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FCLOSESTMIX1

Syntax
[alphamax,loglik,emax,bmax likratios,prhigher]=fclosestmix1(xsub,y,nnlist)

Input Arguments

xsub n by p matrix where n represents the number of observations and p represents the
number of non-constant independent variables

y n element vector containing observations on the dependent variable

nnlist n element permutation vector which gives row number of the closest neighbor

Output Arguments

alphamax a’, scalar optimal value of the autoregressive parameter o

loglik iter by (k+1) matrix of profile likelihoods over the ier grid of values for a. The first
column is the unrestricted model profile log-likelihood, followed by p respective
delete-2 variable subset restricted profile log-likelihoods (variable and its spatial
lag), and ending with the no intercept restricted profile log-likelihood

emax n element vector of the errors from mixed model prediction

bmax 2p+1 element vector of mixed regressive spatially autoregressive model parameter
estimates

likratios k element vector of twice difference between the unrestricted log-likelihood from

the overall model and the subset restricted log-likelihoods. For the non-constant
variables the relevant restricted model corresponds to deleting a variable and its
spatial lag. Therefore, this is really the deviance (-2log(LLR)). Hence, these have a
chi-squared distribution with 2 degree-of-freedom under the null hypothesis of no
effect. The no intercept hypothesis has 1 degree-of-freedom.

prhigher k element vector of the estimated probability of obtaining a higher chi-squared test
statistic under the null hypothesis of no effect.

Description
This function fits the model (I —aD)y = X5, +DX(, +& where D a spatial weight matrix using only

the closest neighbor. The mixed model prediction is y,;, = X,El + DX,Z?2 +a Dy . This uses the

closed-form maximum likelihood method proposed by Pace and Zou (forthcoming).
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FCLOSESTNN1PC

Syntax
[nnlist]=fclosestnnlpc(xcoord,ycoord)

Input Arguments

xcoord n by 1 vector of x coordinates such as longitude or from some projection

ycoord n by 1 vector of'y coordinates such as latitude or from some projection

Output Arguments

| nnlist | n element permutation vector which gives row number of the closest neighbor

Description

This routine finds the very nearest or closest neighbor using a Delaunay based method. It
requires somewhat less memory and time than finding the nearest neighbors and extracting the

closest one.
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FDELW1

Syntax
[wswdel,wwsdel,wmatdel]=fdelw1(xcoord,ycoord)

Input Arguments

xcoord n by 1 vector of x coordinates such as longitude or from some projection

ycoord n by 1 vector of'y coordinates such as latitude or from some projection

Output Arguments

wswdel Symmetric n by n sparse spatial weighting matrix
wwsdel Row-stochastic n by n sparse spatial weighting matrix similar to wswdel
wmatdel Diagonal n by n sparse matrix used to normalize a binary weighting matrix so the

maximum eigenvalue equals one

Description

This function computes Delaunay triangles and from these creates a binary sparse spatial
weighting matrix with ones for observations connected by a side of one of the triangles. It
subsequently takes the binary weighting matrix and computes two other weighting matrices. The
first, wswdel, 1s symmetric with a maximum eigenvalue of 1. The second, wwsdel, is row-stochastic
(rows sum to 1) and has a maximum eigenvalue of 1. The routine uses wmatdel to reweight these

alternative forms. Specifically,

wwsdel = (wmatdel )(wmatdel ) B
wswdel = (wmatdel ) B(wmatdel)

where B represents the binary spatial weighting matrix. As both wwsdel and wswdel have the same
eigenvalues (see Ord (JASA, 1975)), using one form or another in a particular circumstance may

have advantages. For example, using the symmetric form wswdel saves time in computing the log-
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determinants while using the row-stochastic form wwsdel has some nice smoothing interpretations
(the row-stochastic form constitutes a two-dimensional linear filter). Both wwsdel and wswdel are
quite sparse — there should be no more than 6 non-zero entries on average in each row.

However, the maximum number of entries in a particular row could be fairly large.
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FDETFIL1

Syntax
[detvalz]=fdetfil1(wsw)
Input Arguments

| wsw | Symmetric n by n spatial weighting matrix

Output Arguments

detvalz iter by 2 matrix containing the grid of values for the autoregressive parameter o in
column 1 and the associated values of log|l —aD| in column 2.

Description

Computes log|l —aD| over a grid for a (which has iter elements). The routine uses the symmetric

weighting matrix, wsw, in the computations. However, this has the same log-determinants as the

similar row-stochastic wws.
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FDETINTERP1

Syntax
[detvalz]=fdetinterp1(wsw)

Input Arguments

| wsw | Symmetric n by n spatial weighting matrix

Output Arguments

detvalz iter by 2 matrix containing the grid of values for the autoregressive parameter o in
column 1 and the associated values of log|l —aD| in column 2.

Description

Computes log|l —aD| over a grid for a (which has iter elements). Uses the symmetric weighting

matrix, Wsw, in the computations. However, this has the same log-determinants as the similar row-
stochastic wws. Uses spline interpolation to reduce the number of determinant computations with

very little loss in accuracy.
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FDETINTERPASYM1

Syntax
[detvalz]=fdetinterpasym1(wws)
Input Arguments

| wws | Asymmetric n by n spatial weighting matrix (not similar to a symmetric matrix)

Output Arguments

detvalz iter by 2 matrix containing the grid of values for the autoregressive parameter o in
column 1 and the associated values of log|l —aD| in column 2.

Description

Computes log|l —aD| over a grid for a (which has iter elements). Uses the asymmetric weighting

matrix, Wws, in the computations.
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FLAGX1

Syntax
[alphamax,loglik,emax,bmax likratios,prhigher]=flagx1(xsub,y,wws)

Input Arguments

xsub n by p matrix where n represents the number of observations and p represents the
number of non-constant independent variables

y n element vector containing observations on the dependent variable

wws n by n spatial weighting matrix

Output Arguments

alphamax 0 by definition

loglik (k+1) vector of log-likelihoods. The first column is the unrestricted model log-
likelihood, followed by p respective delete-2 variable subset restricted log-

likelihoods (variable and its spatial lag), and ending with the no intercept restricted
log-likelihood

emax n element vector of the errors from OLS prediction with spatially lagged
independent variables in the model

bmax 2p+1 element vector of model parameter estimates

likratios k element vector of twice difference between the unrestricted log-likelihood from

the overall model and the subset restricted log-likelihoods. Hence, this is really the
deviance (-2log(LR)). For the non-constant variables the relevant restricted model
corresponds to deleting a variable and its spatial lag. Therefore, these have a chi-
squared distribution with 2 degree-of-freedom under the null hypothesis of no
effect. The no intercept hypothesis has 1 degree-of-freedom.

prhigher k element vector of the estimated probability of obtaining a higher chi-squared test
statistic under the null hypothesis of no effect.

Description

This function fits the model y= X5, + DX, +¢ where D represents an n by n spatial weight

matrix. Usually, one would employ a row-stochastic spatial weight matrix which gives this the

interpretation of regressing the dependent variable on the independent variables and their local,

spatial averages. The prediction is y,,, = XB, + DX, . This function provides for likelithood ratio

tests for the sub-models associated with the deletion of a variable and its associated spatial lag

(with the exception of the intercept variable). It differs in this respect from flagx2.
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FLAGX2

Syntax
[alphamax,loglik,emax,bmax likratios,prhigher]=flagx2(xsub,y,wws)

Input Arguments

xsub n by p matrix where n represents the number of observations and p represents the
number of non-constant independent variables

y n element vector containing observations on the dependent variable

wws n by n spatial weighting matrix

Output Arguments

alphamax 0 by definition

loglik 2(p+1) vector of log-likelihoods. The first column is the unrestricted model log-
likelihood, followed by p respective delete-1 variable subset restricted log-

likelihoods (variable and its spatial lag), and ending with the no intercept restricted
log-likelihood

emax n element vector of the errors from OLS prediction with spatially lagged
independent variables in the model

bmax 2p+1 element vector of mixed model parameter estimates

likratios 2p+1 element vector of twice difference between the unrestricted log-likelithood

from the overall model and the delete-1 subset restricted log-likelihoods. Hence,
this 1s really the deviance (-2log(LR)). Therefore, these have a chi-squared
distribution with 1 degree-of-freedom under the null hypothesis of no effect.

prhigher 2p+1 element vector of the estimated probability of obtaining a higher chi-squared
test statistic under the null hypothesis of no effect.

Description

This function fits the model y= X5, + DX, +¢ where D represents an n by n spatial weight

matrix. Usually, one would employ a row-stochastic spatial weight matrix which gives this the

interpretation of regressing the dependent variable on the independent variables and their local,

spatial averages. The prediction is y,,, = XB, + DX, . This function provides likelihood ratio test

statistics for all delete-1 sub-models. It differs in this respect from flagx1.
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FMIX1

Syntax
[alphamax,loglik,emax,bmax likratios,prhigher]=fmix1(xsub,y,detvalz, wws)

Input Arguments

xsub n by p matrix where n represents the number of observations and p represents the
number of non-constant independent variables

y n element vector containing observations on the dependent variable

detvalz iter by 2 matrix containing the grid of values for the autoregressive parameter o in

column 1 and the associated values of log|l —aD| in column 2.

wws n by n spatial weighting matrix (usually row-stochastic)

Output Arguments

alphamax a’, scalar optimal value of the autoregressive parameter o

loglik iter by (k+1) matrix of profile likelihoods over the ier grid of values for a. The first
column is the unrestricted model profile log-likelihood, followed by p respective
delete-2 variable subset restricted profile log-likelihoods (variable and its spatial
lag), and ending with the no intercept restricted profile log-likelihood

emax n element vector of the errors from mixed model prediction
bmax 2p+1 element vector of mixed model parameter estimates
likratios k element vector of twice difference between the unrestricted log-likelihood from

the overall model and the subset restricted log-likelihoods. For the non-constant
variables the relevant restricted model corresponds to deleting a variable and its
spatial lag. Therefore, this is really the deviance (-2log(LR)). Hence, these have a
chi-squared distribution with 2 degree-of-freedom under the null hypothesis of no
effect. The no intercept hypothesis has 1 degree-of-freedom.

prhigher k element vector of the estimated probability of obtaining a higher chi-squared test
statistic under the null hypothesis of no eftect.

Description

This function fits the model (I —aD)y = X5, +DXf, +& where D a spatial weight matrix. The

mixed model prediction is Y, = XB, + DXB, +a' Dy .
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FNNDEL1

Syntax
[indsuccess]=fnndell(wswdel,xcoord,ycoord,m)

Input Arguments

wswdel n by n Delaunay triangle spatial weight matrix produced by fdelwl

xcoord n by 1 vector of x coordinates such as longitude or from some projection

ycoord n by 1 vector of'y coordinates such as latitude or from some projection

m scalar giving the number of neighbors to be used in creating individual weight
matrices

Output Arguments

indsuccess | 1 if successful |

Output Saved Matrices

smats | A collection of m binary spatial weight matrices saved as a collection in smats.mat. |

Description

This routine creates m binary spatial weight matrices and saves them collectively in smats.mat. Each
of the weight matrices corresponds to a particular order neighbor. For example, the first binary
matrix corresponds to the nearest neighbor and the mth binary matrix corresponds to the
furthermost neighbor. These matrices are used by the associated routines fansyml.m or fanasyml.m
to create a spatial weight matrix. By partitioning the routines in this manner, one can reweight
the individual weight matrices quickly in forming new spatial weight matrices. One should choose
m for this routine to be the maximum order potentially needed as it does not cost much to
expand m for this routine and one can easily use a smaller m for fansyml.m. This function uses the
Delaunay spatial weight matrix, wswdel, which has non-zero elements for contiguous neighbors
(first order neighbors). The collection of first and second order contiguous neighbors is given by
((wswdel+wswdel*)>0). This routine takes this set of potential nearest neighbors (on average a
relatively small number per row — around 20 or so) and sorts these to find the m nearest

neighbors. If the number of first and second order neighbors for a particular observation is less
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than m, the function limits itself to providing non-zero entries in the adjacency matrix for the
number of first and second order neighbors. Hence, this routine really gives the m nearest
neighbors from the set of first and second order Delaunay neighbors. This should provide
enough neighbors for most purposes.

Empirically, the Delaunay algorithm computation time seems to be close to the theoretically

predicted order of O(nlog(n)).
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FNNASYM1

Syntax
[wwsasymnn,wmatasymnn]=fnnasym1(m,rho)

Input Arguments

m scalar giving the number of neighbors to be used in creating individual weight
matrices. Must be less than or equal to the number of matrices stored in smats.mat
rho scalar affecting the rate of geometric decay in weights with order

Output Arguments

wwsasymnn | Row-stochastic asymmetric n by n sparse spatial weighting matrix

wmatasymnn | Diagonal n by n sparse matrix used to normalize a binary weighting matrix so the
maximum eigenvalue equals one

Description

This function loads the matrix smats.mat created by the routine fandell.m and the m individual

spatial weight matrices §;, (I =1..m) and weights these geometrically through the parameter rho

(p) as well as aggregate these to create the spatial weighting matrix N.

It subsequently takes the aggregated weighting matrix N and computes wwsasymnn, a row-
stochastic (rows sum to 1) weight matrix with a maximum eigenvalue of 1. The routine uses the
diagonal matrix wmatasymnn to do this. The row-stochastic form wwsasymnn has some nice

smoothing interpretations (the row-stochastic form constitutes a two-dimensional linear filter).
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FNNSYM1

Syntax
[wswnn,wwsnn,wmatnn=fnnsym1(m,rho)

Input Arguments

m scalar giving the number of neighbors to be used in creating individual weight
matrices. Must be less than or equal to the number of matrices stored in smats.mat
rho scalar giving the rate of geometric decay in weights with order

Output Arguments

wswnn Symmetric n by n sparse spatial weighting matrix
wwsnn Row-stochastic asymmetric n by n sparse spatial weighting matrix
wmatnn Diagonal n by n sparse matrix used to normalize a binary weighting matrix so the

maximum eigenvalue equals one

Description

This function loads the matrix smats.mat created by the routine fnndell.m and takes the m individual

spatial weight matrices S, (I =1..m) and weights these geometrically through the parameter rho

(p) as well as aggregate these to create the spatial weighting matrix N.

(3] s

It subsequently takes the aggregated weighting matrix N and computes two other weighting
matrix. The first, wswnn, is symmetric with a maximum eigenvalue of 1. The second, wwsnn, is row-
stochastic (rows sum to 1) and has a maximum eigenvalue of 1. The routine uses wmatnn to

reweight these alternative forms. Specifically,

1
wmatnn, =| ————

2

wwsnn = (wmatnn)(wmatnn) N
wswnn = (wmatnn) N (wmatnn)
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where N represents the aggregated neighbor spatial weighting matrix. As both wwsnn and wswnn
have the same eigenvalues (see Ord (JASA, 1975)), using one form or another in a particular
circumstance may have advantages. For example, using the symmetric form wswnn saves time in
computing the log-determinants while the row-stochastic form wwsnn has some nice smoothing

interpretations (the row-stochastic form constitutes a two-dimensional linear filter).
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FOLS1

Syntax
[alphamax,loglik,emax,bmax likratios,prhigher]=fols1(xsub,y)

Input Arguments

xsub n by p matrix where n represents the number of observations and p represents the
number of non-constant independent variables
y n element vector containing observations on the dependent variable

Output Arguments

alphamax | 0 by definition

loglik (k+1) element vector of log-likelihoods. The first element is the unrestricted model
log-likelihood followed by the k respective delete-1 variable subset restricted log-
likelihoods

emax n element vector of the errors from the OLS prediction

bmax k element vector of OLS parameter estimates with the intercept as the last element

likratios k element vector of twice difference between the unrestricted log-likelihood from

the overall model and the £ delete-1 variable subset restricted log-likelihoods. This
is really the deviance (-2log(LR)). Individually these have a chi-squared distribution
with 1 degree-of-freedom under the null hypothesis of no effect.

prhigher k element vector of the estimated probability of obtaining a higher chi-squared test
statistic under the null hypothesis of no effect.

Description

This is a standard OLS routine with the exception of using likelihood ratio test statistics instead of

¢ test statistics. This makes it easier to compare with the output from the various spatial routines.
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FPAR1

Syntax
[alphamax,loglik,emax,bmax,likratios,prhigher]=fparl(xsub,y,detvalz,wws)

Input Arguments

xsub n by p matrix where n represents the number of observations and p represents the
number of non-constant independent variables

y n element vector containing observations on the dependent variable

detvalz iter by 2 matrix containing the grid of values for the autoregressive parameter o in

column 1 and the associated values of log|l —aD| in column 2

wws n by n spatial weighting matrix (usually row-stochastic)

Output Arguments

alphamax a’, scalar optimal value of the autoregressive parameter o

loglik iter by (k+1) matrix of profile likelihoods over the ier grid of values for a. The first
column is the unrestricted model profile log-likelihood, followed by p respective
delete-1 variable subset restricted profile log-likelihoods, and ending with the no
intercept restricted profile log-likelihood

emax n element vector of the errors from autoregressive model prediction
bmax k element vector of model parameter estimates
likratios k element vector of twice difference between the unrestricted log-likelihood from

the overall model and the subset restricted log-likelihoods. For the non-constant
variables the relevant restricted model corresponds to deleting a variable and its
spatial lag. This is really the deviance (-2log(LR)). Hence, these have a chi-squared
distribution with 1 degree-of-freedom under the null hypothesis of no effect.

prhigher k element vector of the estimated probability of obtaining a higher chi-squared test
statistic under the null hypothesis of no effect

Description

This function fits the model (I —aD)y = X5 +& where D represents an n by n spatial weight matrix.

The autoregressive model prediction is y,, = XB+a’ Dy.
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FSAR1

Syntax
[alphamax,loglik,emax,bmaxlikratios,prhigher]=fsarl(xsub,y,detvalz,wws)

Input Arguments

xsub n by p matrix where n represents the number of observations and p represents the
number of non-constant independent variables

y n element vector containing observations on the dependent variable

detvalz iter by 2 matrix containing the grid of values for the autoregressive parameter o in

column 1 and the associated values of log|l —aD| in column 2

wws n by n spatial weighting matrix (usually row-stochastic)

Output Arguments

alphamax a’, scalar optimal value of the autoregressive parameter o

loglik iter by (k+1) matrix of profile likelihoods over the ier grid of values for a. The first
column is the unrestricted model profile log-likelihood followed by the respective
delete-1 variable subset restricted profile log-likelihoods

emax n element vector of the errors from SAR prediction
bmax k element vector of SAR parameter estimates
likratios k element vector of twice difference between the unrestricted log-likelihood from

the overall model and the % delete-1 variable subset restricted log-likelihoods.
Hence, this is really the deviance (-2log(LR)). Individually these have a chi-squared
distribution with 1 degree-of-freedom under the null hypothesis of no effect.

prhigher k element vector of the estimated probability of obtaining a higher chi-squared test
statistic under the null hypothesis of no effect

Description

For the simultaneous autoregression model (SAR), Q™ = (I —aD)'(l —aD) where D represents a
spatial weight matrix. The SAR prediction is yg, = XB,, +a D(y - X8, ) and hence

€ = (I =@ D)(y = XBg ) - The SAR prediction is not BLUP, but does have a smoothing

interpretation.
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FSIMCAR1

Syntax
[rvcorr]= fsimcarl(wsw,rv,truerho)

Input Arguments

truerho scalar parameter p within the inverse variance-covariance matrix Q™ = (I - pD)
used for generating the correlated random variates

v n by iter matrix of independent normal random variates

wsw Symmetric n by n spatial weighting matrix D

Output Arguments

| rveorr | n by iter matrix of CAR random variates

Description

This generates random variates that obey the assumptions of the CAR model. The routine is
more efficient (until it hits bottlenecks) with larger values of iter, which also increase memory
usage. For very large n or iter, storing the Cholesky triangle and backsolving for new batches of

CAR random variates would improve performance.
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FSIMMIX1

Syntax
[rvcorr,invxbeta]= fsimmix1(wsw,rv,truerho,xbeta)

Input Arguments

truerho scalar parameter p within the inverse variance-covariance matrix to the half-power
Q7 =(1 - pD) used for generating the correlated random variates

v n by iter matrix of independent normal random variates

wsw Symmetric n by n spatial weighting matrix D

xbeta n element vector containing true X4

Output Arguments

rveorr n by iter matrix of mixed model random variates
invxbeta n element vector containing (I — pD)™* X3
Description

This generates random variates that obey the assumptions of the mixed model. The routine is
more efficient (until it hits bottlenecks) with larger values of iter, which also increase memory
usage. For very large n or iter, storing the Cholesky triangle and backsolving for new batches of
mixed model random variates would improve performance. This routine can be used to simulate

autoregressive models as well.
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FSIMSAR1

Syntax
[rvcorr]= fsimsarl(wsw,rv,truerho)

Input Arguments

truerho scalar parameter p within the inverse variance-covariance matrix to the half-power
Q7 =(1 - pD) used for generating the correlated random variates

v n by iter matrix of independent normal random variates

wsw Symmetric n by n spatial weighting matrix D

Output Arguments

| rveorr | n by iter matrix of SAR random variates

Description

This generates random variates that obey the assumptions of the SAR model. The routine is more
efficient (until it hits bottlenecks) with larger values of iter, which also increase memory usage. For

very large n or uer, storing the Cholesky triangle and backsolving for new batches of SAR random

variates would improve performance.
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