
A Tutorial for G@RCH 2.3, a Complete Ox Package for

Estimating and Forecasting ARCH Models

Sébastien Laurenta,b and Jean-Philippe Petersa

a Département d’Economie, de Gestion et de Sciences Sociales, Université de Liège, Belgium

b Department of Quantitative Economics, Maastricht University, Netherlands.

E-mails: S.Laurent@ulg.ac.be and jp.peters@ulg.ac.be

April 26, 2002

Abstract

This tutorial documents G@RCH 2.3, an Ox package dedicated to the estimation and fore-

cast of various univariate ARCH-type models in the conditional variance and an AR(FI)MA

specification in the conditional mean. These ARCH processes include ARCH, GARCH,

EGARCH, GJR, APARCH, IGARCH, FIGARCH, FIEGARCH, FIAPARCH and HYGARCH.

These models can be estimated by Approximate (Quasi-) Maximum Likelihood under four

assumptions: normal, Student-t, GED or skewed Student-t errors. Explanatory variables can

enter both the conditional mean and the conditional variance equations. One-step-ahead

(density) forecasts of both the conditional mean and variance are available as well as some

miss-specification tests and several graphical features.

After a brief introduction of the package, we present the G@RCH class member functions.

We then propose a theoretical overview of all the specifications both in the conditional mean

and the conditional variance where the usefulness of asymmetric and fractionally integrated

models is highlighted. Next, further explanations are given about the estimation methods.

A concrete application of G@RCH 2.3 is then provided with the daily CAC40 French index.

Numerous print-screens are given with this application so that this document can be consid-

ered as an user guide. That way, the interface of the program is illustrated and its ease of use

is highlighted. Finally, a note on the history of the releases of the G@RCH package as well

as a brief list of possible future improvements of the software is given.



Contents

1 Introduction 1

1.1 The G@RCH Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Program Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Availability and Citation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Installing and Running G@RCH 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 What’s new in this version ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Structure of the Program 4

2.1 Classes and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 G@RCH Member Functions List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 G@RCH Members Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Features of the package 27

3.1 Mean equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Variance equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 ARCH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 GARCH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 EGARCH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.4 GJR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.5 APARCH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.6 IGARCH Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.7 Fractionally Integrated Models . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Estimation Methods 36

4.1 Parameters Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Forecasting the conditional mean . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.2 Forecasting the conditional variance . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Features Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2



5 Application 47

5.1 Data and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Using the “Full Version” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Using the “Light Version” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Versions and Future Improvements 57

6.1 Releases History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Future Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3



1 Introduction

Well known statistical packages such as Eviews 4.0, Rats 5.0, Microfit 4.0, Matlab 12 or S-Plus

6.0 provide various options to estimate sophisticated econometric models, in completely different

areas such as cointegration, panel data, etc.

This paper documents G@RCH 2.3, an Ox package dedicated to the estimation and forecast of

various univariate models. Contrary to the softwares mentioned above, G@RCH 2.3 is only con-

cerned with ARCH-type models (Engle, 1982), including some of the most recent contributions

in this field: GARCH (Bollerslev, 1986), EGARCH (Nelson, 1991), GJR (Glosten, Jagannathan,

and Runkle, 1993), APARCH (Ding, Granger, and Engle, 1993), IGARCH (Engle and Boller-

slev, 1986), FIGARCH (Baillie, Bollerslev, and Mikkelsen, 1996a and Chung, 1999), FIEGARCH

(Bollerslev and Mikkelsen, 1996), FIAPARCH (Tse, 1998) and HYGARCH (Davidson ,2001)

specifications of the conditional variance. Moreover an AR(FI)MA process can be specified in the

conditional mean (see Baillie, Chung, and Tieslau, 1996b, Tschernig, 1995, Teyssière, 1997, or

Lecourt, 2000, for further details about ARFIMA models)

Our package has been developed with the Ox 3.10 matrix programming language of Doornik

(2001)1. G@RCH 2.3 should be compatible with a lot of platforms, including Windows, Linux,

Unix and Solaris. For most of the specifications, it is generally very fast and one of its main

characteristic is its ease of use.

This tutorial is structured as follows: the structure and the functions of the package are

detailed in Section 2 while we propose an overview of the package features in Section 3, with

the presentation of the models (in the mean and in the variance). Comments over estimation

procedures (parameters constraints, distributions, standard deviation estimation methods, tests,

forecasting procedures and accuracy of the package) are introduced in Section 4. Then a user guide

is provided for both versions of G@RCH 2.3 in Section 5 with an application using the CAC40

French index. Section 6 proposes an history of the releases of G@RCH and future improvements

of the package.

1.1 The G@RCH Package

1.1.1 Definition

G@RCH 2.3 is an Ox package dedicated to the estimation and the forecasting of GARCH models

and many of its extensions. It can be used via OxPack (with a dialog-oriented interface) or via

the classic programming way.

The available models are ARCH (Engle, 1982), GARCH (Bollerslev, 1986), EGARCH (Nel-

son, 1991), GJR (Glosten, Jagannathan, and Runkle, 1993), APARCH (Ding, Granger, and Engle,

1For a comprehensive review of this language, see Cribari-Neto and Zarkos (2001)

1



1993), IGARCH (Engle and Bollerslev, 1986), FIGARCH (Baillie, Bollerslev, and Mikkelsen, 1996

and Chung, 1999), FIEGARCH (Bollerslev and Mikkelsen, 1996), FIAPARCH (Tse, 1998) and

HYGRACH (Davidson, 2001). This package provides a lot of features unavailable in most tradi-

tional econometric softwares, including various model specifications, two standard errors estima-

tion methods (Approximate Maximum Likelihood and Approximate Quasi-Maximum Likelihood)

and four distributions (normal, Student-t, GED or skewed Student-t). Moreover, explanatory vari-

ables can enter the mean and/or the variance equations. Finally, one-step-ahead (density) forecasts

of both the conditional mean and variance are available as well as many miss-specification tests

(Nyblom, SBT, Pearson goodness-of-fit, Box-Pierce,...).

1.1.2 Program Versions

Two versions of our program are available and called the “Light Version” and the “Full Version”.

The “Light Version” can be launched from the Ox file GarchEstim.ox. This version requires

some experience with the program and its structure. The “Light Version” is therefore dedicated to

advanced users. This is also dedicated to users who do not possess the GiveWin software. Indeed,

since the OxPack module is only available for registered Ox users, users who have a free (console)

Ox version cannot use our dialogs-oriented (or “Full”) version. Hence, the “Light Version” is the

solution, since its use just requires an Ox executable and a text editor.

The “Full Version” provides the same features as the other version, but also offers a friendly

interface and some graphical features. This version needs to be launched from OxPack.

1.2 Disclaimer

This package is functional but no warranty is given whatsoever. The most appropriate way

to discuss about problems and issues of the G@RCH package is the Ox-users forum (go to

http://www.mailbase.ac.uk/lists/ox-users for registration and archives). Suggestions, mis-

takes, typos and possible improvements can be reported to the authors via e-mail: S.Laurent@ulg.ac.be

for Sébastien and jp.peters@ulg.ac.be for Jean-Philippe.

1.3 Availability and Citation

The G@RCH package is available for downloading at the following address:

http://www.egss.ulg.ac.be/garch

This package is free of charge for academic and research purposes. For a commercial use of the

program, please contact the authors. Moreover, for easier validation and replication of empirical

findings, please cite this documentation (or Laurent and Peters, 2002) in all reports and publica-

tions involving the use of G@RCH 2.3.

2



1.4 Installing and Running G@RCH 2.3

To run G@RCH 2.3, unzip the garch23.zip (or garch23 tut.zip) file in the ox/packages di-

rectory (using folders names). A new Garch23 folder should be automatically created. The files

contained in this garch23.zip file are listed in readme.txt.

If you want to use the ”Light Version”, you need garch.oxo and garch.h. The example of

section 5 is based on GarchEstim.ox. To run it, type

oxl GarchEstim

at the command prompt. Alternatively, you may use oxrun. OxRun can easily be launched from

OxEdit, a free text editor2. GiveWin is needed to display the graphics but is not mandatory for

running the estimation.

To run the ”Full Version” of the program, garch.oxo and garch.h must also be installed.

Moreover, you have to possess a registered version of Ox 3.10 Professional, and you need to be

sure that GiveWin and OxPack are correctly installed on your computer. See Section 5.2 for more

details.

1.5 What’s new in this version ?

- Ox 3.10 compatible.

- Improved OxPack interface.

- Allows to run tests on the raw series from OxPack.

- The Hyperbolic GARCH (HYGARCH) of Davidson (2001) is available.

- Improved forecasts, with new graphical options.

- Stationarity and positivity constraints are checked for most the models.

- All the GARCH models and all the tests can be called from external code. See Section 2.3 for

further details.

- Possibility to fix some parameters at any defined value. It allows thus to estimate, for instance,

an AR(2) model with only lag 2 estimated (by fixing the AR(1) parameter to 0).

- Possibility to save graphics when using the ”Light Version” without GiveWin.

- Several minor bugs corrected.

2You can download OxEdit at http://www.oxedit.com

3



2 Structure of the Program

2.1 Classes and Functions

Ox provides support for object-oriented programming. An interesting concept is therefore the

“Classes”. Indeed, one can create new classes based on other existing parent-classes and use the

functions of these parents, therefore avoiding to rewrite these procedures for derived classes. In

our case, the Garch class is defined as a Modelbase type of class. This Modelbase class derives itself

from the Database class.

The Database class is dedicated to the handling of the database, the sample, the names of

the variables, the selection of the variables... The Modelbase class implements model estimation

features. It is not intended to be used directly but as a base for a more specialized class, such

as our Garch class or already available classes such as ARFIMA, DPD (Panel Data estimation),

SVPack (Stochastic Volatility models) or SsfPack (State space forms).

See Doornik (2001) for more details about the notion of “Classes”.

2.2 G@RCH Member Functions List

Here is the list of the Garch member functions and a brief description for each of them. Our

program also uses functions from other classes (Modelbase and Database). New and significantly

modified functions for this version are indicated with the † symbol.

Constructor

Garch Constructor

Model Formulation (used in the “Light Version”)

ARCHLAGS Specifies the desired lags for the Engle’s LM test for ARCH

ARFIMA Specifies if ARFIMA is wanted in the mean

ARMA ORDERS Specifies the AR and MA orders in the mean

BOUNDS Specifies if estimated parameters are bounded with the low and up bounds

entered in startingvalues.txt

BOXPIERCE Specifies the desired lags for the Box-Pierce test

COVAR Specifies if the Variance-Covariance matrix of the estimated parameters

is printed in the output

CSTS Specifies if constants are wanted in the mean and in the variance

DISTRI Specifies the desired distribution

FIXPARAM(†) Allows to fix some parameters to their starting values.

FOREGRAPHS Plots and saves various forecast-related graphs in GiveWin

FORECASTS Specifies if forecasts are wanted and the number of forecasts

4



GARCH ORDERS Specifies the p and q orders of the GARCH(p, q)

GRAPHS Plots and saves various estimation related graphs in GiveWin

ITER Specifies the number of iterations between prints of intermediary results

MLE Specifies the estimation method of the standard errors

MODEL(†) Specifies the GARCH-type of models in the conditional variance.

NYBLOM Specifies if the Nyblom stability test is wanted

PEARSON Specifies the desired lags for the adjusted Pearson goodness-of-fit test

SAVEPAR Saves the parameters estimates and their standard errors in an Excel spreadsheet

STORE Allows storing estimated εt, ε2
t and σ2

t series

TESTS(†) Allows to run tests either on raw data (prior to estimation) or on the estimated series.

TRUNC(†) Truncation order for the F.I. models using the method of BBM (96).

Initialization

CheckPara Check initial values

FixBounds Fixes the values of the lower and upper bounds of the estimated parameters

InitData Initializes the characteristics of the model (sample, regressors. . . )

InitStartValues Initializes the starting values of the parameters to estimate

Parameters related functions

Dialogs Parameter starting values (only “Full Version”)

GetPara Constructs the parameters vector

PAR(†) Creates a matrix with the parameters estimates, their standard errors and their robust s.e.

SplitPara Allocates the value of each element of the parameters vector to the correct variable

Transform Computes the transformation of Equation 28

Filters

AParch APARCH filter

EGarch EGARCH filter

Garch Filter GARCH filter

GJR Filter GJR filter

FIEGarch FIEGARCH filter (the Fractional Integration process uses Chung’s method)

Figarch BBM FIGARCH filter with the Baillie et al. (1996) method (BBM)

Figarch Chung FIGARCH filter with the Chung (1999) method

Distributions Related

CD Computes the Cumulative Distribution Function of the Gaussian distribution

5



CDFGED Computes the Cumulative Distribution Function of the GED

CDFTA Computes the Cumulative Distribution Function of the (skewed) Student-t distribution

GaussLik Computes the log-likelihood for the Gaussian distribution

GEDLik Computes the log-likelihood for the GED

INVCDFGED Computes the Inverse CDF of the GED

INVCDFTA Computes the Inverse CDF of the (skewed) Student-t distribution

KiAparch Computes the stationary condition of Equation 18

SkStudentLik Computes the log-likelihood for the skewed Student distribution

StudentLik Computes the log-likelihood for the Student distribution

Forecasting

Fig FOR Allocates the right forecasts filter depending on the specification

FOR APARCH(†) Forecasts filter of the APARCH process

FOR ARFIMA Forecasts filter of the ARFIMA process

FOR ARMA Forecasts filter of the ARMA process

FOR EGARCH(†) Forecasts filter of the EGARCH process

FOR FIAPARCH BBM(†) Forecasts filter of the FIAPARCH process (BBM method)

FOR FIAPARCH Chung(†) Forecasts filter of the FIAPARCH process (Chung method)

FOR FIEGARCH(†) Forecasts filter of the FIEGARCH process.

FOR FIGARCH BBM(†) Forecasts filter of the FIGARCH process (BBM method)

FOR FIGARCH Chung(†) Forecasts filter of the FIGARCH process (Chung method)

FOR GARCH Forecasts filter of the GARCH process

FOR GJR Forecasts filter of the GJR process

FOR GRAPHS(†) Draws the forecasts graphics

FORECASTING(†) Launches the one-step ahead forecast process

General

GetCovar Gets the covariance matrix of the estimated parameters

GetcT(†) Gets the number of observations

GetForcData Gets all the post-estimation data (if any)

GetForErrors Gets the forecasts errors

GetINames Gets the name of the realized volatility series (if it exists)

GetNbPar(†) Gets the number of parameters

GetParNames Gets the names of the parameters

GetSeries Returns a matrix with the Y series, the mean residuals and the conditional variance

GetXB Gets µt of Equation 2

6



GetXBetaForc Gets the post-estimation values of the regressor(s) in the mean (if any)

GetXNames Gets the names of the regressors in the mean equation

GetYNames(†) Gets the name of the dependent variable

GetZB Gets α0t of Section 3.2.1

GetZBetaForc Gets the post-estimation values of the regressor(s) in the variance (if any)

GetZNames Gets the names of the regressors in the variance equation

Model Estimation

DoEstimation Estimates the model (“Light version”)

Estimate Estimates the model (“Full version”)

FigLL This is the function optimized by BFGS

Filter Allocates the filter number depending on the model specification

GetRes Gets the mean residuals

ResVar(†) Gets the variance residuals

ScoreContributions Computes the numerical derivatives

Post Estimation

absha Computes frequencies in an interval defined by upper and lower bounds

APGT Computes adjusted Pearson Chi-square Goodness-of-fit test (Vlaar and Palm, 1993)

ArchTest Computes and prints the Engle’s LM ARCH test (Engle, 1982)

AUTO Computes and plots the autocorrelation functions

BoxPQ Computes and prints the modified Box-Pierce Q-statistics and the associated p-values

confidence limits Computes the confidence bounds of a confidence interval from the vector of assumed

uniform 0-1 “z series”

FEM(†) Computes and prints 10 forecasts errors measures

ICriterion Computes the four Information Criteria (Akaike, Hannan-Quinn, Schwarz and Shibata)

Normality Computes the skewness, kurtosis and Jarque and Bera (1987) test,

with associated t-test and p-values

MLEMeth Prints the estimated parameters, their standard deviations, t-tests and p-values

MZ(†) Computes and prints the Mincer and Zarnowitz (1969) regression for the conditional

variance

Nyblom Computes and prints the Nyblom (1989) stability test

Output Prints the model specification and launches other post-estimation procedures

Positivity(†) Checks the positivity constraints with the estimated parameters

QuantileGraphics Plots the quantiles of a distribution

SBT Computes the sign bias test, the negative size bias test, the positive size bias test

7



and a joint test of the three

Stationarity(†) Checks the stationarity constraints with the estimated parameters

Tests Launches the selected tests and prints their results

TestGraphicAnalysis Draws the graphics of the estimation

2.3 G@RCH Members Functions

Garch::AParch, Garch::EGarch,Garch::Garch Filter, Garch::GJR Filter, Garch::Figarch BBM,

Garch::Figarch Chung, Garch::FIEGarch, Garch::FIAParch,

AParch (const e, const level, const p, const q, const par) ;

EGarch (const e, const level, const p, const q, const par, const dist) ;

Garch Filter (const e, const level, const p, const q, const par) ;

GJR Filter (const e, const level, const p, const q, const par) ;

Figarch BBM (const e, const level, const p, const q, const laglamb, const par) ;

Figarch Chung (const e, const level, const p, const q, const par);

FIEGarch (const e, const level, const p, const q, const laglamb, const par, const dist) ;

FIAParch (const e, const level, const p, const q);

e in: (m cT x 1) matrix, residuals series (from the mean).

level in: (m cT x 1) or (m cT x m cX ) matrix, constant + independent variables.

p in: integer, GARCH order

q in: integer, ARCH order

laglamb in: integer, truncation order (BBM method)

par in: (# param x 1) matrix, parameters values (size of the vector depends on the model).

dist in: integer, distribution used (0: Normal, 1:Student-t, 2: GED, 3: Skewed Student-t)

Return value

A (m cT x 1) matrix with the estimated conditional variance (σ2).

Description

These are the filters of the different models. Recall that two methods are available for the

FIGARCH models: the Baillie, Bollerslev, and Mikkelsen (1996) method (BBM) that includes a

truncation order or the Tse (1998) method that does not. Moreover, the HYGARCH model is

launched with the FIGARCH function: the last element of par is ln(α). If it is equal to 0, then we

have the traditional FIGARCH model. Note also that level is a (m cT x 1) vector of ones if there

is no independent variable and a (m cT x m cXV ) matrix equals to b′X if there are explanatory

variables in the variance equation. Finally, the arguments of the functions are sufficient to call

them from an external Ox code. Indeed no class member is used in these procedures anymore.

8



Here is an example of an Ox code that creates randomly a series with 1000 obseravtions, runs

a GARCH(1,1), a GJR(1,1) and an APARCH(1,1) models on it (all with a normal distribution)

and then displays the graphs of the estimated conditional variance series (in GiveWin):

decl garchobj; decl p, q, alpha, beta, apa, gjr ;

decl parameters,res, level ;

decl garch, gjr, aparch;

garchobj = new Garch();
res = rann(1000,1) ;
level = ones(1000,1);
p = 1 ;
q = 1 ;
alpha = 0.05 ;
beta = 0.90 ;
gjr = -0.15 ;

apa = <0.15;1.5> ;
parameters = alpha|beta ;

garch = garchobj.Garch_Filter(res, level, p, q, parameters) ;
gjr = garchobj.GJR_Filter(res, level, p, q, parameters|gjr) ;
aparch = garchobj.AParch(res, level, p, q, parameters|apa) ;

Draw(0, garch’);
DrawTitle(0, "Garch");
Draw(1, gjr’);
DrawTitle(1, "GJR");
Draw(2, figarch’);
DrawTitle(2, "Aparch");
ShowDrawWindow() ;

delete garchobj ;

The elements of the par argument have to be entered in a specific order. See the GetPara function
for more details on the order.

Garch::APGT

APGT(const cd, const ng, const np) ;

cd in: (m cT x 1) matrix, values of the cumulative distribution function.

ng in: integer, number of classification groups

np in: integer, number of parameters

Return value
1 if the test is successfully run, 0 otherwise.

Description
Computes and prints adjusted Pearson χ2 goodness-of-fit test (Vlaar and Palm, 1993). See

Section 4.3 for more detail about this test.

Garch::ARCHLAGS

ARCHLAGS(const lags) ;
No return value
Description

Fix the lags wanted when computing Engle’s LM test for ARCH processes. By default, lags is
< 2; 5; 10 >. This means that three Engle’s LM tests for ARCH are computed, with lags 2, 5 and
10. If lags is <>, the test will not be reported.

9



Garch::ARMA ORDERS, Garch::GARCH ORDERS

ARMA ORDERS(const cAR, const cMA) ;
GARCH ORDERS(const cP, const cQ) ;

cAR in: integer, AR order, p

cMA in: integer, MA order, q

cP in: integer, GARCH order, p

cQ in: integer, ARCH order, q

No return value
Description

Fixes the ARMA and GARCH orders.

Garch::AUTO

AUTO(const z, const ncor, const min, const max, const plot) ;

z in: (n x 1) matrix, series to be tested

ncor in: integer, maximum lag of the autocorrelation

min, max in: integer, coordinates of the Y-axis (for the 4 graphs)

plot in: integer, area wherein the first graph is plotted

No return value
Description

Computes and plots the autocorrelations (with maximum lag = ncor).

Garch::BOUNDS

BOUNDS(const method) ;

method in: 1 if bounded parameters wanted, 0 otherwise.

No return value
Description

If method is 1, the estimated parameters are bounded between (editable) lower and upper
values defined in startingvalues.txt. If it is equal to 0, the parameters are not bounded.

Garch::BOXPIERCE

BOXPIERCE(const lags) ;
No return value
Description

Fixes the lags wanted when computing Box-Pierce statistics. By default, lags is < 5; 10; 20 >.
This means that BP(5), BP(10) and BP(20) are computed for the standardized residuals and
squared standardized residuals. If lags is <>, the test will not be reported.

Garch::BoxPQ

BoxPQ(const eh, const e2h, const ncor, const adjM, const adjV, const sq) ;

10



eh in: (m cT x 1) matrix, series to be tested.

e2h in: (m cT x 1) matrix, squared series.

ncor in: (m cT x 1) matrix, vector of lags.

adjM in: integer, number of degrees of freedom to be subtracted for eh

adjV in: integer, number of degrees of freedom to be subtracted for e2h

sq in: if 0, test on the residuals, if 1, test on the squared residuals

Return value
1 if the test is successfully run, 0 otherwise.

Description
Computes and prints Box-Pierce Q-statistics on standardized residuals and/or squared stan-

dardized residuals. See Section 4.3 for more details about this test.

Garch::CD

CD (const e, const var, const dis, const par) ;

e in: (m cT x 1) matrix, the residuals series.

var in: (m cT x 1) matrix, the variance series.

dis in: integer, the distribution (0:normal, 1:Student, 2:GED or 3:skewed Student).

par in: (2 x 1) matrix, < log(ξ); υ >, i.e. the asymmetry coefficient and the degree of freedom.

par is <> if dist = 0 and log(ξ) = 0 if dist = 1 or 2.

Return value
A (m cT x 1) vector with the CD.

Description
Computes the CDF of ε/σ for the selected distribution.

Garch::CDFGED, Garch::CDFTA

CDFGED (const ee, const nu) ;
CDFTA (const ee, const logxi, const nu) ;

ee in: (m cT x 1) matrix, the series.

logxi in: double, logarithm of the skewness parameter.

nu in: double,degree of freedom (kurtosis parameter).

Return value
A (rows(ee) x 1) matrix with the cdf of the selected distribution.

Description
Computes the cdf of the GED (CDFGED) and the skewed Student (CDFTA).

Garch::COVAR

COVAR(const p) ;

11



p in: 1 or 0, to print the variance-covariance matrix of the estimated parameters.

No return value
Description

If p is 1, the variance-covariance matrix of the estimated parameters is printed in the output.

Garch::Dialogs

Dialogs() ;
No return value
Description

Only used with OxPack. Launches dialogs related to the starting values. There are two
possibilities: the “Parameter-by-parameter” dialog or the “Vector” dialog. The former is launched
if the user has previously selected the “Manually (Individual Form)” option in OxPack while the
latter is available when having chosen “Manually (Vector Form)”.

Garch::DISTRI

DISTRI(const dist) ;

dist in: integer (0, 1, 2 or 3), distribution selection

No return value
Description

Selects the distribution. If dist is 0, the Gaussian (Normal) distribution is selected, if it is 1,
it is the Student-t distribution, if it is 2, it is the Generalized Error distribution (GED) and if it
is 3, it is the skewed Student-t.

Garch::DoEstimation, Garch::Estimate

DoEstimation(const vStart) ;
Estimate () ;

vStart in: (m cPar x 1) matrix, starting values of the parameters to be estimated.

Return value
1 if model successfully estimated, 0 if it failed.

Description
DoEstimation is launched from the “Light version” of the program while Estimate is launched

from the “Full version”. These procedures are the core procedures of the program. They succes-
sively launch others procedures to initialize parameters, to estimate the formulated model, to print
the results, to run the tests or to display the graphics.

Garch::FEM

FEM(const forc, const obs) ;

forc in: (m cTforc x 2) matrix, mean forecast ∼ variance forecast

trunc in: (m cTforc x 2) matrix, observed series (m Yfor) ∼ observed variance (m Hfor)

12



Return value
1 if the tests are successfully run, 0 otherwise.

Description
Computes and prints 10 forecast error measures: Mean Squared Error (MSE), Median Squared

Error (MedSE), Mean Error (ME), Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), Heteroskedastic Mean Squared Error (HMSE), Mean Absolute Percentage Error (MAPE),
Adjusted Mean Absolute Percentage Error (AMAPE), Percentage Correct Sign (PCS), Theil In-
equality Coefficient (THEIL) and Logarithmic Loss Function (LL). See Brooks, Burke, and Persand
(1997) for more details about these measures.

Garch::FigLL

FigLL(const vP, const adFunc, const avScore, const amHessian);

vP in: (m cP x 1) matrix, parameters to be estimated

out: estimated parameters

adFunc in: addresse

out: double, log-likelihood function value at vP

avScore in: 0, or an address

out: if not 0 on input, (m cP x 1) matrix with first derivatives at vP

amHessianin: 0, as MaxBFGS does not require the Hessian.

Return value
1 if successful, 0 if evaluation failed.

Description
This procedure is optimized by Ox with the MaxBFGS function. This function uses the

Broyden, Fletcher, Goldfarb and Shanno (BFGS) quasi-Newton method (see Doornik, p.240, for
further details).

Garch::Filter

Filter() ;
Return value

1 if successful, 0 if failure.
Description

Allocates the correct filter to the specified model.

Garch::FixBounds

FixBounds(const m);

m in: (18 x 2) matrix, bounds values in startingvalues.txt.

Return value
1 if successful, 0 if allocation failed.

13



Description
This allocates the upper and lower bounds for the parameters to the class member m mBound

variable. Note the these bounds are editable by changing default values in startingvalues.txt.
See Section 4.1 for more details.

Garch::FixParam

FixParam(const cfix, const fix);

cfix in: integer, 1 to enable this option, 0 to disable

fix in: (k x 1) vector of 1’s (fixed) or 0’s (estimated)

No return value
Description

When cfix=1, this procedure fixes several of the k parameters to their starting values. For
instance, in an ARCH(1) model their are by default 3 parameters to be estimated. When using
DoEstimation(< 0.01; 0.01; 0.5 >), to launch the estimation, the ARCH parameter is initialized
at 0.5. However, when setting FixParam(1, < 0; 0; 1 >), the ARCH parameter is not estimated
and fixed at 0.5.
This option thus allows to estimate an AR(2)-ARCH(1) model with the estimation of only the lag
2 of the AR. 5 parameters are considered here (two constants, two AR parameters and the ARCH
parameter). To do so, one has to select FixParam(1, < 0; 1; 0; 0; 0 >) for the AR(1) parameter
to be fixed and DoEstimation(< 0.01; 0; 0.1; 0.01; 0.5 >) to fix it to 0.

Garch::FOR APARCH, Garch::FOR EGARCH, Garch::FOR FIGARCH BBM,

Garch::FOR FIGARCH Chung, Garch::FOR GARCH, Garch::FOR GJR

FOR APARCH(const e, const h, const p, const q, const alpha, const beta, const gamma, const
delta, const level forc, const Ki);
FOR EGARCH(const e, const h, const p, const q, const alpha, const beta, const theta1, const
theta2, const level forc, const dist);
FOR GARCH(const e, const h, const p, const q, const alpha, const beta, const level forc);
FOR GJR(const e, const h, const p, const q, const alpha, const beta, const leverage, const
level forc, const prob neg);
FOR FIAPARCH BBM(const e, const hh, const p, const q, const d, const alpha, const beta, const
gamma, const delta, const level forc, const laglamb, const Ki);
FOR FIAPARCH Chung(const e, const hh, const p, const q, const d, const alpha, const beta,
const gamma, const delta, const level forc, const Ki);
FOR FIEGARCH(const e, const h, const p, const q, const d, const alpha, const beta, const theta1,
const theta2, const level forc, const dist, const laglamb);
FOR FIGARCH BBM(const e, const h, const p, const q, const d, const alpha, const beta, const
level forc, const laglamb);
FOR FIGARCH Chung(const e, const h, const p, const q, const d, const alpha, const beta, const
level forc);

14



e in: (m cT x 1) matrix, pre-forecasts residual values

h in: (m cT x 1) matrix, pre-forecasts conditional variance

p in: integer, GARCH order.

q in: integer, ARCH order.

alpha in: (q x 1) matrix, ARCH coefficients.

beta in: (p x 1) matrix, GARCH coefficients.

leverage in: (q x 1) matrix, asymmetry coefficients of the GJR (ωi in Equation 16).

gamma in: (q x 1) matrix, asymmetry coefficients of the APARCH (γi in Equation 17).

delta in: double, standard deviation exponent (δ in Equation 17).

theta1 in: (q x 1) matrix, sign effect of the EGARCH (θ1 in Equation 12).

theta2 in: (q x 1) matrix, magnitude effect of the EGARCH (θ2 in Equation 12).

Ki in: (q x 1) matrix, output of KiAparch(dist, q, par, delta, gamma)

prob neg in: double, probability that ε < 0 (it equals 0.5 for the symmetric distributions

and 1/(1 + ξ2) for the skewed Student).

dist in: integer, selected distribution (0: Normal, 1: Student, 2: GED, 3: Skewed Student)

level forc in: (m cTforc x 1) or (m cTforc x m cXM) matrix, it is the level,

computed as b ∗Xi(i = 1, ..., m cTforc)

laglamb in: integer, truncation order (BBM method).

Return value
A (m cTforc x 1) matrix with the forecasts of the variance.

Description
These are the forecasting procedures. level forc is a (m cTforc x 1) vector of ones if there is

no independent variable and a (m cTforc x m cXV ) matrix equals to b′X if there are explanatory
variables in the variance.

Garch::FOR ARMA, Garch::FOR ARFIMA

FOR ARMA (const y l, const p, const q, const arma, const level forc, const e) ;
FOR ARFIMA (const y l, const p, const q, const d, const arma, const level forc, const e) ;

y l in: (m cT x 1) matrix, with y l = y − b ∗X

(X is a matrix of explanatory variables and b the estimated parameters).

p in: integer, AR order.

q in: integer, MA order.

arma in: (1 x (p+q)) matrix, AR coefficients followed by MA coefficients.

level forc in: (m cTforc x 1) matrix, independent variables.

e in: (m cT x 1) matrix, residuals series.

d in: double, long memory coefficient.

15



Return value
A (m cTForc x 1) matrix with the forecasts of the mean.

Description
These are the filters for the mean equation. They compute forecasts for ARMA and ARFIMA

specifications (without explanatory variables).

Garch::FOR GRAPHS

FOR GRAPHS(const plot, const pre, const type, const valcrit) ;

plot in: integer, area wherein the first graph is plotted

pre in: integer, number of pre-observations

type in: integer, type of confidence intervals (0: none, 1: bands, 2: bars, 3: fans).

valcrit in: double, critical value for the confidence interval (forecasts ± valcrit x std.err.).

No return value
Description

Displays graphics of the mean forecasts (with or without confidence intervals) and/or the
variance forecasts and/or the forecasted series and/or the observed series in the GiveWin front-
end.

Garch::FORECAST

FORECAST(const i, const nbForc, const iprint) ;

i in: 1 to compute forecasts, 0 otherwise.

nbForc in: integer, number of forecasts.

iprint in: 1 to print the forecasts, 0 otherwise.

No return value
Description

If i is 1, one-step ahead forecasting will be executed. The number of forecasts is given by the
value of nbForc. These forecasts will be printed in the output if iprint is 1.

Garch::FORCASTING

FOR STAT 1() ;
Return value

m mForc, a (m cTForc x 2) matrix containing the forecasts for the mean and for the variance.
Description

This procedure launches the forecasts for the mean, then for the variance and allocates different
filters depending on the specification of the model.

Garch::FOREGRAPHS

FOREGRAPHS(const d, const s, const file) ;

16



d in: 1 to draw forecasts graphics, 0 otherwise.

s in: 1 to save forecasts graphics, 0 otherwise.

file in: string, name of the EPS file containing the saved graphics.

No return value
Description

This function calls FOR GRAPHS to draw forecasts graphics in GiveWin when using the
“Light” version. It also allows to save these graphs in a EPS (Encapsulated PostScript) file.

Garch::Garch

Garch() ;
No return value
Description

Constructor.

Garch::GaussLik, Garch:: GEDLik, Garch::StudentLik, Garch::SkStudentLik

GaussLik(const vE, const vSigma2) ;
GEDLik(const vE, const vSigma2, const a) ;
StudentLik(const vE, const vSigma2, const v) ;
SkStudentLik(const vE, const vSigma2, const s, const v) ;

vE in: (m cT x 1) matrix, residuals.

vSigma2 in: (m cT x 1) matrix, conditional variance.

a in: double, asymmetric coefficient.

s in: double, skewness parameter.

v in: double, degree of freedom (kurtosis parameter).

Return value
The log-likelihood function value associated with vE and vSigma2.

Description
Computes the log-likelihood functions of the four available distributions.

Garch::GetForcData, Garch::GetXBetaForc, Garch::GetZBetaForc;

GetForcData(const iGroup, const cTforc);
GetXBetaForc(const cTforc);
GetZBetaForc(const cTforc);

iGroup in: name of the variable group.

cTforc in: number of forecasts.

Return value
(m cTforc x 1) matrix containing the realized values of the regressors (in the mean or in the

variance).

17



Description
GetForcData collects the realized values matrix of all the regressor(s) for the forecasting period

[t + 1 ; t + m cForc]. GetXBetaForc and GetZBetaForc do the same for the regressor(s) in the
mean and the regressor(s) in the variance, respectively.

Garch::GetINames, Garch::GetParNames, Garch::GetXNames, Garch::GetYNames,

Garch::GetZNames;

GetINames();
GetParNames();
GetXNames();
GetYNames();
GetZNames();
Return value

Array of strings with the names of the variables or parameters.
Description

These procedures collect the names of the series (Y), the realized volatility (I), the regressors
in the mean equation (X) or in the variance equation (Z) or the estimated parameters (Par).

Garch:: GetPara;

GetPara();
Return value

1 if successful, 0 if failure.
Description

It constructs the parameters vector and allocates it to m vPar. The order of the parameters
is the following: constant in mean (1 item), regressors in mean coefficients (m cXM items), d

coefficient (1 item), AR coefficients (p items), MA coefficients (q items), constant in var. (1 item),
regressors in variance coefficients (m cXV items), F.I.(d) coefficient (1 item), GARCH coefficients
(p items), ARCH coefficients (q items), GJR coefficients (q items), EGARCH coefficients (q x 2
items), APARCH coefficients (q + 1 items), GED degrees of freedom (1 item) and Student degrees
of freedom (1 item).

Garch::GetRes

GetRes(const y, const x);

y in: (m cT x 1) matrix, dependent variable

x in: (m cT x m cX ) matrix, regressors

Return value
(m cT x 1) matrix containing the residuals.

Description
Computes the residuals of the mean equation without taking into account the AR(FI)MA

process.

18



Garch::GRAPHS

GRAPHS(const d, const s, const file) ;

d in: 1 to draw graphics of the estimation, 0 otherwise.

s in: 1 to save graphics of the estimation, 0 otherwise.

file in: string, name of the EPS file with the saved graphics.

No return value
Description

This function calls Test Graphic Analysis to draw various graphics resulting from the esti-
mation. These graphs are displayed in GiveWin. GRAPHS also allows to save these graphs in a
EPS (Encapsulated PostScript) file.

Garch::ICriterion

ICriterion(const LogL, const n, const q) ;

LogL in: double, the value of the log-likelihood function.

n in: integer, number of observations.

q in: integer, number of parameters.

Return value
1 if the test is successfully run, 0 otherwise.

Description
Computes and prints four information criteria : the Akaike, Schwarz, Shibata and Hannan-

Quinn tests. See Section 4.3 for more details about this test.

Garch::InitData

InitData() ;
Return value

1 if successful, 0 if failure.
Description

Initializes the model by allocating the Y series and the regressors to class members, computing
the number of observations of the sample and the number parameters to be estimated.

Garch::InitStartValues

InitStartValues(const init par, const init bounds) ;

init par in: 1 if default starting values used, 0 otherwise.

init boundsin: 1 if bounded parameters used, 0 otherwise.

No return value
Description
Initializes the starting values when the user do not enter any specific starting values. These values
are:

19



• Constant in the mean: 0.05

• Regressors in the mean: 0.01

• ARFIMA(p,d,q): p1 = 0.2, p>1 = 0.05, d = 0.1, q1 = 0.15, q>1 = 0.02

• Constant term in the variance equation: 0.01

• GARCH: β1 = 0.7 (if GARCH) or 0.45 (if FIGARCH), β>1 = 0.1.

• ARCH: αi = 0.1

• FIGARCH: d = 0.5

• GJR: ωi = 0.01

• EGARCH: φ1 = -0.1 and φ2 = 0.2

• APARCH: δ = 1.2, γ1 = 0.15, γ>1 = 0.05

• skewed Student distribution: ξ = 0.01 (asymmetry coefficient).

• Student distribution: υ = 6 (degrees of freedom).

• GED distribution: υ = 2.

All these values can easily be modified by the user just by editing the startingvalues.txt

file. This file is automatically installed in the .../ox/packages/garch directory when unzipping
garch22.zip. In this startingvalues.txt file, one may also change lower and upper bounds of
all the parameters.

Garch::INVCDFGED, Garch::INVCDFTA

INVCDFGED (const p, const nu) ;
INVCDFTA (const p, const logxi, const nu);

p in: double, probability.

logxi in: double, logarithm of the skewness parameter.

nu in: double,degree of freedom (kurtosis parameter).

Return value
The solution of the integral equation p = F (x|logxi, nu).

Description
Computes the the inverse cdf of the GED (INVCDFGED) and the skewed Student (IN-

VCDFTA).

Garch::ITER

Integrate(const i) ;

i in: integer, number of iterations between intermediary prints.

20



No return value
Description

With G@RCH, it is possible to print intermediary results of the estimation. This function
allows the user to easily select the number of iteration between printing results. For instance, if i

is 10, intermediary values of the parameters and the log-likelihood function will be printed every
10 iterations. When i is 0, no intermediary result is printed.

Garch::MLE

MLE(const method);

method in: integer, method selection.

No return value
Description

Selection of the estimation method. If method = 0, both (Approximate) Maximum Likelihood
and Quasi-Maximum Likelihood Estimates will be computed. If method = 1, only MLE is selected
and if it is equal to 2, only QMLE are computed.

Garch::MLEMeth

MLEMeth(const par, const parnames, const title, const nbpar);

par in: (m cPar x 1) matrix, estimated parameters

parnames in: array of m cPar strings, estimated parameters names

title in: string, selected method name

nbpar in: integer, number of parameters (m cPar)

No return value
Description

Prints the estimated parameters, their standard deviations, t-tests and p-values with their
names. Depending on the user’s choice, ML estimates, QML estimates or both will be printed.

Garch::MODEL

MODEL(const mod) ;

mod in: integer, used to select the Garch model.

No return value
Description

The argument takes a value between 1 and 11 to select the ARCH model to be used in the
conditional variance:

1: GARCH 6: FIGARCH (BBM)

2: EGARCH 7: FIGARCH (Chung)

3: GJR 8: FIEGARCH

21



4: APARCH 9: FIAPARCH (BBM)

5: IGARCH 10: FIAPARCH (Chung)

11: HYGARCH

Garch::MZ

MZ(const HFor, const MatFor, const nbFor) ;

HFor in: blabla

MatFor in: blabla

nbFor in: integer, number of forecasts

Return value
1 if the tests are successfully run, 0 otherwise.

Description
Computes and prints the Mincer-Zarnowitz regression on the forecasted volatility. See Section

4.3 for more details about this regression.

Garch::Normality

Normality(const e) ;

e in: (m cT x 1) matrix, series to be tested.

Return value
1 if the test is successfully run, 0 otherwise.

Description
Computes and prints skewness, excess kurtosis and Jarque-Bera normality test with the asso-

ciated adjusted t-statistics and p-values. See Section 4.3 for more details about this test.

Garch::NYBLOM

NYBLOM(const i) ;

i in: 1 or 0, to compute the Nyblom test.

No return value
Description

If i is 1, the parameters stability test of Nyblom (1989) is computed.

Garch::Nyblom

Nyblom(const eh, const grad) ;

eh in: (m cTx1) matrix, parameters to be tested.

grad in: (m cParx1) matrix, gradients.

22



Return value
1 if the test is successfully run, 0 otherwise.

Description
Computes and prints the Nyblom test. This checks the constancy of parameters over time.

See Nyblom (1989) and Lee and Hansen (1994) for more details.

Garch::Output

Output() ;
No return value
Description

Prints the specification of the formulated model and launches the standard errors computations.

Garch::PAR

PAR() ;
Return value

A (m cPar x 3) matrix structured as (m vPar ∼ m vStdErrors ∼ m vRobStdErrors)
Description

Returns a (m cPar x 3) matrix with the parameters estimates, their standard errors and their
robust standard errors. It is used together with SAV EPAR to store estimation results of a model
in an external file (Microsoft Excel spreadsheet).

Garch::PEARSON

PEARSON(const lags) ;

lags in: (l x 1) matrix, vector containing the l wanted lags for the test.

It must have the following form:< lag1; lag2; ...; lagl >

No return value
Description

Fixes the lags wanted when computing the adjusted Pearson goodness-of-fit test (see Section
4.3 for more details). By default, lags is < 40; 50; 60 >.

Garch::SAVEPAR

SAVEPAR(const i, const file);

i in: 0: store nothing, 1: stores parameters estimates, 2: stores estimates

and std.errors, 3: stores estimates, std.errors and robust std. errors.

file in: string, name of the Excel file wherein the values will be stored.

Return value
1 if successful, 0 otherwise.

Description

23



Allows to store optimized parameters estimates, their standard errors and their robust standard
errors in a .xls file (Excel spreadsheet) for further analysis.

Garch::SBT

SBT(const res, const cvar) ;

res in: (m cT x 1) matrix, residuals.

cvar in: (m cT x 1) matrix, conditional variance.

Return value
1 if the test is successfully run, 0 otherwise.

Description
Computes and prints Sign Bias Test, negative Size Bias Test, positive Size Bias Test and joint

Test for the three effects described in Engle and Ng (1993). See Section 4.3 for more details about
this test.

Garch::SplitPara

SplitPara(vP) ;

vP in: (m cPar x 1) matrix, parameters vector.

Return value
1 if successful, 0 if failure.

Description
Splits the parameters vector and allocates each one to the corresponding class member.

Garch::STORE

STORE(const res, const res2, const condv, const mfor, const vfor, const name, const file);

res in: 1 or 0, to store the residuals.

res2 in: 1 or 0, to store the squared residuals.

condv in: 1 or 0, to store the conditional variance.

mfor in: 1 or 0, to store the mean forecasts.

vfor in: 1 or 0, to store the variance forecasts

name in: string, suffix added to “Res ”, “SqRes ”, “CondV ”, “MeanFor ” or “VarFor ”

to name the saved series.

file in: if 0, saves as a new .xls file. If 1, saves as a new .in7 file.

No return value
Description

Stores the residuals, the squared residuals and the conditional variance of the estimated models,
but also the forecasted mean and variance. Argument 6 provides a default suffix (“01”) that can
be modified. If argument 7 equals 0 (default value), the series will be stored in a new .xls file

24



(Microsoft Excel spreadsheet). If it is equal to 1, the series will be stored in a new .in7 file
(GiveWin database).

Garch::Tests

Tests() ;
No return value
Description

Runs the selected tests.

Garch::TESTS

TESTSONLY(const p, const a) ;

p in: 0 or 1.

a in: 0 or 1.

No return value
Description

Allows to run the test either for the raw series, prior to any estimation (p = 1) or for the
estimated series, after the optimization (a = 1).

Garch::TestGraphicAnalysis

TestGraphicAnalysis(const ser, const res, const sqres, const h, const plot) ;

ser in: 1 or 0; 1 if raw series graph wanted.

res in: 1 or 0; 1 if residuals graph wanted.

sqres in: 1 or 0; 1 if squared residuals graph wanted.

h in: 1 or 0; 1 if cond.variance graph wanted.

plot in: integer, area wherein the first graph is plotted

No return value
Description

Displays graphics of the series and/or the residuals and/or the squared residuals and/or the
conditional variance in the GiveWin front-end.

Garch::Transform

Transform(const cpar, const bornes, const meth);

cpar in: (m cPar x 1) matrix, estimated parameters

bornes in: (m cPar x 2) matrix, upper and lower bounds

meth in: 1, 2 or 3.

25



Return value
(m cPar x 1) matrix containing the transformed parameters.

Description
Transforms the values of the estimated parameters to take account of the lower and upper

bounds of these parameters (see Section 4.1 for details). When meth is 0, the constrained param-
eters are transformed into unconstrained parameters. The opposite is obtained by equalling meth

to 1. If meth is 2, unconstrained standard errors of the estimated parameters are transformed
into constrained ones.

Garch::TRUNC

TRUNC(const t) ;

trunc in: integer, truncation order (this argument is only used with BBM’s approach)

No return value
Description

It is related to the fractionally integrated (FI) model selection. If the estimation method
follows BBM’s (1996) specification, the value of t will be used as the truncation order. If the
estimation method follows Chung’s (1999) specification, t will equal all the previous observations.
One notable difference (among others) between these two methods is indeed that BBM uses a fix
number of lags to compute the binomial expansion (Taylor’s theorem) while Chung proposes an
increasing number of lags (it includes thus all previous observations). The FIAPARCH model is
estimated with the FIGARCH procedure. Here is an example for a FIAPARCH(1,d,1) with the
method of BBM:
Figarch BBM(sqrt(G),level,p,q,laglamb,alpha|beta|d|hy).^(2/delta)

with G = |residuals| - gamma * (residuals.^delta)

OxPack Functions

OxPack related functions are described in Doornik (2001).

26



3 Features of the package

Our attention will be first devoted to review the specifications of the conditional mean equation.
Then, some recent contributions in the ARCH modelling framework will be presented.

3.1 Mean equation

Let us consider an univariate time series yt. If Ωt−1 is the information set at time t − 1, we can
define its functional form as:

yt = E(yt|Ωt−1) + εt, (1)

where E(.|.) denotes the conditional expectation operator and εt is the disturbance term (or
unpredictable part), with E(εt) = 0 and E(εtεs) = 0,∀ t 6= s.

This is the mean equation which has been studied and modelled in many ways. Two of
the most famous specifications are the Autoregressive (AR) and Moving Average (MA) models.
Mixing these two processes and introducing n1 explanatory variables in the equation, we obtain
this ARMAX(n, s) process,

Ψ (L) (yt − µt) = Θ (L) εt

µt = µ +
n1∑
i=1

δixi,t,

(2)

where L is the lag operator3, Ψ (L) = 1−
n∑

i=1

ψiL
i and Θ (L) = 1+

s∑
j=1

θjL
j . To start the recursion,

it is convenient to set the initial conditions as εt = 0 for all t ≤ max{p, q}.
Several studies have shown that the dependent variable (interest rate returns, exchange rate

returns, etc.) may exhibit significant autocorrelation between observations widely separated in
time. In such a case, we can say that yt displays long memory, or long-term dependence and is
best modelled by a fractionally integrated ARMA process (so called ARFIMA process) initially
developed in Granger (1980) and Granger and Joyeux (1980) among others.4 The ARFIMA(n, ζ, s)
is given by:

Ψ (L) (1− L)ζ (yt − µt) = Θ (L) εt, (3)

where the operator (1− L)ζ accounts for the long memory of the process and is defined as:

(1− L)ζ =
∞∑

k=0

Γ(ζ + 1)
Γ(k + 1) Γ(ζ − k + 1)

Lk

= 1− ζL− 1
2
ζ(1− ζ)L2 − 1

6
ζ(1− ζ)(2− ζ)L3 − . . .

= 1−
∞∑

k=1

ck(ζ)Lk, (4)

3Recall that Lkyt = yt−k.
4ARFIMA models have been combined with an ARCH-type specification by Baillie, Chung, and Tieslau (1996),

Tschernig (1995), Teyssière (1997), Lecourt (2000) and Beine, Laurent, and Lecourt (2000).

27



with 0 < ζ < 1, c1(ζ) = ζ, c2(ζ) = 1
2ζ(1 − ζ), . . . and Γ(.) denoting the Gamma function (see

Baillie, 1996, for a survey on this topic). The truncation order of the infinite summation is set to
t− 1.

It is worth noting that Doornik and Ooms (1999) recently provided an Ox package for esti-
mating, forecasting and simulating ARFIMA models. However, in opposition to our package, they
assume that the conditional variance is constant over time.

3.2 Variance equation

The εt term in Eq. (1)-(3) is the innovation of the process. Two decades ago, Engle (1982) defined
as an Autoregressive Conditional Heteroscedastic (ARCH) process, all εt of the form:

εt = ztσt, (5)

where zt is an independently and identically distributed (i.i.d.) process with E(zt) = 0 and
V ar(zt) = 1. By definition, εt is serially uncorrelated with a mean equal to zero, but its con-
ditional variance equals σ2

t and, therefore, may change over time, contrary to what is assumed in
the standard regression model.

The models provided by our program are all ARCH-type.5 They differ on the functional form
of σ2

t but the basic principles are the same. Besides the traditional ARCH and GARCH models,
we focus mainly on two kinds of models: the asymmetric models and the fractionally integrated
models. The former are defined to take account of the so-called “leverage effect” observed in
many stock returns, while the latter allows for long-memory in the variance. Early evidence of the
“leverage effect” can be found in Black (1976), while persistence in volatility is a common finding
of many empirical studies; see for instance Bera and Higgins (1993), Bollerslev, Chou, and Kroner
(1992) or Palm (1996) for excellent surveys on ARCH models.

3.2.1 ARCH Model

The ARCH (q) model can be expressed as:

εt = ztσt

zt ∼ i.i.d. D(0, 1)

σ2
t = ω +

q∑

i=1

αiε
2
t−i, (6)

where D(.) is a probability density function with mean 0 and unit variance (it will be defined in
Section 4.2).

The ARCH model can describe volatility clustering. The conditional variance of εt is indeed
an increasing function of the square of the shock that occurred in t− 1. Consequently, if εt−1 was
large in absolute value, σ2

t and thus εt is expected to be large (in absolute value) as well. Notice

5For stochastic volatility models, see Koopman, Shepard, and Doornik (1998).

28



that even if the conditional variance of an ARCH model is time-varying (σ2
t = E(ε2

t |ψt−1)), the

unconditional variance of εt is constant and, provided that ω > 0 and
q∑

i=1

αi < 1, we have:

σ2 ≡ E(ε2
t ) =

ω

1−
q∑

i=1

αi

. (7)

Note also that the ARCH model can explain part of the excess kurtosis that we observe in
financial time series. As shown by Engle (1982) for the ARCH(1) case under the normality
assumption, the kurtosis of εt is equal to 3(1−α2

1)

1−3α2
1

. The kurtosis is thus finite if α1 < 1
3 and larger

than 3 (the kurtosis of a standard normal distribution) if α1 > 0.
The computation of σ2

t in Eq. (6) depends on past (squared) residuals (ε2
t ), that are not

observed for t = 0,−1, . . . ,−q + 1. To initialize the process, the unobserved squared residuals
have been set to their sample mean.

In the rest of the paper, ω is assumed fixed. If n2 explanatory variables are introduced in

the model, ωt = ω +
n2∑
i=1

ωixi,t with an exception for the exponential models (EGARCH and

FIEGARCH) where ωt = ω + ln
(

1 +
n2∑
i=1

ωixi,t

)
.

Finally, σ2
t has obviously to be positive for all t. Sufficient conditions to ensure that the

conditional variance in Eq. (6) is positive are given by ω > 0 and αi ≥ 0. However, these
conditions are not necessary as shown by Nelson and Cao (1992). Furthermore, when explanatory
variables enter the ARCH equation, these positivity constraints are not valid anymore (even if the
conditional variance still has to be non-negative).

3.2.2 GARCH Model

Early empirical evidence has shown that a high ARCH order has to be selected to catch the
dynamics of the conditional variance (thus involving the estimation of numerous parameters). The
Generalized ARCH (GARCH) model of Bollerslev (1986) is an answer to this issue. It is based
on an infinite ARCH specification and it allows to reduce the number of estimated parameters by
imposing non-linear restrictions on them. The GARCH (p, q) model can be expressed as:

σ2
t = ω +

q∑

i=1

αiε
2
t−i +

p∑

j=1

βjσ
2
t−j . (8)

Using the lag or backshift operator L, the GARCH (p, q) model is:

σ2
t = ω + α(L)ε2

t + β(L)σ2
t , (9)

with α(L) = α1L + α2L
2 + . . . + αqL

q and β(L) = β1L + β2L
2 + . . . + βpL

p.
If all the roots of the polynomial |1− β(L)| = 0 lie outside the unit circle, we have:

σ2
t = ω [1− β(L)]−1 + α(L) [1− β(L)]−1

ε2
t , (10)

29



which may be seen as an ARCH(∞) process since the conditional variance linearly depends on all
previous squared residuals. In this case, the conditional variance of yt can become larger than the
unconditional variance given by:

σ2 ≡ E(ε2
t ) =

ω

1−
q∑

i=1

αi −
p∑

j=1

βj

,

if past realizations of ε2
t are larger than σ2 (Palm, 1996).

As in the ARCH case, some restrictions are needed to ensure σ2
t to be positive for all t.

Bollerslev (1986) shows that imposing ω > 0, αi ≥ 0 (for i = 1, . . . , q) and βj ≥ 0 (for j = 1, . . . , p)
is sufficient for the conditional variance to be positive. In practice, the GARCH parameters are
often estimated without the positivity restrictions. Nelson and Cao (1992) argued that imposing
all coefficients to be nonnegative is too restrictive and that some of these coefficients are found
to be negative in practice while the conditional variance remains positive (by checking on a case-
by-case basis). Consequently, they relaxed this constraint and gave sufficient conditions for the
GARCH(1, q) and GARCH(2, q) cases based on the infinite representation given in Eq. (10).
Indeed, the conditional variance is strictly positive provided ω [1− β(1)]−1

> 0 is positive and
all the coefficients of the infinite polynomial α(L) [1− β(L)]−1 in Eq. (10) are nonnegative. The
positivity constraints proposed by Bollerslev (1986) can be imposed during the estimation (see
4.1). If not, these constraints, as well as the ones implied by the ARCH(∞) representation, will
be tested a posteriori and reported in the output.

3.2.3 EGARCH Model

The Exponential GARCH (EGARCH) model is introduced by Nelson (1991). Bollerslev and
Mikkelsen (1996) propose to re-express the EGARCH model has follows:

ln σ2
t = ω + [1− β(L)]−1 [1 + α(L)]g(zt−1). (11)

The value of g(zt) depends on several elements. Nelson (1991) notes that, “to accommodate
the asymmetric relation between stock returns and volatility changes (...) the value of g(zt) must
be a function of both the magnitude and the sign of zt”.6 That is why he suggests to express the
function g(.) as

g(zt) ≡ γ1zt︸︷︷︸
sign effect

+ γ2[|zt| − E|zt|]︸ ︷︷ ︸
magnitude effect

. (12)

E|zt| depends on the assumption made on the unconditional density of zt. Indeed, for the
normal distribution,

E (|zt|) =

√
2
π

. (13)

6Note that with the EGARCH parameterization of Bollerslev and Mikkelsen (1996), it is possible to estimate

an EGARCH (p, 0) since ln σ2
t depends on g(zt−1), even when q = 0.

30



For the skewed Student distribution,

E (|zt|) =
4ξ2

ξ + 1
ξ

Γ
(

1+υ
2

)√
υ − 2√

π(υ − 1)Γ
(

υ
2

) (14)

where ξ = 1 for the symmetric Student.
For the GED, we have

E (|zt|) = λupsilon2
1
υ

Γ
(

2
υ

)

Γ
(

1
υ

) . (15)

ξ, υ and λupsilon concern the shape of the non-normal densities and will be defined in Section 4.2.
Note that the use of a ln transformation of the conditional variance ensures that σ2

t is always
positive.

3.2.4 GJR Model

This popular model is proposed by Glosten, Jagannathan, and Runkle (1993). Its generalized
version is given by:

σ2
t = ω +

q∑

i=1

(αiε
2
t−i + γiS

−
t−iε

2
t−i) +

p∑

j=1

βjσ
2
t−j , (16)

where S−t is a dummy variable.
In this model, it is assumed that the impact of ε2

t on the conditional variance σ2
t is different

when εt is positive or negative. The TGARCH model of Zakoian (1994) is very similar to the GJR
but models the conditional standard deviation instead of the conditional variance. Finally, Ling
and McAleer (2002) has proposed, among other stationarity conditions for GARCH models, the
conditions of existence of the second and fourth moment of the GJR.

3.2.5 APARCH Model

This model has been introduced by Ding, Granger, and Engle (1993). The APARCH (p, q) model
can be expressed as:

σδ
t = ω +

q∑

i=1

αi (|εt−i| − γiεt−i)δ +
p∑

j=1

βjσ
δ
t−j , (17)

where δ > 0 and −1 < γi < 1 (i = 1, ..., q).
This model couples the flexibility of a varying exponent with the asymmetry coefficient (to

take the “leverage effect” into account). The APARCH includes seven other ARCH extensions as
special cases:7

• The ARCH of Engle (1982) when δ = 2, γi = 0 (i = 1, . . . , p) and βj = 0 (j = 1, . . . , p).

• The GARCH of Bollerslev (1986) when δ = 2 and γi = 0 (i = 1, . . . , p).

• Taylor (1986)/Schwert (1990)’s GARCH when δ = 1, and γi = 0 (i = 1, . . . , p).

7Complete developments leading to these conclusions are available in Ding, Granger, and Engle (1993).

31



• The GJR of Glosten, Jagannathan, and Runkle (1993) when δ = 2.

• The TARCH of Zakoian (1994) when δ = 1.

• The NARCH of Higgins and Bera (1992) when γi = 0 (i = 1, . . . , p) and βj = 0 (j = 1, . . . , p).

• The Log-ARCH of Geweke (1986) and Pentula (1986), when δ → 0.

Following Ding, Granger, and Engle (1993), if ω > 0 and
q∑

i=1

αi E(|z| − γiz)δ +
p∑

j=1

βj < 1, a

stationary solution for Eq. (17) exists and is:

E
(
σδ

t

)
=

α0

1−
q∑

i=1

αi (|z| − γiz)δ −
p∑

j=1

βj

. (18)

Notice that if we set γ = 0, δ = 2 and zt has zero mean and unit variance, we have the usual
stationarity condition of the GARCH(1,1) model (α1 + β1 < 1). However, if γ 6= 0 and/or δ 6= 2,
this condition depends on the assumption made on the innovation process.

Ding, Granger, and Engle (1993) derived a closed form solution to κi = E (|z| − γiz)δ in the
Gaussian case. Lambert and Laurent (2001) show that for the standardized skewed Student:8

κi =
{

ξ−(1+δ) (1 + γi)
δ + ξ1+δ (1− γi)

δ
}

Γ( δ+1
2 )Γ( υ −δ

2 )(υ−2)
1+δ
2

(ξ+ 1
ξ )
√

(υ−2)πΓ( υ
2 )

.

For the GED, we can show that:

κi = [(1+γi)
δ+(1−γi)

δ]2
δ−υ

υ Γ( δ+1
υ )λδ

upsilon

Γ( 1
υ )

.

Note that ξ, υ and λupsilon concern the shape of the non-normal densities and will be defined in
Section 4.2.

3.2.6 IGARCH Model

In many high-frequency time-series applications, the conditional variance estimated using a GARCH(p, q)
process exhibits a strong persistence, that is:

p∑

j=1

βj +
q∑

i=1

αi ≈ 1.

If
p∑

j=1

βj +
q∑

i=1

αi < 1, the process (εt) is second order stationary, and a shock to the conditional

variance σ2
t has a decaying impact on σ2

t+h, when h increases, and is asymptotically negligible.

However, if
p∑

j=1

βj +
q∑

i=1

αi ≥ 1, the effect on σ2
t+h does not die out asymptotically. This

property is called persistence in the literature.
8For the symmetric Student density, ξ = 1.

32



When this sum is equal to one, we are confronted to an Integrated GARCH (IGARCH) model,
meaning that current information remains of importance when forecasting the volatility for all
horizons. A similar concept is present in the mean equation: when the sum of all AR coefficients
and MA coefficients is equal to one, the ARMA process in integrated (ARIMA).

Recall that the GARCH(p, q) model can be expressed as an ARMA process. Using the lag
operator L, we can rearrange Eq. (8) as:

[1− α (L)− β (L)]ε2
t = ω + [1− β (L)]

(
ε2
t − σ2

t

)
.

When the [1− α (L)− β (L)] polynomial contains a unit root, i.e. the sum of all the αi and
the βj is one, we have the IGARCH(p, q) model of Engle and Bollerslev (1986). It can then be
written as:

φ(L)(1− L)ε2
t = ω + [1− β(L)](ε2

t − σ2
t ), (19)

where φ(L) = [1− α(L)− β(L)](1− L)−1 is of order [max{p,q}-1].
We can rearrange Eq. (19) to express the conditional variance as a function of the squared

residuals. After some manipulations, we have:

σ2
t =

ω

[1− β(L)]
+

{
1− φ(L)(1− L)[1− β(L)]−1

}
ε2
t . (20)

3.2.7 Fractionally Integrated Models

Volatility tends to change quite slowly over time, and, as shown in Ding, Granger, and Engle
(1993) among others, the effects of a shock can take a considerable time to decay.9 Therefore, the
distinction between I(0) and I(1) processes seems to be far too restrictive. Indeed, the propagation
of shocks in an I(0) process occurs at an exponential rate of decay (so that it only captures the
short-memory), while for an I(1) process the persistence of shocks is infinite. In the conditional
mean, the ARFIMA specification has been proposed to fill the gap between short and complete
persistence, so that the short-run behavior of the time-series is captured by the ARMA parameters,
while the fractional differencing parameter allows for modelling the long-run dependence.10

To mimic the behavior of the correlogram of the observed volatility, Baillie, Bollerslev, and
Mikkelsen (1996) (hereafter denoted BBM) introduce the Fractionally Integrated GARCH (FI-
GARCH) model by replacing the first difference operator of Eq. (20) by (1− L)d.

The conditional variance of the FIGARCH (p, d, q) is given by:

σ2
t = ω[1− β(L)]−1

︸ ︷︷ ︸
ω∗

+
{

1− [1− β(L)]−1
φ(L)(1− L)d

}

︸ ︷︷ ︸
λ(L)

ε2
t , (21)

or σ2
t = ω∗ +

∑∞
i=1 λiL

iε2
t = ω∗ + λ(L)ε2

t , with 0 ≤ d ≤ 1. It is fairly easy to show that
ω > 0, β1 − d ≤ φ1 ≤ 2−d

2 and d
(
φ1 − 1−d

2

) ≤ β1 (φ1 − β1 + d) are sufficient to ensure that the

9In their study of the daily S&P500 index, they find that the squared returns series has positive autocorrelations

over more than 2,500 lags (or more than 10 years !).
10See Bollerslev and Mikkelsen (1996, p.158) for a discussion on the importance of non-integer values of integration

when modelling long-run dependencies in the conditional mean of economic time series.

33



conditional variance of the FIGARCH (1, d, 1) is positive almost surely for all t. Setting φ1 = 0
gives the condition for the FIGARCH (1, d, 0).

Davidson (2001) notes the interesting and counterintuitive fact that the memory parameter
of this process is −d, and is increasing as d approaches zero, while in the ARFIMA model the
memory increases when ζ increases. According to Davidson (2001), the unexpected behavior of
the FIGARCH model may be due less to any inherent paradoxes than to the fact that, embodying
restrictions appropriate to a model in levels, it has been transplanted into a model of volatility.
The main characteristic of this model is that it is not stationary when d > 0. Indeed,

(1− L)d =
∞∑

k=0

Γ(d + 1)
Γ(k + 1) Γ(d− k + 1)

Lk

= 1− dL− 1
2
d(1− d)L2 − 1

6
d(1− d)(2− d)L3 − . . .

= 1−
∞∑

k=1

ck(d)Lk, (22)

where c1(d) = d, c2(d) = 1
2d(1− d), etc. By construction,

∑∞
k=1 ck(d) = 1 for any value of d, and

consequently, the FIGARCH belongs to the same “knife-edge-nonstationary” class represented
by the IGARCH. To test whether this nonstationarity feature holds, Davidson (2001) proposes
a generalized version of the FIGARCH and calls it the HYperbolic GARCH. The HYGARCH
is given by Eq. (21), when λ(L) is replaced by 1 − [1− β(L)]−1

φ(L)
{
1 + α

[
(1− L)d

]}
. Note

that we report ln(α) and not α. The ck(d) coefficients are thus weighted by α. Interestingly, the
HYGARCH nests the FIGARCH when α = 1 (or equivalently when ln(α) = 0) and if the GARCH
component observes the usual covariance stationarity restrictions, then this process is stationary
with α < 1 (or equivalently when ln(α) < 0) (see Davidson, 2001 for more details).

Chung (1999) underscores some little drawbacks in the BBM model: there is a structural
problem in the BBM specification since the parallel with the ARFIMA framework of the conditional
mean equation is not perfect, leading to difficult interpretations of the estimated parameters.
Indeed the fractional differencing operator applies to the constant term in the mean equation
(ARFIMA) while it does not in the variance equation (FIGARCH). Chung (1999) proposes a
slightly different process:

φ(L)(1− L)d
(
ε2

t − σ2
)

= [1− β(L)](ε2
t − σ2

t ), (23)

where σ2 is the unconditional variance of εt .
If we keep the same definition of λ (L) as in Eq. (21), we can formulate the conditional variance

as:
σ2

t = σ2 +
{

1− [1− β(L)]−1
φ(L)(1− L)d

} (
ε2
t − σ2

)

or
σ2

t = σ2 + λ(L)
(
ε2

t − σ2
)
. (24)

λ (L) is an infinite summation which, in practice, has to be truncated. BBM propose to
truncate λ (L) at 1000 lags (this truncation order has been implemented as the default value

34



in our package, but it may be changed by the user) and initialize the unobserved ε2
t at their

unconditional moment. Contrary to BBM, Chung (1999) proposes to truncate λ (L) at the size of
the information set (t− 1) and to initialize the unobserved

(
ε2

t − σ2
)

at 0 (this quantity is small
in absolute values and has a zero mean).11

The idea of fractional integration has been extended to other GARCH types of models, includ-
ing the Fractionally Integrated EGARCH (FIEGARCH) of Bollerslev and Mikkelsen (1996) and
the Fractionally Integrated APARCH (FIAPARCH) of Tse (1998).12

Similarly to the GARCH(p, q) process, the EGARCH(p, q) of Eq. (11) can be extended to
account for long memory by factorizing the autoregressive polynomial [1− β(L)] = φ(L)(1− L)d

where all the roots of φ(z) = 0 lie outside the unit circle. The FIEGARCH (p, d, q) is specified as
follows:

ln
(
σ2

t

)
= ω + φ(L)−1 (1− L)−d [1 + α(L)]g(zt−1). (25)

Finally, the FIAPARCH (p, d, q) model can be written as:13

σδ
t = ω +

{
1− [1− β (L)]−1

φ (L) (1− L)d
}

(|εt| − γεt)
δ
. (26)

11See Chung (1999) for more details.
12Notice that the GJR has not been extended to the long-memory framework. It is however nested in the

FIAPARCH class of models.
13When using the BBM option in G@RCH for the FIEGARCH and FIAPARCH, (1− L)d and (1− L)−d are

truncated at some predefined value (see above). It is also possible to truncate this polynomial at the information

size at time t, i.e. t− 1.

35



4 Estimation Methods

4.1 Parameters Constraints

When numerical optimization is used to maximize the log-likelihood function with respect to the
vector of parameters Ψ, the inspected range of the parameter space is ]−∞;∞[. The problem is
that some parameters might have to be constrained in a smaller interval. For instance, the leverage
effect parameter γ of the APARCH model must lie between -1 and 1. To impose these constraints
one could estimate Ψ∗ (which ranges from −∞ to +∞) instead of Ψ where Ψ is recovered using
the non-linear function: Ψ = x (Ψ∗). In our package, x(.) is defined as:

x(Ψ∗) = Low +
Up− Low

1 + e−Ψ∗ , (27)

where Low is the lower bound and Up the upper bound (i.e. in our example, Low = −1 and
Up = 1).

So, applying unconstrained optimization of the log-likelihood function with respect to Ψ is
equivalent to applying constrained optimization with respect to Ψ∗. Therefore, the optimization
process of the program results in Ψ̂∗ with the covariance matrix being noted Cov

(
Ψ̂∗

)
. The

estimated covariance of the parameters of interest Ψ̂ is:

Cov
(
Ψ̂

)
=


∂x

(
Ψ̂∗

)

∂Ψ∗


 Cov

(
Ψ̂∗

)

∂x

(
Ψ̂∗

)

∂Ψ∗



′

. (28)

In our case, we have Cov
(
Ψ̂

)
= Cov

(
Ψ̂∗

)
exp(−Ψ̂∗)(Up−Low)

[1+exp(−Ψ̂∗)]2
. Note that, in G@RCH 2.3, lower

and upper bounds of the parameters can be easily modified by the user in the file startingvalues.txt.

4.2 Distributions

Weiss (1986) and Bollerslev and Wooldridge (1992) show that under the normality assumption,
the quasi maximum likelihood estimator is consistent if the conditional mean and the conditional
variance are correctly specified. This estimator is, however, inefficient with the degree of ineffi-
ciency increasing with the degree of departure from normality (Engle and González-Rivera, 1991).
Since the issue of fat-tails is an important one in empirical finance, it may be expected that using
a more appropriate distribution would reduce the excess kurtosis displayed by the residuals of
conditional heteroscedasticity models. As reported by Palm (1996), Pagan (1996) and Bollerslev,
Chou, and Kroner (1992), the use of a fat-tailed distributions is widespread in the literature.
In particular, Bollerslev (1987), Hsieh (1989), Baillie and Bollerslev (1989) and Palm and Vlaar
(1997) among others show that these distributions perform better in order to capture the higher
observed kurtosis.

Four distributions are available in our program: the usual Gaussian (normal) distribution,
the Student-t distribution, the Generalized Error Distribution (GED) and the skewed Student-t
distribution.

36



The GARCH models are estimated using a maximum likelihood (ML) approach. The logic of
ML is to interpret the density as a function of the parameters set, conditional on a set of sample
outcomes. This function is called the likelihood function. It is quite evident from equation (6) (and
all the following equations of Section 3) that the recursive evaluation of this function is conditional
on unobserved values. The ML estimation is therefore not perfectly exact. To solve the problem
of unobserved values, we have set these quantities to their unconditional expected values.

If we express the mean equation as in Eq. (1) and εt = ztσt, the log-likelihood function of the
standard normal distribution is given by:

Lnorm = −1
2

T∑
t=1

[
ln (2π) + ln

(
σ2

t

)
+ z2

t

]
, (29)

where T is the number of observations.
For a Student-t distribution, the log-likelihood is:

LStud = T

{
ln Γ

(
υ + 1

2

)
− ln Γ

(υ

2

)
− 1

2
ln [π(υ − 2)]

}

− 1
2

T∑
t=1

[
ln(σ2

t ) + (1 + υ) ln
(

1 +
z2
t

υ − 2

)]
, (30)

where υ is the degrees of freedom, 2 < υ ≤ ∞ and Γ(.) is the gamma function.
The GED log-likelihood function of a normalized random variable is given by:

LGED =
T∑

t=1

[
ln (υ/λυ)− 0.5

∣∣∣∣
zt

λυ

∣∣∣∣
υ

− (
1 + υ−1

)
ln(2)− ln Γ (1/υ)− 0.5 ln

(
σ2

t

)]
, (31)

where 0 < υ < ∞ and

λυ ≡
√

Γ
(

1
υ

)
2−

2
υ

Γ
(

3
υ

) . (32)

The main drawback of the last two densities is that even if they may account for fat tails, they
are symmetric. Skewness and kurtosis are important in financial applications in many respects
(in asset pricing models, portfolio selection, option pricing theory or Value-at-Risk among others).
Quite recently, Lambert and Laurent (2000, 2001) applied and extended the skewed Student
density proposed by Fernández and Steel (1998) to the GARCH framework.

If Γ(.) denotes the gamma function, the log-likelihood of a standardized (zero mean and unit
variance) skewed Student is:

LSkSt = T

{
ln Γ

(
υ + 1

2

)
− ln Γ

(υ

2

)
− 0.5 ln [π (υ − 2)] + ln

(
2

ξ + 1
ξ

)
+ ln (s)

}

− 0.5
T∑

t=1

{
ln σ2

t + (1 + υ) ln

[
1 +

(szt + m)2

υ − 2
ξ−2It

]}
. (33)

where It =





1 if zt ≥ −m
s

−1 if zt < −m
s

, ξ is the asymmetry parameter, υ is the degree of freedom of the

37



distribution, m =
Γ( υ+1

2 )
√

υ−2
√

πΓ( υ
2 )

(
ξ − 1

ξ

)
and s =

√(
ξ2 + 1

ξ2 − 1
)
−m2. See Lambert and Laurent

(2001) for more details.
In principal, the gradient vector and the hessian matrix can be obtained numerically or by

evaluating its analytic expressions. Due to the high number of possible models and distributions,
we use numerical techniques to approximate the derivatives of the log-likelihood function with
respect to the parameter vector.

4.3 Tests

In addition to the possibilities offered by GiveWin (ACF, PACF, QQ-plots. . . ), several tests are
provided in the G@RCH package:

• Four Information Criteria (divided by the number of observations): 14

- Akaike = −2LogL
n + 2 k

n

- Hannan-Quinn = −2LogL
n + 2k log[log(n)]

n

- Schwartz = −2LogL
n + 2 log(k)

n

- Shibata =−2LogL
n + log

(
n+2k

n

)

• The value of the skewness and the kurtosis of the standardized residuals (ẑt) of the estimated
model, their t-tests and p-values. Moreover, the Jarque-Bera normality test (Jarque and
Bera, 1987) is also reported.

• The Box-Pierce statistics at lag l∗ for both standardized, i.e. BP (l∗), and squared standard-
ized, i.e. BP 2 (l∗), residuals. Under the null hypothesis of no autocorrelation, the statistics
BP (l∗) and BP 2 (l∗) should be evaluated against the χ2 (l∗ −m− l) and χ2 (l∗ − p− q),
respectively (see McLeod and Li, 1983).

• The Engle LM ARCH test (Engle, 1982) to test the presence of ARCH effects in a series.

• The diagnostic test of Engle and Ng (1993) that investigate possible misspecification of the
conditional variance equation. The Sign Bias Test (SBT) examines the impact of positive
and negative return shocks on volatility not predicted by the model under construction.
The negative Size Bias Test (resp. positive Size Bias Test) focuses on the different effects
that large and small negative (resp. positive) return shocks have on volatility, which is not
predicted by the volatility model. Finally, a joint test for these three tests is also provided.

• The adjusted Pearson goodness-of-fit test that compares the empirical distribution of the
innovations with the theoretical one. In order to carry out this testing procedure, it is nec-
essary to first classify the residuals in cells according to their magnitude.15 Let n be the
number of observations, r the number of categories we consider, pi (i = 1,...,r) the observed

14LogL = log likelihood value, n = # observations and k the number of estimated parameters.
15See Palm and Vlaar (1997) for more details.

38



proportion of observations being in the ith category and pt
i (i = 1,...,r) the theoretical prob-

ability for an observation to be in the ith category. The Pearson goodness-of-fit test has the
null H0: p1 = pt

1 , p2 = pt
2, . . ., pr = pt

r. The statistic is computed as

P (g) =
r∑

i=1

(ni − Eni)2

Eni
, (34)

where ni is the observed number in the sample that fall into the ith category and Eni

is the number of observations expected to be in this ith category when Ho is true. The
Pearson statistic is therefore “small” when all of the observed counts (proportions) are
close to the expected counts (proportions) and it is “large” when one or more observed
counts (proportions) differs noticeably from what is expected when H0 is true.16 For i.i.d.

observations, Palm and Vlaar (1997) show that under the null of a correct distribution the
asymptotic distribution of P (g) is bounded between a χ2(r− 1) and a χ2(r− k− 1) where k

is the number of estimated parameters. As explained by Palm and Vlaar (1997), the choice
of r is far from being obvious. For T = 2252, these authors set r equal to 50. According to
König and Gaab (1982), the number of cells must increase at a rate equal to T 0.4.

• The Nyblom test (Nyblom, 1989 and Lee and Hansen, 1994) to check the constancy of
parameters over time. See also Hansen (1994) for an overview of this test.

4.4 Forecasts

Estimating a model can be useful to try to understand the mechanism that produces the series
of interest. It can also suggest a solution to an economic problem. Is it the only game in town ?
Certainly not. Indeed, the main purpose of building and estimating a model with financial data
is to produce a forecast. G@RCH 2.3 also provides forecasting tools. Indeed, forecasts of both
the conditional mean and the conditional variance are available as well as several forecast error
measures.

4.4.1 Forecasting the conditional mean

Our first goal is to give the optimal h-step-ahead predictor of yt+h given the information we have
up to time t.

For instance, for the following AR(1) process,

yt = µ + ψ1(yt−1 − µ) + εt. (35)

The optimal17 h-step-ahead predictor of yt+h, i.e. ŷt+h|t, is its conditional expectation at time
t (given the estimated parameters µ̂ and ψ̂1):

ŷt+h|t = µ̂ + ψ̂1(ŷt+h−1|t − µ̂), (36)

16Large values of GoF suggest therefore that H0 is false.
17By optimal, we mean optimal under expected quadratic loss, or in a mean square error sense.

39



where ŷt+i|t = yt+i for i ≤ 0.
For the AR(1), the optimal 1-step-ahead forecast equals µ̂+ ψ̂1(ŷt− µ̂). For h > 1, the optimal

forecast can be obtained recursively or directly as ŷt+h|t = µ̂ + ψ̂h
1 (ŷt − µ̂).

In the general case of an ARFIMA(n, ζ, s) as given in Eq. (3), the optimal h-step-ahead
predictor of yt+h is:

ŷt+h|t =

[
µ̂t+h|t +

∞∑

k=1

ĉk(ŷt+h−k − µ̂t+h|t)

]

+
n∑

i=1

ψ̂i

{
ŷt+h−i −

[
µ̂t+h|t +

∞∑

k=1

ĉk(ŷt+h−i−k − µ̂t+h|t)

]}

+
s∑

j=1

θ̂j(ŷt+h−j − ŷt+h−j|t). (37)

Recall that when exogenous variables enter the conditional mean equation, µ becomes µt = µ +
n1∑
i=1

δixi,t and consequently, provided that the information xi,t+h is available at time t (which is the

case for instance if xi,t is a “day-of-the-week” dummy variable), µ̂t+h|t is also available at time t.
When there is no exogenous variable in the ARFIMA model and n = 1, s = 0 and ζ = 0 (ck = 0),
the forecast of the AR(1) process given in Eq. (36) can be recovered.

4.4.2 Forecasting the conditional variance

Independently from the conditional mean, one can forecast the conditional variance. In the simple
GARCH(p, q) case, the optimal h-step-ahead forecast of the conditional variance, i.e. σ̂2

t+h|t is
given by:

σ2
t+h|t = ω̂ +

q∑

i=1

α̂iε
2
t+h−i|t +

p∑

j=1

β̂jσ
2
t+h−j|t, (38)

where ε2
t+i|t = σ2

t+i|t for i > 0 while ε2
t+i|t = ε2

t+i and σ2
t+i|t = σ2

t+i for i ≤ 0. Eq. (38) is
usually computed recursively, even if a closed form solution of σ2

t+h|t can be obtained by recursive
substitution in Eq. (38).

Similarly, one can easily obtain the h-step-ahead forecast of the conditional variance of an
ARCH, IGARCH and FIGARCH model. By contrast, for thresholds models, the computation of
the out-of-sample forecasts is more complicated. Indeed, for the EGARCH, GJR and APARCH
models (as well as for their long-memory counterparts), the assumption made on the innovation
process may have an effect on the forecast (especially for h > 1).

For instance, for the GJR (p, q) model,

σ̂2
t+h|t = ω̂ +

q∑

i=1

(α̂iε
2
t−i+h|t + γ̂iS

−
t−i+h|tε

2
t−i+h|t) +

p∑

j=1

β̂jσ
2
t−j+h|t. (39)

When all the γi parameters equal 0, one recovers the forecast of the GARCH model. Otherwise,
one has to compute S−t−i+h|t. Note first that S−t+i|t = S−t+i for i ≤ 0. However, when i > 1, S−t+i|t

40



depends on the choice of the distribution of zt. When the distribution of zt is symmetric around
0 (for the Gaussian, Student and GED density), the probability that εt+i will be negative is
S−t+i|t = 0.5. If zt is (standardized) skewed Student distributed with asymmetry parameter ξ and
degree of freedom υ, S−t+i|t = 1

1+ξ2 since ξ2 is the ratio of probability masses above and below the
mode.

For the APARCH (p, q) model,

σ̂δ
t+h|t = E

(
σδ

t+h|Ωt

)

= E


ω̂ +

q∑

i=1

α̂i (|εt+h−i| − γ̂iεt+h−i)δ̂ +
p∑

j=1

β̂jσ
δ̂
t+h−j | Ωt




= ω̂ +
q∑

i=1

α̂iE
[
(εt+h−i − γ̂iεt+h−i)δ̂|Ωt

]
+

p∑

j=1

β̂jσ
δ̂
t+h−j|t, (40)

where E
[
(εt+k − γ̂iεt+k)δ̂|Ωt

]
= κiσ

δ̂
t+k|t, for k > 1 and κi = E (|z| − γiz)δ̂ (see Section 4.2).

For the EGARCH (p, q) model,

ln σ̂2
t+h|t = E

(
ln σ2

t+h|Ωt

)

= E

{
ω̂ +

[
1− β̂(L)

]−1

[1 + α̂(L)]ĝ(zt+h−1) | Ωt

}

=
[
1− β̂(L)

]
ω̂ + β̂(L) ln σ̂2

t+h|t + [1 + α̂(L)]ĝ(zt+h−1|t), (41)

where ĝ(zt+k|t) = ĝ(zt+k) for k ≤ 0 and 0 for k > 0.
Finally, the h-step-ahead forecast of the FIAPARCH and FIEGARCH models are obtained in

a similar way.
One of the most popular measures to check the forecasting performance of the ARCH-type

models is the Mincer-Zarnowitz regression, i.e. ex-post volatility regression:

σ̌2
t = a0 + a1σ̂

2
t + ut, (42)

where σ̌2
t is the ex-post volatility, σ̂2

t is the forecasted volatility and a0, a1 are parameters to be
estimated. If the model for the conditional variance is correctly specified (and the parameters are
known) and E(σ̌2

t ) = σ̂2
t , it follows that a0 = 0 and a1 = 1. The R2 of this regression is often used

as a simple measure of the degree of predictability of the ARCH-type model.
However, σ̌2

t is never observed. By default, G@RCH 2.3 uses σ̌2
t = (yt − y)2, where y is the

sample mean of yt. The R2 of this regression is often lower than 5% and this could lead to
the conclusion that GARCH models produce poor forecasts of the volatility (see, among others,
Schwert, 1990, or Jorion, 1996). But, as described in Andersen and Bollerslev (1998), the reason
of these poor results is the choice of what is considered as the “true” volatility. G@RCH 2.3
allows to select any series as the “observed” volatility (Obs.-Var., see Figure 1). The user may
then compute the daily realized volatility as the sum of squared intraday returns and use it as
the “true” volatility. Actually, Andersen and Bollerslev (1998) show that this measure is a more

41



proper one than squared daily returns. Therefore, using 5-minute returns for instance, the realized
volatility can be expressed as:

σ2
t =

K∑

k=1

y2
k,t, (43)

where yk,t is the return of the kth 5-minutes interval of the tth day and K is the number of
5-minutes intervals per day.

Finally, to compare the adequacy of the different distributions, G@RCH 2.3 also allows the
computation of density forecasts tests developed in Diebold, Gunther, and Tay (1998). The idea
of density forecasts is quite simple.18 Let fi(yi|Ωi)m

i=1 be a sequence of m one-step-ahead density
forecasts produced by a given model, where Ωi is the conditioning information set, and pi(yi|Ωi)m

i=1

the sequence of densities defining the Data Generating Process yi (which is never observed).
Testing whether this density is a good approximation of the true density p(.) is equivalent to
testing:

H0 : fi(yi|Ωi)m
i=1 = pi(yi|Ωi)m

i=1 (44)

Diebold, Gunther, and Tay (1998) use the fact that, under Eq. (44), the probability integral
transform ζ̂i =

∫ yi

−∞ fi(t)dt is i.i.d. U(0, 1), i.e. independent and identically distributed uniform.
To check H0, they propose to use goodness-of-fit test and independence test for i.i.d. U(0, 1).

The i.i.d.-ness property of ζ̂i can be evaluated by plotting the correlograms of
(
ζ − ζ̂

)j

, for
j = 1, 2, 3, 4, ..., to detect potential dependence in the conditional mean, variance, skewness,
kurtosis, etc. Departure from uniformity can also be evaluated by plotting an histogram of ζ̂i.
According to Bauwens, Giot, Grammig, and Veredas (2000), a humped shape of the ζ̂-histogram
would indicate that the issued forecasts are too narrow and that the tails of the true density are
not accounted for. On the other hand, a U-shape of the histogram would suggest that the model
issues forecasts that either under- or overestimate too frequently. Moreover, Lambert and Laurent
(2001) show that an inverted S shape of the histogram would indicate that the errors are skewed,
i.e. the true density is probably not symmetric.19 An illustration is provided in Section 5 with
some formal tests and graphical tools.

4.5 Accuracy

McCullough and Vinod (1999) and Brooks, Burke, and Persand (2001) use the daily German
mark/British pound exchange rate data of Bollerslev and Ghysels (1996) to compare the accuracy
of GARCH model estimation among several econometric softwares. They choose the GARCH(1,1)
model described in Fiorentini, Calzolari, and Panattoni (1996) (hereafter denoted FCP) as the
benchmark. In this section, we use the same methodology with the same dataset to check the

18For more details about density forecasts and applications in finance, see the special issue of Journal of Fore-

casting (Timmermann, 2000).
19Confidence intervals for the ζ̂-histogram can be obtained by using the properties of the histogram under the

null hypothesis of uniformity.

42



accuracy of our procedures. Coefficients and standard errors estimates of G@RCH 2.3 are reported
in Table 1 together with the results of McCullough and Vinod (1999) (FCP in the table).

Coefficient Hessian QMLE

G@RCH FCP G@RCH FCP G@RCH FCP

µ -0.006184 -0.006190 0.008462 0.008462 0.009187 0.009189

ω 0.010760 0.010761 0.002851 0.002852 0.006484 0.006493

α1 0.153407 0.153134 0.026569 0.026523 0.053595 0.053532

β1 0.805879 0.805974 0.033542 0.033553 0.072386 0.072461

Table 1: Accuracy of the GARCH procedure

G@RCH gives very satisfactory results since the first four digits (at least) are the same as
those of the benchmark for all but two estimations. In additionn, it competes well compared to
other well known econometric softwares : Table 2 gives indeed the coefficient estimates and the
error percentage associated for 5 softwares. G@RCH, PcGive and TSP (which uses the analytical
gradients for the GARCH(1,1) model) clearly outperform Eviews and S-Plus on this specification.

FCP G@RCH Eviews PcGive TSP S-Plus

µ -0.00619 -0.00618 -0.00541 -0.00625 -0.00619 -0.00919

ω 0.010761 0.010760 0.009581 0.010760 0.010761 0.011696

α1 0.153134 0.153407 0.142284 0.153397 0.153134 0.154295

β1 0.805974 0.805879 0.821336 0.805886 0.805974 0.800276

µ - 0.10% 12.58% 0.91% 0.00% 48.41%

ω - 0.01% 10.96% 0.01% 0.00% 8.69%

α1 - 0.18% 7.08% 0.17% 0.00% 0.76%

β1 - 0.01% 1.91% 0.01% 0.00% 0.71%

Table 2: GARCH Accuracy Comparison

Moreover, to investigate the accuracy of our forecasting procedures, we have run a 8-step ahead

43



forecasts of the model, similar to Brooks, Burke, and Persand (2001). Table 4 in Brooks, Burke,
and Persand (2001) reports the conditional variance forecasts given by six well-known softwares
and the correct values. Contrary to E-Views, Matlab and SAS, G@RCH hits the benchmarks for
all steps to the third decimal (note that GAUSS, Microfit and Rats also do).

Finally, Lombardi and Gallo (2001) extends the work of Fiorentini, Calzolari, and Panattoni
(1996) to the FIGARCH model of Baillie, Bollerslev, and Mikkelsen (1996) and develops the
analytic Hessian matrices of this long memory process. For the same DEM/UKP database as in
the previous example, Table 3 reports the coefficients estimates and their standard errors for our
package (using numerical gradients and the BFGS optimization method) and for Lombardi and
Gallo (2001) (using analytical gradients and the Newton-Raphson algorithm).

Coefficient Hessian

G@RCH LG G@RCH LG

µ 0.003606 0.003621 0.009985 0.009985

ω 0.015772 0.015764 0.003578 0.003581

α1 0.198134 0.198448 0.042508 0.042444

β1 0.675652 0.675251 0.051800 0.051693

d 0.570702 0.569951 0.075039 0.074762

Table 3: Accuracy of the FIGARCH procedure

Results show that G@RCH provides excellent numerical estimates that are quite close to the
analytical ones, even for an advanced model such as the FIGARCH. As expected, it is however
more time-consuming than the C code of Lombardi and Gallo (2001)20 (163 sec. vs 43 sec. using
a Dell PC with a PIII processor).

4.6 Features Comparison

The goal of this section is to compare objectively, in a GARCH perspective, the features offered
by G@RCH 2.3 and nine other econometric softwares, namely PcGive 10 (also programmed in
Ox), GAUSS and its Fanpac extension, Eviews 4, S-Plus 6 and its GARCH module, Rats and
its garch.src example21, TSP 4.5, Microfit 4, SAS 8.2 and Stata 7. It is thus not our intention
to evaluate a program against another, but we will rather show an overview of what you can or
cannot do with these softwares.

20This C code is available at http://www.ds.unifi.it/∼mjl/ in the ”software” section.
21This file is available at http://www.estima.com/procindx.htm for download.

44



T
ab

le
4:

G
A

R
C

H
Fe

at
ur

es
C

om
pa

ri
so

n

G
@

R
C

H
P

cG
iv

e
Fa

np
ac

E
vi

ew
s

S-
P

lu
s

R
at

s
T

SP
M

ic
ro

fit
SA

S
St

at
a

V
er

si
on

2.
3

10
-

4.
0

6
5.

0
4.

5
4

8.
2

7
C

on
di

ti
on

al
m

ea
n

E
xp

la
na

to
ry

va
ri

ab
le

s
+

+
+

+
+

+
+

+
+

+
A

R
M

A
+

+
+

+
+

+
+

+
+

+
A

R
F
IM

A
+

-
-

-
-

-
-

-
-

-
A

R
C

H
-i
n-

M
ea

n
-

+
+

+
+

+
+

-
+

+
C

on
di

ti
on

al
va

ri
an

ce
E

xp
la

na
to

ry
va

ri
ab

le
s

+
+

+
+

+
+

+
+

+
+

G
A

R
C

H
+

+
+

+
+

+
+

+
+

+
IG

A
R

C
H

+
-

+
-

-
+

-
-

+
-

E
G

A
R

C
H

+
+

+
+

+
+

-
+

+
+

G
JR

+
+

-
+

+
+

-
-

-
+

A
PA

R
C

H
+

-
-

-
+

-
-

-
-

+
C

-G
A

R
C

H
-

-
-

+
+

-
-

-
-

-
F
IG

A
R

C
H

+
-

+
-

+
-

-
-

-
-

F
IE

G
A

R
C

H
+

-
-

-
+

-
-

-
-

-
F
IA

PA
R

C
H

+
-

-
-

-
-

-
-

-
-

H
Y

G
A

R
C

H
+

-
-

-
-

-
-

-
-

-
D

is
tr

ib
ut

io
ns

N
or

m
al

+
+

+
+

+
+

+
+

+
+

St
ud

en
t-

t
+

+
+

-
+

+
-

+
+

-
G

E
D

+
+

-
-

+
+

-
-

-
-

Sk
ew

ed
-t

+
-

-
-

-
-

-
-

-
-

D
ou

bl
e

E
xp

on
en

ti
al

-
-

-
-

+
-

-
-

-
-

E
st

im
at

io
n

M
L
E

+
+

+
+

+
+

+
+

+
+

Q
M

L
E

+
+

+
+

-
-

-
-

-
+

A
“
+

”
(r

es
p
.“

-”
)

m
ea

n
s

th
a
t

th
e

co
rr

es
p
o
n
d
in

g
o
p
ti

o
n

is
(r

es
p
.

is
n
o
t)

a
v
a
il
a
b
le

fo
r

th
is

so
ft

w
a
re

.
C

-G
A

R
C

H
co

rr
es

p
o
n
d
s

to
th

e
C

o
m

p
o
n
en

t
G

A
R

C
H

o
f
E

n
g
le

a
n
d

L
ee

(1
9
9
9
).

45



The proposed models and options differ widely from one program to the other as can be seen
in Table 4. Regarding the range of different univariate models22 , if many programs propose
asymmetric models, very few (G@RCH, S-Plus with the FIGARCH BBM and the FIEGARCH
and Fanpac with only the FIGARCH BBM) offer long memory models in the variance equation
and none (except G@RCH) offers fractionally integrated specification in the mean. As for the
distribution, G@RCH and S-Plus are the only softwares that permit the use of four densities.
Finally, robust standard errors are proposed in 5 programs out of the 10 we have compared
(G@RCH, PcGive, GAUSS Fanpac, Eviews and Stata).

In summary, on a GARCH point of view, G@RCH 2.3 offers many more possibilities than
most of the reviewed programs. S-Plus has certainly the most complete range of options among
G@RCH competitors, while TSP and Microfit have quite poor GARCH features.

22For the multivariate models, only FANPAC and S-Plus currently provide such models. The inclusion of multi-

variate models in G@RCH is currently under way.

46



5 Application

5.1 Data and Methodology

To illustrate our G@RCH 2.3 package with a concrete application, we analyze the French CAC40
stock index for the years 1995-1999 (1249 daily observations). It is computed by the exchange
as a weighted measure of the prices of its components and is available in the database on an
intraday basis with the price index being computed every 15 minutes. For the time period under
review, the opening hours of the French stock market were 10.00 am to 5.00 pm, thus 7 hours
of trading per day. This translates into 28 intraday returns used to compute the daily realized
volatility. Intraday prices are the outcomes of a linear interpolation between the closest recorded
prices below and above the time set in the grid. Correspondingly, all returns are computed as the
first difference in the regularly time-spaced log prices of the index. Because the exchange is closed
from 5.00 pm to 10.00 am the next day, the first intraday return is the first difference between the
log price at 10.15 am and the log price at 5.00 pm the day before. Then, the intraday data are
used to compute the daily realized volatility using Eq. (43). Finally, daily returns in percentage
are defined as 100 times the first difference of the log of the closing prices.23

The estimation of the parameters is carried out for the 800 observations while forecasting is
computed for the last observations.

5.2 Using the “Full Version”

First, open the database you want to use in GiveWin and select the OxPack module. Then select
Add/Remove Package. . . in the Package menu. Click on the Browse button, then find and select
garch.oxo. Click on the Add button. The Garch class is now active.

Then, select Package/Garch. There are two model classes in G@RCH 2.3 : Garch Models and
Dataset Statistics. This second option allows to run several tests (general statistics, ARCH
test and Box-Pierce test) on the raw series of the dataset. It is thus similar to the TESTSONLY

function of the ”Light Version”.
For this application, select Garch Models and Model/Estimate is automatically launched. The

list of all the variables of the database appears in the Database section (see figure 1). There are
four possible statuses for each variable: dependent variable (Y variable), regressor in the mean
(Mean), regressor in the variance (Variance) or observed volatility (Obs. Var.). Note that, in
the example, we include the observed volatility of the series. Our program provides estimations
for univariate models24, so only one Y variable per model is accepted. However one can include
several regressors in the mean and the variance equations and the same variable can be a regressor
in both equations.

[INSERT FIGURE 1]

23By definition and using the properties of the log distribution, the sum of the intraday returns is equal to the

observed daily return based on the closing prices.
24The extension of this package to multivariate GARCH models is currently under development.

47



Once the OK button is pressed, the Model Settings box automatically appears. This box
allows to select the specification of the model: AR(FI)MA orders for the mean equation, GARCH
orders, type of GARCH model for the variance equation and the distribution (figure 2). The
default specification is an ARMA(0,0)-GARCH(1,1) with normal errors. In our application, we
run a ARMA(1,0)-APARCH(1,1).

[INSERT FIGURE 2]

As explained in Section 4.1, it is possible to constrain the parameters to range between a lower
and an upper bound by selecting the Bounded Parameters option. The defaults bounds can be
changed in the startingvalues.txt file.

In the next window, we are asked to make a choice regarding the starting values (figure 3): we
might (1) let the program choose the starting values25, (2) enter them manually, element by ele-
ment, or (3) enter the starting values in a vector form (the required form is “value1;value2;value3”).

The first method is obviously the easiest, and may be indicated for beginning users, since it
prevents from entering aberrant values. If we want particular starting values for the estimation
and if we do not know the sequence of the parameters in the parameter vector used in our program,
the second method should be a solution. An advanced user knowing the program quite well may
use the third option as it is faster to do than the previous one. Note that, in the output, the
estimated parameters are notably given in a vector form, so that we can just copy the vector and
paste it in this box for a subsequent estimation.

[INSERT FIGURE 3]

Then, the estimation method for standard deviations is selected: Maximum Likelihood (ML)
or Quasi-Maximum Likelihood (QML) or both. In this box (see figure 4), one may also select the
sample and some maximization options (such has the number of iterations between intermediary
results prints) when clicking on the Options button.

[INSERT FIGURE 4]

When we click on the OK button, the estimation procedure is then launched and the program
comes back to GiveWin. A new dialog box is launched if the starting values are entered manually.
Let us assume that the element-by-element method has been selected. A new window appears
(see figure 5) with all the possible parameters to be estimated. Depending on the specification,
some parameters have a value, others have not. The user should replace only the former since
they correspond to the parameters to be estimated for the specified model.

[INSERT FIGURE 5]

Once this step is completed, the program starts the iteration process. Depending on the
options selected earlier, it prints intermediary iteration results or not. The final output is divided

25Note that these default values can be modified by the user. Indeed they are stored in the startingvalues.txt

file installed with the package.

48



by default in two main parts: first, the model specification reminder; second, the estimated values
and other useful statistics of the parameters.26 The output is given in the box “Output 1”.

Output 1

********************
* SPECIFICATIONS **
*******************
Mean Equation: ARMA (1, 0) model.
No regressor in the mean.
Variance Equation : APARCH (1, 1) model.
No regressor in the variance.
The distribution is a Skewed Student distribution, with a tail coefficient of 15.72 and an asymmetry coefficient of -0.08751.
Strong convergence using numerical derivatives

Maximum Likelihood Estimation

Coefficient Std.Error t-value t-prob
Cst(M) 0.065337 0.037157 1.758 0.0791
AR(1) 0.004704 0.037117 0.1267 0.8992
Cst(V) 0.017498 0.013488 1.297 0.1949
Beta1 0.947590 0.020193 46.93 0.0000
Alpha1 0.038464 0.017776 2.164 0.0308
Gamma1 0.676364 0.348702 1.940 0.0528
Delta 1.462837 0.533581 2.742 0.0063
Asymmetry -0.087512 0.054314 -1.611 0.1075
Tail 15.718323 8.087414 1.944 0.0523

No. Observations: 800 No. Parameters: 9
Mean (Y): 0.08103 Variance (Y): 1.27405
Log Likelihood: -1190.521

The sample mean of squared residuals was used to start recursion.
The condition for existence of E(σδ) and E(|eδ|) is observed.
The constraint equals 0.9926 and should be < 1.
Vector of estimated parameters:
0.065337; 0.004704; 0.017498; 0.947590; 0.038464; 0.676364; 1.462837;-0.087512; 15.718323

After the estimation of the model, new options are available in OxPack: Menu/Tests, Menu/Graphic

Analysis, Menu/Forecasts, Menu/Exclusion Restrictions, Menu/Linear Restrictions and

Menu/Store.

The Menu/Graphic Analysis option allows to plot different graphics (see Figure 6 for details).

Just as any other graphs in the GiveWin environment, they can be easily edited (color, size,. . . )

and exported in many formats (.eps, .ps, .wmf, .emf and .gwg). Figure 7 provides the graphs of

the squared residuals and the conditional mean with a 95% confidence interval.

[INSERT FIGURES 6 and 7]

The Menu/Tests option allows to run different tests (see Section 4.2 for further explanations).

It also allows to print the variance-covariance matrix of the estimated parameters (Figure 8). The

results of these tests are printed in GiveWin. An example of output is reported in the next box

(“Output 2”).

[INSERT FIGURE 8]
26Recall that the estimations are based on the numerical evaluation of the gradients.

49



Output 2

TESTS:
—————

Statistic t-value t-prob
Skewness -0.2135 2.47 0.0135
Excess Kurtosis 0.4684 2.713 0.006674
Jarque-Bera 13.39 13.39 0.001235
—————
Information Criterium (minimize)
Akaike 2.998802 Shibata 2.998553
Schwarz 3.051504 Hannan-Quinn 3.019048
—————
BOX-PIERCE:
H0: No serial correlation ⇒ Accept H0 when prob. is High [Q < Chisq(lag)]
Box-Pierce Q-statistics on residuals
→ P-values adjusted by 1 degree(s) of freedom
Q(10) = 14.47 [0.1064]
Q(20) = 21.67 [0.3012]

Box-Pierce Q-statistics on squared residuals
→ P-values adjusted by 2 degree(s) of freedom
Q(10) = 9.887 [0.2731]
Q(20) = 16.13 [0.5838]
—————
Diagnostic test based on the news impact curve (EGARCH vs.GARCH)

Test Prob
Sign Bias t-Test 0.98838 0.32297
Negative Size Bias t-Test 0.14581 0.88407
Positive Size Bias t-Test 0.62400 0.53263
Joint Test for the Three Effects 5.13914 0.16189
—————
Joint Statistic of the Nyblom test of stability: 2.727
Individual Nyblom Statistics:
Cst(M) 0.72438
AR(1) 0.68524
Cst(V) 0.51505
Beta1 0.42785
Alpha1 0.46229
Gamma1 0.43489
Delta 0.54130
Asymmetry 0.21342
Tail 0.08950
Rem: Asymptotic 1% critical value for individual statistics = 0.75.
Asymptotic 5% critical value for individual statistics = 0.47.
—————
Adjusted Pearson Chi-square Goodness-of-fit test
Lags Statistic P-Value(lag-1) P-Value(lag-k-1)
40 24.9000 0.961261 0.729877
50 26.7500 0.995994 0.946240
60 32.6500 0.997893 0.972622

Rem.: k = # estimated parameters

We do not intend to comment this application in details. However, looking at these results, one

can briefly argue that the model seems to capture the dynamics of the first and second moments

of the CAC40 (see the Box-Pierce statistics). Moreover, the Sign Bias tests show that there is

no remaining leverage component in the innovations while the Nyblom stability test suggests that

the estimated parameters are quite stable during the investigated period. Finally, our model

specification is not rejected by the goodness-of-fit tests for various lag lengths.

To obtain the h-step-ahead forecasts, access the menu Test/Forecast and set the number of

forecasts, pre-sample observations (to be plotted) as well as some other graphical options (Figure

50



9).

Figure 10 shows 10 pre-sample observations and the forecasts up to horizon 10 of the conditional

mean. The forecasted bands are ±2σ̂t+h|t (note that the critical value 2 can be changed).

[INSERT FIGURE 9]

[INSERT FIGURE 10]

Forecast Evaluation Measures

Mean Variance
Mean Squared Error(MSE) 2.2253 11.3109
Median Squared Error(MedSE) 0.6754 2.0989
Mean Error(ME) 0.0476 -0.0803
Mean Absolute Error(MAE) 1.1022 1.9847
Root Mean Squared Error(RMSE) 1.4918 3.3632
Mean Absolute Percentage Error(MAPE) .NaN 1.4964
Adjusted Mean Absolute Percentage Error(AMAPE) .NaN 0.3726
Percentage Correct Sign(PCS) 0.5434 .NaN
Theil Inequality Coefficient(TIC) 0.9559 0.5126
Logarithmic Loss Function(LL) .NaN 1.0699

Finally, the residuals, the squared residuals, the conditional variance, the (forecasted) proba-

bility integral transform and the forecasted conditional mean and conditional variance series can

be stored in the database as a new variable. When selecting this option, a first window appears

and the user selects the series to be stored (figure 11). A default name is then proposed for this

series.

[INSERT FIGURE 11]

5.3 Using the “Light Version”

First, to specify the model you want to estimate, you have to edit GarchEstim.ox with any text

editor. Yet we recommend OxEdit. It is a shareware that highlights Ox syntax in color (see

http://www.oxedit.com for more details). An example of the GarchEstim.ox file is displayed here

below.

51



GarchEstim.ox
#import <packages/garch23/garch>

main()
{

decl i,j,k,l,garchobj;

garchobj = new Garch();

//*** DATA ***//
garchobj.Load("/data/cac40.xls");
garchobj.Info();

garchobj.Select(Y_VAR, {"CAC40",0,0} );
// garchobj.Select(X_VAR, {"NAME",0,0}); // REGRESSOR IN THE MEAN
// garchobj.Select(Z_VAR, {"NAME",0,0}); // REGRESSOR IN THE VARIANCE
// garchobj.Select(O_VAR, {"REALVOLA",0,0} ); // REALIZED VOLATILITY

garchobj.SetSelSample(-1, 1, -1, 1);

//*** SPECIFICATIONS ***//
garchobj.CSTS(1,1); // cst in Mean (1 or 0), cst in Variance (1 or 0)
garchobj.DISTRI(0); // 0 for Gauss, 1 for Student, 2 for GED, 3 for Skewed-Student
garchobj.ARMA_ORDERS(0,0); // AR order (p), MA order (q).
garchobj.ARFIMA(0); // 1 if Arfima wanted, 0 otherwise
garchobj.GARCH_ORDERS(1,1); // p order, q order
garchobj.MODEL(1); // 1:GARCH 2:EGARCH 3:GJR 4:APARCH 5:IGARCH

// 6:FIGARCH(BBM) 7:FIGARCH(Chung) 8:FIEGARCH(BBM only)
// 9:FIAPARCH(BBM) 10: FIAPARCH(Chung) 11: HYGARCH(BBM)

garchobj.TRUNC(1000); // Truncation order (only F.I. models with BBM method)

//*** PARAMETERS ***//
garchobj.BOUNDS(0); // 1 if bounded parameters wanted, 0 otherwise
garchobj.FixParam(0,<0;0;1>); // Arg.1 : 1 to fix some parameters to their starting values, 0 otherwize

// Arg.2 : 1 to fix (see garchobj.DoEstimation(<>))
//and 0 to estimate the corresponding parameter

//*** ESTIMATION OPTIONS ***//
garchobj.MLE(1); // 0 : both, 1 : MLE, 2 : QMLE
garchobj.COVAR(0); // if 1, prints variance-covariance matrix of the parameters.
garchobj.ITER(0); // Interval of iterations between printed intermediary results

// (if no intermediary results wanted, enter ’0’)
garchobj.GRAPHS(0,0,""); // Arg.1 : if 1, displays graphics of the estimations (only when using GiveWin).

// Arg.2 : if 1, saves these graphics in a EPS file (OK with all Ox versions)
// Arg.3 : Name of the saved file.

garchobj.FOREGRAPHS(1,0,""); // Same as GRAPHS(p,s,n) but for the graphics of the forecasts.

//*** TESTS & FORECASTS ***//
garchobj.BOXPIERCE(<5;10;20>); // Lags for the Box-Pierce Q-statistics, <> otherwise
garchobj.ARCHLAGS(<2;5;10>); // Lags for Engle’s LM ARCH test, <> otherwise
garchobj.NYBLOM(1); // 1 to compute the Nyblom stability test, 0 otherwise
garchobj.PEARSON(<40;50;60>); // Cells (<40;50;60>) for the adjusted Pearson Chi-square Goodness-of-fit test,

// <> otherwise
garchobj.FORECAST(0,10,0); // Arg.1 : 1 to launch the forecasting procedure, 0 otherwize

// Arg.2 : Number of forecasts
// Arg.3 : 1 to Print the forecasts, 0 otherwise

garchobj.TESTS(0,1); // Arg.1 : if 1, runs tests for the raw Y series, prior to any estimation.
// Arg.2 : if 1, runs tests after the estimation.

garchobj.DoEstimation(<>);

// m_vPar = m_clevel | m_vbetam | m_dARFI | m_vAR | m_vMA | m_calpha0 | m_vgammav | m_dD | m_vbetav |
// m_valphav | m_vleverage | m_vtheta1 | m_vtheta2 | m_vpsy | m_ddelta | m_cA | m_cV | m_vHY
//garchobj.DoEstimation(<0.02;0.05;0.45;0.22;0.01;0.025;0.8;0.1;-0.15;0.2;6>);

garchobj.STORE(0,0,0,0,0,"01",0); // Arg.1,2,3,4,5 : if 1 -> stored. (Res-SqRes-CondV-MeanFor-VarFor)
// Arg.6 : Suffix. The name of the saved series will be "Res_ARG6"
// Arg.7 : if 0, saves as an Excel spreadsheet (.xls).
// If 1, saves as a GiveWin dataset (.in7)

delete garchobj;
}

Let us study this file more in details. The #import statement indicates that this file is linked
with the Garch.oxo and Garch.h files. In the body of the file (after the main() instruction), a

52



new Garch object is first created and a database is loaded. The user has to enter the correct
path of the database, but also has to pay attention to the structure of the database he will use.
For instance, to use a Microsoft Excel file, the format of the spreadsheet is of crucial importance.
The following convention has to be adopted when loading an Excel spreadsheet: variables are in
columns, columns with variables are labelled, there is an unlabelled column containing the dates
(with the form Year-Period) and the data form a contiguous sample. Here is an example: 27

A B C D

1 RET MON HOL

2 1990-1 0.0439 1 0

3 1990-2 -0.0302 0 0

4 1990-3 0.0845 0 1

We note then that the dependent variable (Y), the regressor(s) in the mean equation (X), the
regressor(s) in the variance equation (Z) and the ”realized” volatility (0) are selected with the
Select function. Ox being case- sensitive, the exact name of the variable has to be entered. The
second and third arguments denote the starting and ending observations to be considered. By de-
fault, ”0” and ”0” mean that all the observations are selected. From this selection, a sample can be
extracted with the SetSelSample function. The arguments are ordered as (StartYear, StartPeriod,
EndYear, EndPeriod2) and the default (-1, 1, -1, 1) means all the selected observations.

The GarchEstim.ox file consists in six parts: 28

• the “Data” part deals with the database, the sample and the variables selection;

• the “Specification” part is related to the choice of the model, the lag orders and the shape
of the distribution;

• the “Parameters” part consists in two procedures. BOUNDS to constraint or not several
parameters to range between a lower and an upper bound (see Section 4.1), FixParam to fix
some parameters to their starting values;

• the “Output” part includes several options including MLE that refer to the computation
method of the standard deviations of the estimated parameters, TESTONLY, useful when

27See Doornik (2001) for the supported formats, the Load functions and other related information. Interested

reader can also take a look at the DJIA.xls file included in the package for an example of Excel file ready to

be loaded by Ox. Please be very careful when editing numbers in an Excel file, especially regarding the decimal

separator ( “,” or “.” depending on the language used).
28All the functions cited here are described in details in section 2.3

53



you want to run some tests on the raw series, prior to any estimation and GRAPHS and
FOREGRAPHS, to print graphs for the estimation and the forecasting, respectively;29

• the “Tests & Forecasts” part allows to compute different tests and to parameterize the
forecasting part. Note that BOXPIERCE, ARCHLAGS and PEARSON all require a vector of integers
corresponding to the lags used in the computation of the statistics;

• DoEstimation launches the estimation of the model and the STORE function allowing to store
some series. The argument of the DoEstimation procedure is a vector containing starting
values of the parameters in a specified order (but the user can also let the program take
defaults values).

Note that the “Light Version” is more than just a replication of the “Full Version” without the
graphical interface. Indeed, G@RCH uses the object-oriented programming features of Ox and
provides a new class called Garch. All the functions of this class can thus be used within an Ox pro-
gram. To illustrate the potentiality of our package, we also provide Forecast.ox, an example that
computes 448 one-step-ahead forecasts of the conditional mean and conditional variance (using
the estimated parameters presented in the previous section), computes the Mincer-Zarnowitz re-
gression and performs some out-of-sample density forecast tests as suggested by Diebold, Gunther,
and Tay (1998).

The interesting part of Forecast.ox is printed in the next box. This code has been used to
produce Figure 12 and the outputs associated with this forecasting experiment (see below).

29Graphics will only be displayed when using GiveWin as front-end.

54



Forecast.ox
#import <packages/garch/garch> main() {

decl garchobj;
garchobj = new Garch();

...

garchobj.DoEstimation(<>);
decl number_of_forecasts=448; // number of h_step_ahead forecasts
decl step=1; // specify h (h-step-ahead forecasts)
decl T=garchobj.GetcT();
decl par=garchobj.PAR()[][0];
println("!!! Please Wait while computing the forecasts !!!");
decl forc=<>,h,yfor=<>,Hfor=<>;
decl RV=columns(garchobj.GetGroup(O_VAR));
decl shape=<>;
if (garchobj.GetDistri()==1 || garchobj.GetDistri()==2) // Except for the HYGARCH

shape=par[rows(par)-1];
else if (garchobj.GetDistri()==3)

shape=par[rows(par)-2:rows(par)-1];
for (h=0; h<number_of_forecasts; ++h)
{

garchobj.FORECAST(1,step,0);
garchobj.SetSelSample(-1, 1, T+h, 1);
garchobj.InitData();
yfor|=garchobj.GetForcData(Y_VAR, step);
forc|=garchobj.FORECASTING();
if (RV==1)

Hfor|=garchobj.GetForcData(O_VAR, step); // If you use the realized volatility
}
decl cd=garchobj.CD(yfor-forc[][0],forc[][1],garchobj.GetDistri(),shape);
println("Density Forecast Test on Standardized Forecast Errors");
garchobj.APGT(cd,20|30,rows(par));
garchobj.AUTO(cd, number_of_forecasts, -0.1, 0.1, 0);
garchobj.confidence_limits_uniform(cd,30,0.95,1,4);
if (RV==0)
{

DrawTitle(5, "Conditional variance forecast and absolute returns");
Hfor = (yfor - meanc(yfor)).^2;

}
else

DrawTitle(5, "Conditional variance forecast and realized volatility");
Draw(5, (Hfor~forc[][1])’);
ShowDrawWindow();
garchobj.MZ(Hfor, forc, number_of_forecasts);
garchobj.FEM(forc, yfor~Hfor);

garchobj.STORE(0,0,0,0,0,"01",0); // Arg.1,2,3,4,5 ...
// Arg.6 : Suffix. ...
// Arg.7 : if 0, ...

delete garchobj;
}

In the first four panels of Figure 12, we show the correlograms of
(
ζ̂ − ζ̂

)j

, for j = 1, 2, 3, 4.
This graphical tool has been proposed by Diebold, Gunther, and Tay (1998) to detect potential
remaining dependence in the conditional mean, variance, skewness, kurtosis. In our example, it
seems that the probability integral transform is independently distributed.

[INSERT FIGURE 12]

Panel 5 of Figure 12 also shows the histogram (with 30 cells) of ζ̂ with the 95 % confidence
bands. From this figure, it is clear that the AR(1)-APARCH(1,1) model coupled with a skewed
Student distribution for the innovations performs very well with the dataset we have investigated.
This conclusion is reinforced by the Pearson Chi-square goodness-of-fit test printed hereafter that
provides a statistical version of the graphical test presented in Figure 12. Finally, the program
performs the Mincer-Zarnowitz regression given in Eq. (42) that regresses the observed volatility

55



(in our case the realized volatility) on a constant and a vector of 448 one-step-ahead forecasts of the
conditional variance (produced by the APARCH model).30 The results (reported in the next box)
suggest that the APARCH model gives good forecasts of the conditional variance. Indeed, looking
at the estimated parameters of this regression, one can hardly conclude that the APARCH model
provides biases forecasts. Moreover, the R2 of this regression is higher than 40 % (See Andersen
and Bollerslev (1998) for more details).

Density Forecast Test on Standardized Forecast Errors Adjusted Pearson Chi-square Goodness-of-fit test

Lags Statistic P-Value(lag-1) P-Value(lag-k-1)

20 21.0179 0.335815 0.020969

30 26.5089 0.598181 0.149654

Rem.: k = number of estimated parameters

Mincer-Zarnowitz regression on the forecasted volatility

Coefficient Std.Error t-value t-prob

a0 -0.225818 0.264837 -0.8527 0.3940

a1 1.370648 0.176086 7.784 0.0000

R2: 0.402914

Note: S.E. are Heteroskedastic Consistent (White, 80)

30The realized and one-step-ahead forecasts are plotted in the last panel of Figure 12.

56



6 Versions and Future Improvements

6.1 Releases History

Here is the history of the G@RCH package releases:
v.2.30 : April, 22nd
v.2.20 : February, 5th, 2001.
v.2.10 : September, 4th, 2001.
v.2.00 : April, 23th, 2001.
v.1.11 : November, 18th, 2000.
v.1.10 : October, 30th, 2000.
v.1.00 : September, 4th, 2000.

6.2 Future Improvements

• Analytical gradients

• Multivariate GARCH models (under development)

• New ”add-ons” with specific applications such as Value-at-Risk...

• . . .

We Wish You A Productive Use Of G@RCH 2.3 !

References

Andersen, T., and T. Bollerslev (1998): “Answering the Skeptics: Yes, Standard Volatility
Models do Provide Accurate Forecasts,” International Economic Review, 39, 885–905.

Baillie, R. (1996): “Long Memory Processes and Fractional Integration in Econometrics,” Jour-
nal of Econometrics, 73, 5–59.

Baillie, R., and T. Bollerslev (1989): “The Message in Daily Exchange Rates: A Conditional-
Variance Tale,” Journal of Business and Economic Statistics, 7, 297–305.

Baillie, R., T. Bollerslev, and H. Mikkelsen (1996): “Fractionally Integrated Generalized
Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 74, 3–30.

Baillie, R., C. Chung, and M. Tieslau (1996): “Analyzing Inflation by the Fractionally
Integrated ARFIMA-GARCH Model,” Journal of Applied Econometrics, 11, 23–40.

Bauwens, L., P. Giot, J. Grammig, and D. Veredas (2000): “A Comparison of Financial
Duration Models Via Density Forecasts,” CORE DP 2060.

57



Beine, M., S. Laurent, and C. Lecourt (2000): “Accounting for Conditional Leptokurtosis
and Closing Days Effects in FIGARCH Models of Daily Exchange Rates,” Forthcoming in
Applied Financial Economics.

Bera, A., and M. Higgins (1993): “ARCH Models: Properties, Estimation and Testing,”
Journal of Economic Surveys.

Black, F. (1976): “Studies of Stock Market Volatility Changes,” Proceedings of the American
Statistical Association, Business and Economic Statistics Section, pp. 177–181.

Bollerslev, T. (1986): “Generalized Autoregressive Condtional Heteroskedasticity,” Journal of
Econometrics, 31, 307–327.

(1987): “A Conditionally Heteroskedastic Time Series Model for Speculative Prices and
Rates of Return,” Review of Economics and Statistics, 69, 542–547.

Bollerslev, T., R. Chou, and K. Kroner (1992): “ARCH Modeling in Finance: A Review
of the Theory and Empirical Evidence,” Journal of Econometrics, 52, 5–59.

Bollerslev, T., and E. Ghysels (1996): “Periodic Autoregressive Conditional Heteroskedas-
ticity,” Journal of Business and Economics Statistics, 14, 139–152.

Bollerslev, T., and H. O. Mikkelsen (1996): “Modeling and Pricing Long-Memory in Stock
Market Volatility,” Journal of Econometrics, 73, 151–184.

Bollerslev, T., and J. Wooldridge (1992): “Quasi-maximum Likelihood Estimation and
Inference in Dynamic Models with Time-varying Covariances,” Econometric Reviews, 11, 143–
172.

Brooks, C., S. Burke, and G. Persand (1997): “Linear and Non-Linear (Non-) Forecastability
of High-Frequency Exchange Rates,” Journal of Forecasting, 16, 125–145.

(2001): “Benchmarks and the Accuracy of GARCH Model Estimation,” International
Journal of Forecasting, 17, 45–56.

Chung, C.-F. (1999): “Estimating the Fractionnally Intergrated GARCH Model,” National
Täiwan University working paper.

Cribari-Neto, F., and S. Zarkos (2001): “Econometric and Statistical Computing Using Ox,”
Forthcoming in Computational Economics.

Davidson, J. (2001): “Moment and Memory Properties of Linear Conditional Heteroscedasticity
Models,” Manuscript, Cardiff University.

Diebold, F. X., T. A. Gunther, and A. S. Tay (1998): “Evaluating Density Forecasts, with
Applications to Financial Risk Management,” International Economic Review, 39, 863–883.

Ding, Z., C. W. J. Granger, and R. F. Engle (1993): “A Long Memory Property of Stock
Market Returns and a New Model,” Journal of Empirical Finance, 1, 83–106.

58



Doornik, J. A. (2001): An Object Oriented Matrix Programming Language. Timberlake Consul-
tant Ltd., fourth edn.

Doornik, J. A., and M. Ooms (1999): “A Package for Estimating, Forecasting and Simulating
Arfima Models: Arfima package 1.0 for Ox,” Discussion paper, Econometric Intitute, Erasmus
University Rotterdam.

Engle, R. (1982): “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance
of United Kingdom Inflation,” Econometrica, 50, 987–1007.

Engle, R., and T. Bollerslev (1986): “Modeling the Persistence of Conditional Variances,”
Econometric Reviews, 5, 1–50.

Engle, R., and G. González-Rivera (1991): “Semiparametric ARCH Model,” Journal of
Business and Economic Statistics, 9, 345–360.

Engle, R., and G. Lee (1999): A Permanent and Transitory Component Model of Stock Return
Volatilitypp. 475–497, Cointegration, Causality, and Forecasting: A Festschrift in Honor of Clive
W.J. Granger. in R. Engle and H. White eds., oxford university press edn.

Engle, R., and V. Ng (1993): “Measuring and Testing the Impact of News on Volatility,”
Journal of Finance, 48, 1749–1778.

Fernández, C., and M. Steel (1998): “On Bayesian Modelling of Fat Tails and Skewness,”
Journal of the American Statistical Association, 93, 359–371.

Fiorentini, G., G. Calzolari, and L. Panattoni (1996): “Analytic Derivatives and the
Computation of GARCH Estimates,” Journal of Applied Econometrics, 11, 399–417.

Geweke, J. (1986): “Modeling the Persistece of Conditional Variances: A Comment,” Econo-
metric Review, 5, 57–61.

Glosten, L., R. Jagannathan, and D. Runkle (1993): “On the Relation Between Expected
Value and the Volatility of the Nominal Excess Return on Stocks,” Journal of Finance, 48,
1779–1801.

Granger, C. (1980): “Long Memory Relationships and the Aggregation of Dynamic Models,”
Journal of Econometrics, 14, 227–238.

Granger, C., and R. Joyeux (1980): “An Introduction to Long-Memory Time Series Models
and Fractional Differencing,” Journal of Time Series Analysis, 1, 15–29.

Hansen, B. (1994): “Autoregressive Conditional Density Estimation,” International Economic
Review, 35, 705–730.

Higgins, M., and A. Bera (1992): “A Class of Nonlinear ARCH Models,” International Eco-
nomic Review, 33, 137–158.

59



Hsieh, D. (1989): “Modeling Heteroskedasticity in Daily Foreign Exchange Rates,” Journal of
Business and Economic Statistics, 7, 307–317.

Jarque, C., and A. Bera (1987): “A Test for Normality of Observations and Regression Resid-
uals,” International Statistical Review, 55, 163–172.

Jorion, P. (1996): Risk and Turnover in the Foreign Exchange MarketThe Microstructure of
Foreign Exchange Markets. in Frankel, J.A., Galli, G., and Giovanni A., Chicago: The University
of Chicago Press.

König, H., and W. Gaab (1982): The Advanced Theory of Statistics, vol. 2 of Inference and
Relationships. Haffner.

Koopman, S., N. Shepard, and J. Doornik (1998): “Statistical Algorithms for Models in
State Space using SsfPack 2.2,” Econometrics Journal, 1, 1–55.

Lambert, P., and S. Laurent (2000): “Modelling Skewness Dynamics in Series of Financial
Data,” Discussion Paper, Institut de Statistique, Louvain-la-Neuve.

(2001): “Modelling Financial Time Series Using GARCH-Type Models and a Skewed
Student Density,” Mimeo, Université de Liège.

Laurent, S., and J.-P. Peters (2002): “G@RCH 2.2 : An Ox Package for Estimating and
Forecasting Various ARCH Models,” Forthcoming in Journal of Economic Surveys.

Lecourt, C. (2000): “Dépendance de Court et Long Terme des Rendements de Taux de Change,”
Economie et Prévision, 5, 127–137.

Lee, S., and B. Hansen (1994): “Asymptotic Properties of the Maximum Likelihood Estimator
and Test of the Stability of Parameters of the GARCH and IGARCH Models,” Econometric
Theory, 10, 29–52.

Ling, S., and M. McAleer (2002): “Stationarity and the Existence of Moments of a Family of
GARCH processes,” Journal of Econometrics, 106, 109–117.

Lombardi, M., and G. Gallo (2001): “Analytic Hessian Matrices and the Computation of
FIGARCH Estimates,” Manuscript, Università degli studi di Firenze.

McCullough, B., and H. Vinod (1999): “The Numerical Reliability of Econometric Software,”
Journal of Economic Literature, 37, 633–665.

McLeod, A., and W. Li (1983): “Diagnostic Checking ARMA Time Series Models Using Squared
Residuals Autocorrelations,” Journal of Time Series Analysis, 4, 269–273.

Mincer, J., and V. Zarnowitz (1969): The Evaluation of Economic ForecastsEconomic Fore-
casts and Expectations. in J.Mincer, New York: National Bureau of Economic Research.

Nelson, D. (1991): “Conditional Heteroskedasticity in Asset Returns: a New Approach,” Econo-
metrica, 59, 349–370.

60



Nelson, D., and C. Cao (1992): “Inequality Constraints in the Univariate GARCH Model,”
Journal of Business and Economic Statistics, 10, 229–235.

Nyblom, J. (1989): “Testing for the Constancy of Parameters Over Time,” Journal of the Amer-
ican Statistical Association, 84, 223–230.

Pagan, A. (1996): “The Econometrics of Financial Markets,” Journal of Empirical Finance, 3,
15–102.

Palm, F. (1996): “GARCH Models of Volatility,” in Maddala, G.S., Rao, C.R., Handbook of
Statistics, pp. 209–240.

Palm, F., and P. Vlaar (1997): “Simple Diagnostics Procedures for Modelling Financial Time
Series,” Allgemeines Statistisches Archiv, 81, 85–101.

Pentula, S. (1986): “Modeling the Persistece of Conditional Variances: A Comment,” Econo-
metric Review, 5, 71–74.

Schwert, W. (1990): “Stock Volatility and the Crash of ’87,” Review of Financial Studies, 3,
77–102.

Taylor, S. (1986): Modelling Financial Time Series. Wiley, New York.

Teyssière, G. (1997): “Double Long-Memory Financial Time Series,” Paper presented at the
ESEM, Toulouse.

Timmermann, A. (2000): “Density Forecasting in Economics and Finance,” Journal of Forecast-
ing, 19, 120–123.

Tschernig, R. (1995): “Long Memory in Foreign Exchange Rates Revisited,” Journal of Inter-
national Financial Markets, Institutions and Money, 5, 53–78.

Tse, Y. (1998): “The Conditional Heteroscedasticity of the Yen-Dollar Exchange Rate,” Journal
of Applied Econometrics, 193, 49–55.

Vlaar, P., and F. Palm (1993): “The Message in Weekly Exchange Rates in the European
Monetary System: Mean Reversion, Conditional Heteroskedasticity and Jumps,” Journal of
Business and Economic Statistics, 11, 351–360.

Weiss, A. (1986): “Asymptotic Theory for ARCH Models: Estimation and Testing,” Econometric
Theory, 2, 107–131.

Zakoian, J.-M. (1994): “Threshold Heteroskedasticity Models,” Journal of Economic Dynamics
and Control, 15, 931–955.

61



Figure 1: Selecting the variables

Figure 2: Model Settings

62



Figure 3: Selecting the Starting Values Method

Figure 4: Standard Errors Estimation Methods

63



Figure 5: Entering the Starting Values

Figure 6: Graphics Menu

64



0 100 200 300 400 500 600 700 800

0

5

Residuals (E)

0 100 200 300 400 500 600 700 800

2

4

Conditionnal Variance (H)

0 100 200 300 400 500 600 700 800

0

5
Conditional mean 
Quantile 0.975 

Quantile 0.025 
 

Figure 7: Graphical Analysis

65



Figure 8: Tests Dialog Box

Figure 9: Forecasting Menu

66



790 795 800 805 810

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0 Observed Series Forecasted Series × Z 

Figure 10: Forecasts from an AR(1)-APARCH(1,1).

Figure 11: Storing in the Database

67



0 100 200 300 400

−0.1

0.0

0.1
ACF(Moment: 1) 

0 100 200 300 400

−0.1

0.0

0.1
ACF(Moment: 2) 

0 100 200 300 400

−0.1

0.0

0.1
ACF(Moment: 3) 

0 100 200 300 400

−0.1

0.0

0.1
ACF(Moment: 4) 

0.00 0.25 0.50 0.75 1.00

0.5

1.0

1.5

Probability Integral Transform

0 100 200 300 400

10

20

30

Conditional variance forecast and absolute returns

Figure 12: Density Forecast Analysis

68


