
A Package for Estimating, Forecasting and Simulating Arfima

Models: Arfima package 1.0 for Ox

BY JURGEN A. DOORNIKAND MARIUS OOMS

Nuffield College, Oxford OX1 1NF, UK, Erasmus University, Rotterdam, The Netherlands,

May 30, 1999

Contents

1 Introduction 2
2 Disclaimer . 2
3 Availability and Citation . .. 2
4 Installation . 3
5 Running Arfima programs .. 3
6 Some estimation and forecasting examples 3
7 Treatment of the mean . 5
8 Arfima in OxPack for GiveWin . 6
9 Some simulation examples . 9
10 Arfima summary . 10
11 Arfima member functions . 11
12 ArfimaSim member functions . 18
13 Changes from previous versions . 20
14 Technical Summary . 21
15 The Arfima model . 21

15.1 Autocovariance function . 21
16 Estimation . 22

16.1 Regressors in mean . 22
16.2 Initial values. 22
16.3 Exact maximum likelihood (EML) 23
16.4 Modified profile likelihood (MPL) 24
16.5 Non-linear least squares (NLS) . 24
16.6 Variance-covariance matrix estimates . 24

17 Estimation output . 24
18 Estimation options . 25

18.1 Sample mean versus known mean . 25
18.2 Fixing parameters . 25
18.3 Weighted estimation . 25
18.4 Z variables . 25

19 Forecasting 26
20 Some notes on computation . 26

20.1 Autocovariance function . 26
20.2 Likelihood evaluation 28
20.3 Invertibility of MA polynomial . 29

21 Monte Carlo experimentation . 29
References . 30

1

DOORNIK & OOMS: ARFIMA PACKAGE 2

1 Introduction

This documentation describes theArfima package version 1.0 for Ox 2.10 or later, see Doornik (1998). The
Arfima package has a class for estimation and forecasting of ARFIMA(p, d, q)1 and ARMA(p, q) models.

The available estimation methods are exact maximum likelihood (EML), modified profile likelihood (MPL),
and nonlinear least squares (NLS). The mean of the process the ARFIMA process can be a (nonlinear) function of
regressors. This makes it straightforward to model (nonlinear) deterministic trends and additive outliers. Missing
observations can easily be estimated.

Regressors can also be used to model the innovations of the process. This allows ARFIMA distributed lag
modelling, an extension of autoregressive distributed lag (ARDL) modelling. Innovative outliers can be estimated.

We have managed to make the storage requirement of orderT (see below), so that very large samples can be
used without major problems.

TheArfima package is written in Ox, a fast object-oriented matrix programming language. The package is
used by writing small Ox functions which create and use anArfima object. Some knowledge of Ox is useful;
although this new version of the package can be used interactively in conjunction withOxPack for GiveWin (see
Doornik and Hendry, 1999). Arfima users may also be interested in the GiveWin version of X12arima (Findley,
Monsell, Bell, Otto and Chen, 1998), which allows estimation (EML and NLS) and forecasting of (seasonal)
ARIMA models, seewww.pcgive.com.

TheArfima class derives from theModelbase class, which in turn derives fromDataBase. TheDatabase
class admits simple loading of data sets in various formats and easy selection of variables and samples. The
Modelbase class contains standard functions for the organisation of estimation input and the presentation of es-
timation output. An additional simulation class,ArfimaSim, allows Monte Carlo experimentation of the facilities
in theArfima class.

The organization of the documentation is as follows. After discussing installation we present 8 example
programs in§6, which show the estimation and forecasting facilities ofArfima. Some of these features are also
illustrated in§8 in the discussion of the corresponding interactive environment. Section 9 presents simulation
programs that useArfimaSim. Running the programs of this section will show the speed of the computations
and the effectiveness of the modified profile likelihood for bias correction. Sections 10, 11 and 12 document
the main functions of the classesArfima andArfimaSim. The remaining sections provide a summary of the
implementation details of the procedures in the Arfima package, complementing the exposition in Ooms and
Doornik (1998). The notation necessary for understanding the output of the sample programs is presented in§15.

2 Disclaimer

This package is functional, but no warranty is given whatsoever. The most appropriate forum to
discuss problems and issues related to the Arfima package is the ox-users discussion group (see
www.mailbase.ac.uk/lists/ox-users). Please report suggestions for improvement to Marius Ooms at
ooms@few.eur.nl.

3 Availability and Citation

The Arfima package is available for downloading throughhttp://www.nuff.ox.ac.uk/Users/Doornik/.
The Unix DLLs, as well as OxPack must be downloaded separately.

To facilitate replication and validation of empirical findings, cite this documentation and Ooms and Doornik
(1998) in all reports and publications involving the application of theArfima package 1.0.

1Part of the underlying code is a rewritten version of the Fortran procedure by Falaw Sowell (see Sowell, 1992), we thank him for
permission to use his code. Without the original code, writing the current set of procedures would have been much harder.

DOORNIK & OOMS: ARFIMA PACKAGE 3

4 Installation

(1) Make sure you have properly installed Ox version 2.10 or later. TheArfima package does not work fully
with earlier versions of Ox. Typeoxl at the command prompt to check.

(2) Create anarfima subdirectory in theox\packages folder and putarfima.zip in that subdirectory, then
unziparfima.zip.

(3) Read theread.me file for info on the last updates.
(4) If Ox has been installed properly, this will allow using theArfima package from any directory. To use the

package in your code, add the command

#import <packages/arfima/arfima>

at the top of all files which require it.

5 Running Arfima programs

The package has a section of code in a dynamic link library for optimum speed. This version can be run under
Windows 95/98/NT and most Unix versions.

To run the examples in§6 under Windows/Unix, type
oxl fracest1

at the command prompt. Alternatively, useoxrun to run the§6 program. OxRun requires GiveWin to show the
output and graphs on screen.

To run the programs without using the DLL (any platform; this is at least three times slower) use:
oxl fracest1 -DNO DLL

The-DNO DLL version is so slow because it contains a literal translation of the Fortran code to Ox; no attempt has
been made to vectorize this.

6 Some estimation and forecasting examples

This section discusses eight example programs provided asfracest1.ox, . . ., fracest8.ox in the standard
installation. The first three programs demonstrate the selection of dataset, model orders, estimation sample,
forecast horizon, model restrictions, regressors, and estimation method. The fourth program illustrates forecasting
extensions. The fifth program shows the use of popular semiparametric estimates ofd. Programs 6 and 7 make
clear how to perform nonlinear regression with ARFIMA-disturbances.fracest8.ox shows how to deal with
innovative outliers and additive outliers.

The code below (provided asfracest1.ox) estimates an ARIMA(1, d, 1) model on the GiveWin data set
rpi uk.in7 (UK retail price index). Some possible changes to this code are shown in the following programs.

. .fracest1
#include <oxstd.h>
#include <oxfloat.h> // required for M_NAN
#import <packages/arfima/arfima>

main()
{

decl arfima, dly;
// create an object of class Arfima
arfima = new Arfima();

// load the data file
arfima.LoadIn7("rpi_uk.in7");
// translate RPI into inflation (delta log RPI)
// setting first value to missing value
dly = diff0(log(arfima.GetVar("RPI_UK")), 1, M_NAN);
// store in database
arfima.Append(dly, "Inflat", 0);
arfima.Info();

DOORNIK & OOMS: ARFIMA PACKAGE 4

// formulate arfima model, select "Y" as Y_VAR
// from lag 0 to lag 0 (i.e. current only)
arfima.Select(Y_VAR, { "Inflat", 0, 0 });
// specify an ARMA(0,d,0) model, estimate by exact ML
arfima.ARMA(0,0);
arfima.SetMethod(M_MAXLIK);
arfima.UseSampleMean();
// select the maximum sample period
arfima.SetSelSample(-1, 1, -1, 1);

// print compact iteration output every iteration
MaxControl(-1,1,1);

// estimate, automatically prints the results
println("\nIterating:");
arfima.Estimate();

// done with arfima: delete the object
delete arfima;

}
. .

Which generates output:
. .
Arfima package version 1.00, object created on 9-05-1999

---- Database information ----
2 variables, 160 observations

name sample period min mean max stddev
RPI_UK 1955 (1) 1994 (4) 11.3 56.563 153.8 47.409
Inflat 1955 (2) 1994 (4) -0.0082305 0.01642 0.090573 0.015168

Iterating:
it0 f= 4.420666 df= 0.07155 e1= 0.02862 e2= 0.01789 step=1
it1 f= 4.421729 df= 0.01305 e1= 0.004752 e2= 0.001515 step=0.5
it2 f= 4.421764 df= 0.0003887 e1= 0.0001437 e2=4.317e-005 step=1
it3 f= 4.421764 df=2.442e-006 e1=9.026e-007 e2=2.731e-007 step=1
Strong convergence

---- Maximum likelihood estimation of ARIMA(0,d,0) model ----
The estimation sample is 1955 (2) - 1994 (4)
The dependent variable is: Inflat
(in deviation from sample mean)

Coefficient Std.Error t-value t-prob
d parameter 0.369581 0.05098 7.25 0.000

log-likelihood 477.449176
no. of observations 159 no. of parameters 2
AIC -950.898353 AIC/T -5.98049279
mean(Inflat) 0.0164204 var(Inflat) 0.000230057
sigma^2 0.00014316

BFGS estimation using numerical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence
Used starting values:

0.40000
. .

The Arfima package allows for fixing parameters, as well as forecasting. The following section of code, from
fracest2.ox, illustrates:

arfima.ARMA(4,0);
arfima.FixAR(<1:3>);// omit AR1..AR3 terms in AR polynomial

arfima.SetSelSample(-1, 1, 1993, 4); // keep 1 year
arfima.UseSampleMean();
arfima.Estimate();

DOORNIK & OOMS: ARFIMA PACKAGE 5

arfima.Forecast(8); // 4 in sample, 4 out-of-sample

In addition, regressors can be added to the model specification, and estimation method changed. The program
fracest3.ox experiments with these, for example adding a constant term and estimating by modified profile
likelihood:

arfima.Select(Y_VAR, { "Inflat", 0, 0 });
arfima.Select(X_VAR, { "Constant", 0, 0 });
arfima.SetSelSample(-1, 1, -1, 1);
arfima.SetMethod(M_MAXMPLIK);
arfima.Estimate();

The estimation method can be switched to non-linear least squares. By default, the package obtains starting
values using the methods set out in§16.2. After model formulation and sample selection, you can specify your
own starting values as follows:

arfima.SetStartPar(<-0.1,0.1>); // order is: d, AR1
arfima.Estimate();

The argument toSetStartPar is a vector, with an entry for eachfreecoefficient.
The sample programfracest4.ox compares exact maximum likelihood (EML) with modified profile likeli-

hood (MPL), and illustrates forecasting issues:

• Producing log-level forecasts from a second differenced dependent variable, this is also shown graphically
in §8 below;

• Producing level forecasts from log-level forecasts. Note the extra forecast bias correction due to the data
transformation, see e.g. Granger and Newbold (1986, p.311).

fracest5.oxapplies two semiparametric methods for inference on the order of integrationd: log periodogam
regression usingEstimateGPH and Gaussian semiparametric estimation withEstimateGSP.

It is somewhat more involved to estimate an ARFIMA model where the mean is a general function of re-
gressors:fracest6.ox shows how to override the virtual functions for the mean function in-sample and out-of-
sample by a simple linear time trend. The code infracest7.ox extends this example to estimate and forecast a
smooth logistic function of time. Eisinga, Franses and Ooms (1999) recently used a logistic trend with stationary
ARFIMA-disturbances to model and test convergence in opinion polls.

Finally,fracest8.ox illustrates that both weighted estimation and innovation dummies can be used to down-
weight the effect of outliers, and compares these approaches with the estimation of additive dummies. In order to
do so, the program uses two extra variable types,W VAR andZ VAR, in addition to the usualY VAR andX VAR. See
also§18.3 and§18.4 below.

7 Treatment of the mean

There are several reasons to choose different ways to estimate the overall mean of a stationary ARFIMA-proces,
see§18.1 below. Therefore theArfima package implements three ways to allow for the mean component:

(1) Use a constant term as a regressor.

arfima.Deterministic(FALSE); // create Constant in database
arfima.Select(X_VAR, { "Constant", 0, 0 }); // add to model
arfima.FixMean(0); // no mean adjustment (the default)

The last statement fixes the mean at zero, which implies that no mean adjustment is made (this is done
through the constant term instead).FixMean(0) is the default behaviour, so the line could be omitted.

(2) Estimate in deviation from sample mean.

arfima.UseSampleMean();

In this case, the dependent variable is demeaned prior to estimation. This is noted in the output by the
addition of(in deviation from sample mean)after the name of the dependent variable (see the output in§6
above).

(3) Impose a known mean (which could be zero).

arfima.FixMean(1.6);

DOORNIK & OOMS: ARFIMA PACKAGE 6

If a non-zero value is used, this is noted in the output:(in deviation from imposed mean 1.6). The default is
FixMean(0).

Under MS Windows operating systems it is possible to experiment interactively with many of the options
discussed in the previous sections. This is done in theArfima package in OxPack for GiveWin.

8 Arfima in OxPack for GiveWin

Arfima in OxPack for GiveWin has an effective graphical user interface for interactive data and model selection,
estimation, forecasting, diagnostics and testing.

Installing Arfima in OxPack for GiveWin

Installation of the interactive version of Arfima:

(1) Install Arfima intoox/packages/arfima as described above.
(2) Install OxPack for GiveWin (available fromhttp://www.nuff.ox.ac.uk/users/doornik). OxPack

requires a properly installed GiveWin version 1.20 or later. Check the version number in the GiveWin Help
menu.

(3) Start GiveWin, and then OxPack from the GiveWin Modules menu. From the OxPack Package menu
Choose Add/Remove Package. Locatearfima.oxo (in thearfima folder) using the Browse button, and
press Add.

Sample session using Arfima in OxPack

OxPack is now ready to use Arfima. As an example, we use againrpi uk.in7 which is also in thearfima
folder:

(1) Load the datarpi uk.in7 in GiveWin.
(2) From the OxPack Package menu choose Arfima. The title bar of the OxPack window showsArfima is

loaded and the messageArfima package version 1.00, object created on ... is displayed in
the GiveWin Results window.

(3) CreateInflat as∆log(RPI UK) with the GiveWin Calculator. This is done in two obvious steps. Compare
alsofracest4.ox. Alternatively, use the supplied Algebra filerpi uk.alg.

(4) From the OxPack Model menu choose Formulate, and selectInflat and aConstant:

(5) Specify the model as an AR(4), but restrict lags1 − 3 to zero:

DOORNIK & OOMS: ARFIMA PACKAGE 7

(6) In the estimation dialog, choose maximum likelihood (for example), and reduce the sample by two years:

(7) Estimation is nearly instantaneous. Various options are available in the Test menu. For example, Graphic
Analysis presents the following diagnostic output:

1955 1960 1965 1970 1975 1980 1985 1990 1995

0

.05

.1
Inflat Fitted

1955 1960 1965 1970 1975 1980 1985 1990 1995

-.025

0

.025

.05
Residuals

0 10 20 30 40 50 60 70 80 90 100

0

1
ACF-Residuals

DOORNIK & OOMS: ARFIMA PACKAGE 8

(8) Finally, we consider forecasting. From the Test menu, select Forecasting, choosing8 forecasts. The de-
pendent variable isi = ∆ log(P), but it is possible to see the forecasts in terms ofP . To re-integratei,
Arfima needs to know the base level from which to start. Since the last observation used in estimation was
1992(4), the start islog(P)1992(4). Copy this from the database (select the observation by dragging the left
mouse button in the cell, copy, e.g. using the right mouse button context-menu):

and paste it (right click on the field, and select Paste) as the base value. Also select ‘undo logarithm’, and
graphics:

This results in three graphs. Note that the last graph does not have the normal statistical interpretation, see
the discussion offracest4.ox in §6 above.

1993 1994 1995

0

.025

Forecasts Actual

1993 1994 1995

5

5.1

5.2

Actual Actual

1993 1994 1995

140

160

180

exp(Level Forecasts) Actual

DOORNIK & OOMS: ARFIMA PACKAGE 9

9 Some simulation examples

The following simulation programs use the Arfima simulation classArfimaSim, which derives from the base
simulation classSimulation. The main (constructor) functionArfimaSim() sets up a simulation experiment,
which is determined by the selection of a data generating process, an estimator and a (set of) tests. More details
are given in§12. Running these programs shows that online evaluation of the estimation methods is now possible.
Also see Hauser (1997) for extensive Monte Carlo results forARFIMA models.

We provide the following sample programs (also available in thearfima folder):

• fracsim1.ox simulates anARFIMA(0,−0.3, 0) with M = 1000, T = 100. First the mean is fixed at zero,
then estimation is in deviation from sample mean. In the first case the bias is about−1.2%, in the second
−3.3%.

• fracsim2.ox simulates anARFIMA(0, d, 0).
• fracsim3.ox simulates various AR(1) and MA(1) processes.
• fracsim4.ox extendsfracsim1 by adding AR and MA parameters. It also does exact maximum like-

lihood (EML) with a constant, and modified profile likelihood (MPL) with a constant. The biases, as a
percentage are (M = 250, T = 100):

φ = 0.7 φ = 0.2 φ = −0.3 φ = −0.8
d, φ d, φ d, φ d, φ

Estimating in deviation from sample mean, EML
d = −0.3 −9.7, 3.4 −14.1, 10.0 −6.0, 3.6 −3.0, 2.3
d = 0 −12.4, 5.2 −26.9, 21.4 −8.4, 5.3 −5.8, 2.9
d = 0.3 −16.8, 8.5 −33.3, 27.5 −12.5, 9.1 −7.1, 3.3

No mean adjustment (known mean 0), EML
d = −0.3 −2.2,−2.2 −5.5, 2.7 −3.0, 1.9 −2.2, 2.1
d = 0 −3.4,−1.4 −9.2, 6.0 −3.1, 2.0 −2.3, 2.2
d = 0.3 −7.5, 2.4 −10.6, 7.7 −3.7, 2.4 −2.8, 2.3

Constant term in model, EML
d = −0.3 −10.2, 3.6 −18.4, 13.8 −7.8, 4.7 −5.8, 2.9
d = 0 −12.4, 5.2 −29.3, 23.3 −8.2, 5.0 −6.1, 3.0
d = 0.3 −17.0, 8.6 −32.9, 27.1 −12.5, 9.2 −7.2, 3.3

Constant term in model, MPL
d = −0.3 −1.0,−2.0 −4.7, 1.6 −2.8, 1.6 −2.3, 2.1
d = 0 −2.8,−0.7 −5.9, 2.6 −2.7, 1.5 −2.3, 2.1
d = 0.3 −10.1, 5.2 −11.8, 8.7 −4.0, 2.7 −2.6, 2.2

MPL clearly improves on EML, with biases comparable to EML with known constant. MPL has the highest
number of rejected experiments: in most cases less than2%. The notable exceptions are MPL(d = 0.3, φ =
0.7): 30% rejections, and MPL(d = 0.3, φ = 0.3): 20% rejections.

• fracsim anbl.ox replicates the experiment of An and Bloomfield (1993), comparing the bias of EML
and MPL. Run this with OxRun to see the graphs, for example from the first two experiments. Again, MPL
does well in correcting the bias and provides reliable inference ond.

-3 -2 -1 0 1 2 3

-2.5

0

2.5

QQ plot
d(EML) x t(96)

-3 -2 -1 0 1 2 3

-2.5

0

2.5

QQ plot
d(MPL) x t(96)

DOORNIK & OOMS: ARFIMA PACKAGE 10

10 Arfima summary

TheArfima class derives fromModelbase, which in turn derives fromDatabase. Some of the functions below
are in the base class (marked with∗) or override a base-class virtual function (marked with+), but documented
because they will be commonly used when estimating anARFIMA model. Consult the header filearfima.h for
definitions of member variables, and undocumented functions, such as those for communication with OxPack.
Constructor
Arfima Constructor
Model formulation
ARMA Specify the AR and MA orders
DeSelect ∗ Removes the model selection
FixAR Fix AR orders at 0
FixD Fix d parameter at a specified value
FixMA Fix MA orders at 0
FixMean Use to set known mean (0 is the default)
FreeARMA Estimate all ARMA parameters freely (default)
FreeD Estimated freely (default)
Select ∗ Selects a variable into the model
SetMethod ∗ Sets the estimation method
SetPrint ∗ Switches printing on or off (default is on)
SetSelSample ∗ Sets the estimation sample
UseSampleMean Estimate in deviation from the sample mean
Model estimation
Estimate ∗ Estimate the model
SetStartPar + Specify starting values (overrides the default)
Post estimation
GetD Returns estimated value of d
GetFreePar ∗ Returns the current values of the free parameters
GetMean Returns the fixed mean or the sample mean
GetNaiveResiduals Get naive residuals (uses NLS filter)
GetPar ∗ Returns the current values of all parameters
GetResiduals + Get the residuals
GetResult ∗ Gets the return code fromMaxBFGS
GetSigma2 Gets the residual variance
TestGraphicAnalysis + Plots the graphic analysis
TestSummary + Prints a test summary
Forecasting
Forecast Get forecasts
SetFreePar ∗ Sets the values of the free parameters (when not estimating)
SetSigma2 Sets a value for the residual variance (when not estimating)
TestForecastGraphics + Plots forecasts (afterForecast)
General
Acf ARFIMA ACF
EstimateGPH Estimated using the log-periodogram method
EstimateGSP Estimated using the Gaussian semi-parametric method
SolveAR Solve the Yule-Walker equations for AR values
SolveMA Solve for MA values using the Tunnicliffe-Wilson method
Filter Applies theARFIMA filter to a variable
FilterNaive Applies the naive (NLS) filter to a variable
Custom versions
GetX. . . Used to customize the X-regressor components
GetZ. . . Used to customize the Z-regressor components

DOORNIK & OOMS: ARFIMA PACKAGE 11

11 Arfima member functions

This section documents the main member functions ofArfima and the base classModelbase in alphabetical
order.

Arfima::Acf

static Acf(const cT, const vP, const cAR, const cMA,
const bPrintErr);
cT in: int, number of observations,T
vP in: s-vector with coefficients in orderd, AR, MA,

s ≥ 1 + p+ q
cAR in: int, number of AR parameters,p
cMA in: int, number of MA parameters,q
bPrintErr in: int, TRUE: printfracsigma error code if an error

occurs (only whend 6= 0)

Return value
Returns the1 × T autocorrelation function corresponding to the specifiedARFIMA(p, d, q) model.

Description
The posssible error codes are:

1: |d| > 5 (allowing up to 5 for maximization, but note thatd ≥ 0.5 will cause problems);
4: |ρi| >= 0.9999, AR root inside the unit circle;
6: failed to find roots of AR polynomial.
7: there are identical roots.

Arfima::Arfima

Arfima();

No return value.

Description
Constructor function.

Arfima::ARMA

ARMA(const cAR, const cMA);
cAR in: int, no of AR paramaters,p
cMA in: int, no of MA paramaters,q

No return value.

Description
Formulates the length of the AR and MA polynomial, the default is an ARIMA(0, d, 0) model.
To fix specific parameters, useFixAR, FixMA. To omit the fractional part useFixD(0).

Modelbase::Estimate

Estimate();

No return value.

Description
Finds starting values and estimates the formulated model. Prints the results, unless this is switched off by
SetPrint.
UseSetSelSample to select an estimation sample andSelect to select a dependent variable (Y VAR) or
regressors (X VAR).
CallsInitData andInitPar if necessary.

DOORNIK & OOMS: ARFIMA PACKAGE 12

Arfima::EstimateGPH, Arfima::EstimateGSP

static EstimateGPH(const mY, const iTrunc, const fPrint);
static EstimateGSP(const mY, const iTrunc, const fPrint);

mY in: T ×1 matrix, dependent variable observation in time domain
iTrunc in: int, truncation parameter in the frequency domain

number of low frequency periodogram points used in
estimation

fPrint in: int, TRUE: print results

Return value
Returns a1 × 3 vector withd̂, SE(d̂), and thep-value for two-sided testing of̂d = 0.

Description
Periodogram points are evaluated at Fourier frequencies2πj

T , j = 1, . . . , iTrunc. In the notation of Robin-
son (1995b), c.f. Beran (1994,§4.6), and Robinson (1995a),n = T ,m = iTrunc, l = 1.
EstimateGPH implements the log-periodogram regression method for estimatingd as discussed in Geweke
and Porter-Hudak (1983). Zero periodogram points are omitted, see Ooms and Hassler (1997).
EstimateGSP implements the Gaussian semi-parametric method for estimatingd as discussed in Robinson
and Henry (1998).

Arfima::FixAR, Arfima::FixD, Arfima::FixMA

FixAR(const iOrder);
FixD(const dD);
FixMA(const iOrder);

iOrder in: int, index of AR or MA orders to set to 0; or matrix with
orders to omit

dD in: double, value ofd
No return value.

Description
These functions fix certain parameters. The value ofd can be fixed at zero or another value. To fix the
first AR parameter (onyt−1) at zero useFixAR(1), similarly FixMA(1) for the first MA parameter, etc.
The last AR parameter may not be fixed (this would result in an inverse root of infinity and computational
problems inAcf, see§20.1.

Arfima::FixMean

FixMean(const dYmean);
dYmean in: double, value for fixed mean

No return value.

Description
Used to set a known mean. The default isFixMean(0), also see§7.
UseSampleMean is available to estimate in deviation from the sample mean.

Arfima::Forecast

Forecast(const cTforc);
Forecast(const cTforc, const vYlevel);
Forecast(const cTforc, const vYlevel, const bNaiveOnly);

cTforc in: int, number of forecasts
vYlevel in: (optional argument)s×1 matrix with initial val-

ues to integrate the forecasts to levels, use<> to
omit level forecasts (default: no level forecasts)

bNaiveOnly in: (optional argument) int,TRUE: only do naive
forecasts (default: do both)

No return value.

DOORNIK & OOMS: ARFIMA PACKAGE 13

Description
Prints the forecast results withcTforc forecasts after the estimation sample using the current parameter
values (so not necessarily after estimation).
The second argument is used to integrate the forecasts back to the level. Whens = 1, the forecasts are
integrated once, whens = 2 twice, etc. (an example is infracest4.ox).
Forecasting with Z variables is not yet implemented. Weights (W variable) are ignored during forecasting.

Arfima::FreeD, Arfima::FreeARMA

FreeD();
FreeARMA();

No return value.

Description
FreeD can be used to free thed parameter after usingFixD. The default is to estimated freely.
FreeARMA frees all ARMA coeffifients after previous calls toFixAR andFixMA.

Arfima::GetD

GetD();

Return value
Returns the current value ofd (the estimated value afterEstimate).

Modelbase::GetFreePar

GetFreePar();

Return value
Returns a column-vector with the current value of the free parameters (the estimated values after
Estimate).

Description
The parameters are ordered as follows:d, AR parameters, MA parameters, parameters on regressors. Any
fixed parameters are omitted from the returned value.

Arfima::GetMean

GetMean();

Return value
Returns the mean of the dependent variable: either the fixed mean (set inFixMean) or the sample mean
(when usingUseSampleMean).

Arfima::GetNaiveResiduals

GetNaiveResiduals();

Return value
Returns the residuals using the current parameters, applying the naive (NLS) filter (regardless of the estim-
ation method). After weighted estimation (W variable) the weighted residuals are returned.

Modelbase::GetPar,

GetPar();

Return value
Returns a column-vector with the current value of all coefficients, including the fixed coefficients.

Description
The parameters are ordered as follows:d, AR parameters, MA parameters, parameters on regressors. Fixed
parameters are included in the returned value.

DOORNIK & OOMS: ARFIMA PACKAGE 14

Arfima::GetResiduals

GetResiduals();

Return value
Returns the residuals from the estimated model. After weighted estimation (W variable) the weighted
residuals are returned.

Modelbase::GetResult

GetResult();

Return value
Returns the return code fromMaxBFGS.

Arfima::GetSigma2

GetSigma2();

Return value
Returns the estimated residual variance.

Arfima::GetXBeta, Arfima::GetX. . .

virtual GetXNames();
virtual GetXBeta(const vP);
virtual GetXBetaForc(const vP, const cTforc);
virtual GetXBetaStart(const mY);
virtual GetXPartial();
virtual GetXSizeInit();

vP in: s× 1 matrix with all coefficients, in order:d,AR,MA,X,Z
mY in: T × 1 matrix, data variable to derive starting for
cTforc in: number of forecasts,H

Return value
GetXNames returns an array of strings with the names of the X parameters.
GetXSizeInit returns an integer with the number of X parameters. This is called after theModelbase
member variablesm cX andm mX are initialized, and the return value could incrementm cX. It is not ne-
cessary that the number of columns of the regressor matrixm mX equals the number of parameters in the
non-linear regression term,m cX. After the call toGetXSizeInit, m cX will be changed to the returned
value.
GetXBetaStart is called fromInitPar and should return a (column) vector of starting values for them cX
X parameters.
GetXPartial returnsTRUE if the X’s should be partialled (concentrated) out of the likelihood (this will
only work for linearXβ), see§16.3. The overridden version should returnFALSE. (Note: when Z or W
variables are present, X’s are never partialled out.)
GetXBeta returns theT × 1 matrix f(X,β), which runs over the estimation sample determined by
ModelBase members:m iT1Est. . .m iT2Est. The input argumentvP is the full coefficient vector, with
the X parameters located at indices1+cAR+cMA : cAR+cMA+m cX.
GetXBetaForc is asGetXBeta but for the forecast period:m iT2Est+1. . .m iT2Est+cTforc.

Description
These are virtual functions, which can be replaced in a derived class when a non-linear regressor term
f(X,β) is desired instead of justXβ.
Examples are infracest6.ox andfracest7.ox.

DOORNIK & OOMS: ARFIMA PACKAGE 15

Arfima::GetZGamma, Arfima::GetZ. . .

virtual GetZNames();
virtual GetZGamma(const vP);
virtual GetZGammaStart(const mY);
virtual GetZSizeInit();

Description
These are Z-variable analogues to theGetX. . . functions. The Z parameters are located at indices
1+cAR+cMA+m cX : cAR+cMA+m cX+m cZ in the coefficient vector.

Modelbase::Select

Select(const iGroup, const aSel);
iGroup in: int, group indicator:Y VAR or X VAR
aSel in: array, specifying database name, start lag, end lag

No return value.

Description
Selects variables by name and with specified lags, and assigns theiGroup status to the selection. TheaSel
argument is an array consisting of sequences of three values: name, start lag, end lag. Some examples:

// select CONS from lag 0 to 0 as dependent variable, and a Constant
// as regressor (use Deterministic to create the Constant):
Select(Y_VAR, {"CONS", 0, 0});
Select(X_VAR, {"Constant", 0, 0});

// select CONS as dependent variable and
// select CONS lagged, INC and INC lagged as regressor:
DeSelect();
Select(Y_VAR, {"CONS", 0, 1});
Select(X_VAR, {"INC", 0, 1});

EachSelect adds to the current selection. UseDeSelect to start afresh.Note: Select also requires a
SetSelSample afterwards.
Two additional types of variable are available:W VAR to do weighted estimation (see§18.3), andZ VAR to
addZ variables (see§18.4). Examplefracest8.ox illustrates that an impulse dummy as Z variable equals
the inverted dummy as W variable (but the dummy as X is different).

Modelbase::SetFreePar

SetFreePar(const vParFree);

vParFree in: int, vector with values for the free coefficients

No return value.

Description
Sets the free coefficients.
The parameters are ordered as follows:d, AR parameters, MA parameters, parameters on regressors. Any
fixed parameters should be omitted fromvParFree.

Modelbase::SetMethod

SetMethod(const iMethod);
iMethod in: int, one of:

M MAXLIK – exact maximum likelihood,
M NLS – non-linear least squares,
M MAXMPLIK – modified profile maximum likelihood,
M INITONLY – starting values only,
M NLS STATIONARY – NLS, non-stationarity imposed.

No return value.

DOORNIK & OOMS: ARFIMA PACKAGE 16

Description
The default estimation is maximum likelihood (M MAXLIK). UseSetMethod to switch estimation method.

Modelbase::SetPrint

SetPrint(fPrint);

fPrint in: int, TRUE or FALSE

No return value.

Description
Switches printing on (TRUE) or off (FALSE). By default printing is on, but for simulations it must be switched
off.

Modelbase::SetSelSample

SetSelSample(const iYear1, const iPeriod1, const iYear2,
const iPeriod2);

Description
Seee under theDatabase class.
EachSelect adds to the current selection. UseDeSelect to start afresh.

Arfima::SetSigma2

SetSigma2(const dSigma);

dSigma in: double, residual variance,σ̂2
ε

No return value.

Description
This function is only useful when forecasting without estimating. Then, after the model has been for-
mulated, the coefficients can be set withSetFreePar or SetStartPar, and the residual variance with
SetSigma2.

Modelbase::SetStartPar

SetStartPar(const vP);

vP in: int, vector with values for the free parameters

No return value.

Description
Sets starting values for the free parameters (so excluding those which are fixed). CallsInitData if neces-
sary, so the model must be formulated, and the sample selected before this function can be used.
InitPar is automatically called ifSetStartPar is not used.

Arfima::TestForecastGraphics, Arfima::TestGraphicAnalysis, Arfima::TestSummary

virtual TestForecastGraphics(const bExp);
virtual TestGraphicAnalysis();
virtual TestSummary();

bExp in: int, TRUE: also take exponentials

No return value.

Description
TestSummary prints a test summary. Because these are computed from the residuals, they are perhaps
better interpreted as descriptive statistics:

• Normality test, Doornik and Hansen (1994);
• ARCH test, see e.g. Hendry and Doornik (1999,§18.4);

DOORNIK & OOMS: ARFIMA PACKAGE 17

• Portmanteau test, Ljung and Box (1978).

TestGraphicAnalysis plots the graphic analysis: actual and fitted, residuals and ACF.
TestForecastGraphics graphs the forecasts, must be preceeded by a call toForecast.

Arfima::UseSampleMean

UseSampleMean();

No return value.

Description
This will free the mean (i.e. use the sample mean), after it has been fixed previously usingFixMean (which
fixes the mean to a known value, and is the default).

DOORNIK & OOMS: ARFIMA PACKAGE 18

12 ArfimaSim member functions

TheArfimaSim class derives fromSimula. This section describes the main functions ofArfimaSim, again in
alphabetical order. See the header filearfimasim.h for undocumented functions.

ArfimaSim::AddTrend

AddTrend(const dTrendCoeff);

dTrendCoeff in: double, DGP coefficient of the Trend

No return value.

Description
Adds a trend to the DGP and the model.

ArfimaSim::ArfimaSim

ArfimaSim(const mcT, const dDgpYmean, const dEpsVar, const dD,
const vAr, vMa, const fFixD, const fUseMean,
const dFixMean, const cRep, const iMethod);

~ArfimaSim();
mcT in: matrix with sample sizes for experiments,
dDgpYmean in: double, DGP mean of generated dependent

variable,
dEpsVar in: double, DGP error variance,
dD in: double, DGP value ofd ∈ (−1, 1.5),
vAr in: 1 × p matrix, DGP values of AR parameters
vMa in: 1 × q matrix, DGP values of MA parameters

(these are flipped to ensure invertibility)
fFixD in: int, TRUE: do not estimate d (is fixed at DGP

value in model)
fUseMean in: int, TRUE: estimation is in deviation from fixed

meandFixMean, unlessdFixMean is the miss-
ing value, in which case estimation is in devi-
ation from the sample mean
FALSE: a constant is added to the model

dFixMean in: int, value of known mean
cRep in: int, number of replications,M
iMethod in: int, estimation

method, one of:M MAXLIK,M NLS, M MAXMPLIK,
M INITONLY, M NLS STATIONARY.

No return value.

Description
Constructor function which designs the experiment. The estimation object resides in them arfima data
member, which is created inArfimaSim by calling the virtual functionCreateObject.
~ArfimaSim is the destructor, which also prints how long the experiment took.

ArfimaSim::CreateObject

virtual CreateObject();

No return value.

Description
The estimation object resides in them arfima data member, which is created through the virtual function
CreateObject. By default it is of typeArfima. OverridingCreateObject in a class derived from
ArfimaSim allows this object to be of a class derived fromArfima.

DOORNIK & OOMS: ARFIMA PACKAGE 19

ArfimaSim::DoCoefTstats

DoCoefTstats();

No return value.

Description
Generatet-values.

ArfimaSim::Generate, ArfimaSim::GetCoefficients, ArfimaSim::Get. . .

virtual Generate(const iRep, const cT, const mxT); // generate replication
GetCoefficients(); // returns coefficient estimates
GetPvalues(); // returns empirical p-values
GetTestStatistics(); // return test statistics

Description
These functions implementSimulation class virtual functions.

ArfimaSim::SaveIn7

SaveIn7(const sFilename);

sFilename in: string, file name

Return value
TRUE if anything was stored.

Description
Stores the simulation results in the named file, after the experiment has finished. Requires a call to the
(Simulation class function)SetStore(TRUE) before the experiment is started.

ArfimaSim::SetMethod, ArfimaSim::SetStartFromDgp

SetMethod(iMethod);
SetStartFromDgp();

iMethod in: int, estimation method (seeArfimaSim)

No return value.

Description
SetMethod allows for changing the estimation method after the constructor has been called.
SetStartFromDgp lets each estimation start from the DGP values. Otherwise, the starting values are
generated using the default procedure.

DOORNIK & OOMS: ARFIMA PACKAGE 20

13 Changes from previous versions

Release historyArfima package:

• version 1.0: May 1999; Minimum Ox version: Ox 2.10;
• version 0.77: October 1997; for Ox 1.20;
• version 0.76: July 1996; for Ox 1.08.

Improvements made since version 0.77:

• now using Durbin’s algorithm for likelihood evaluation;
• improved starting values;
• removed singularity for a single root at zero;
• using adjusted version of Durbin’s algorithm for data generation;
• optimal forecasting for arbitraryd > 1
• “additive” X, “innovative” Z, and “weighting” W variables;
• removal of non-invertable MA’s;
• facility to simulate initial estimates;
• concentrating out regressors in EML;
• addition of modified profile likelihood estimation;
• ArfimaSim class;
• general functions for the mean, possibly nonlinear in parameters;
• functions for communication with OxPack for GiveWin.

There are some reasons why the results may differ slightly from version 0.77:

• improved starting values;
• removed singularity for a single root at zero;
• removal of non-invertable MA’s;
• small change in the line search of BFGS method;
• the default is nowFixMean(0); to get the old default insert a call toUseSampleMean.
• AIC now computed as−2ˆ̀+ 2s (was negative:2ˆ̀− 2s). AIC also differs in thats now counts the residual

variance.

DOORNIK & OOMS: ARFIMA PACKAGE 21

14 Technical Summary

The remainder gives a summary of the implementation details of the procedures in the Arfima package. It com-
plements Ooms and Doornik (1998).

15 The Arfima model

The basic ARMA(p, q) model is

yt = φ1yt−1 + . . .+ φpyt−p + εt + θ1εt−1 + . . .+ θqεt−q, t = 1, . . . , T,

assuming eitherεt ∼ NID(0, σ2
ε), or E[εt] = 0 andE[ε2t] = σ2

ε . Using lag polynomials and introducing a meanµ
we write:

Φ (L) (yt − µ) = Θ (L) εt.

With a fractional integration parameterd, the ARFIMA(p, d, q) model is written as

Φ (L) (1 − L)d (yt − µ) = Θ (L) εt. (1)

The autocovariance function (ACovF) of a stationary ARMA process with meanµ:

c (i) = E [(yt − µ) (yt−i − µ)] ,

defines the variance matrix of the joint distribution ofy = (y1, · · · , yT)′:

V [y] =



c (0) c (1) c (2) · · · c (T − 1)

c (1) c (0) c (1)
. . .

...

c (2) c (1) c (0)
. . . c (2)

...
. . .

. . .
. . . c (1)

c (T − 1) · · · c (2) c (1) c (0)


= T [c (0) , . . . , c (T − 1)] = Σ, (2)

which is a Toeplitz matrix, denoted byT . Under normality:

y ∼ NT (µ,Σ). (3)

The autocorrelation function, ACF:c (i) /c (0), of a stationary ARMA process is discussed in many textbooks,
and readily computed from theφi andθi using the Ox functionarmavar. We often work with the autocovariances
scaled by the error variance:

r = [r (0) · · · r (T − 1)]′ = σ−2
ε [c (0) · · · c (T − 1)]′ .

15.1 Autocovariance function

An algorithm for the computaion of the ACovF of an ARFIMA process is derived in Sowell (1992):

c (i) = σ2
ε

q∑
k=−q

p∑
j=1

ψkζjC(d, p+ k − i, ρj), (4)

where

ψk =
q∑

s=|k|
θsθs−|k|, ζ−1

j = ρ

 p∏
i=1

(1 − ρiρj)
∏
m 6=j

(ρj − ρm)

 , (5)

and

C(d, h, ρ) =
Γ (1 − 2d)
[Γ (1 − d)]2

(d)h

(1 − d)h

[
ρ2pF (d+ h; 1 − d+ h; ρ) + F (d− h; 1 − d− h; ρ) − 1

]
. (6)

DOORNIK & OOMS: ARFIMA PACKAGE 22

HereΓ is the gamma function,ρj are the roots of the AR polynomial (assumed distinct), andF (a, 1; c; ρ) is the
hypergeometric function, see e.g. Abramowitz and Stegun (1970, Ch. 15):

F (a, b; c; ρ) =
∞∑

i=0

(a)i (b)i

(c)i

ρi

i!
,

where we use Pochhammer’s symbol:

(a)i = a (a+ 1) (a+ 2) · · · (a+ i− 1) , (a)0 = 1.

So(1)i equalsi!.
In the absence of AR parameters (4) reduces to2

c (i) = σ2
ε

q∑
k=−q

ψk
Γ (1 − 2d)
[Γ (1 − d)]2

(d)k−i

(1 − d)k−i

.

16 Estimation

16.1 Regressors in mean

Any set of exogeneous regressors may be used to explain the mean:

z = y − µ, µ = f(X,β),

whereX is aT × k matrix. In the leading linear casef(X,β) = Xβ andβ is ak × 1 vector.

16.2 Initial values

Initial values for the parameter estimates are obtained in the order: regressors in mean,d, AR part, and finally MA
part. The very first step is to subtract a mean fromyt: zt = yt − µt. When either the sample mean or a specified
(known, possibly zero) mean is used:µt = µ. If regressors are used, takeµt = f(xt, β). In the linear caseβ is
obtained by regression.

(1) For the fractional integration parameter the (frequency domain) log periodogram regression of Geweke
and Porter-Hudak (1983) is used, yieldingd̂0. We use[T−1/2] nonzero periodogram points, except when
p = q = 0 when we use all available points. The initial time domain residuals are then obtained using the
Ox functiondiffpow:

ut =
t∑

j=0

(
−d̂0

)
j

j!
zt−j . (7)

(2) Next, AR starting values are obtained from solving the Yule-Walker equations taking the number of MA
parameters into account: ρ̂(q) . . . ρ̂(q − p+ 1)

...
ρ̂(q + p− 1) ρ̂(q)

 φ̂0 =

 ρ̂(q + 1)
...

ρ̂(q + p)

 ,

whereρ̂(i) is the empirical autocorrelation ofut. Whenq is zero, the matrix on the right-hand side is the
Toeplitz matrixT [ρ̂(0), . . . , ρ̂(p− 1)].
We use OLS to solve this system; this will also give a solution when the matrix is singular. Subsequently,
thearma0 function is used to obtain residualsu∗t .

(3) Starting values for the MA parameters are derived fromu∗t using Tunnicliffe-Wilson’s method, see Granger
and Newbold (1986, p.88). Because this iterative method is slow to converge, we choose rather loose
convergence criteria. A non-invertible MA is ‘flipped’ to an invertible MA by inverting roots outside the
unit circle. Thearma0 function is used to obtain residualsu∗∗t .

2Note the typo in the equation below (8) in Sowell (1992, p.173):Γ (d + s − l) in the numerator should readΓ (d − s + l).

DOORNIK & OOMS: ARFIMA PACKAGE 23

When the initial values are used as starting values for further estimation, the following adjustments are made:

(1) If d is not significant at5%, it is set to zero. A value of̂d0 less than−0.45 is set to−0.40, and similarly to
0.40 for a value greater than0.45.

(2) If q > 0 and the solution from the Yule-Walker equations yields non-stationary AR parameters, the method
is applied as ifq = 0.

16.3 Exact maximum likelihood (EML)

Based on normality (3), and with the a procedure to compute the autocovariances in (2), the log-likelihood is
simply (writingz for the data vector used for maximization):

logL
(
d,φ,θ,β, σ2

ε

)
= −T

2
log (2π) − 1

2
log |Σ| − 1

2
z′Σ−1z. (8)

It is convenient to concentrateσ2
ε out of the likelihood, starting by writingΣ = Rσ2

ε :

logL
(
d,φ,θ,β, σ2

ε

)
∝ −1

2
log |R| − T

2
log σ2

ε − 1
2σ2

ε

z′R−1z.

Differentiating with respect toσ2
ε , and solving yields

σ̂2
ε = T−1z′R−1z, (9)

with concentrated likelihood (CLF):

`c (d,φ,θ,β) = −T
2

log (2π) − T

2
− 1

2
log |R| − T

2
log
[
T−1z′R−1z

]
.

Whenf(X,β) = Xβ it is more convenient to also concentrateβ out of the likelihood. The resulting normal
profile log-likelihood function becomes:

`P (d,φ,θ) = −T
2

(1 + log 2π) − 1
2

log |R| − T

2
log
[
T−1ẑ′R−1ẑ

]
, (10)

where
ẑ = y − Xβ̂, β̂ =

(
X′R−1X

)−1
X′R−1y. (11)

The function used in the maximization procedure is:

−1
2
{
T−1 log |R| + log σ2

ε

}
, (12)

from which the value for the log-likelihood (10) is easily derived. The computational procedure described in§20.2
writes

σ2
ε = T−1z′R−1z = T−1e′e,

with |R| a by-product of the procedure.
Function (12) is maximized using BFGS with numerical derivatives. During estimation, stationarity is im-

posed at each step by rejecting parameter values which have:

• d ≤ −5 or d > 0.49999;
• |ρi| ≥ 0.9999, whereρi are the roots of the AR polynomial.

DOORNIK & OOMS: ARFIMA PACKAGE 24

In addition, the procedure can fail because:

• inability to compute the roots of the AR polynomial;
• ρζ ≤ 10−11, this corresponds to multiple roots, see (5).

16.4 Modified profile likelihood (MPL)

The modified profile log-likelihood,̀M , for the regression model with stationary ARFIMA-errors andf(X,β) =
Xβ:

`M (d, φ, θ) = −T
2

(1 + log 2π)−
(

1
2
− 1
T

)
log |R|−T − k − 2

2
log
[
T−1ẑ′R−1ẑ

]
− 1

2
log
∣∣X′R−1X

∣∣ , (13)

see An and Bloomfield (1993), who applied the idea of Cox and Reid (1987) to reduce the bias of the EML
estimator due to the presence of unknown nuisance parameters of the regressors.

The residual variance estimator now usesT − k, so that it is unbiased whenp = q = d = 0:

σ̂2
ε =

1
T − k

ẑ′R−1ẑ. (14)

16.5 Non-linear least squares (NLS)

Defininget as the residuals from applying the ARFIMA(p, d, q) filter to yt − µt, the residual variance is:

σ2
ε =

1
T − k

T∑
t=1

e2t . (15)

NLS simply maximizes

f (d,φ,θ,β) = −1
2

log σ2
ε . (16)

The arfima filter is computed using the Ox functiondiffpow, see (7), followed byarma0. Since (7) essentially
drops the first observation,e1 = 0 whend is estimated.

Function (16) is maximized using BFGS with numerical derivatives, optionally with stationarity imposed.

16.6 Variance-covariance matrix estimates

Let ϑ′ =
[
d φ′ θ′]. The variance-covariance matrix for the EML (` = `P) and MPL (̀ = `M) estimates is

computed as: ((
− ∂2` (ϑ) /∂ϑ∂ϑ′∣∣

bϑ

)−1
0

0 σ̂2
ε

(
X′R−1X

)−1

)
.

The second derivative of` is computed numerically.
For NLS, the variance-covariance is the inverse of minus the numerical second derivative of (16).

17 Estimation output

Estimation output consists of

• Estimated coefficients, with estimated standard errors,t-values, andp-values. Thep-values are based on a
t(T −s)-distribution, where wheres is the number of estimated parameters, including the residual variance.
When all parameters are freely estimated:s = 1 + p+ q + k + 1.

• log-likelihood ˆ̀=
EML: `c,
MPL: `M ,

NLS: f − T
2 (1 + log 2π) ,

wheref for NLS is from (16).

DOORNIK & OOMS: ARFIMA PACKAGE 25

• Akaike information criterion
AIC = −2ˆ̀+ 2s,

wheres the number of estimated parameters. When no parameters are fixed:s = 1 + p + q + k + 1 (the
last accounts for the residual variance). The AIC/T is also reported.

• Residual variance: (9) for EML, (14) for MPL, (15) for NLS.
• Mean and variance of dependent variable.
• BFGS convergence criteria, convergence result and starting values.

18 Estimation options

18.1 Sample mean versus known mean

It has been found in early Monte Carlo experiments that, in smaller samples, using the theoretical mean could
lead to more accurate estimation ofd (see e.g. Cheung and Diebold, 1994). This can be seen as the most effective
way to reduce the effect of a nuisance parameter on inference for the parameter of interest. Therefore, the Arfima
package allows for fixing the mean at a specified value. Letyt denote the original dependent variable, andµy the
known mean.

Thez used in§16.3 for estimation when specifying a known mean is:

zt = yt − µy,

otherwise the package uses
zt = yt − µ̂y.

The specification of the mean affects the likelihood. For the last term in the log-likelihood:

(y − µ)′ R−1 (y − µ) = y′R−1y − 2µ′R−1y + µ′R−1µ,

so the known mean case addsµyι′R−1y, whereas the second case addsµ̂yι
′R−1y, and different results must be

expected.

18.2 Fixing parameters

It is possible to fixd at a specific value, or drop ARMA terms using theFixAR, FixD andFixMA functions.

18.3 Weighted estimation

A weight variablew, wt ≥ 0, can be used in estimation. Writẽwt = wt/w̄>0, wherew̄>0 is the mean of the
positive weights.

Then (12) for EML becomes:

−1
2

{
T−1 log |R| − T−1

∑
w̃t>0

log w̃t + logT−1
T∑

t=1

e2t w̃i

}
,

The NLS function is adjusted in a similar fashion. Weighted estimation is not available for MPL, and weights
are ignored for forecasting. The weighted residuals,êtw̃

1/2
i , are used in the residual-based diagnostics.

18.4Z variables

With both additive normal regressorsxt and innovativeZ variableszt the ARFIMA model becomes:

Φ (L) (1 − L)d (yt − x′
tβ) = Θ (L) (εt + z′tγ).

The notation for theZ variables in this subsection should not be confused withzt, the demeanedyt. After applying
the normal EML or NLS filter tozt, z′tγ̂ is subtracted at each iteration.

This model has the familiar ADL (Autoregressive Distributed-lag model) as a special case, sincezt can contain
different lags of the same (exogenous) variable. Whereas additive outliers (and missing observations) can be
estimated using dummies for theX variables, see e.g. Brockwell and Davis (1993,§12.3), innovative outliers can
be modelled by dummies forZ variables. Note that adding a single observation dummy for aZ variable has the
same effect as giving that observation zero weight in theW variable. This is illustrated infracest8.ox.

Z variables are not available for MPL.

DOORNIK & OOMS: ARFIMA PACKAGE 26

19 Forecasting

Two methods of forecasting are supported, based on the results in Beran (1994,§8.7). As before letz =
(z1, . . . , zT)′ denote the observations over the estimation period. Assumezt is stationary andd > −1. The
best linear prediction ofzT+h is

ẑT+h = [r (T − 1 + h) · · · r (h)] {T [r (0) , . . . , r (T − 1)]}−1 z = q′z,

which consists of the reversed ACovF starting fromh, times the original data weighted by their correlations. The
solvetoeplitz function is used to solveT x = z in order to keep storage requirements of orderT , see§20.2.
The mean square error is

MSE(ẑT+h) = σ̂2
ε (r (0) − r′q) .

In the presence of a mean-functionµt=f(xt, β) the forecasts are:

ŷT+h = q′ (y − µ) + µt+h + x′
T+hβ̂.

The Ox code computes all requested forecastsẑh = (zT+1, . . . , zT+h)′ and their joint variance-covariancematrix,
Cov(ẑh) simultaneously.Cov(ẑh) is also used to derive the mean squared errors for partial sums,

∑h
i=1 ẑT+i,

integrated partial sums etc.
‘Naive’ forecasts are derived from the autoregressive representation of the process, truncated atT + h:

Θ−1 (L)Φ (L) (1 − L)d
zt =

(
1 − b1L · · · − bT+h−1L

T+h−1
)
zt = B (L) zt.

In this case thezt need not be stationary, c.f. Beran (1995), butd > −0.5. The firstT coefficients in the(1 − L)d

polynomial can be computed using thediffpow function when the input is a one followed byT − 1 zeroes;
this follows from (7). For polynomial multiplication and division,polymul andpolydiv are used. The naive
forecasts are computed recursively:

ẑ∗T+h = [bT+h−1 · · · b1] × [z′ ẑT+1 · · · ẑT+h−1]
′
,

and

MSE(ẑ∗T+h) = σ̂2
ε

(
1 +

h−1∑
i=1

a2
i

)
, (17)

whereai are the coefficients ofB−1 (L).
Level forecasts are computed by adding the (integrated) partial sums of forecasts to a specified starting level.

The reported MSE of the integrated naive forecasts can be obtained directly from (17).
Forecasting with Z variables is not yet implemented.

20 Some notes on computation

20.1 Autocovariance function

Sowell (1992) gives several tricks for recursively computing various quantities needed in (4). This is further
refined in the code of the Arfima package, and discussed here in some detail. In this section we refer to the
Fortran code, which has arrays starting at index one, opposed to the Ox version of the code, where they start at
zero.

The first quantities computed are:

(d)h

(1 − d)h

for h = p− q − T + 1, . . . , 0, . . . , p+ q, stored inc(j) for j = h− p+ q + T.

Computation starts fromh = 0: c(−p+ q + T) = 1, using a forward recursion based on

(d)h = (d+ h− 1) (d)h−1 , h > 0,

and a backward recursion based on

(d)h =
(d)h−1

(d− h)
, h < 0.

DOORNIK & OOMS: ARFIMA PACKAGE 27

The autocorrelations are accumulated in a loop overj to avoid a second storage dimension:

c (i) =
p∑

j=1

cj (i) = σ2
ε

p∑
j=1

ζj

 q∑
k=−q

ψkC(d, p+ k − i, ρj)

 , i = 0, · · ·T − 1.

Computation ofF (a, 1; c; ρ) is also best done recursively, as noted in Appendix 3 of Sowell (1992):

F (a, 1; c; ρ) =
c− 1

ρ (a− 1)
[F (a− 1, 1; c− 1; ρ) − 1] . (18)

For eachj, we need a sequence of

C(d, p− q − T + 1, ρj) · · ·C(d, p+ q, ρj),

so a sequence of functions

F (d+ h, 1; 1 − d+ h; ρj) , for h = p− q − T + 1, . . . , 0, . . . ,− (p− q − T + 1) .

Using (18) these are computed using a backward recursion starting from the final term

F (d− p+ q + T − 1, 1;−d− p+ q + T ; ρj) .

It is crucial that the recurrence is computed backward, the forward recursion will start to grow exponentially at
some stage (see the discussion in Press, Flannery, Teukolsky and Vetterling, 1988,§5.4). For example, for the first
terms (i.e. the terms computed last in the backward recursion, but first in the forward recursion) withd = 0.4,
ρ = −0.1, p = 1, q = 0:

term backward forward term backward forward
1 0.90892 0.90892 9 0.90891 173.55
2 0.90892 0.90890 10 0.90890 -1721.6
3 0.90892 0.90909 11 0.90890 17187.
4 0.90892 0.90717 12 0.90890 -1.7146e+005
5 0.90891 0.92633 13 0.90890 1.7106e+006
6 0.90891 0.73512 14 0.90890 -1.7066e+007
7 0.90891 2.6430 15 0.90889 1.7025e+008
8 0.90891 -16.394 16 0.90889 -1.6983e+009

Equations (4) and (5) can be rewritten slightly, by moving the factorρ−1 from ζ toC. There it disappears, and
the singularity of a single root at zero as present in the expressions of Sowell (1992) turns out to be unnecessary.
In addition, (5) is numerically unstable for a single root close to zero. Both problems are solved by writing:

G (a; c; ρ) = ρ−1 {F (a, 1; c; ρ)− 1} =
∞∑

i=0

(a)i+1

(c)i+1

ρi.

The recursion formula forG is:

G(a− 1; c− 1; ρ) =
a− 1
c− 1

[1 + ρG(a; c; ρ)] ,

andρ−1[. . .] from (6) becomes:[
ρ2pG (d+ h; 1 − d+ h; ρ) + ρ2p−1 +G (d− h; 1 − d− h; ρ)

]
.

To illustrate the difference, we choose a model withd = −0.3, AR parameters0.3,−0.5, 0 and MA paramet-
ers−0.4, 0.3. This model has AR roots:(0.15+0.691i), (0.15−0.691i), (10−17). Rounding errors cause the last
root to be close but not identical to zero. We may compare this to a model which omits the third AR parameter.
The following table lists the first 5 autocovariances:

0.3,−0.5, 0 usingF 0.3,−0.5 usingF 0.3,−0.5, 0 usingG
1.2774 1.2726 1.2726

-0.17380 -0.27486 -0.27486
-0.72536 -0.34655 -0.34655
0.59408 -0.045409 -0.045409

-0.018257 0.13155 0.13155

DOORNIK & OOMS: ARFIMA PACKAGE 28

20.2 Likelihood evaluation

Remember thatR is theT × T Toeplitz matrix of the autocorrelations, and there are various ways of computing
the function (12):

• Naive Choleski decomposition
Using the standard decomposition requires storing theT × T matrixR = T [r(0), . . . , r(T − 1)] = T [r],
and Choleski decomposition (lower diagonal, so strictly a matrix with1

2T (T + 1) elements, but stored in a
T×T matrix in Ox). For largeT , this method becomes very memory intensive and slow: the decomposition
is of orderT 3.

• Efficient Choleski decomposition
A more efficient algorithm derives the Choleski decomposition directly fromr, avoiding storage ofR.
This can be combined with a version of Levinson’s algorithm to compute the Choleski decomposition in
computations of orderT 2. However, storing the12T (T + 1) Choleski factor remains prohibitive for large
T . This method is used in Sowell (1992) and Smith Jr, Sowell and Zin (1997).

• Levinson algorithm
The Levinson algorithm solvesT x = y directly, involving an operation count of orderT 2 and avoiding
storage of orderT 2. The algorithm is described in Golub and Van Loan (1989,§4.7.3); this is implemented
in Ox as thesolvetoeplitz function, which optionally also returns the determinant. The function (12) is
solved in two steps. First writez = y − µ and solve

R−1z = x ⇒ z = Rx ≡ T [r]x to obtainx̂,

then
σ̂2

ε = T−1z′x̂.

Thus, storage the12T (T + 1) Choleski factor is avoided. This method was used in earlier versions (up to
0.77) of the Arfima package.
The following timings are in seconds for one ARFIMA(1, d, 1) likelihood evaluation on a 32MB Pentium
90Mhz using Ox 1.1 under Windows NT 3.51.

T = 1000 T = 2000 T = 3000 T = 10000
Efficient Choleski 0.42 2.03 102.15 failed
Levinson algorithm 0.40 1.83 4.03 48.15

Above 2000 observations, the12T (T + 1) matrix (16 MB atT = 2000) starts to push the program into
virtual memory, with a severe impact on speed. At 10000 observations, the efficient-Choleski method
failes, requiring 400 MB to store the Choleski factor.

• Durbin’s algorithm
This method (see Golub and Van Loan, 1989,§4.7.2) amounts to computing the Choleski decomposition of
the inverted Toeplitz matrix. Durbin’s method solves

T [r(0), . . . , r(T − 1)] = LDL′ = PP′, e = D−1/2L−1z = P−1z.

with an operation count of orderT 2. So we can write:

z′R−1z = e′e.

By applying the factorization as it is computed, storage of the1
2T (T + 1) matrix is avoided. This method

leads to a more elegant expression of the log-likelihood (in addition to being marginally faster), and is
currently used in the Arfima package.

When an ARMA(p, q) model is estimated, there are two additional methods available:

• Banded Choleski
In the ARMA case, the Toeplitz matrix can be transformed to a banded Choleski matrix. This method has
been proposed by Ansley (1979).

• Kalman filter
The Kalman filter is implemented in SSFPack, see Koopman, Shephard and Doornik (1998).

DOORNIK & OOMS: ARFIMA PACKAGE 29

20.3 Invertibility of MA polynomial

The same likelihood pertains when the roots of the MA polynomial are inverted. Since the likelihood of a non-
invertible MA can be evaluated without problems, estimation is not affected. In a Monte Carlo experiment,
however, it is essential that non-invertibility is taken into account. Take an MA(1), withθ = 0.5. Sinceθ = 2
yields the same likelihood, it is thinkable that half the experiments yieldθ̂ ≈ 0.5 and the other half̂θ ≈ 2,
resulting in poor average estimates from the Monte Carlo experiment.

The following table illustrates the issue (T = 100, M = 100). The first set of results removes the non-
invertible MA (required in 19 cases), the second leaves the MA roots unchanged:

coefficients mean std.dev mean bias
with MA inversion

MA1=0.9 0.89157 0.075471 -0.0084326
MA2=0.81 0.81967 0.11363 0.0096664

without inversion
MA1=0.9 0.93546 0.26420 0.035462
MA2=0.81 0.86154 0.13834 0.051540

21 Monte Carlo experimentation

The problem in data generation for the ARFIMA(p, d, q) process is analogue to that set out in§20.2:

• Use the naive Choleski method for likelihood evaluation. Letr be the standardized autocovariances of the
specified process, andT [r] = PP′, then

y = σεPε + µ,

whereε are drawings from the standard normal distribution. For smallT , this is convenient, becauseP
only need to be computed once. Once the Choleski decomposition has been computed, generating data is
only of orderT 2.

• A modified version of Durbin’s algorithm is used to apply the inverted filter:

T [r(0), . . . , r(T − 1)] = PP′, z = Pe.

This algorithm is of orderT 2, but perhaps somewhat slower than the naive method for smallT . However,
it allows for simulation with a large number of observations.

DOORNIK & OOMS: ARFIMA PACKAGE 30

References

Abramowitz, M., and Stegun, I. A. (1970).Handbook of Mathematical Functions. New York: Dover Publications
Inc.

An, S., and Bloomfield, P. (1993). Cox and Reid’s modification in regression models with correlated errors.
Discussion paper, Department of Statistics, North Carolina State University, Raleigh, NC 27695-8203,
U.S.A.

Ansley, C. F. (1979). An algorithm for the exact likelihood of a mixed autoregressive-moving average average
process.Biometrika, 66, 59–65.

Beran, J. (1994).Statistics for Long-memory Processes. London: Chapman and Hall.

Beran, J. (1995). Maximum likelihood estimation of the differencing parameter for invertible short and long
memory autoregressive integrated moving average models.Journal of the Royal Statistical Society, 57,
659–672.

Brockwell, P. J., and Davis, R. A. (1993).Time Series: Theory and Methods (2nd ed.). USA: Springer-Verlag,
New-York.

Cheung, Y.-W., and Diebold, F. X. (1994). On maximum likelihood estimation of the differencing parameter of
fractionally-integrated noise with unknown mean.Journal of Econometrics, 62, 301–316.

Cox, D. R., and Reid, N. (1987). Parameter orthogonality and approximate conditional inference (with discus-
sion). Journal of the Royal Statistical Society Series B, 49, 1–39.

Doornik, J. A. (1998).Object-Oriented Matrix Programming using Ox 2.0. London: Timberlake Consultants
Press.

Doornik, J. A., and Hansen, H. (1994). A practical test for univariate and multivariate normality. Discussion
paper, Nuffield College.

Doornik, J. A., and Hendry, D. F. (1999).GiveWin: An Interface to Empirical Modelling2nd edn. London:
Timberlake Consultants Press.

Eisinga, R., Franses, P. H., and Ooms, M. (1999). Forecasting long memory right-left political orientations.
International Journal of Forecasting, 15, 185–199.

Findley, D. F., Monsell, B. C., Bell, W. R., Otto, W. R., and Chen, B.-C. (1998). New capabilities and methods of
the x-12-arima seasonal-adjustment program.Journal of Business and Economic Statistics, 16, 127–152,
discussion: 153–177.

Geweke, J. F., and Porter-Hudak, S. (1983). The estimation and application of long memory time series models.
Journal of Time Series Analysis, 4, 221–238.

Golub, G. H., and Van Loan, C. F. (1989).Matrix Computations. Baltimore: The Johns Hopkins University Press.

Granger, C. W. J., and Newbold, P. (1986).Forecasting Economic Time Series,2nd edn. New York: Academic
Press.

Hauser, M. A. (1997). Maximum likelihood estimators for ARFIMA models: A Monte Carlo study. Discussion
paper, Department of Statistics, University of Economics and Business Administration, Vienna, Austria.
forthcoming in:Journal of Statistical Planning and Inference.

Hendry, D. F., and Doornik, J. A. (1999).Empirical Econometric Modelling using PcGive: Volume I. London:
Timberlake Consultants Press.

Koopman, S. J., Shephard, N., and Doornik, J. A. (1998). Statistical algorithms for models in state space using
SsfPack 2.2. center.kub.nl/stamp/ssfpack.htm.

Ljung, G. M., and Box, G. E. P. (1978). On a measure of lack of fit in time series models.Biometrika, 65,
297–303.

Ooms, M., and Doornik, J. A. (1998). Estimation, simulation and forecasting for fractional autoregressive in-
tegrated moving average models. Discussion paper, Econometric Intitute, Erasmus University Rotterdam,
presented at the fourth annual meeting of the Society for Computational Economics, June 30, 1998, Cam-
bridge, UK.

Ooms, M., and Hassler, U. (1997). On the effect of seasonal adjustment on the log-periodogram regression.
Economics Letters, 56, 135–141.

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1988).Numerical Recipes in C. New York:

DOORNIK & OOMS: ARFIMA PACKAGE 31

Cambridge University Press.

Robinson, P. M. (1995a). Gaussian semiparametric estimation of long range dependence.The Annals of Statistics,
23, 1630–1661.

Robinson, P. M. (1995b). Log-periodogram regression of time series with long range dependence.Annals of
Statistics, 23, 1048–1072.

Robinson, P. M., and Henry, M. (1998). Long and short memory conditional heteroscedasticity in estimating
the memory parameter of levels. Discussion paper STIDERC Econometrics Discussion Paper EM/98/357,
London School of Economics and Political Science.

Smith Jr, A. A., Sowell, F., and Zin, S. E. (1997). Fractional integration with drift: Estimation in small samples.
Empirical Economics, 22, 103–116.

Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fractionally integrated time series
models.Journal of Econometrics, 53, 165–188.

