A Package for Estimating, Forecasting and Simulating Arfima Models: Arfima package 1.0 for Ox

BY JURGEN A. DOORNIK AND MARIUS OOMS

Nuffield College, Oxford OX1 1NF, UK, Erasmus University, Rotterdam, The Netherlands,

May 30, 1999

Contents

1 Introduction 2
2 Disclaimer ... 2
3 Availability and Citation 2
4 Installation ... 3
5 Running Arfima programs 3
6 Some estimation and forecasting examples 3
7 Treatment of the mean 5
8 Arfima in OxPack for GiveWin 6
9 Some simulation examples 9
10 Arfima summary .. 10
11 Arfima member functions .. 11
12 ArfimaSim member functions 18
13 Changes from previous versions 20
14 Technical Summary 21
15 The Arfima model 21
15.1 Autocovariance function 21
16 Estimation ... 22
16.1 Regressors in mean 22
16.2 Initial values ... 22
16.3 Exact maximum likelihood (EML) 23
16.4 Modified profile likelihood (MPL) 24
16.5 Non-linear least squares (NLS) 24
16.6 Variance-covariance matrix estimates 24
17 Estimation output .. 24
18 Estimation options 25
18.1 Sample mean versus known mean 25
18.2 Fixing parameters .. 25
18.3 Weighted estimation .. 25
18.4 Z variables ... 25
19 Forecasting ... 26
20 Some notes on computation 26
20.1 Autocovariance function 26
20.2 Likelihood evaluation 28
20.3 Invertibility of MA polynomial 29
21 Monte Carlo experimentation 29
References ... 30
1 Introduction

This documentation describes the Arfima package version 1.0 for Ox 2.10 or later, see Doornik (1998). The Arfima package has a class for estimation and forecasting of ARFIMA\((p,d,q)\) and ARMA\((p,q)\) models.

The available estimation methods are exact maximum likelihood (EML), modified profile likelihood (MPL), and nonlinear least squares (NLS). The mean of the process the ARFIMA process can be a (nonlinear) function of regressors. This makes it straightforward to model (nonlinear) deterministic trends and additive outliers. Missing observations can easily be estimated.

Regressors can also be used to model the innovations of the process. This allows ARFIMA distributed lag modelling, an extension of autoregressive distributed lag (ARDL) modelling. Innovative outliers can be estimated.

We have managed to make the storage requirement of order \(T\) (see below), so that very large samples can be used without major problems.

The Arfima package is written in Ox, a fast object-oriented matrix programming language. The package is used by writing small Ox functions which create and use an Arfima object. Some knowledge of Ox is useful; although this new version of the package can be used interactively in conjunction with OxPack for GiveWin (see Doornik and Hendry, 1999). Arfima users may also be interested in the GiveWin version of X12arima (Findley, Monsell, Bell, Otto and Chen, 1998), which allows estimation (EML and NLS) and forecasting of (seasonal) ARIMA models, see www.pcgive.com.

The Arfima class derives from the Modelbase class, which in turn derives from Database. The Database class admits simple loading of data sets in various formats and easy selection of variables and samples. The Modelbase class contains standard functions for the organisation of estimation input and the presentation of estimation output. An additional simulation class, ArfimaSim, allows Monte Carlo experimentation of the facilities in the Arfima class.

The organization of the documentation is as follows. After discussing installation we present 8 example programs in §6, which show the estimation and forecasting facilities of Arfima. Some of these features are also illustrated in §8 in the discussion of the corresponding interactive environment. Section 9 presents simulation programs that use ArfimaSim. Running the programs of this section will show the speed of the computations and the effectiveness of the modified profile likelihood for bias correction. Sections 10, 11 and 12 document the main functions of the classes Arfima and ArfimaSim. The remaining sections provide a summary of the implementation details of the procedures in the Arfima package, complementing the exposition in Ooms and Doornik (1998). The notation necessary for understanding the output of the sample programs is presented in §15.

2 Disclaimer

This package is functional, but no warranty is given whatsoever. The most appropriate forum to discuss problems and issues related to the Arfima package is the ox-users discussion group (see www.mailbase.ac.uk/lists/ox-users). Please report suggestions for improvement to Marius Ooms at ooms@few.eur.nl.

3 Availability and Citation

The Arfima package is available for downloading through http://www.nuff.ox.ac.uk/Users/Doornik/. The Unix DLLs, as well as OxPack must be downloaded separately.

To facilitate replication and validation of empirical findings, cite this documentation and Ooms and Doornik (1998) in all reports and publications involving the application of the Arfima package 1.0.

Part of the underlying code is a rewritten version of the Fortran procedure by Falaw Sowell (see Sowell, 1992), we thank him for permission to use his code. Without the original code, writing the current set of procedures would have been much harder.
4 Installation

(1) Make sure you have properly installed Ox version 2.10 or later. The Arfima package does not work fully with earlier versions of Ox. Type oxl at the command prompt to check.

(2) Create an arfima subdirectory in the ox\packages folder and put arfima.zip in that subdirectory, then unzip arfima.zip.

(3) Read the read.me file for info on the last updates.

(4) If Ox has been installed properly, this will allow using the Arfima package from any directory. To use the package in your code, add the command

```
#import <packages/arfima/arfima>
```

at the top of all files which require it.

5 Running Arfima programs

The package has a section of code in a dynamic link library for optimum speed. This version can be run under Windows 95/98/NT and most Unix versions.

To run the examples in §6 under Windows/Unix, type

```
oxl fracest1
```
at the command prompt. Alternatively, use oxrun to run the §6 program. OxRun requires GiveWin to show the output and graphs on screen.

To run the programs without using the DLL (any platform; this is at least three times slower) use:

```
oxl fracest1 -DNO_DLL
```
The -DNO_DLL version is so slow because it contains a literal translation of the Fortran code to Ox; no attempt has been made to vectorize this.

6 Some estimation and forecasting examples

This section discusses eight example programs provided as fracest1.ox, ..., fracest8.ox in the standard installation. The first three programs demonstrate the selection of dataset, model orders, estimation sample, forecast horizon, model restrictions, regressors, and estimation method. The fourth program illustrates forecasting extensions. The fifth program shows the use of popular semiparametric estimates of \(d \). Programs 6 and 7 make clear how to perform nonlinear regression with ARFIMA-disturbances. fracest8.ox shows how to deal with innovative outliers and additive outliers.

The code below (provided as fracest1.ox) estimates an ARIMA(1, 1, 1) model on the GiveWin data set rpi_uk.in7 (UK retail price index). Some possible changes to this code are shown in the following programs.

```
#include <oxstd.h>
#include <oxfloat.h>  // required for M_NAN
#import <packages/arfima/arfima>

main()
{
  decl arfima, dly;
  // create an object of class Arfima
  arfima = new Arfima();

  // load the data file
  arfima.LoadIn7("rpi_uk.in7");
  // translate RPI into inflation (delta log RPI)
  // setting first value to missing value
  dly = diff0(log(arfima.GetVar("RPI_UK")), 1, M_NAN);
  // store in database
  arfima.Append(dly, "Inflat", 0);
  arfima.Info();
```

// formulate arfima model, select "Y" as Y_VAR
arfima.Select(Y_VAR, { "Inflat", 0, 0 });
// specify an ARMA(0,d,0) model, estimate by exact ML
arfima.ARMA(0,0);
arfima.SetMethod(M_MAXLIK);
arfima.UseSampleMean();
// select the maximum sample period
arfima.SetSelSample(-1, 1, -1, 1);

// print compact iteration output every iteration
MaxControl(-1,1,1);

// estimate, automatically prints the results
arfima.Estimate();

// done with arfima: delete the object
delete arfima;

Which generates output:

Arfima package version 1.00, object created on 9-05-1999

---- Database information ----
2 variables, 160 observations

name sample period min mean max stddev
RPI_UK 1955 (1) 1994 (4) 11.3 56.563 153.8 47.409
Inflat 1955 (2) 1994 (4) -0.0082305 0.01642 0.090573 0.015168

Iterating:
it0 f= 4.420666 df= 0.07155 e1= 0.02862 e2= 0.01789 step=1
it1 f= 4.421729 df= 0.01305 e1= 0.004752 e2= 0.001515 step=0.5
it2 f= 4.421764 df= 0.0003887 e1= 0.0001437 e2= 0.000004 step=1
it3 f= 4.421764 df= 2.442e-006 e1= 9.026e-007 e2= 2.731e-007 step=1

Strong convergence

---- Maximum likelihood estimation of ARIMA(0,d,0) model ----
The estimation sample is 1955 (2) - 1994 (4)
The dependent variable is: Inflat
(in deviation from sample mean)

Coefficient Std.Error t-value t-prob
0.369581 0.05098 7.25 0.000

log-likelihood 477.449176
no. of observations 159 no. of parameters 2
AIC -950.898353 AIC/T -5.98049279
mean(Inflat) 0.0164204 var(Inflat) 0.000230057
sigma^2 0.00014316

BFGS estimation using numerical derivatives (eps1=0.0001; eps2=0.005):
Strong convergence
Used starting values:
0.40000

The Arfima package allows for fixing parameters, as well as forecasting. The following section of code, from fracest2.ox, illustrates:

arfima.ARMA(4,0);
arfima.FixAR(<1:3>);// omit AR1..AR3 terms in AR polynomial
arfima.SetSelSample(-1, 1, 1993, 4); // keep 1 year
arfima.UseSampleMean();
arfima.Estimate();
arfima.Forecast(8); // 4 in sample, 4 out-of-sample
In addition, regressors can be added to the model specification, and estimation method changed. The program
fracest3.ox experiments with these, for example adding a constant term and estimating by modified profile
likelihood:

arfima.Select(Y_VAR, { "Inflat", 0, 0 });
arfima.Select(X_VAR, { "Constant", 0, 0 });
arfima.SetSelSample(-1, 1, -1, 1);
arfima.SetMethod(M_MAXMPLIK);
arfima.Estimate();
The estimation method can be switched to non-linear least squares. By default, the package obtains starting
values using the methods set out in §16.2. After model formulation and sample selection, you can specify your
own starting values as follows:

arfima.SetStartPar(<-0.1,0.1>); // order is: d, AR1
arfima.Estimate();

The argument to SetStartPar is a vector, with an entry for each free coefficient.

The sample program fracest4.ox compares exact maximum likelihood (EML) with modified profile likeli-
hood (MPL), and illustrates forecasting issues:

• Producing log-level forecasts from a second differenced dependent variable, this is also shown graphically
in §8 below;
• Producing level forecasts from log-level forecasts. Note the extra forecast bias correction due to the data
transformation, see e.g. Granger and Newbold (1986, p.311).

fracest5.ox applies two semiparametric methods for inference on the order of integration d: log periodogram
regression using EstimateGPH and Gaussian semiparametric estimation with EstimateGSP.

It is somewhat more involved to estimate an ARFIMA model where the mean is a general function of re-
gressors: fracest6.ox shows how to override the virtual functions for the mean function in-sample and out-of-
sample by a simple linear time trend. The code in fracest7.ox extends this example to estimate and forecast a
smooth logistic function of time. Eisinga, Franses and Ooms (1999) recently used a logistic trend with stationary
ARFIMA-disturbances to model and test convergence in opinion polls.

Finally, fracest8.ox illustrates that both weighted estimation and innovation dummies can be used to down-
weight the effect of outliers, and compares these approaches with the estimation of additive dummies. In order to
do so, the program uses two extra variable types, W_VAR and Z_VAR, in addition to the usual Y_VAR and X_VAR. See
also §18.3 and §18.4 below.

7 Treatment of the mean

There are several reasons to choose different ways to estimate the overall mean of a stationary ARFIMA-proces,
see §18.1 below. Therefore the Arfima package implements three ways to allow for the mean component:

(1) Use a constant term as a regressor.

arfima.Deterministic(FALSE); // create Constant in database
arfima.Select(X_VAR, { "Constant", 0, 0 }); // add to model
arfima.FixMean(0); // no mean adjustment (the default)

The last statement fixes the mean at zero, which implies that no mean adjustment is made (this is done
through the constant term instead). FixMean(0) is the default behaviour, so the line could be omitted.

(2) Estimate in deviation from sample mean.

arfima.UseSampleMean();

In this case, the dependent variable is demeaned prior to estimation. This is noted in the output by the
addition of (in deviation from sample mean) after the name of the dependent variable (see the output in §6
above).

(3) Impose a known mean (which could be zero).

arfima.FixMean(1.6);
If a non-zero value is used, this is noted in the output: \textit{(in deviation from imposed mean 1.6)}. The default is \texttt{FixMean(0)}.

Under MS Windows operating systems it is possible to experiment interactively with many of the options discussed in the previous sections. This is done in the \texttt{Arfima} package in OxPack for GiveWin.

8 Arfima in OxPack for GiveWin

\texttt{Arfima} in OxPack for GiveWin has an effective graphical user interface for interactive data and model selection, estimation, forecasting, diagnostics and testing.

Installing Arfima in OxPack for GiveWin

Installation of the interactive version of \texttt{Arfima}:

1. Install \texttt{Arfima} into \texttt{ox/packages/arfima} as described above.
2. Install OxPack for GiveWin (available from \url{http://www.nuff.ox.ac.uk/users/doornik}). OxPack requires a properly installed GiveWin version 1.20 or later. Check the version number in the GiveWin Help menu.
3. Start GiveWin, and then OxPack from the GiveWin Modules menu. From the OxPack Package menu Choose Add/Remove Package. Locate \texttt{arfima.oxo} (in the \texttt{arfima} folder) using the Browse button, and press Add.

Sample session using Arfima in OxPack

OxPack is now ready to use \texttt{Arfima}. As an example, we use again \texttt{rpi.uk.in7} which is also in the \texttt{arfima} folder:

1. Load the data \texttt{rpi.uk.in7} in GiveWin.
2. From the OxPack Package menu choose \texttt{Arfima}. The title bar of the OxPack window shows \texttt{Arfima} is loaded and the message \texttt{Arfima package version 1.00, object created on ...} is displayed in the GiveWin Results window.
3. Create \texttt{Inflat} as $\Delta \log(RPI_{UK})$ with the GiveWin Calculator. This is done in two obvious steps. Compare also \texttt{fracest4.ox}. Alternatively, use the supplied Algebra file \texttt{rpi.uk.alg}.
4. From the OxPack Model menu choose Formulate, and select \texttt{Inflat} and a \texttt{Constant}:

 ![Image of the OxPack interface](image)

5. Specify the model as an AR(4), but restrict lags 1 – 3 to zero:
(6) In the estimation dialog, choose maximum likelihood (for example), and reduce the sample by two years:

(7) Estimation is nearly instantaneous. Various options are available in the Test menu. For example, Graphic Analysis presents the following diagnostic output:
Finally, we consider forecasting. From the Test menu, select Forecasting, choosing 8 forecasts. The dependent variable is \(i = \Delta \log(P) \), but it is possible to see the forecasts in terms of \(P \). To re-integrate \(i \), Arfima needs to know the base level from which to start. Since the last observation used in estimation was 1992(4), the start is \(\log(P)_{1992(4)} \). Copy this from the database (select the observation by dragging the left mouse button in the cell, copy, e.g. using the right mouse button context-menu):

\[
\begin{array}{cccc}
1992-4 & 147.6 & 4.99451 & .00475303 \\
1993-1 & 146.6 & 4.98771 & -.00679812 \\
1993-2 & 146.9 & 5.00327 & .0155672 \\
1993-3 & 149.9 & 5.00663 & .00335233 \\
1993-4 & 149.9 & 5.00997 & .00334113 \\
1994-1 & 150.1 & 5.0113 & .00133333 \\
1994-2 & 152.7 & 5.02848 & .0171735 \\
1994-3 & 152.8 & 5.02913 & .000654665 \\
1994-4 & 153.8 & 5.03665 & .00652318 \\
\end{array}
\]

and paste it (right click on the field, and select Paste) as the base value. Also select ‘undo logarithm’, and graphics:

This results in three graphs. Note that the last graph does not have the normal statistical interpretation, see the discussion of `fracest4.ox` in §6 above.
9 Some simulation examples

The following simulation programs use the Arfima simulation class ArfimaSim, which derives from the base simulation class Simulation. The main (constructor) function ArfimaSim() sets up a simulation experiment, which is determined by the selection of a data generating process, an estimator and a (set of) tests. More details are given in §12. Running these programs shows that online evaluation of the estimation methods is now possible. Also see Hauser (1997) for extensive Monte Carlo results for ARFIMA models.

We provide the following sample programs (also available in the arfima folder):

- fracsim1.ox simulates an ARFIMA(0, −0.3, 0) with $M = 1000, T = 100$. First the mean is fixed at zero, then estimation is in deviation from sample mean. In the first case the bias is about -1.2%, in the second -3.3%.
- fracsim2.ox simulates an ARFIMA(0, d, 0).
- fracsim3.ox simulates various AR(1) and MA(1) processes.
- fracsim4.ox extends fracsim1 by adding AR and MA parameters. It also does exact maximum likelihood (EML) with a constant, and modified profile likelihood (MPL) with a constant. The biases, as a percentage are ($M = 250, T = 100$):

<table>
<thead>
<tr>
<th>d, ϕ</th>
<th>d, ϕ</th>
<th>d, ϕ</th>
<th>d, ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.3</td>
<td>-250</td>
<td>-3</td>
<td>$-20%$</td>
</tr>
<tr>
<td>0</td>
<td>-12.4</td>
<td>10.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>0.3</td>
<td>-16.8</td>
<td>8.5</td>
<td>-7.1</td>
</tr>
</tbody>
</table>

Estimating in deviation from sample mean, EML

<table>
<thead>
<tr>
<th>d, ϕ</th>
<th>d, ϕ</th>
<th>d, ϕ</th>
<th>d, ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.3</td>
<td>-22, -2.2</td>
<td>-5.5</td>
<td>-2.2</td>
</tr>
<tr>
<td>0</td>
<td>-3.4, -1.4</td>
<td>-9.2</td>
<td>-2.2</td>
</tr>
<tr>
<td>0.3</td>
<td>-7.5, 2.4</td>
<td>-10.6</td>
<td>-2.8</td>
</tr>
</tbody>
</table>

No mean adjustment (known mean 0), EML

<table>
<thead>
<tr>
<th>d, ϕ</th>
<th>d, ϕ</th>
<th>d, ϕ</th>
<th>d, ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.3</td>
<td>-10, 3.6</td>
<td>-18.4</td>
<td>-5.8</td>
</tr>
<tr>
<td>0</td>
<td>-12.4, 5.2</td>
<td>-29.3</td>
<td>-6.1</td>
</tr>
<tr>
<td>0.3</td>
<td>-17.0, 8.6</td>
<td>-32.9</td>
<td>-7.2</td>
</tr>
</tbody>
</table>

Constant term in model, EML

<table>
<thead>
<tr>
<th>d, ϕ</th>
<th>d, ϕ</th>
<th>d, ϕ</th>
<th>d, ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.3</td>
<td>-1.0, -2.0</td>
<td>-4.7, 1.6</td>
<td>-2.8</td>
</tr>
<tr>
<td>0</td>
<td>-2.8, -0.7</td>
<td>-5.9</td>
<td>-2.7</td>
</tr>
<tr>
<td>0.3</td>
<td>-10.1, 5.2</td>
<td>-11.8</td>
<td>-2.6</td>
</tr>
</tbody>
</table>

Constant term in model, MPL

<table>
<thead>
<tr>
<th>d, ϕ</th>
<th>d, ϕ</th>
<th>d, ϕ</th>
<th>d, ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.3</td>
<td>-10.2, 3.6</td>
<td>-18.4, 13.8</td>
<td>-5.8</td>
</tr>
<tr>
<td>0</td>
<td>-12.4, 5.2</td>
<td>-29.3, 23.3</td>
<td>-6.1</td>
</tr>
<tr>
<td>0.3</td>
<td>-17.0, 8.6</td>
<td>-32.9, 27.1</td>
<td>-7.2</td>
</tr>
</tbody>
</table>

MPL clearly improves on EML, with biases comparable to EML with known constant. MPL has the highest number of rejected experiments: in most cases less than 2%. The notable exceptions are MPL($d = 0.3, \phi$ = 0.7): 30% rejections, and MPL($d = 0.3, \phi$ = 0.3): 20% rejections.

- fracsimanb1.ox replicates the experiment of An and Bloomfield (1993), comparing the bias of EML and MPL. Run this with OxRun to see the graphs, for example from the first two experiments. Again, MPL does well in correcting the bias and provides reliable inference on d.

![QQ plot](image1.png)
![QQ plot](image2.png)
10 Arfima summary

The Arfima class derives from Modelbase, which in turn derives from Database. Some of the functions below are in the base class (marked with *) or override a base-class virtual function (marked with +), but documented because they will be commonly used when estimating an ARFIMA model. Consult the header file arfima.h for definitions of member variables, and undocumented functions, such as those for communication with OxPack.

Constructor
Arfima

Model formulation
ARMA Specify the AR and MA orders
DeSelect * Removes the model selection
FixAR Fix AR orders at 0
FixD Fix d parameter at a specified value
FixMA Fix MA orders at 0
FixMean Use to set known mean (0 is the default)
FreeARMA Estimate all ARMA parameters freely (default)
FreeD Estimate d freely (default)
Select * Selects a variable into the model
SetMethod * Sets the estimation method
SetPrint * Switches printing on or off (default is on)
SetSelSample * Sets the estimation sample
UseSampleMean Estimate in deviation from the sample mean

Model estimation
Estimate * Estimate the model
SetStartPar + Specify starting values (overrides the default)

Post estimation
GetD Returns estimated value of d
GetFreePar * Returns the current values of the free parameters
GetMean Returns the fixed mean or the sample mean
GetNaiveResiduals Get naive residuals (uses NLS filter)
GetPar * Returns the current values of all parameters
GetResiduals + Get the residuals
GetResult * Gets the return code from MaxBFGS
GetSigma2 Gets the residual variance
TestGraphicAnalysis + Plots the graphic analysis
TestSummary + Prints a test summary

Forecasting
Forecast Get forecasts
SetFreePar * Sets the values of the free parameters (when not estimating)
SetSigma2 Sets a value for the residual variance (when not estimating)
TestForecastGraphics + Plots forecasts (after Forecast)

General
Acf ARFIMA ACF
EstimateGPH Estimate d using the log-periodogram method
EstimateGSP Estimate d using the Gaussian semi-parametric method
SolveAR Solve the Yule-Walker equations for AR values
SolveMA Solve for MA values using the Tunnicliffe-Wilson method
Filter Applies the ARFIMA filter to a variable
FilterNaive Applies the naive (NLS) filter to a variable

Custom versions
GetX... Used to customize the X-regressor components
GetZ... Used to customize the Z-regressor components
11 Arfima member functions

This section documents the main member functions of Arfima and the base class Modelbase in alphabetical order.

Arfima::Acf

static Acf(const cT, const vP, const cAR, const cMA, const bPrintErr);

- cT in: int, number of observations, T
- vP in: s-vector with coefficients in order d, AR, MA, s ≥ 1 + p + q
- cAR in: int, number of AR parameters, p
- cMA in: int, number of MA parameters, q
- bPrintErr in: int, TRUE: print fracsigma error code if an error occurs (only when d ≠ 0)

Return value

Returns the 1 × T autocorrelation function corresponding to the specified ARFIMA(p, d, q) model.

Description

The possible error codes are:
1: |d| > 5 (allowing up to 5 for maximization, but note that d ≥ 0.5 will cause problems);
4: |ρi| ≥ 0.9999, AR root inside the unit circle;
6: failed to find roots of AR polynomial.
7: there are identical roots.

Arfima::Arfima

Arfima();

No return value.

Description

Constructor function.

Arfima::ARMA

ARMA(const cAR, const cMA);

- cAR in: int, no of AR parameters, p
- cMA in: int, no of MA parameters, q

No return value.

Description

Formulates the length of the AR and MA polynomial, the default is an ARIMA(0, d, 0) model. To fix specific parameters, use FixAR, FixMA. To omit the fractional part use FixD(0).

Modelbase::Estimate

Estimate();

No return value.

Description

Finds starting values and estimates the formulated model. Prints the results, unless this is switched off by SetPrint. Use SetSelSample to select an estimation sample and Select to select a dependent variable (Y_VAR) or regressors (X_VAR). Calls InitData and InitPar if necessary.
Arfima::EstimateGPH, Arfima::EstimateGSP

static EstimateGPH(const mY, const iTrunc, const fPrint);
static EstimateGSP(const mY, const iTrunc, const fPrint);

mY in: $T \times 1$ matrix, dependent variable observation in time domain
iTrunc in: int, truncation parameter in the frequency domain
number of low frequency periodogram points used in estimation
fPrint in: int, TRUE: print results

Return value
Returns a 1×3 vector with \hat{d}, $SE(\hat{d})$, and the p-value for two-sided testing of $\hat{d} = 0$.

Description
Periodogram points are evaluated at Fourier frequencies $\frac{2\pi j}{T}$, $j = 1, \ldots, \text{iTrunc}$. In the notation of Robinson (1995b), c.f. Beran (1994, §4.6), and Robinson (1995a), $n = T$, $m = \text{iTrunc}$, $l = 1$.
EstimateGSP implements the Gaussian semi-parametric method for estimating d as discussed in Robinson and Henry (1998).

Arfima::FixAR, Arfima::FixD, Arfima::FixMA

FixAR
const iOrder);
FixD
(const dD);
FixMA
(const iOrder);

iOrder in: int, index of AR or MA orders to set to 0; or matrix with orders to omit
dD in: double, value of d

No return value.

Description
These functions fix certain parameters. The value of d can be fixed at zero or another value. To fix the first AR parameter (on y_{t-1}) at zero use *FixAR(1)*, similarly *FixMA(1)* for the first MA parameter, etc.
The last AR parameter may not be fixed (this would result in an inverse root of infinity and computational problems in *Acf*, see §20.1).

Arfima::FixMean

FixMean
(const dYmean);

dYmean in: double, value for fixed mean

No return value.

Description
Used to set a known mean. The default is *FixMean(0)*, also see §7.
UseSampleMean is available to estimate in deviation from the sample mean.

Arfima::Forecast

Forecast
(const cTforc);
Forecast
(const cTforc, const vYlevel);
Forecast
(const cTforc, const vYlevel, const bNaiveOnly);

cTforc in: int, number of forecasts
vYlevel in: (optional argument) $s \times 1$ matrix with initial values to integrate the forecasts to levels, use <> to omit level forecasts (default: no level forecasts)
bNaiveOnly in: (optional argument) int, TRUE: only do naive forecasts (default: do both)

No return value.
Description
Prints the forecast results with cTforc forecasts after the estimation sample using the current parameter values (so not necessarily after estimation).
The second argument is used to integrate the forecasts back to the level. When \(s = 1 \), the forecasts are integrated once, when \(s = 2 \) twice, etc. (an example is in fracest4.ox).
Forecasting with Z variables is not yet implemented. Weights (W variable) are ignored during forecasting.

Arfima::FreeD, Arfima::FreeARMA

FreeD();
FreeARMA();
No return value.

Description
FreeD can be used to free the \(d \) parameter after using FixD. The default is to estimate \(d \) freely.
FreeARMA frees all ARMA coefficients after previous calls to FixAR and FixMA.

Arfima::GetD

GetD();

Return value
Returns the current value of \(d \) (the estimated value after Estimate).

Modelbase::GetFreePar

GetFreePar();

Return value
Returns a column-vector with the current value of the free parameters (the estimated values after Estimate).

Description
The parameters are ordered as follows: \(d \), AR parameters, MA parameters, parameters on regressors. Any fixed parameters are omitted from the returned value.

Arfima::GetMean

GetMean();

Return value
Returns the mean of the dependent variable: either the fixed mean (set in FixMean) or the sample mean (when using UseSampleMean).

Arfima::GetNaiveResiduals

GetNaiveResiduals();

Return value
Returns the residuals using the current parameters, applying the naive (NLS) filter (regardless of the estimation method). After weighted estimation (W variable) the weighted residuals are returned.

Modelbase::GetPar

GetPar();

Return value
Returns a column-vector with the current value of all coefficients, including the fixed coefficients.

Description
The parameters are ordered as follows: \(d \), AR parameters, MA parameters, parameters on regressors. Fixed parameters are included in the returned value.
Arfima::GetResiduals

GetResiduals();

Return value

Returns the residuals from the estimated model. After weighted estimation (W variable) the weighted
residuals are returned.

Modelbase::GetResult

GetResult();

Return value

Returns the return code from MaxBFGS.

Arfima::GetSigma2

GetSigma2();

Return value

Returns the estimated residual variance.

Arfima::GetXBeta, Arfima::GetX...

virtual GetXNames();
virtual GetXBeta(const vP);
virtual GetXBetaForc(const vP, const cTforc);
virtual GetXBetaStart(const mY);
virtual GetXPartial();
virtual GetXSizeInit();

vP in: s \times 1 matrix with all coefficients, in order: d,AR,MA,X,Z
mY in: T \times 1 matrix, data variable to derive starting for
cTforc in: number of forecasts, H

Return value

GetXNames returns an array of strings with the names of the X parameters.
GetXSizeInit returns an integer with the number of X parameters. This is called after the Modelbase
member variables m_cX and m_mX are initialized, and the return value could increment m_cX. It is not ne-
ecessary that the number of columns of the regressor matrix m_mX equals the number of parameters in the
non-linear regression term, m_cX. After the call toGetXSizeInit, m_cX will be changed to the returned
value.
GetXBetaStart is called from InitPar and should return a (column) vector of starting values for the m_cX
X parameters.
GetXPartial returns TRUE if the X’s should be partialled (concentrated) out of the likelihood (this will
only work for linear X/β), see §16.3. The overridden version should return FALSE. (Note: when Z or W
variables are present, X’s are never partialled out.)
GetXBeta returns the T \times 1 matrix f(X, β), which runs over the estimation sample determined by
ModelBase members: m_iT1Est...m_iT2Est. The input argument vP is the full coefficient vector, with
the X parameters located at indices 1+cAR+cMA : cAR+cMA+m_cX.
GetXBetaForc is as GetXBeta but for the forecast period: m_iT2Est+1...m_iT2Est+cTforc.

Description

These are virtual functions, which can be replaced in a derived class when a non-linear regressor term
f(X, β) is desired instead of just X/β.
Examples are in fracey6.ox and fracey7.ox.
Arfima::GetZGamma, Arfima::GetZ...

virtual GetZNames();
virtual GetZGamma(const vP);
virtual GetZGammaStart(const mY);
virtual GetZSizeInit();

Description
These are Z-variable analogues to the GetX... functions. The Z parameters are located at indices 1+cAR+cMA+m_cX : cAR+cMA+m_cX+m_cZ in the coefficient vector.

Modelbase::Select
Select(const iGroup, const aSel);
 iGroup in: int, group indicator: Y_VAR or X_VAR
 aSel in: array, specifying database name, start lag, end lag
No return value.

Description
Selects variables by name and with specified lags, and assigns the iGroup status to the selection. The aSel argument is an array consisting of sequences of three values: name, start lag, end lag. Some examples:

// select CONS from lag 0 to 0 as dependent variable, and a Constant
// as regressor (use Deterministic to create the Constant):
Select(Y_VAR,{"CONS",0,0});
Select(X_VAR,{"Constant",0,0});

// select CONS as dependent variable and
// select CONS lagged, INC and INC lagged as regressor:
DeSelect();
Select(Y_VAR,{"CONS",0,1});
Select(X_VAR,{"INC",0,1});

Each Select adds to the current selection. Use DeSelect to start afresh. Note: Select also requires a SetSelSample afterwards.
Two additional types of variable are available: W_VAR to do weighted estimation (see §18.3), and Z_VAR to add Z variables (see §18.4). Example fracest8.ox illustrates that an impulse dummy as Z variable equals the inverted dummy as W variable (but the dummy as X is different).

Modelbase::SetFreePar
SetFreePar(const vParFree);
 vParFree in: int, vector with values for the free coefficients
No return value.

Description
Sets the free coefficients.
The parameters are ordered as follows: d, AR parameters, MA parameters, parameters on regressors. Any fixed parameters should be omitted from vParFree.

Modelbase::SetMethod
SetMethod(const iMethod);
 iMethod in: int, one of:
 M_MAXLIK – exact maximum likelihood,
 M_NLS – non-linear least squares,
 M_MAXMPLIK – modified profile maximum likelihood,
 M_INITONLY – starting values only,
 M_NLS_STATIONARY – NLS, non-stationarity imposed.
No return value.
Description

The default estimation is maximum likelihood (\texttt{MAXLIK}). Use \texttt{SetMethod} to switch estimation method.

Modelbase::SetPrint

\texttt{SetPrint(fPrint);}
\hspace{1em} \texttt{fPrint in: int, TRUE or FALSE}

No return value.

Description

Switches printing on (TRUE) or off (FALSE). By default printing is on, but for simulations it must be switched off.

Modelbase::SetSelSample

\texttt{SetSelSample(const iYear1, const iPeriod1, const iYear2, const iPeriod2);}

Description

See under the \texttt{Database} class.

Each Select adds to the current selection. Use \texttt{DeSelect} to start afresh.

Arfima::SetSigma2

\texttt{SetSigma2(const dSigma);}
\hspace{1em} \texttt{dSigma in: double, residual variance, }\hat{\sigma}^2

No return value.

Description

This function is only useful when forecasting without estimating. Then, after the model has been formulated, the coefficients can be set with \texttt{SetFreePar} or \texttt{SetStartPar}, and the residual variance with \texttt{SetSigma2}.

Modelbase::SetStartPar

\texttt{SetStartPar(const vP);}
\hspace{1em} \texttt{vP in: int, vector with values for the free parameters}

No return value.

Description

Sets starting values for the free parameters (so excluding those which are fixed). Calls \texttt{InitData} if necessary, so the model must be formulated, and the sample selected before this function can be used. \texttt{InitPar} is automatically called if \texttt{SetStartPar} is not used.

Arfima::TestForecastGraphics, Arfima::TestGraphicAnalysis, Arfima::TestSummary

\texttt{virtual TestForecastGraphics(const bExp);}
\texttt{virtual TestGraphicAnalysis();}
\texttt{virtual TestSummary();}

\hspace{1em} \texttt{bExp in: int, TRUE: also take exponentials}

No return value.

Description

\texttt{TestSummary} prints a test summary. Because these are computed from the residuals, they are perhaps better interpreted as descriptive statistics:

- Normality test, Doornik and Hansen (1994);
- ARCH test, see e.g. Hendry and Doornik (1999, §18.4);
- Portmanteau test, Ljung and Box (1978).
 TestGraphicAnalysis plots the graphic analysis: actual and fitted, residuals and ACF.
 TestForecastGraphics graphs the forecasts, must be preceded by a call to Forecast.

Arfima::UseSampleMean

UseSampleMean();
No return value.

Description
This will free the mean (i.e. use the sample mean), after it has been fixed previously using FixMean (which fixes the mean to a known value, and is the default).
12 ArfimaSim member functions

The ArfimaSim class derives from Simula. This section describes the main functions of ArfimaSim, again in alphabetical order. See the header file arfimasim.h for undocumented functions.

ArfimaSim::AddTrend
AddTrend(const dTrendCoeff);

dTrendCoeff in: double, DGP coefficient of the Trend
No return value.

Description
Adds a trend to the DGP and the model.

ArfimaSim::ArfimaSim
ArfimaSim(const mcT, const dDgpYmean, const dEpsVar, const dD, const vAr, vMa, const fFixD, const fUseMean, const dFixMean, const cRep, const iMethod);

~ArfimaSim();

mcT in: matrix with sample sizes for experiments,
dDgpYmean in: double, DGP mean of generated dependent variable,
dEpsVar in: double, DGP error variance,
dD in: double, DGP value of $d \in (-1, 1.5)$,
vAr in: $1 \times p$ matrix, DGP values of AR parameters
(vMa in: $1 \times q$ matrix, DGP values of MA parameters
(these are flipped to ensure invertibility)
fFixD in: int, TRUE: do not estimate d (is fixed at DGP value in model)
fUseMean in: int, TRUE: estimation is in deviation from fixed mean $dFixMean$, unless $dFixMean$ is the missing value, in which case estimation is in deviation from the sample mean
FALSE: a constant is added to the model
dFixMean in: int, value of known mean
cRep in: int, number of replications, M
iMethod in: int,

No return value.

Description
Constructor function which designs the experiment. The estimation object resides in the m_arfima data member, which is created in ArfimaSim by calling the virtual function CreateObject.

~ArfimaSim is the destructor, which also prints how long the experiment took.

ArfimaSim::CreateObject
virtual CreateObject();

No return value.

Description
The estimation object resides in the m_arfima data member, which is created through the virtual function CreateObject. By default it is of type Arfima. Overriding CreateObject in a class derived from ArfimaSim allows this object to be of a class derived from Arfima.
ArfimaSim::DoCoefTstats

DoCoefTstats();
No return value.

Description
Generate t-values.

ArfimaSim::Generate, ArfimaSim::GetCoefficients, ArfimaSim::Get...

virtual Generate(const iRep, const cT, const mxT); // generate replication
GetCoefficients(); // returns coefficient estimates
GetPvalues(); // returns empirical p-values
GetTestStatistics(); // return test statistics

Description
These functions implement Simulation class virtual functions.

ArfimaSim::SaveIn7

SaveIn7(const sFilename);
sFilename in: string, file name

Return value
TRUE if anything was stored.

Description
Stores the simulation results in the named file, after the experiment has finished. Requires a call to the (Simulation class function) SetStore(TRUE) before the experiment is started.

ArfimaSim::SetMethod, ArfimaSim::SetStartFromDgp

SetMethod(iMethod);
SetStartFromDgp();
iMethod in: int, estimation method (see ArfimaSim)
No return value.

Description
SetMethod allows for changing the estimation method after the constructor has been called.
SetStartFromDgp lets each estimation start from the DGP values. Otherwise, the starting values are generated using the default procedure.
13 Changes from previous versions

Release history Arfima package:

- version 1.0: May 1999; Minimum Ox version: Ox 2.10;
- version 0.77: October 1997; for Ox 1.20;
- version 0.76: July 1996; for Ox 1.08.

Improvements made since version 0.77:

- now using Durbin’s algorithm for likelihood evaluation;
- improved starting values;
- removed singularity for a single root at zero;
- using adjusted version of Durbin’s algorithm for data generation;
- optimal forecasting for arbitrary $d > 1$
- “additive” X, “innovative” Z, and “weighting” W variables;
- removal of non-invertable MA’s;
- facility to simulate initial estimates;
- concentrating out regressors in EML;
- addition of modified profile likelihood estimation;
- ArfimaSim class;
- general functions for the mean, possibly nonlinear in parameters;
- functions for communication with OxPack for GiveWin.

There are some reasons why the results may differ slightly from version 0.77:

- improved starting values;
- removed singularity for a single root at zero;
- removal of non-invertable MA’s;
- small change in the line search of BFGS method;
- the default is now $\text{FixMean}(0)$; to get the old default insert a call to UseSampleMean.
- AIC now computed as $-2\ell + 2s$ (was negative: $2\ell - 2s$). AIC also differs in that s now counts the residual variance.
14 Technical Summary

The remainder gives a summary of the implementation details of the procedures in the Arfima package. It complements Ooms and Doornik (1998).

15 The Arfima model

The basic ARMA(\(p, q\)) model is
\[
y_t = \phi_1 y_{t-1} + \ldots + \phi_p y_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q}, \quad t = 1, \ldots, T,
\]
assuming either \(\varepsilon_t \sim \text{NID}(0, \sigma^2_\varepsilon)\), or \(\mathbb{E}[\varepsilon_t] = 0\) and \(\mathbb{E}[\varepsilon_t^2] = \sigma^2_\varepsilon\). Using lag polynomials and introducing a mean \(\mu\) we write:
\[
\Phi(L)(y_t - \mu) = \Theta(L)\varepsilon_t.
\]

With a fractional integration parameter \(d\), the ARFIMA(\(p; d; q\)) model is written as
\[
(1 - L)^d (y_t - \mu) = \Theta(L)\varepsilon_t.
\]

(1)

The autocovariance function (ACovF) of a stationary ARMA process with mean \(\mu\):
\[
c(i) = \mathbb{E}[(y_t - \mu)(y_{t-i} - \mu)],
\]
defines the variance matrix of the joint distribution of \(y = (y_1, \ldots, y_T)'\):
\[
V[y] = \begin{pmatrix}
c(0) & c(1) & c(2) & \cdots & c(T-1) \\
c(1) & c(0) & c(1) & \cdots & \vdots \\
c(2) & c(1) & c(0) & \cdots & c(2) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c(T-1) & \cdots & c(2) & c(1) & c(0)
\end{pmatrix} = T[c(0), \ldots, c(T-1)] = \Sigma,
\]
which is a Toeplitz matrix, denoted by \(T\). Under normality:
\[
y \sim \mathcal{N}_T(\mu, \Sigma).
\]

(3)

The autocorrelation function, ACF: \(c(i)/c(0)\), of a stationary ARMA process is discussed in many textbooks, and readily computed from the \(\phi_i\) and \(\theta_i\) using the Ox function \(\text{armavar}\). We often work with the autocovariances scaled by the error variance:
\[
r = [r(0) \cdots r(T-1)]' = \sigma^{-2}_\varepsilon [c(0) \cdots c(T-1)]'.
\]

15.1 Autocovariance function

An algorithm for the computation of the ACovF of an ARFIMA process is derived in Sowell (1992):
\[
c(i) = \sigma^2_\varepsilon \sum_{h=-q}^{q} \sum_{j=1}^{p} \psi_k \zeta_j C(d, p + k - i, \rho_j),
\]
where
\[
\psi_k = \sum_{s=|k|}^{q} \theta_s \theta_{s-|k|}, \quad \zeta_j^{-1} = \rho \left[\prod_{i=1}^{p} (1 - \rho_i \rho_j) \prod_{m \neq j} (\rho_j - \rho_m) \right],
\]
and
\[
C(d, h, \rho) = \frac{\Gamma(1-2d)}{[\Gamma(1-d)]^2} \frac{(d)_h}{(1-d)_n} \left[\rho^{2p} F(d+h; 1-d+h; \rho) + F(d-h; 1-d-h; \rho) - 1 \right].
\]

(6)
Here Γ is the gamma function, ρ_j are the roots of the AR polynomial (assumed distinct), and $F(a, 1; c; \rho)$ is the hypergeometric function, see e.g. Abramowitz and Stegun (1970, Ch. 15):

$$F(a, b; c; \rho) = \sum_{i=0}^{\infty} \frac{(a)_i (b)_i \rho^i}{(c)_i i!},$$

where we use Pochhammer’s symbol:

$$(a)_i = a (a + 1) (a + 2) \cdots (a + i - 1), \quad (a)_0 = 1.$$

So (1), equals $i!$.

In the absence of AR parameters (4) reduces to

$$2 c(t) = 2 \frac{q}{\Gamma (1 - 2d)} \left[\Gamma (1 - d) \right]^{2d} (1 - d)^{-i}.$$

16 Estimation

16.1 Regressors in mean

Any set of exogeneous regressors may be used to explain the mean:

$$z = y - \mu, \quad \mu = f(X, \beta),$$

where X is a $T \times k$ matrix. In the leading linear case $f(X, \beta) = X\beta$ and β is a $k \times 1$ vector.

16.2 Initial values

Initial values for the parameter estimates are obtained in the order: regressors in mean, d, AR part, and finally MA part. The very first step is to subtract a mean from y_t: $z_t = y_t - \mu_t$. When either the sample mean or a specified (known, possibly zero) mean is used: $\mu_t = \mu$. If regressors are used, take $\mu_t = f(x_t, \beta)$. In the linear case β is obtained by regression.

(1) For the fractional integration parameter the (frequency domain) log periodogram regression of Geweke and Porter-Hudak (1983) is used, yielding \hat{d}_0. We use $[T^{-1/2}]$ nonzero periodogram points, except when $p = q = 0$ when we use all available points. The initial time domain residuals are then obtained using the Ox function diffpow:

$$u_t = \sum_{j=0}^{t} \frac{(-\hat{d}_0)}{j!} z_{t-j}. \quad (7)$$

(2) Next, AR starting values are obtained from solving the Yule-Walker equations taking the number of MA parameters into account:

$$\begin{pmatrix} \hat{\rho}(q) & \cdots & \hat{\rho}(q - p + 1) \\ \vdots & \ddots & \vdots \\ \hat{\rho}(q + p - 1) & \hat{\rho}(q) \\ \hat{\rho}(q + p) \end{pmatrix} \phi_0 = \begin{pmatrix} \hat{\rho}(q + 1) \\ \vdots \\ \hat{\rho}(q + p) \end{pmatrix},$$

where $\hat{\rho}(i)$ is the empirical autocorrelation of u_t. When q is zero, the matrix on the right-hand side is the Toeplitz matrix $T [\hat{\rho}(0), \ldots, \hat{\rho}(p - 1)]$. We use OLS to solve this system; this will also give a solution when the matrix is singular. Subsequently, the arma0 function is used to obtain residuals u^*_t.

(3) Starting values for the MA parameters are derived from u^*_t using Tunnicliffe-Wilson’s method, see Granger and Newbold (1986, p.88). Because this iterative method is slow to converge, we choose rather loose convergence criteria. A non-invertible MA is ‘flipped’ to an invertible MA by inverting roots outside the unit circle. The arma0 function is used to obtain residuals u^{**}_t.

\footnote{Note the typo in the equation below (8) in Sowell (1992, p.173): $\Gamma(d + s - l)$ in the numerator should read $\Gamma(d - s + l)$.
When the initial values are used as starting values for further estimation, the following adjustments are made:

1. If d is not significant at 5%, it is set to zero. A value of d_0 less than -0.45 is set to -0.40, and similarly to 0.40 for a value greater than 0.45.

2. If $q > 0$ and the solution from the Yule-Walker equations yields non-stationary AR parameters, the method is applied as if $q = 0$.

16.3 Exact maximum likelihood (EML)

Based on normality (3), and with the procedure to compute the autocovariances in (2), the log-likelihood is simply (writing z for the data vector used for maximization):

$$
\log L (d, \phi, \theta, \beta, \sigma^2_e) = -\frac{T}{2} \log (2\pi) - \frac{1}{2} \log |\Sigma| - \frac{1}{2} z' \Sigma^{-1} z.
$$

(8)

It is convenient to concentrate σ^2_e out of the likelihood, starting by writing $\Sigma = R \sigma^2_e$:

$$
\log L (d, \phi, \theta, \beta) \propto -\frac{1}{2} \log |R| - \frac{T}{2} \log \sigma^2_e - \frac{1}{2} \sigma^2_e z' R^{-1} z.
$$

Differentiating with respect to σ^2_e and solving yields

$$
\hat{\sigma}^2_e = T^{-1} z' R^{-1} z,
$$

(9)

with concentrated likelihood (CLF):

$$
\ell_c (d, \phi, \theta, \beta) = -\frac{T}{2} \log (2\pi) - \frac{T}{2} \log |R| - \frac{T}{2} \log [T^{-1} z' R^{-1} z] .
$$

When $f(X, \beta) = X\beta$ it is more convenient to also concentrate β out of the likelihood. The resulting normal profile log-likelihood function becomes:

$$
\ell_P (d, \phi) = -\frac{T}{2} (1 + \log 2\pi) - \frac{1}{2} \log |R| - \frac{T}{2} \log [T^{-1} z' R^{-1} \hat{z}] ,
$$

(10)

where

$$
\hat{z} = y - X\hat{\beta}, \quad \hat{\beta} = (X'R^{-1}X)^{-1} X'R^{-1}y.
$$

The function used in the maximization procedure is:

$$
\ell_P (d, \phi) = -\frac{1}{2} \{T^{-1} \log |R| + \log \sigma^2_e\} ,
$$

(12)

from which the value for the log-likelihood (10) is easily derived. The computational procedure described in §20.2 writes

$$
\sigma^2_e = T^{-1} z' R^{-1} z = T^{-1} e'e,
$$

with $|R|$ a by-product of the procedure.

Function (12) is maximized using BFGS with numerical derivatives. During estimation, stationarity is imposed at each step by rejecting parameter values which have:

- $d \leq -5$ or $d > 0.49999$;
- $|\rho_i| \geq 0.9999$, where ρ_i are the roots of the AR polynomial.
In addition, the procedure can fail because:

- inability to compute the roots of the AR polynomial;
- $\rho \epsilon < 10^{-11}$, this corresponds to multiple roots, see (5).

16.4 Modified profile likelihood (MPL)

The modified profile log-likelihood, ℓ_M, for the regression model with stationary ARFIMA-errors and $f(X, \beta) = X\beta$:

$$
\ell_M (d, \phi, \theta) = - \frac{T}{2} (1 + \log 2\pi) - \left(\frac{1}{2} - \frac{1}{T} \right) \log |R| - \frac{T - k - 2}{2} \log [T^{-1} z' R^{-1} z] - \frac{1}{2} \log |X' X|, \quad (13)
$$

see An and Bloomfield (1993), who applied the idea of Cox and Reid (1987) to reduce the bias of the EML estimator due to the presence of unknown nuisance parameters of the regressors.

The residual variance estimator now uses $T - k$, so that it is unbiased when $p = q = d = 0$:

$$
\sigma^2 = \frac{1}{T - k} z' R^{-1} z. \quad (14)
$$

16.5 Non-linear least squares (NLS)

Defining e_t as the residuals from applying the ARFIMA(p, d, q) filter to $y_t - \mu_t$, the residual variance is:

$$
\sigma^2 = \frac{1}{T - k} \sum_{t=1}^{T} e_t^2. \quad (15)
$$

NLS simply maximizes

$$
f (d, \phi, \theta, \beta) = - \frac{1}{2} \log \sigma^2. \quad (16)
$$

The arfima filter is computed using the Ox function diffpow, see (7), followed by arma0. Since (7) essentially drops the first observation, $e_1 = 0$ when d is estimated.

Function (16) is maximized using BFGS with numerical derivatives, optionally with stationarity imposed.

16.6 Variance-covariance matrix estimates

Let $\theta' = [d \phi' \theta']$. The variance-covariance matrix for the EML ($\ell = \ell_p$) and MPL ($\ell = \ell_M$) estimates is computed as:

$$
\begin{pmatrix}
\frac{1}{2} \sigma^2 (X' R^{-1} X)^{-1} & \frac{1}{2} \sigma^2 (X' R^{-1} X)^{-1} \\
\frac{1}{2} \sigma^2 (X' R^{-1} X)^{-1} & \frac{1}{2} \sigma^2 (X' R^{-1} X)^{-1}
\end{pmatrix}
$$

The second derivative of ℓ is computed numerically.

For NLS, the variance-covariance is the inverse of minus the numerical second derivative of (16).

17 Estimation output

Estimation output consists of

- Estimated coefficients, with estimated standard errors, t-values, and p-values. The p-values are based on a $t(T - s)$-distribution, where where s is the number of estimated parameters, including the residual variance.
 When all parameters are freely estimated: $s = 1 + p + q + k + 1$.
- log-likelihood $\ell =$

 EML: ℓ_c,
 MPL: ℓ_M,
 NLS: $f = \frac{T}{2} (1 + \log 2\pi)$,

where f for NLS is from (16).
Akaike information criterion

\[\text{AIC} = -2\ell + 2s, \]

where \(s \) the number of estimated parameters. When no parameters are fixed: \(s = 1 + p + q + k + 1 \) (the last accounts for the residual variance). The AIC/T is also reported.

- Residual variance: \((9) \) for EML, \((14) \) for MPL, \((15) \) for NLS.
- Mean and variance of dependent variable.
- BFGS convergence criteria, convergence result and starting values.

18 Estimation options

18.1 Sample mean versus known mean

It has been found in early Monte Carlo experiments that, in smaller samples, using the theoretical mean could lead to more accurate estimation of \(d \) (see e.g. Cheung and Diebold, 1994). This can be seen as the most effective way to reduce the effect of a nuisance parameter on inference for the parameter of interest. Therefore, the Arfima package allows for fixing the mean at a specified value. Let \(y_t \) denote the original dependent variable, and \(\mu_y \) the known mean.

The \(z_t \) used in 16.3 for estimation when specifying a known mean is:

\[z_t = y_t - \mu_y, \]

otherwise the package uses

\[z_t = y_t - \hat{\mu}_y. \]

The specification of the mean affects the likelihood. For the last term in the log-likelihood:

\[(y - \mu)' R^{-1} (y - \mu) = y' R^{-1} y - 2\mu' R^{-1} y + \mu' R^{-1} \mu, \]

so the known mean case adds \(\mu_y \) whereas the second case adds \(\hat{\mu}_y \), and different results must be expected.

18.2 Fixing parameters

It is possible to fix \(d \) at a specific value, or drop ARMA terms using the FixAR, FixD and FixMA functions.

18.3 Weighted estimation

A weight variable \(w \), \(w_t > 0 \), can be used in estimation. Write \(\tilde{w}_t = w_t/\bar{w}_{t>0} \), where \(\bar{w}_{t>0} \) is the mean of the positive weights.

Then (12) for EML becomes:

\[
-\frac{1}{2} \left(T^{-1} \log |R| - T^{-1} \sum_{\tilde{w}_t > 0} \log \tilde{w}_t + \log T^{-1} \sum_{t=1}^{T} e_t^2 \tilde{w}_t \right),
\]

The NLS function is adjusted in a similar fashion. Weighted estimation is not available for MPL, and weights are ignored for forecasting. The weighted residuals, \(\hat{e}_t \tilde{w}_t^{1/2} \), are used in the residual-based diagnostics.

18.4 Z variables

With both additive normal regressors \(x_t \) and innovative \(Z \) variables \(z_t \) the ARFIMA model becomes:

\[\Phi (L) (1 - L)^d (y_t - \alpha' x_t) = \Theta (L) (\varepsilon_t + z_t' \gamma). \]

The notation for the \(Z \) variables in this subsection should not be confused with \(z_t \), the demeaned \(y_t \). After applying the normal EML or NLS filter to \(z_t \), \(z_t' \gamma \) is subtracted at each iteration.

This model has the familiar ADL (Autoregressive Distributed-lag model) as a special case, since \(z_t \) can contain different lags of the same (exogenous) variable. Whereas additive outliers (and missing observations) can be estimated using dummies for the \(X \) variables, see e.g. Brockwell and Davis (1993, §12.3), innovative outliers can be modelled by dummies for \(Z \) variables. Note that adding a single observation dummy for a \(Z \) variable has the same effect as giving that observation zero weight in the \(W \) variable. This is illustrated in fracest8.ox.

\(Z \) variables are not available for MPL.
19 Forecasting

Two methods of forecasting are supported, based on the results in Beran (1994, §8.7). As before let \(z = (z_1, \ldots, z_T)' \) denote the observations over the estimation period. Assume \(z_t \) is stationary and \(d > -1 \). The best linear prediction of \(z_{T+h} \) is

\[
\hat{z}_{T+h} = \left[r(T-1 + h) \cdots r(h) \right] \{ T \left[r(0), \ldots, r(T-1) \right] \}^{-1} z = q'z,
\]

which consists of the reversed ACovF starting from \(h \), times the original data weighted by their correlations. The \texttt{solveqz} function is used to solve \(T \mathbf{x} = \mathbf{z} \) in order to keep storage requirements of order \(T \), see §20.2. The mean square error is

\[
\text{MSE}(\hat{z}_{T+h}) = \hat{\sigma}_z^2 \left(r(0) - r'q \right).
\]

In the presence of a mean-function \(\mu_t = \theta(x_t, \beta) \) the forecasts are:

\[
\tilde{y}_{T+h} = q' (y - \mu) + \mu_{T+h} + x'_{T+h} \hat{\beta}.
\]

The Ox code computes all requested forecasts \(\tilde{z}_h = (z_{T+1}, \ldots, z_{T+h})' \) and their joint variance-covariance matrix, \(\text{Cov}(\tilde{z}_h) \) simultaneously. \(\text{Cov}(\tilde{z}_h) \) is also used to derive the mean squared errors for partial sums, \(\sum_{i=1}^{h} \tilde{z}_{T+i} \), integrated partial sums etc.

‘Naive’ forecasts are derived from the autoregressive representation of the process, truncated at \(T + h \):

\[
\Theta^{-1}(L) \Phi(1-L)^d z_t = (1 - b_t L \cdots - b_{T+h-1} L^{T+h-1}) z_t = B(L) z_t.
\]

In this case the \(z_t \) need not be stationary, c.f. Beran (1995), but \(d > -0.5 \). The first \(T \) coefficients in the \((1-L)^d \) polynomial can be computed using the \texttt{diffpow} function when the input is a one followed by \(T-1 \) zeroes; this follows from (7). For polynomial multiplication and division, \texttt{polymul} and \texttt{polydiv} are used. The naive forecasts are computed recursively:

\[
\hat{z}_{T+h}^* = [b_{T+h-1} \cdots b_1] \times [a' \hat{z}_{T+1} \cdots \hat{z}_{T+h-1}]',
\]

and

\[
\text{MSE}(\hat{z}_{T+h}^*) = \hat{\sigma}_z^2 \left(1 + \sum_{i=1}^{h-1} a_i^2 \right), \quad (17)
\]

where \(a_i \) are the coefficients of \(B^{-1}(L) \).

Level forecasts are computed by adding the (integrated) partial sums of forecasts to a specified starting level. The reported MSE of the integrated naive forecasts can be obtained directly from (17).

Forecasting with \(Z \) variables is not yet implemented.

20 Some notes on computation

20.1 Autocovariance function

Sowell (1992) gives several tricks for recursively computing various quantities needed in (4). This is further refined in the code of the Arfima package, and discussed here in some detail. In this section we refer to the Fortran code, which has arrays starting at index one, opposed to the Ox version of the code, where they start at zero.

The first quantities computed are:

\[
\frac{(d)_h}{(1-d)_h} \quad \text{for } h = p - q - T + 1, \ldots, 0, \ldots, p + q, \quad \text{stored in } c(j) \text{ for } j = h - p + q + T.
\]

Computation starts from \(h = 0 \): \(c(-p + q + T) = 1 \), using a forward recursion based on

\[
(d)_h = (d + h - 1) (d)_{h-1}, \quad h > 0,
\]

and a backward recursion based on

\[
(d)_h = \frac{(d)_{h-1}}{(d-h)}, \quad h < 0.
\]
The autocorrelations are accumulated in a loop over \(j \) to avoid a second storage dimension:

\[
c(i) = \sum_{j=1}^{p} c_j(i) = \sigma_x^2 \sum_{j=1}^{p} \zeta_j \left[\sum_{k=-q}^{q} \psi_k C(d, p + k - i, \rho_j) \right], \quad i = 0, \ldots, T - 1.
\]

Computation of \(F(a, 1; c; \rho) \) is also best done recursively, as noted in Appendix 3 of Sowell (1992):

\[
F(a, 1; c; \rho) = \frac{c - 1}{\rho (a - 1)} [F(a - 1, 1; c - 1; \rho) - 1].
\] (18)

For each \(j \), we need a sequence of

\[
C(d, p - q - T + 1, \rho_j) \cdots C(d, p + q, \rho_j),
\]

so a sequence of functions

\[
F(d + h, 1; 1 - d + h; \rho_j), \quad \text{for } h = p - q - T + 1, \ldots, 0, \ldots, - (p - q - T + 1).
\]

Using (18) these are computed using a backward recursion starting from the final term

\[
F(d - p + q + T - 1, 1; -d - p + q + T; \rho_j).
\]

It is crucial that the recurrence is computed backward, the forward recursion will start to grow exponentially at some stage (see the discussion in Press, Flannery, Teukolsky and Vetterling, 1988, §5.4). For example, for the first terms (i.e. the terms computed last in the backward recursion, but first in the forward recursion) with \(d = 0.4 \), \(\rho = -0.1 \), \(p = 1 \), \(q = 0 \):

<table>
<thead>
<tr>
<th>term</th>
<th>backward</th>
<th>forward</th>
<th>term</th>
<th>backward</th>
<th>forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.90892</td>
<td>0.90892</td>
<td>9</td>
<td>0.90891</td>
<td>173.55</td>
</tr>
<tr>
<td>2</td>
<td>0.90892</td>
<td>0.90890</td>
<td>10</td>
<td>0.90890</td>
<td>-1721.6</td>
</tr>
<tr>
<td>3</td>
<td>0.90892</td>
<td>0.90909</td>
<td>11</td>
<td>0.90890</td>
<td>17187.</td>
</tr>
<tr>
<td>4</td>
<td>0.90892</td>
<td>0.90717</td>
<td>12</td>
<td>0.90890</td>
<td>-1.7146e+005</td>
</tr>
<tr>
<td>5</td>
<td>0.90891</td>
<td>0.92633</td>
<td>13</td>
<td>0.90890</td>
<td>1.7106e+006</td>
</tr>
<tr>
<td>6</td>
<td>0.90891</td>
<td>0.73512</td>
<td>14</td>
<td>0.90890</td>
<td>-1.7066e+007</td>
</tr>
<tr>
<td>7</td>
<td>0.90891</td>
<td>2.6430</td>
<td>15</td>
<td>0.90889</td>
<td>1.7025e+008</td>
</tr>
<tr>
<td>8</td>
<td>0.90891</td>
<td>-16.394</td>
<td>16</td>
<td>0.90889</td>
<td>-1.6983e+009</td>
</tr>
</tbody>
</table>

Equations (4) and (5) can be rewritten slightly, by moving the factor \(\rho^{-1} \) from \(\zeta \) to \(C \). There it disappears, and the singularity of a single root at zero as present in the expressions of Sowell (1992) turns out to be unnecessary. In addition, (5) is numerically unstable for a single root close to zero. Both problems are solved by writing:

\[
G(a; c; \rho) = \rho^{-1} [F(a, 1; c; \rho) - 1] = \sum_{i=0}^{\infty} \frac{(a)}{(c)_{i+1}} \rho^i.
\]

The recursion formula for \(G \) is:

\[
G(a - 1; c - 1; \rho) = \frac{a}{c-1} [1 + \rho G(a; c; \rho)],
\]

and \(\rho^{-1}[\ldots] \) from (6) becomes:

\[
[p^{2p} G (d + h; 1 - d + h; \rho) + \rho^{2p-1} + G (d - h; 1 - d - h; \rho)] .
\]

To illustrate the difference, we choose a model with \(d = -0.3 \), AR parameters \(-0.3, -0.5, 0 \) and MA parameters \(-0.4, 0.3 \). This model has AR roots: \((0.15 + 0.691i), (0.15 - 0.691i), (10^{-17}) \). Rounding errors cause the last root to be close but not identical to zero. We may compare this to a model which omits the third AR parameter. The following table lists the first 5 autocovariances:

<table>
<thead>
<tr>
<th>0.3, -0.5, 0 using (F)</th>
<th>0.3, -0.5 using (F)</th>
<th>0.3, -0.5, 0 using (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2774</td>
<td>1.2726</td>
<td>1.2726</td>
</tr>
<tr>
<td>-0.17380</td>
<td>-0.27486</td>
<td>-0.27486</td>
</tr>
<tr>
<td>-0.72536</td>
<td>-0.34655</td>
<td>-0.34655</td>
</tr>
<tr>
<td>0.59408</td>
<td>-0.045409</td>
<td>-0.045409</td>
</tr>
<tr>
<td>-0.018257</td>
<td>0.13155</td>
<td>0.13155</td>
</tr>
</tbody>
</table>
20.2 Likelihood evaluation

Remember that R is the $T \times T$ Toeplitz matrix of the autocorrelations, and there are various ways of computing the function (12):

- **Naive Choleski decomposition**
 Using the standard decomposition requires storing the $T \times T$ matrix $R = T \left[r(0), \ldots, r(T-1) \right] = T \left[r \right]$, and Choleski decomposition (lower diagonal, so strictly a matrix with $\frac{1}{2}T(T+1)$ elements, but stored in a $T \times T$ matrix in Ox). For large T, this method becomes very memory intensive and slow: the decomposition is of order T^3.

- **Efficient Choleski decomposition**
 A more efficient algorithm derives the Choleski decomposition directly from r, avoiding storage of R. This can be combined with a version of Levinson’s algorithm to compute the Choleski decomposition in computations of order T^2. However, storing the $\frac{1}{2}T(T+1)$ Choleski factor remains prohibitive for large T. This method is used in Sowell (1992) and Smith Jr, Sowell and Zin (1997).

- **Levinson algorithm**
 The Levinson algorithm solves $T \mathbf{x} = y$ directly, involving an operation count of order T^2 and avoiding storage of order T^2. The algorithm is described in Golub and Van Loan (1989, §4.7.3); this is implemented in Ox as the `solvetoepilz` function, which optionally also returns the determinant. The function (12) is solved in two steps. First write $\mathbf{z} = y - \mathbf{\mu}$ and solve
 \[
 R^{-1} \mathbf{z} = \mathbf{x} \Rightarrow \mathbf{z} = R \mathbf{x} \equiv T \left[r \right] \mathbf{x}
 \]
 to obtain $\hat{\mathbf{x}}$,
 \[
 \hat{\sigma}^2 = T^{-1} \mathbf{z}' \hat{\mathbf{z}}
 \]
 Thus, storage the $\frac{1}{2}T(T+1)$ Choleski factor is avoided. This method was used in earlier versions (up to 0.77) of the Arfima package.

The following timings are in seconds for one ARFIMA(p, d, q) likelihood evaluation on a 32MB Pentium 90Mhz using Ox 1.1 under Windows NT 3.51.

<table>
<thead>
<tr>
<th>T</th>
<th>Efficient Choleski</th>
<th>Levinson algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.42</td>
<td>0.40</td>
</tr>
<tr>
<td>2000</td>
<td>2.03</td>
<td>1.83</td>
</tr>
<tr>
<td>3000</td>
<td>102.15</td>
<td>4.03</td>
</tr>
<tr>
<td>10000</td>
<td>failed</td>
<td>48.15</td>
</tr>
</tbody>
</table>

Above 2000 observations, the $\frac{1}{2}T(T+1)$ matrix (16 MB at $T = 2000$) starts to push the program into virtual memory, with a severe impact on speed. At 10000 observations, the efficient-Choleski method fails, requiring 400 MB to store the Choleski factor.

- **Durbin’s algorithm**
 This method (see Golub and Van Loan, 1989, §4.7.2) amounts to computing the Choleski decomposition of the inverted Toeplitz matrix. Durbin’s method solves
 \[
 T \left[r(0), \ldots, r(T-1) \right] = LDL' = PP', \quad e = D^{-1/2}L^{-1}z = P^{-1}z.
 \]
 with an operation count of order T^2. So we can write:
 \[
 z'R^{-1}z = e'e.
 \]
 By applying the factorization as it is computed, storage of the $\frac{1}{2}T(T+1)$ matrix is avoided. This method leads to a more elegant expression of the log-likelihood (in addition to being marginally faster), and is currently used in the Arfima package.

When an ARMA(p, q) model is estimated, there are two additional methods available:

- **Banded Choleski**
 In the ARMA case, the Toeplitz matrix can be transformed to a banded Choleski matrix. This method has been proposed by Ansley (1979).

- **Kalman filter**
 The Kalman filter is implemented in SSFpack, see Koopman, Shephard and Doornik (1998).
20.3 Invertibility of MA polynomial

The same likelihood pertains when the roots of the MA polynomial are inverted. Since the likelihood of a non-invertible MA can be evaluated without problems, estimation is not affected. In a Monte Carlo experiment, however, it is essential that non-invertibility is taken into account. Take an MA(1), with $\theta = 0.5$. Since $\theta = 2$ yields the same likelihood, it is thinkable that half the experiments yield $\hat{\theta} \approx 0.5$ and the other half $\hat{\theta} \approx 2$, resulting in poor average estimates from the Monte Carlo experiment.

The following table illustrates the issue ($T = 100$, $M = 100$). The first set of results removes the non-invertible MA (required in 19 cases), the second leaves the MA roots unchanged:

<table>
<thead>
<tr>
<th>coefficients</th>
<th>mean</th>
<th>std.dev</th>
<th>mean bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA1=0.9</td>
<td>0.89157</td>
<td>0.075471</td>
<td>-0.0084326</td>
</tr>
<tr>
<td>MA2=0.81</td>
<td>0.81967</td>
<td>0.11363</td>
<td>0.0096664</td>
</tr>
<tr>
<td>without inversion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA1=0.9</td>
<td>0.93546</td>
<td>0.26420</td>
<td>0.035462</td>
</tr>
<tr>
<td>MA2=0.81</td>
<td>0.86154</td>
<td>0.13834</td>
<td>0.051540</td>
</tr>
</tbody>
</table>

21 Monte Carlo experimentation

The problem in data generation for the ARFIMA(p, d, q) process is analogue to that set out in §20.2:

- Use the naive Choleski method for likelihood evaluation. Let r be the standardized autocovariances of the specified process, and $T [r] = PP^t$, then

$$y = \sigma \varepsilon + \mu,$$

where ε are drawings from the standard normal distribution. For small T, this is convenient, because P only need to be computed once. Once the Choleski decomposition has been computed, generating data is only of order T^2.

- A modified version of Durbin’s algorithm is used to apply the inverted filter:

$$T [r(0), \ldots, r(T-1)] = PP', \quad z = Pe.$$

This algorithm is of order T^2, but perhaps somewhat slower than the naive method for small T. However, it allows for simulation with a large number of observations.
References

Cambridge University Press.

