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1 Introduction

DPD (Dynamic Panel Data) is a package for estimating dynamic panel data models. It also implements some of
the static panel data estimators. DPD is a class written in Ox (see Doornik, 2001), and is used by writing small Ox
programs which create and use an object of the DPD class. Some knowledge of Ox will be required when using
DPD this way.

The DPD package can also be used interactively, similar to PcGive (Hendry and Doornik, 2001). This is the
easiest way to use DPD. Required are Ox Professional, together with GiveWin 2.00 or newer; OxPack can be
downloaded from the same location as DPD. Some examples are given below in§5.

TheDPD class derives from theModelbase class, which in turn derives from the theDatabase class to give
easy loading of data sets and sample selection. An additional simulation class allows Monte Carlo experimentation
with the facilities in the estimation class.

DPD is designed to handle unbalanced panels.

1.1 Disclaimer

This package is functional, but no warranty is given whatsoever. The most appropriate forum to discuss prob-
lems and issues related to the DPD package is the ox-users discussion group (subscription info and archiv-
ing is at www.mailbase.ac.uk/lists/ox-users). Please report suggestions for improvement to Jurgen
Doornik (email for Manuel: Arellano@cemfi.es; for Steve: Steve.Bond@nuffield.ox.ac.uk email for Jurgen: Jur-
gen.Doornik@nuffield.ox.ac.uk).

There is also a Gauss version of DPD. The Ox version is a newly written implementation, which differs in the
way it is used and the estimators which are implemented. See§6.1 for a list of numerical differences.

1.2 Availability and Citation

The DPD package is available for downloading throughhttp://www.nuff.ox.ac.uk/Users/ Doornik/.
DPD is written as 100% pure Ox code, and will also work on Unix platforms.

To facilitate replication and validation of empirical findings, please cite this documentation in all reports and
publications involving the application of theDPD package.

This package must be cited whenever it is used.

1.3 Installation

(1) Make sure you have properly installed Ox version 2.10 or later. TheDPD package does not work fully with
earlier versions of Ox. Typeoxl at the command prompt to check.

(2) Create adpd subdirectory in theox\packages folder and putdpdox100.zip in that subdirectory, then
unzipdpdox100.zip.

(3) Read thereadme.txt file for information on last minute changes.
(4) If Ox has been installed properly, this will allow using theDPD package from any directory. To use the

package in your code, add the command

#import <packages/dpd/dpd>

at the top of all files which require it.

1.4 Running DPD code

To run the program in§3.2 under Windows 95/98/NT:
oxl abest1

You can also use OxRun to run the program in§3.2 under Windows 3.1/95/98/NT. In that case the output will
appear in GiveWin, instead of on the MS-DOS console. DPD is written as 100% pure Ox code, and will also work
on Unix platforms.
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1.5 Main files

• dpd.h – the header file for theDPD class;
• dpd.ox – the source code with theDPD class;
• dpd.oxo – the compiled source code;
• dpd.ps – this document.
• dpdsim.h – the header file for theDPDSim class;
• dpdsim.ox – the source code with theDPDSim class;

Included sample data sets:

• grunfeld.xls – Grunfeld data in Excel spreadsheet format;
• abdata.in7/bn7 – Arellano–Bond data in GiveWin format.

The remaining files are sample programs.

2 Data organization and model formulation

2.1 Data organization

The following data files can be read directly into a DPD object: GiveWin (.in7/.bn7), spreadsheet (Excel, Lotus),
Stata, ASCII and Gauss (.dht/.dat). This is explained in the Ox manual.

In the remainder we shall use the wordindividualto denote the cross-sectional unit (which could be individual,
firm, country, etc.).

Because DPD needs to recognize the structure of the data, and to allow for unbalanced panels, the data must
be organized prior to analysis:

• Each variable is in acolumn.
• the columns areordered by individual, and within individual by time.
• Eachrow refers to the same time period.
• a column with individualindexis recommended (when omitted, the year variable is used to create such an

index).
• There must be one column which denotes theyear. This does not have to be the first column.
• An optionalperiodcolumn may be present when the data is not annual (i.e. the frequency is not one).
• An optionalgroupcolumn may be present to facilitate creating group dummies.
• Missing valuesare also called NaN (Not a Number, specified in Ox by a dot, or the constantM NAN).

For example:

year index employment wages
1971 1 110 9 individual 1
1972 1 130 11 ,,
1973 1 140 12 ,,
1974 1 130 14 ,,
1970 2 540 12 individual 2
1971 2 520 13 ,,
1972 2 510 14 ,,
1973 2 510 14 ,,
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If the data are not sorted, they can easily be sorted using code like:

#include <oxstd.h>
#import <database>

main()
{

decl db = new Database();
db.Load("data.in7");
db.RenewBlock( sortbyc(db.GetAll(), <1,0>), 0);
db.SaveIn7("newdata.in7");

}

This assumes that an individual index is in column 1, and a time index in column 0, so that the data are sorted by
individual by time.

In general, once the data set is sorted, the DPD code works out where individuals start and finish by differen-
cing the index variable. As shown here, when the index variable is differenced once, a non-zero value indicates
the start of an individual, with the zeros indicating continuation:

year index empl ∆year ∆index ∆emp
1971 1 110 . -1 . individual 1
1972 1 130 1 0 10 ,,
1973 1 140 1 0 10 ,,
1974 1 130 1 0 -10 ,,
1970 4 540 -4 3 . individual 4
1971 4 520 1 0 -20 ,,
1972 4 510 1 0 -10 ,,
1973 4 510 1 0 0 ,,
1973 3 30 0 -1 . individual 3
1974 3 20 1 0 -10 ,,
1975 5 30 1 2 . individual 5

When the index variable is missing, the DPD code will try to work out where an individual starts and ends
using the year variable. This is done by differencing the year variable, and checking if the resulting value cor-
responds to the frequency of the data (for annual data: a one indicates the continuation of an individual). The
drawback of this approach is that it excludes subsequent individuals where the year of the last observation on an
individual is immediately after the year of the first observation on the next individual.

2.2 Model formulation

Model formulation is based on the names of variables, not the column index. The following steps are involved in
model formulation:

• Create a DPD object.
• Load your data into the DPD database using the facilities of the Database class.
• Transform the data.
• Optionally useSetIndex to specify the data column with the index variable.
• UseSetYear to specify the data column with years.
• Optionally useSetGroup to specify the data column with groups.
• UseSelect to formulate the model.
• A constant will be included by default, useSetDummies for a different set of dummies, for example:

– none:D NONE
– constant term (the default):D CONSTANT
– time dummies:D TIME
– group dummies:D GROUP
– time dummies interacted with group dummies:D TIMEGROUP
– individual dummies:D INDIVIDUAL
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• Use theGmm function to specify GMM instruments for the transformed equations.
• For combined levels and differences/deviations estimation use theGmmLevel function to specify GMM

instruments for the level equations.
• UseSetTransform to select a transformation method for estimation:

– first differences (the default):T DIFFERENCES
– orthogonal transformations:T DEVIATIONS
– levels (no transformation):T NONE
– within group (deviations from individual means):T WITHIN
– between groups:T BETWEEN
– GLS:T GLS

• UseSetMethod to change estimation method, for example:

– 1-step estimation (the default):M 1STEP
– 2-step estimation:M 2STEP
– Feasible GLS (static panels):M DPD GLS
– Maximum likelihood (static panels):M DPD ML

Robust 1-step estimates are automatically reported when doing 2-step estimation.
• By default, Wald tests on the regressors (except dummies) and the dummies are reported, as well as Sargan’s

test for overidentifying restrictions (the last not for robust 1-step estimation). UseSetTest to change this,
or to add AR tests.

• Finally, useEstimate for estimation.

3 Dynamic panel data estimation

As the name suggests, DPD can be used to compute a variety of dynamic panel estimators, particularly the GMM-
type estimators of Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and Bond (1998). In
addition, some of the Anderson and Hsiao (1982) methods can also be estimated.

The available estimators are:

SetMethod Example
OLS in levels (no instruments specified) M 1STEP abest2.ox
one-step IV estimation (Andersion–Hsiao IV) M 1STEP abest2.ox
one-step GMM estimation M 1STEP
one-step estimation with robust std. errors M 2STEP abest1.ox
two-step estimation M 2STEP abest1.ox

3.1 Econometric methods

The general model that can be estimated with DPD is a single equation with individual effects of the form:

yit =
p∑

k=1

αkyi(t−k) + β′(L)xit + λt + ηi + vit, t = q + 1, ..., Ti; i = 1, ..., N,

whereηi andλt are respectively individual and time specific effects,xit is a vector of explanatory variables,β(L)
is a vector of associated polynomials in the lag operator andq is the maximum lag length in the model. The number
of time periods available on theith individual,Ti, is small and the number of individuals,N , is large. Identification
of the model requires restrictions on the serial correlation properties of the error termvit and/or on the properties
of the explanatory variablesxit. It is assumed that if the error term was originally autoregressive, the model has
been transformed so that the coefficientsα’s andβ’s satisfy some set of common factor restrictions. Thus only
serially uncorrelated or moving average errors are explicitly allowed. Thevit are assumed to be independently
distributed across individuals with zero mean, but arbitrary forms of heteroskedasticity across units and time are
possible. Thexit may or may not be correlated with the individual effectsηi, and for each of theses cases they
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may be strictly exogenous, predetermined or endogenous variables with respect tovit. A case of particular interest
is where the levelsxit are correlated withηi but where∆xit (and possibly∆yit) are uncorrelated withηi; this
allows the use of (suitably lagged)∆xis (and possibly∆yis) as instruments for equations in levels.

The(Ti − q) equations for individuali can be written conveniently in the form:

yi = Wiδ + ιiηi + vi,

whereδ is a parameter vector including theαk ’s, theβ’s and theλ’s, andWi is a data matrix containing the time
series of the lagged dependent variables, thex’s and the time dummies. Lastly,ιi is a(Ti − q)× 1 vector of ones.
DPD can be used to compute various linear GMM estimators ofδ with the general form:

δ̂ =

[(∑
i

W ∗′
i Zi

)
AN

(∑
i

Z ′
iW

∗
i

)]−1(∑
i

W ∗′
i Zi

)
AN

(∑
i

Z ′
iy

∗
i

)
,

where

AN =

(
1
N

∑
i

Z ′
iHiZi

)−1

,

andW ∗
i andy∗

i denote some transformation ofWi andyi (e.g. levels, first differences, orthogonal deviations,
combinations of first differences (or orthogonal deviations) and levels, deviations from individual means).Zi is
a matrix of instrumental variables which may or may not be entirely internal, andHi is a possibly individual
specific weighting matrix.

If the number of columns ofZi equals that ofW ∗
i , AN becomes irrelevant and̂δ reduces to

δ =

(∑
i

Z ′
iW

∗
i

)−1(∑
i

Z ′
iy

∗
i

)
.

In particular, ifZi = W ∗
i and the transformedWi andyi are deviations from individual means or orthogonal

deviations1, then δ̂ is the within groups estimator. As another example, if the transformation denotes first dif-
ferences,Zi = ITi ⊗ x ′

i andHi = v̂∗
i v̂

∗′
i , where thêv∗

i are some consistent estimates of the first differenced
residuals, then̂δ is the generalised three stage least squares estimator of Chamberlain (1984) (in Griliches and In-
triligator, 1984). These two estimators require thexit to be strictly exogenous with respect tovit for consistency.
In addition, the within groups estimator can only be consistent asN → ∞ for fixed T if W ∗

i does not contain
lagged dependent variables and all the explanatory variables are strictly exogenous.

When estimating dynamic models, we shall therefore typically be concerned with transformations that allow
the use of lagged endogenous (and predetermined) variables as instruments in the transformed equations. Efficient
GMM estimators will typically exploit a different number of instruments in each time period. Estimators of this
type are discussed in Arellano (1988), Arellano and Bond (1991), Arellano and Bover (1995) and Blundell and
Bond (1998). DPD can be used to compute a range of linear GMM estimators of this type.

Where there are no instruments available that are uncorrelated with the individual effectsηi, the transformation
must eliminate this component of the error term. The first difference and orthogonal deviations transformations
are two examples of transformations that eliminateηi from the transformed error term, without at the same time
introducing all lagged values of the distrubancesvit into the transformed error term.2 Hence these transformations
allow the use of suitably lagged endogenous (and predetermined) variables as instruments. For example, if the
panel is balanced,p = 1, there are no explanatory variables nor time effects, thevit are serially uncorrelated, and
the initial conditionsyi1 are uncorrelated withvit for t = 2, ..., T , then using first differences we have:

1Orthogonal deviations, as proposed by Arellano (1988) and Arellano and Bover (1995), express each observation as the deviation from
the average offutureobservations in the sample for the same individual, and weight each deviation to standardise the variance, i.e.

x∗
it =

�
xit −

xi(t+1) + ... + xiT

T − t

��
T − t

T − t + 1

�1/2

for t = 1, ..., T − 1.

If the original errors are serially uncorrelated and homoskedastic, the transformed errors will also be serially uncorrelated and homoskedastic.
2There are many other transformations which share these properties. See Arellano and Bover (1995) for further discussion.
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Equations Instruments available
∆yi3 = α∆yi2 + ∆vi3 yi1

∆yi4 = α∆yi3 + ∆vi4 yi1, yi2

...
...

∆yiT = α∆yi(T−1) + ∆viT yi1, yi2, ..., yi(T−2)

In this casey∗
i = (∆yi3, ..., ∆yiT )′,W ∗

i = (∆yi2, ..., ∆yi(T−1))′ and

Zi = ZD
i =


yi1 0 0 · · · 0 0 · · · 0
0 yi1 yi2 · · · 0 0 · · · 0
...

...
...

...
...

...
0 0 0 · · · yi1 yi2 · · · yi(T−2)


Notice that precisely the same instrument set would be used to estimate the model in orthogonal deviations.
Where the panel is unbalanced, for individuals with incomplete data the rows ofZi corresponding to the missing
equations are deleted, and missing values in the remaining rows are replaced by zeros.

In DPD we call one-step estimates those which use some known matrix as the choice forHi. For a first-
difference procedure, the one-step estimator uses

Hi = H D
i =

1
2


2 −1 · · · 0
−1 2 · · · 0
...

...
...

· · −1
0 0 · · · −1 2

 ,

while for a levels or orthogonal deviations procedure the one-step estimator setsHi to an identity matrix. If the
vit are heteroskedastic, a two-step estimator which uses

Hi = v̂∗
i v̂

∗′
i ,

wherev̂∗
i are one-step residuals, is more efficient (cf. White, 1982). DPD produces both one-step and two-step

GMM estimators, with asymptotic variance matrices that are heteroskedasticity-consistent in both cases. Users
should note that, particularly when thevit are heteroskedastic, simulations suggest that the asymptotic standard
errors for the two-step estimators can be a poor guide for hypothesis testing in typical sample sizes. In these
cases, inference based on asymptotic standard errors for the one-step estimators seems to be more reliable (see
§3.4, Arellano and Bond, 1991, and Blundell and Bond, 1998 for further discussion.

In models with explanatory variables,Zi may consist of sub-matrices with the block diagonal form illustrated
above (exploiting all or part of the moment restrictions available), concatenated to straightforward one-column
instruments. A judicious choice of theZi matrix should strike a compromise between prior knowledge (from
economic theory and previous empirical work), the characteristics of the sample and computer limitations (see
Arellano and Bond (1991) for an extended discussion and illustration). For example, if a predetermined regressor
xit correlated with the individual effect, is added to the model discussed above, i.e.

E(xitvis) = 0 for s ≥ t

6= 0 otherwise

E(xitηi) 6= 0

then the corresponding optimalZi matrix is given by

Zi =


yi1 xi1 xi2 0 0 0 0 0 · · · 0 · · · 0 0 · · · 0
0 0 0 yi1 yi2 xi1 xi2 xi3 · · · 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 · · · yi1 · · · yi(T−2) xi1 · · · xi(T−1)
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Where the number of columns inZi is very large, computational considerations may require those columns
containing the least informative instruments to be deleted. Even when computing speed is not an issue, it may
be advisable not to use the whole history of the series as instruments in the later cross-sections. For a given
cross-sectional sample size(N), the use of too many instruments may result in (small sample) overfitting biases.
When overfitting results from the number of time periods(T ) becoming large relative to the number of individuals
(N), and there are no endogenous regressors present, these GMM estimators are biased towards within groups,
which is not a serious concern since the within groups estimator is itself consistent for models with predetermined
variables asT becomes large (see Alvarez and Arellano, 1998). However, in models with endogenous regressors,
using too many instruments in the later cross-sections could result in seriously biased estimates. This possibility
can be investigated in practice by comparing the GMM and within groups estimates.

The assumption of no serial correlation in thevit is essential for the consistency of estimators such as those
considered in the previous examples, which instrument the lagged dependent variable with further lags of the
same variable. Thus DPD reports tests for the absence of first-order and second-order serial correlation in the
first-differenced residuals. If the disturbancesvit are not serially correlated, there should be evidence of signific-
ant negative first order serial correlation in differenced residuals (i.e.v̂it−v̂i,t−1), and no evidence of second order
serial correlation in the differenced residuals. These tests are based on the standardised average residual autoco-
variances which are asymptoticallyN(0, 1) variables under the null of no autocorrelation. The tests reported
are based on estimates of the residuals in first differences, even when the estimator is obtained using orthogonal
deviations.3 More generally, Sargan tests of overidentifying restrictions are also reported. That is, ifAN has been
chosen optimally for any givenZi, the statistic

S =

(∑
i

v̂∗′
i Zi

)
AN

(∑
i

Z ′
i v̂

∗
i

)
(1)

is asymptotically distributed as a chi-square with as many degrees of freedom as overidentifying restrictions,
under the null hypothesis of the validity of the instruments. Note that only the Sargan test based on the two-step
GMM estimator is heteroskedasticity-consistent. Again, Arellano and Bond (1991) provide a complete discussion
of these procedures.

Where there are instruments available that are uncorrelated with the individual effectsηi, these variables can
be used as instruments for the equations in levels. Typically this will imply a set of moment conditions relating to
the equations in first differences (or orthogonal deviations) and a set of moment conditions relating to the equations
in levels, which need to be combined to obtain the efficient GMM estimator.4 For example, if the simple AR(1)
model considered earlier is mean-stationary, then the first differences∆yit will be uncorrelated withηi, and
this implies that∆yi(t−1) can be used as instruments in the levels equations (see Arellano and Bover, 1995 and
Blundell and Bond, 1998 for further discussion). In addition to the instruments available for the first-differenced
equations that were described earlier, we then have:

Equations Instruments available
yi3 = αyi2 + ηi + vi3 ∆yi2

yi4 = αyi3 + ηi + vi4 ∆yi3

...
...

yiT = αyi(T−1) + ηi + viT ∆yi(T−1)

Notice that no instruments are available in this case for the first levels equation (i.e.yi2 = αyi1 + ηi + vi2),
and that using further lags of∆yis as instruments here would be redundant, given the instruments that are being
used for the equations in first differences. In a balanced panel, we could use only the last levels equation (i.e.
yiT = αyi(T−1) + ηi + viT ), where(∆yi2, ∆yi3, ..., ∆yi(T−1)) would all be valid instruments; however this
approach does not extend conveniently to unbalanced panels.

3Although the validity of orthogonality conditions is not affected, the transformation to orthogonal deviations can induce serial correlation
in the transformed error term if thevit are serially uncorrelated but heteroskedastic.

4In special cases it may be efficient to use only the equations in levels; for example, in a model with no lagged dependent variables and all
regressors strictly exogenous and uncorrelated with individual effects.
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In this case, we usey∗
i = (∆yi3, ..., ∆yiT , yi3, ..., yiT )′, W ∗

i = (∆yi2, ..., ∆yi(T−1), yi2, ..., yi(T−1))′ and

Zi =


ZD

i 0 · · · 0
0 ∆yi2 · · · 0
· · ·
0 0 · · · ∆yi(T−1)


whereZD

i is the matrix of instruments for the equations in first differences, as described above. AgainZi would
be precisely the same if the transformed equations iny∗

i andW ∗
i were in orthogonal deviations rather than first

differences. In models with explanatory variables, it may be that the levels of some variables are uncorrelated
with ηi, in which case suitably lagged levels of these variables can be used as instruments in the levels equations,
and in this case there may be instruments available for the first levels equation.

For the system of equations in first differences and levels, the one-step estimator computed in DPD uses the
weighting matrix

Hi =
(

H D
i 0

0 1
2Ii

)
whereH D

i is the weighting matrix described above for the first differenced estimator, andIi is an identity matrix
with dimension equal to the number of levels equations observed for individuali. For the system of equations
in orthogonal deviations and levels, the one-step estimator computed in DPD setsHi to an identity matrix with
dimension equal to the total number of equations in the system for individuali. In both cases the corresponding
two-step estimator usesHi = v̂∗

i v̂∗′
i . We adopt these particular one-step weighting matrices because they are

equivalent in the following sense: for a balanced panel where all the available linear moment restrictions are
exploited (i.e. no columns ofZi are omitted for computational or small sample reasons), the associated one-step
GMM estimators are numerically identical, regardless of whether the first difference or orthogonal deviations
transformation is used to construct the system. Notice though that the one-step estimator is asymptotically in-
efficient relative to the two-step estimator for both of these systems, even if thevit are homoskedastic.5 Again
simulations have suggested that asymptotic inference based on the one-step versions may be more reliable than
asymptotic inference based on the two-step versions, even in moderately large samples (see§3.4 and Blundell and
Bond, 1998).

The validity of these extra instruments in the levels equations can be tested using the Sargan statistic provided
by DPD. Since the set of instruments used for the equations in first differences (or orthogonal deviations) is a
strict subset of that used in the system of first-differenced (or orthogonal deviations) and levels equations, a more
specific test of these additional instruments is a Difference Sargan test which compares the Sargan statistic for
the system estimator and the Sargan statistic for the corresponding first-differenced (or orthogonal deviations)
estimator. Another possibility is to compare these estimates using a Hausman specification test, which can be
computed here by including another set of regressors that take the value zero in the equations in first differences
(or orthogonal deviations), and reproduce the levels of the right hand side variables for the equations in levels.6

The test statistic is then a Wald test of the hypothesis that the coefficients on these additional regressors are jointly
zero. Full details of these test procedures can be found in Arellano and Bond (1991) and Arellano (1995).

5With levels equations included in the system, the optimal weight matrix depends on unknown parameters (for example, the ratio of var(ηi)
to var(vit)) even in the homoskedastic case.

6Thus in the AR(1) case described above we would have

W ∗
i =

�
0 ... 0 yi2 ... yi(T−1)

∆yi2 ... ∆yi(T−1) yi2 ... yi(T−1)

�′

.
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3.2 Examples on dynamic panel data estimation

The code below (provided asabest1.ox) estimates column (b) of table 4 in Arellano and Bond (1991), using the
data setabdata.in7:

abest1.ox
#include <oxstd.h>
#import <packages/dpd/dpd>

main()
{

decl dpd = new DPD(), time = timer(), x;

dpd.Load("abdata.in7"); // load data
dpd.SetYear("YEAR"); // specify columns with years
dpd.SetOptions(FALSE); // no robust std.errors

dpd.Select(Y_VAR, {"n", 0, 2}); // formulate model
dpd.Select(X_VAR, {"w", 0, 1, "k", 0, 0, "ys", 0, 1});
dpd.Select(I_VAR, {"w", 0, 1, "k", 0, 0, "ys", 0, 1});

dpd.Gmm("n", 2, 99); // GMM-type instrument
dpd.SetDummies(D_CONSTANT + D_TIME);// specify dummies
dpd.SetTest(1, 2);// specification,Sargan,AR 1-2 tests
dpd.Estimate(); // 1-step estimation

print("\n\n***** Arellano & Bond (1991), Table 4 (b)");
dpd.SetMethod(M_2STEP);
dpd.Estimate(); // 2-step estimation

// this gives table 4, column (b)
print("\ntime: ", timespan(time), "\n");
delete dpd; // finished with object

}

Which generates output (one-step results are not shown; the full output is inabest1.out):

part of abest1.out
***** Arellano & Bond (1991), Table 4 (b)
DPD( 2) Modelling n by 1 and 2 step

---- 2-step estimation using DPD ----
Coefficient Std.Error t-value t-prob

Dn(-1) 0.474151 0.08530 5.56 0.000
Dn(-2) -0.0529675 0.02728 -1.94 0.053
Dw -0.513205 0.04935 -10.4 0.000
Dw(-1) 0.224640 0.08006 2.81 0.005
Dk 0.292723 0.03946 7.42 0.000
Dys 0.609775 0.1085 5.62 0.000
Dys(-1) -0.446373 0.1248 -3.58 0.000
Constant 0.0105090 0.007251 1.45 0.148
T1980 0.00363321 0.01273 0.285 0.775
T1981 -0.0509621 0.01371 -3.72 0.000
T1982 -0.0321490 0.01399 -2.30 0.022
T1983 -0.0123558 0.01284 -0.962 0.336
T1984 -0.0207295 0.01368 -1.52 0.130

sigma 0.116243 sigma^2 0.01351243
sigma levels 0.08219621
RSS 8.0804358435 TSS 12.599978399
no. of observations 611 no. of parameters 13
Warning: standard errors are unreliable!
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(continued)
Transformation used: first differences
Transformed instruments: w w(-1) k ys ys(-1)
Level instruments: Dummies Gmm(n,2,99)

constant: yes time dummies: 5
number of individuals 140 (derived from year)
longest time series 6 [1979 - 1984]
shortest time series 4 (unbalanced panel)

Wald (joint): Chi^2(7) = 372.0 [0.000] **
Wald (dummy): Chi^2(6) = 26.90 [0.000] **
Wald (time): Chi^2(6) = 26.90 [0.000] **
Sargan test: Chi^2(25) = 30.11 [0.220]
AR(1) test: N(0,1) = -2.428 [0.015] *
AR(2) test: N(0,1) = -0.3325 [0.739]

These results are identical to those in Arellano and Bond (1991), except for the AR(2) test (denotedm2 in the
paper), which is explained in the footnote on Page 28.

Note that, to replicate the published results, we switched off robust standard errors here. Starting with DPD
version 1.2, robust standard errors for two-step GMM are available, based on a small-sample correction by Wind-
meijer (2000).

Further examples are:

• abest2.ox, which replicates Table 5 from Arellano and Bond (1991). The basic specification is:

dpd.Select(Y_VAR, {"n", 0, 0}); // formulate model
dpd.Select(X_VAR, {"n", 1, 2, "w", 0, 1, "k", 0, 2, "ys", 0, 2});
dpd.SetDummies(D_CONSTANT + D_TIME); // time, constant

– OLS estimation:

dpd.SetTransform(T_NONE); // estimate in levels
dpd.Estimate(); // 1-step estimation

– within-group estimation (both direct and using orthogonal deviations);

dpd.SetTransform(T_WITHIN); // proper within estimation
dpd.Estimate(); // 1-step estimation
// and:
dpd.SetTransform(T_DEVIATIONS); // estimate within
dpd.Estimate(); // 1-step estimation

Arellano and Bond (1991) implemented the within-group estimator as OLS after applying the ortho-
gonal deviations estimator. In unbalanced panels this is slightly different from estimation in deviation
from the mean of each individual (but asymptotically identical). DPD for Ox also has the within-
groups estimation as an option (abest2.ox estimates both forms). The orthogonal deviations method
has the benefit that robust standard errors are available when using two-step estimation.

– Anderson–Hsiao-type estimates, using∆ni,t−3 in addition to the regressors as non-GMM type instru-
ment (I VAR):

dpd.Select(I_VAR, {"n", 2, 3, "w", 0, 1, "k", 0, 2, "ys", 0, 2});

Or entering all regressors as non-GMM type instruments in differences (I VAR) andni,t−3 in levels
(i.e. untransformed;IL VAR):

dpd.Select(I_VAR, {"n", 2, 2, "w", 0, 1, "k", 0, 2, "ys", 0, 2});
dpd.Select(IL_VAR, {"n", 3, 3});

• abest3.ox, which replicates Table 4 from Arellano and Bond (1991). This has an analogue to column (c)
which uses several GMM-type instruments:

diag(ni,1 · · ·ni,t−2wi,t−3wi,t−2ki,t−3ki,t−2), t = 3, . . . T,
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which is formulated as

dpd.Gmm("n", 2, 99);
dpd.Gmm("w", 2, 3);
dpd.Gmm("k", 2, 3);

Column (c) cannot be replicated because sales and stocks are not in the data set.
• abest4.ox repeatsabest1.ox, but now using orthogonal deviations estimation:

dpd.SetTransform(T_DEVIATIONS); // orthogonal deviations

Some indications of the time it takes to run these programs: the timings for most of theabest programs is less
than a second on a 500 Mhz Pentium III, while the program of the next section,bbest1, takes about 3 seconds
(running Windows NT 4.0).

3.3 Examples on combined dynamic panel data estimation

The programbbest1.oxhas examples using the combined GMM-SYS estimator proposed in Arellano and Bover
(1995) and Blundell and Bond (1998). In this type of estimation (called system estimator by Blundell and Bond,
1998) the level equations are stacked on top of the transformed equations. The GMM-type instruments for the
differenced equations

diag(ni,1 · · ·ni,t−2wi,1 · · ·wi,t−2ki,1 · · ·ki,t−2),

are formulated as:

dpd.Gmm("n", 2, 99);
dpd.Gmm("w", 2, 99);
dpd.Gmm("k", 2, 99);

The GMM-style instruments in the levels equation are the lagged differences:

diag(∆ni,t−1∆wi,t−1∆ki,t−1),

formulated inbbest1.ox as:

dpd.GmmLevel("n", 1, 1); // GMM instruments for levels
dpd.GmmLevel("w", 1, 1);
dpd.GmmLevel("k", 1, 1);

Table 1 Blundell & Bond Table 4: employment equations.

1979-84 GMM-DIF 1979-84 GMM-SYS 1976-84 GMM-DIF 1976-84 GMM-SYS
ni,t−1 0.5393 (0.151) 0.9360 (0.062) 0.7075 (0.084) 0.8714 (0.044)
wi,t −1.2356 (0.373) −1.0582 (0.220) −0.7088 (0.117) −0.7811 (0.116)
wi,t−1 0.5405 (0.178) 0.8326 (0.158) 0.5000 (0.111) 0.5121 (0.167)
ki,t 0.8291 (0.346) 0.9204 (0.217) 0.4660 (0.101) 0.4688 (0.071)
ki,t−1 −0.7355 (0.294) −0.8945 (0.236) −0.2151 (0.086) −0.3560 (0.072)
m1 −3.15 [0.00]∗∗ −3.72 [0.00]∗∗ −5.60 [0.00]∗∗ −5.98 [0.00]∗∗

m2 0.78 [0.44] 0.85 [0.40] −0.14 [0.89] −0.17 [0.87]
Sargan 13.28 [0.97] 38.04 [0.42] 88.80 [0.21] 111.6 [0.20]

Except for column 3, Table 4 of Blundell and Bond (1998) cannot be exactly replicated for the following
reasons:

(1) sub-sample estimation was not implemented correctly, using more lagged information than appropriate.
This affects the first two columns.

(2) TheHi matrix was set to the identity matrix. Subsequently, it has been decided to use the same matrix
for differenced estimation whether not combined or combined (1 on the diagonal, -1/2 along the diagonal).
This affects column 2 and 4.
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(3) In Blundell and Bond (1998), the differenced dummies were used as instruments in the transformed equa-
tions. This affects column 2 and 4.

Using the programbbest1.ox we find the full-sample results listed in the last two columns of Table 1. The
coefficients are for the one-step estimates, with in parentheses the robust standard errors. The Sargan test is the
two-step version.

3.4 A simulation example

A Monte Carlo experiment generally consists of three components:

(1) data generation process (DGP),
(2) model (and test statistics) to simulate,
(3) Monte Carlo replications with accumulation of results.

All those ingredients are readily available: for many dynamic panels data DGPs, we can use thePcNaiveDgp
class; the third step (the actual experiment) can be done by deriving from theSimulation class. The middle step
is provided by theDPD class.

The homoscedastic DGP in Arellano and Bond (1991) is:

yit = αyi,t−1 + βxi1 + ηi + uit, ηi ∼ N[0, 1], i = 1, . . . , N, t = 1, . . . , T

uit = φui,t−1 + vit, vit ∼ N[0, 1],
xit = ρxi,t−1 + eit, eit ∼ N[0, σ2

e].

This can be seen as a simultaneous equations system withN equations, which allows us to use thePcNaiveDgp
class to generate data.

The Monte Carlo experiment is implemented in theDPDSim class. The estimated model includes a constant
term. The estimators can be summarized as:

transformation regressors instruments estimation
OLS – yi,−1,xi,1 1-step
Within within yi,−1,xi,1 1-step
GMM1 ∆ ∆yi,−1, ∆xi,1 diag(yi,t−3yi,t−2), ∆xi,1 1-step
GMM2 ∆ as GMM1 as GMM1 2-step
AHd ∆ as GMM1 ∆yi,t−2, ∆xi,1 1-step
AHl ∆ as GMM1 yi,t−2, ∆xi,1 1-step
GMM1-SYS ∆ ∆yi,−1, ∆xi diag(yi,t−3yi,t−2), ∆xi 1-step

levels: yi,−1,xi,1 diag(∆yi,t−2),xi,1

GMM2-SYS as GMM1-SYS as GMM1-SYS 2-step

WhenT = 5, for example, the instruments for the differenced equations (Z∗) and level equations (Z+) in
GMM estimation are:

Z∗
i =

 yi0 0 0 0 0 ∆xi,2

0 yi0 yi1 0 0 ∆xi,3

0 0 0 yi1 yi2 ∆xi,4

 , Z+
i =

 ∆yi1 0 0 xi,2 1
0 ∆yi2 0 xi,3 1
0 0 ∆yi3 xi,4 1


Here we have reverted to counting from zero (the Ox convention), so initially, the available observations are
0 · · · 4. One observation is lost owing to the lagged dependent variable, and one more by differencing. The GMM
intruments for the differences are specified byGmm("Y",2,3), so lagged two periods. In combined estimation,
the GMM instruments for the levels are specified byGmmLevel("Y",1,1), corresponding to differences, one
period lagged.

The code inabsim1.ox implements some experiments withM = 100 replications (taking about half a minute
on a 500 Mhz Pentium III);absim2.ox adds the combined GMM-SYS estimators. Some results forM = 1000
are presented in Figure 1. These are similar to Table 1 of Arellano and Bond (1991) (but we usedGmm("Y",2,3)
rather thanGmm("Y",2,99)), and Table 2 of Blundell and Bond (1998) (but with largerT , and an additional
regressor).
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Figure 1 Mean bias of estimators,Gmm("Y",2,3),M = 1000, β = 1, ρ = 0.8, φ = 0, σ2
e = 0.9; bars are twice

the MCSD.

Figure 1 shows that the GMM1 and GMM2 estimators are less precise forα close to unity. The combined
estimators, however, behave much for largeα. The graphs also show that AHd is unidentified atα = 0.5, and
AHl very imprecise atα = 0.9 (see the discussion in Arellano and Bond, 1991, p.285).
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Figure 2 RMSE, MCSD and MCSE,Gmm("Y",2,3), M = 1000, β = 1, ρ = 0.8, φ = 0, σ2
e = 0.9.
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Figure 2 shows that inference is problematic using the two-step standard errors. It graphs the root of the mean
squared error (RMSE), the Monte Carlo standard deviation (MCSD; the standard deviation of the estimatedα̂),
and the the Monte Carlo standard error (MCSE; the mean of the estimatedSE[α̂]).
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Figure 3 Mean bias of estimators,Gmm("Y",2,2), M = 1000, β = 1, ρ = 0.8, φ = 0, σ2
e = 0.9.

Figure 3 is the same experiment as 1, except usingGmm("Y",2,2) as instruments instead ofGmm("Y",2,3).
It shows that the bias for the GMM1 and GMM2 estimators is now larger forα close to unity (for example, in
the first plot the bias atα = 0.9 is −0.26, corresponding tō̂α = 0.64). In this case GMM-SYS is again an
improvement, although standard errors are less reliable than in 2.

4 Static panel data estimation

4.1 Introduction

DPD/Ox can be used to compute some of the standard panel data methods, such as OLS and within-groups
estimation. The following table lists the pre-programmed estimators:

SetTransform SetMethod Example
OLS in levels T NONE M 1STEP grunest1.ox
Between estimator T BETWEEN M 1STEP grunest1.ox
Within estimator T WITHIN M 1STEP grunest1.ox
Feasible GLS — M DPD GLS grunest2.ox
GLS (OLS residuals) — M DPD GLS1 grunest2.ox
Maximum likelihood (ML) — M DPD ML grunest2.ox

SetTransform andSetMethod are the DPD functions which are used to select the method. Feasible generalized
least squares combines within and between estimation (called SWAR in Baltagi, 1995,§2.6, after Swamy and
Arora, 1972). The second GLS entry uses OLS residuals (called WALHUS in Baltagi, 1995,§2.6, after Wallace
and Hussain, 1969). ML corresponds to iterated GLS.

Least squares dummy variables estimation (LSDV) can be implemented by regression on individual dummies.

4.2 Example on standard panel data estimation

This first example replicates rows one to three of Table 2.1 in Baltagi (1995), and is provided in the file
grunest1.ox.
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grunest1.ox
#include <oxstd.h>
#import <packages/dpd/dpd>

main()
{

decl dpd = new DPD(); // declare and create DPD object

dpd.Load("grunfeld.xls"); // load data
dpd.Info(); // print database summary statistics
dpd.SetYear("Year"); // specify columns with years

dpd.Select(Y_VAR, {"I", 0, 0}); // formulate model
dpd.Select(X_VAR, {"F_1", 0, 0, "C_1", 0, 0});

//------------------- OLS -----------------------------
dpd.SetTransform(T_NONE); // estimate in levels
print("\n\n***** Baltagi (1995), Table 2.1: OLS");
dpd.Estimate(); // 1-step estimation

//------------------- between -------------------------
dpd.SetTransform(T_BETWEEN); // estimate between groups
print("\n\n***** Baltagi (1995), Table 2.1: Between");
dpd.Estimate(); // 1-step estimation

//------------------- within --------------------------
dpd.SetTransform(T_WITHIN); // estimate within groups
print("\n\n***** Baltagi (1995), Table 2.1: Within");
dpd.Estimate(); // 1-step estimation

delete dpd; // finished with object
}

This example lets DPD work out the individual index from the year variable, as noted in the output:

grunest1.out
DPD package version 1.2, object created on 20-06-2001
---- Database information ----
Sample: 1 - 200 (200 observations)
Frequency: 1
Variables: 4

Variable #obs #miss min mean max std.dev
Year 200 0 1935 1944.5 1954 5.7663
I 200 0 0.93 145.96 1486.7 216.33
F_1 200 0 58.12 1081.7 6241.7 1311.2
C_1 200 0 0.8 276.02 2226.3 300.35

***** Baltagi (1995), Table 2.1: OLS
DPD( 1) Modelling I by 1-step

---- 1-step estimation using DPD ----
Coefficient Std.Error t-value t-prob

F_1 0.115562 0.005836 19.8 0.000
C_1 0.230678 0.02548 9.05 0.000
Constant -42.7144 9.512 -4.49 0.000

sigma 94.4084 sigma^2 8912.947
R^2 0.812408
RSS 1755850.4841 TSS 9359943.9289
no. of observations 200 no. of parameters 3
Warning: standard errors not robust to heteroscedasticity
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(continued)
Transformation used: none

constant: yes time dummies: 0
number of individuals 10 (derived from year)
longest time series 20 [1935 - 1954]
shortest time series 20 (balanced panel)

Wald (joint): Chi^2(2) = 853.2 [0.000] **
Wald (dummy): Chi^2(1) = 20.17 [0.000] **

***** Baltagi (1995), Table 2.1: Between
DPD( 2) Modelling I by 1-step

---- 1-step estimation using DPD ----
Coefficient Std.Error t-value t-prob

F_1 0.134646 0.02875 4.68 0.002
C_1 0.0320315 0.1909 0.168 0.872
Constant -8.52711 47.52 -0.179 0.863

sigma 85.02366 sigma^2 7229.023
R^2 0.8577682
RSS 50603.161076 TSS 355779.58273
no. of observations 10 no. of parameters 3
Warning: standard errors not robust to heteroscedasticity

Transformation used: between groups (using individual means)

constant: yes time dummies: 0
Dummies entered in transformed form
number of individuals 10 (derived from year)
longest time series 20 [1935 - 1954]
shortest time series 20 (balanced panel)

Wald (joint): Chi^2(2) = 42.22 [0.000] **
Wald (dummy): Chi^2(1) = 0.03221 [0.858]

***** Baltagi (1995), Table 2.1: Within
DPD( 3) Modelling I by 1-step

---- 1-step estimation using DPD ----
Coefficient Std.Error t-value t-prob

F_1 0.110124 0.01186 9.29 0.000
C_1 0.310065 0.01735 17.9 0.000

sigma 52.76797 sigma^2 2784.458
R^2 0.7667576
RSS 523478.14739 TSS 2244352.2743
no. of observations 200 no. of parameters 12
Warning: standard errors not robust to heteroscedasticity

Transformation used: within groups (deviation from individual means)

constant: no time dummies: 0
number of individuals 10 (derived from year)
longest time series 20 [1935 - 1954]
shortest time series 20 (balanced panel)

Wald (joint): Chi^2(2) = 618.0 [0.000] **

Further examples are:

• grunest2.oxwhich estimates the model using feasible GLS and maximum likelihood.
• grunest3.oxwhich shows how recursive estimation can be implemented.
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5 DPD in OxPack for GiveWin

DPD in OxPack for GiveWin has an effective graphical user interface for interactive data and model selection,
estimation, and testing.

5.1 Installing DPD in OxPack for GiveWin

Installation of the interactive version of DPD:

(1) Install DPD intoox/packages/dpd as described above.
(2) Install OxPack for GiveWin (available fromhttp://www.nuff.ox.ac.uk/users/doornik). OxPack

requires a properly installed GiveWin version 1.20 or later. Check the version number in the GiveWin Help
menu.

(3) Start GiveWin, and then OxPack from the GiveWin Modules menu. From the OxPack Package menu
Choose Add/Remove Package. Locatedpd.oxo (in the dpd folder) using the Browse button, and press
Add.

5.2 Sample session using DPD in OxPack: static panel methods

OxPack is now ready to use DPD. As a first example, we use the Grunfeld data set which is in thedpd folder:

(1) Load the data setgrunfeld.xls in GiveWin.
(2) From the OxPack Package menu choose DPD. The title bar of the OxPack window shows thatDPD is loaded

and the messageDPD package version 1.00, object created on ... is displayed in the GiveWin
Results window.

(3) From the OxPack Model menu choose Formulate, and selectI, F 1, andC 1. Add these to the model
without lags. I will be marked with Y, indicating that it is the dependent variable (if not: selectI in the
model and click on Y-variable). Next addYear, select it in the model by clicking on it, and hit the Year
button. The variable is now marked with an r; without a Year variable, DPD cannot estimate any models.
The dialog will look like:

(4) Click OK, which takes you to the Functions dialog. These will be required for GMM estimation, but are
not needed here, so click OK. The next dialog is used to specify the dummies and transformations, as well
as some additional options. To start with OLS estimation, set Transformations to None:
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Note that none of the estimation options are set.
(5) In the estimation dialog, choose one-step estimation:

Note that the sample selection options are ignored by DPD: they do not take the panel aspect of the data
into account. Section 5.4 shows how to estimate over a subsample.

(6) Estimation is nearly instantaneous, and the output appears in the GiveWin Results window. Various options
are available in the Test menu. Dynamic analysis is not interesting here, as the estimated model is static.
The output lists:

Wald (joint): Chi^2(2) = 853.2 [0.000] **
Wald (dummy): Chi^2(1) = 20.17 [0.000] **

which can be replicated easily using Test/Exclusion restrictions. For the first, selectF 1 andC 1 for exclu-
sion:
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For the second select the Constant term.
(7) To implement the remaining static estimators, make the following choices in the Model Settings and Estim-

ate Model dialogs:

Transformation Estimation Method
Between estimator Between group One-step estimation
Within estimator Within group One-step estimation
Feasible GLS None GLS (within/between)
GLS (OLS residuals) None GLS (OLS residuals)
Maximum likelihood (ML) None Maximum likelihood estimation

For LSDV select a constant and individual dummies in Model Settings, no transformations, and estimate
by one-step estimation.

5.3 Sample session using DPD in OxPack: dynamic panel methods

The objective here is to replicate the column labelled GMM-DIF in Table 1.

• From the OxPack Model menu choose Formulate, and select the model as shown:

• Click OK, which takes you to the Functions dialog. Three GMM functions must be formulated. Set Lag1
to 2, and Lag2 to 99; selectn in the Database listbox, and click on the Add button. Repeat this forw andk:
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• The next dialog is the Model Settings dialog. Select a constant and time dummies; differences for the
transformation; specification tests and AR test up to order 2:

• In the estimation dialog, choose two-step estimation. The results should match those in the table.

5.4 Sample session using DPD in OxPack: combined dynamic panel methods

The next step is to replicate the last column of Table 1, labelled GMM-SYS. The basic model is unchanged from
the previous section. So, select Formulate, and press OK.

The three GMM instruments for the differenced equations are unchanged, but three level instruments must be
added. Select the GmmLevel function, noting that the text above the two argument edit boxes changes. Needed
are the differences at lag one, so set both to one, and add the three GmmLevel instruments:
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Click on OK, and select Combined estimation in the Model Settings dialog. Then choose 2-step estimation: the
results should match the last column in Table 1.

Note that while OxPack is running, the program disappears from screen, and the title on the taskbar changes
from ‘DPD – OxPack’ to ‘Ox running...’. If the program takes too long, click on it on the taskbar: then press the
Abort button on OxPack if you wish to interrupt it.

To estimate the first two columns of Table 1, use GiveWin to create a new year variable to use in the estimation.
The GiveWin Algebra code is:

yearsub = YEAR < 1979 ? MISSING : YEAR;

Note that the sample reported in the DPD-Ox output is after allowing for lags and differences, whereas those
in Table 1 include the lags.

6 Notes and remarks

6.1 Differences with the Gauss version

• DPD/Ox uses the Student-t distribution to reportp-values instead of standard normal.
• The AR test is somewhat different after 2-step estimation: DPD/Gauss uses 1-step residuals in the denom-

inator (2-step in the numerator). DPD/Ox uses 2-step residuals throughout.
• DPD/Gauss computes within-groups estimator by applying OLS after orthogonal deviations transforma-

tion. DPD/Ox implements the standard within-groups estimation by applying OLS after subtracting the
individual means, as well as the orthogonal deviations method.

• DPD/Gauss has a difference betweengmm(.,2,-2) andgmm(.,-2,2). In DPD/Ox both yield identical
sets of instruments.

Changes in version 1.20

• Robust standard errors for two-step GMM is now based on a small-sample correction by Windmeijer (2000).
Consequently, all derived test statistics are also different.

• Robust standard errors is now the default.
• small changes to the output format.

Numerical changes in version 1.00

• Sargan test after two-step estimation is slightly different. If the current test outcome is denoted asS, the
value found in the previous version of DPD wasSσ̂2

1/σ̂2
2.
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6.2 New in version 1.00

• combined differenced (or orthogonal deviations) and levels estimation (as in Blundell and Bond, 1998),
• static panel data estimation (feasible GLS, ML),
• using generalized inverses for singular moments (warning is printed),
• fairly extensive internal code revisions,
• extra export functions,
• individuals with insufficient observations are automatically removed,
• option to transform dummies or to concentrate dummies,
• option to print GMM-instrument lay-out,
• simulation classDPDSim,
• can be used interactively, using GiveWin and OxPack.

To do

• implementT TREND andT SEASONALS,
• check with quarterly data,
• some descriptive statistics.
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A Technical Appendix

This section gives a summary of the statistical output of DPD, giving the formulae which are used in the compu-
tations. The notation uses Ox-style indexing which starts from0.

A.1 Transformations

• none
x∗

it = xit, t = 0, . . . , Ti − 1.

• first differences
x∗

it = ∆xit = xit − xi,t−1, t = 1, . . . , Ti − 1,

x∗
i0 = ∆xi0 = 0.

• time means:

x̄i =
1
Ti

Ti−1∑
s=0

xis.

• deviations from time means
x∗

it = xit − x̄i, t = 0, . . . , T − 1.

• orthogonal deviations

xo
it =

(
xit − 1

Ti − t

Ti−1∑
s=t+1

xis

)(
Ti − t

Ti − t + 1

)1/2

, t = 1, . . . , Ti − 2.

The orthogonal deviations are stored with one lag, so that the first observation is lost instead of the last (this
brings it in line with first differencing):

x∗
it = xo

i,t−1, t = 1, . . . , Ti − 1.

x∗
i0 = 0.

• GLS deviations:
x∗

it = xit − θix̄i, t = 0, . . . , Ti − 1.

Where the choice ofθi determines the method, as discussed in the next section.

A.2 Static panel-data estimation

The static single-equation panel model can be written as:

yit = x ′
itγ + λt + ηi + vit, t = 0, . . . , T − 1, i = 0, . . . , N − 1.

Theλt andηi are respectively time and individual specific effects andxit is ak∗ vector of explanatory variables.
N is the number of cross-section observations. The total number of observations isO = NT .

In an unbalanced panel, different individuals may have a different number of observations,Ti. In that case the
total number of observations equalsO =

∑
Ti.

Stacking the data for an individual according to time:

yi = Xiγ + λ + ιiηi + vi, i = 0, . . . , N − 1,

whereιi is a column of ones. UsingD for the matrix with dummies:

yi = Xiγ + Diδ + vi, i = 0, . . . , N − 1.

The next step is to stack all individuals, combining thexs and dummies intoW = [X : D ]:

y = W β + v .

Baltagi (1995) reviews the standard estimation methods used in this setting.
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• TheOLSestimates are:
β̂ = (W ′W )−1 W ′y ,

V̂
[
β̂
]

= σ̂2
v (W ′W )−1

,

σ̂2
v = v̂ ′v̂/ (n − p) ,

v̂ = y −W β̂.

HereW hask columns, containing all specified regressors including dummies, spp = k.
• TheLSDV(least squares dummy variables) estimates use individual dummies.
• Thewithin estimates replacey andX by deviations from time means.
• Thebetweenestimates replacey andW by the individual means.
• The feasible GLSestimates replacey andW by deviations from weighted time means. The outcome

depends on the choice of theta, which in DPD is set by specifyingσv andσ2
η:

θi = 1 − σv

σi
, σ2

i = σ2
v + Tiσ

2
η.

When OLS residualsu = v̂OLS are used, the GLS estimator can be based on:

σ̂2
v =

∑N−1
i=0

∑Ti−1
t=0 (uit − ūi)2

O − N
,

σ̂2
i = σ2

0 =
∑N−1

i=0 Tiūi

N − 1
.

The Ox code computesθi from σv andσ2
η with the latter derived from̂σ2

0 as:

σ̂2
η =

(
σ̂2

0 − σ̂2
v

) N

O
.

In a balanced panel:N/O = 1/T . This is not optimal in an unbalanced panel, but seems reasonable.
The standard feasible GLS estimator uses the between and within estimates:

σ2
v = σ̂2

within,

σ2
i = Tiσ̂

2
between.

For convenience,θi is specified using three variance componentsσ2
v, σ2

a, andσ2
η:

θi = 1 −
(

σ2
v

σ2
a + Tiσ2

η

)1/2

. (2)

σ2
v σ2

a σ2
η

OLS based GLS σ̂2
v σ̂2

v σ̂2
η

between/within based GLSσ̂2
within 0 σ̂2

between

• Themaximum likelihoodestimates obtainθ by iterating the GLS procedure. The concentrated likelihood
is:

`c(τ ; β̂(τ ), σ̂2
v(τ ))/O = c − 0.5 log(σ̂2

v) − 0.5
N−1∑
i=0

log(1 + Tiτ )/O, (3)

whereτ = σ2
η/σ2

v, so that:

θi = 1 − (1 + Tiτ )−1/2 .

To summarize the implementation in DPD:
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number of degrees of freedom transforms

observations,n lost in estimation,p dummies

OLS (no transformation) O k no

within O k + N no

between N k yes

GLS, ML O k yes

It is important to note that the within transformations are only applied toX , and not to the dummiesD.
In the within estimator, individual dummies are redundant after subtracting the individual means. In the between
estimator, time dummies are irrelevant, and individual dummies create a perfect fit. In GLS and ML the individual
means are subtracted with weights.

A.3 Dynamic panel data estimation

The single equation dynamic panel model can be written as:

yit =
m∑

s=1

αiyi,t−s + x ′
itγ + λt + ηi + vit, t = 0, . . . , Ti − 1, i = 0, . . . , N − 1.

As before,λt andηi are time and individual specific effects andxit is ak∗ vector of explanatory variables. It is
assumed that allowance for lagged observations has been made, so observations onyi,−s, . . . , yi,−1 are available.
The total number of observations available for estimation equalsO =

∑
Ti.

Stacking the data for an individual according to time: and usingD for the matrix with dummies:

yi = Xiγ + Diδ + vi, i = 0, . . . , N − 1.

The estimators and tests are described in Arellano and Bond (1991), and have the form:

M = (
∑

i W
′
i Zi)AN (

∑
i Z

′
iWi) ,

AN = (
∑

i Z
′
iHiZi)

−1
,

β̂ = M−1 (
∑

i W
′
i Zi)AN (

∑
i Z

′
iqi) ,

σ̂2
u = û ′û/(n − p),

û = q −W β̂.

(4)

In formulating the model, we distinguish the following types of variables:

y dependent variables,

X regressors, including lagged dependent variables,

D dummy variables,

I normal instruments,

L ‘level’ instruments,

G GMM-style instruments.

TheGi are described under theGmm function. From these variables, the dependent variable, regressor and instru-
ment matrices are formed as follows:

dimension

qi = y∗
i Ti × 1

Wi = [X ∗
i : Ds

i ] Ti × k

Zi = [Gi : I ∗
i : Ds

i : Li] Ti × z

Where the∗ denotes some transformation which can be chosen from§A.1. This also affects the degrees of
freedom:
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transformation number of degrees of freedom transforms dummies

observations,n lost in estimation,p

differences O − N k Ds = D (optional:D∗)

deviations O − N k Ds = D (optional:D∗)
none O k no: Ds = D

within O k + N no: Ds = D

between N k yes:Ds = D∗

GLS O k yes:Ds = D∗

When the option toconcentrateout dummies is used,y∗, X ∗, I ∗, andL are replaced by the residuals from
regressing on the set of dummiesDs. Subsequently, the dummies are omitted from further computations.

In one-step estimation, Hi is the identity matrix, except when estimating in first differences:

H1,i = ITi , except:H diff
1,i =



1 −1/2 0 · · · 0

−1/2 1 −1/2 0

0 −1/2 1 0
...

...

0 0 0 · · · 1


. (5)

In two-step estimationHi is based on the previous step residuals:

Hi M AN û

one-step H1,i, see(5) M1 A1,N û1,i = v̂∗
1,i

two step H2,i = v̂∗
1,iv̂

∗′
1,i M2 A2,N û2,i = v̂∗

2,i

with a subscript added to distinguish between one and two step estimation.
The one-step estimatedvarianceof the coefficients is:

V̂1

[
β̂
]

= σ̂2
1,uM

−1
1 .

If selected, robust standard errors after one-step estimation are computed as:

V̂1r

[
β̂
]

= M−1
1

(∑
i

W ′
i Zi

)
A1,NA−1

2,NA1,N

(∑
i

Z ′
iWi

)
M−1

1 .

The two-step asymptotic variance matrix is:

V̂2

[
β̂
]

= M−1
2 .

This variance estimator can be severely downward biased in small samples, and is therefore only reported when
robust standard errors is switched off. The preffered solution (and the default) is to use the robust variance for
two-step estimation,̂V2r [β̂], which uses the small sample correction as derived by Windmeijer (2000).

TheAR test for orderm is computed as:

AR(m) =
d0

(d1 + d2 + d3)
1/2

. (6)

Usingwi for the residuals laggedm periods (substituting zero for missing lags):

wit = ui,t−m for t = m, . . . , Ti, and wit = 0 for t < m.
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Thedi are defined as:

d0 =
∑

i w
′
iui,

d1 =
∑

i w
′
iHiwi,

d2 = −2 (
∑

i w
′
iWi)M−1 (

∑
i W

′
i Zi)AN (

∑
i Z

′
iHiwi) ,

d3 = (
∑

i w
′
iWi) V̂

[
β̂
]
(
∑

i W
′
i wi) .

(7)

The components are used as the notation suggests, except forHi in one-step estimation:7

Hi M AN ui V̂[β̂]

one step: σ̂2
1,uH1,i M1 A1,N v̂∗

1,i V̂1[β̂]

one step, robust: H2,i M1 A1,N v̂∗
1,i V̂1r[β̂]

two step: H2,i M2 A2,N v̂∗
2,i V̂2[β̂]

After estimation in orthogonal deviations, the AR test (6) is based on the residuals from the differenced model as
follows (the superscript∆ refers to the regressors and residuals from the model in differenced form):

d0 =
∑

i w
∆′
i u∆

i ,

d1 =
∑

i w
∆′
i H ∆

i w∆
i ,

d2 = −2
(∑

i w
∆′
i W ∆

i

)
M−1 (

∑
i W

′
i Zi)AN (

∑
i Z

′
iΨi) ,

d3 =
(∑

i w
∆′
i W ∆

i

)
V̂
[
β̂
] (∑

i W
∆′
i w∆

i

)
.

(8)

H ∆
i is H diff

1,i after one-step estimation, andu∆′
i u∆

i otherwise.Ψi equals
√

(Ti + 1)/Ti 0 0 · · · 0√
(Ti − 1)/(Ti − 2)

√
Ti/(Ti − 1) 0 · · · 0

...
...

0 0 0
√

1/2
√

2/1

wi

after one-step estimation, anduiu
∆′
i w∆

i after one-step robust or two-step estimation.
TheSargan testwith z − k degrees of freedom is after one-step estimation:

S1 =

(∑
i

v̂∗′
1,iZi

)
A1,N

(∑
i

Z ′
i v̂

∗
1,i

)
σ̂−2

1,u,

and after two-step estimation (see 1 and equation (10) in Arellano and Bond, 1991):

S =

(∑
i

v̂∗′
2,iZi

)
A2,N

(∑
i

Z ′
i v̂

∗
2,i

)
.

ThreeWald testsare routinely reported to test the significance of groups of variables:
Wald (joint): onW, all regressor except dummies,

Wald (dummy): onD, all dummies (including constant),

Wald (time): on time dummies (including the constant in the differenced/deviations model).

7 After two-step estimation, DPD for Gauss computes the AR test using one-step residuals in thedi in the denominator for
P

i w
′
iHiwi,P

i w ′
iWi, and

P
i Z

′
iHiwi.
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A.4 Dynamic panel data, combined estimation

In combined estimation, GMM-SYS, the levels equation is used jointly with the transformed equation, see Blun-
dell and Bond (1998). The IV estimation of (4) still applies, but the data are organized as follows:

dimension

qi =

[
q∗

i

q+
i

]
=

[
y∗

i

yi

]
2Ti × 1

Wi =

[
W ∗

i

Wi

]
=

[
X ∗

i D∗
i

Xi Di

]
2Ti × k

Zi =

[
Z ∗

i

Z+
i

]
=

[
Gi 0 I ∗

i 0 Li

0 G+
i Ii Di 0

]
2Ti × (z + z+)

G+
i are the GMM-style instruments for the levels equation, described under theGmmLevel function.8 The dum-

mies in the transformed equation are always transformed. When using differences or deviations, the effective
number of observations in the transformed equations is as before (O − N ), whereas the levels equations have
O observations. Internally, both the transformed and levels equationi hasTi equations, but, when using dif-
ferences/deviations, the first observation in the transformed equation is set to zero, resulting inTi − 1 effective
observations.

When the option toconcentrateout dummies is used,y∗, X ∗, I ∗, andL are replaced by the residuals from
regressing on the set of dummiesD∗, andy andX onD . Note that there is one time dummy extra in combined
estimation compared to normal estimation when using differences or deviations.

After estimation, there are two sets of residuals:

û∗ = q∗ −W ∗β̂ (transformed equation),

û+ = q+ −W +β̂ (levels equation).

The reported residual variance is based on the levels residuals:σ̂2
u+ = û+′û+/(n−p). Heren = O =

∑N−1
i=0 Ti

andp are as before.
In one-step estimationHi is as in (5) in the transformed equations, and the identity matrix in the level

equations (1/2I when using differences).9 Only robust standard errors are reported after one-step estimation.
In two-step estimationHi is based on the previous step residualsû ′

i = (û∗′
i : û+′

i ).
The AR test (6) is based on the residuals from the transformed equation:

d0 =
∑

i w
∗′
i u∗

i ,

d1 =
∑

i w
∗′
i u∗

i u
∗′
i w∗

i ,

d2 = −2 (
∑

i w
∗′
i W ∗

i )M−1 (
∑

i W
′
i Zi)AN (

∑
i Z

′
iuiu

∗′
i w∗

i ) ,

d3 = (
∑

i w
∗′
i W ∗

i ) V̂
[
β̂
]
(
∑

i W
∗′
i w∗

i ) .

After orthogonal deviations, the∗ is replaced by∆ as in (8).

8The code used to estimate Blundell and Bond (1998) hadZ∗
i = Gi 0 I ∗

i D∗
i Li.

9The code used to estimate in Blundell and Bond (1998) hadH1,i = ITi
also for estimation in differences.
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B DPD exported member functions

TheDPD class derives fromModelbase, which in turn derives fromDatabase. Some of the functions below are
in the base class or override a base-class virtual function but documented because they will be commonly used
when estimating model. Consult the next section, and the header filedpd.h for definitions of member variables,
and undocumented functions, such as those for communication with OxPack.

Notation:
g number of GMM-type instrumental variables,
k total number of regressors (including dummies),
m number of normal instruments,
p number of instrument columns (normal plus GMM-style),
N number of cross-section observations,N ,
O total number of observations:O =

∑
Ti,

T maximum number of time-series observations,T = max{Ti},
D dummies,
I normal instruments,O × m,
W regressor matrix,
Y dependent variable,O × 1,
Yi dependent variable for individuali, Ti × m,
Zi complete instrument matrix for individuali, Ti × p,
Tdb total number of observations in the database.

DPD::ClearModel

ClearModel();

No return value.

Description
Clears the estimated model. This will result in re-initialization of the data, so can be used e.g. to switch
from orthogonal deviations to first differences, or when new data has been generated for a Monte Carlo
replication.

DPD::DeSelect

DeSelect();

No return value.

Description
Clears the model formulation, i.e. clears previous calls toSelect(), Gmm(), GmmLevel(),
SetSelSample(), andForceSelSample(). The remainder of the model formulation is not affected
(such as the transformation and dummies).

DPD::Diff

Diff(const mX, const iLag);
mX in: O × k matrix, whereO is the database size.
iLag in: lag length of difference.

Return value
Returns anO× k matrix with the panel difference. Observations which are lost are replaced by the missing
value (NaN).

Description
The panel difference can only be taken if the index is known, seeSetIndex()andSetYear(). The method
of computing the difference is discussed in§2.1.
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Note that a model is formulated in levels and then estimated in differences by specifying the transformation
in SetTransform.

DPD::DPD

DPD();

No return value.

Description
Constructor function.

DPD::Estimate

Estimate();

Return value
Returns anTRUE if succesful,FALSE otherwise.

Description
Constructs the data matrix for estimation (by callingInitData, if not already done), and estimates the
model. Prints the results, unless this is switched off bySetPrint. UseSelect prior to Estimate to
formulate the model.
When requesting 2-step estimation, DPD will first do 1-step estimation with robust standard errors.

DPD::Get...

Return value
GetCovar estimated coefficient variance matrix,k × k

GetDummies returns current dummy selection, integer
GetDummyNames get names of dummies,kd array
GetGlsSigma2 returnsσ2

v, σ2
v andσ2

η, 1 × 3 matrix
GetIndex variable with the individual index, same no of rows as database
GetModelStatus returnsM . . . model status
GetPar estimated coefficients,k × 1
GetParNames coefficients names, including dummies,k array
GetR2 returns R squared, double
GetRegNames(iVar) returns array names of regressors of typeiVar
GetResiduals residuals of the (transformed) equations,Tdb × 1
GetResidualsLevels residuals of the levels equations,Tdb × 1
GetResidualsDiff deviations: in differenced form, else asGetResiduals, Tdb × 1
GetResVar estimated residual variance,σ̂2

GetRSS residual sum of squares (for levels after combined estimation)
GetSigma estimated equation standard error,σ̂

GetTest returns current test options (as set bySetTest)
GetTestAR returns highest order AR test (2 × 1 matrix: test;p-value)
GetTestSargan returns Sargan test outcome (2 × 1 matrix: test;p-value)
GetTransform returns current transformation
GetTSS total sum of squares

Description
Most of these functions can be only called after the data has been loaded for estimation, or after successful
estimation.
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DPD::Gmm

Gmm(const sX, const iLag, const iLag1, const iLag2);

sX in: string, name of variable for GMM-type instrument.
iLag1 in: m1, wheret − m1 is most recent observation used as instrument.
iLag2 in: m2, wheret − m2 is most distant observation used as instrument.

No return value.10

Description
Use this function to specify GMM-type instruments (in contrast to normal instruments, which are the vari-
ables specified usingI VAR in Select). The levels of the named variables are used. The instruments are
datedt − m2 · · · t − m1, so that the most recent observation ist − m1 and the most distantt − m2. If
m2 < m1, the arguments are swapped. The instruments are automatically adjusted for time periods which
consist entirely of missing data (making a DPD/GAUSS stylegmmb unnecessary). A call toDeSelect will
also clear all instruments.
As an example, consider a panel with two individuals, one with data from 1976 to 1981, and the second
starting a year later. Say we use two lags in the model, and estimate using first differences (so another
observation is lost, and we have three observations for estimation: 1979–1981). Then (remember that
indexing in Ox starts at 0):

individual 0 individual 1
y0,t y0,t−2 ∆y0,t−2 s y0,t y0,t−2 ∆y0,t−2 s

1976 y0,76 . . . . .

1977 y0,77 . . y1,77 . .

1978 y0,78 y0,76 . y1,78 . .

1979 y0,79 y0,77 ∆y0,77 0 y1,79 y1,77 . −1
1980 y0,80 y0,78 ∆y0,78 1 y1,80 y1,78 ∆y1,79 0
1981 y0,81 y0,79 ∆y0,79 2 y1,81 y1,79 ∆y1,79 1

The standard case, where the second lag of the dependent variable is used as the GMM-type instrument is
written as :

Zi = [diag(yi,1 · · · yi,t−2)] , t = 3, . . . , T.

This corresponds toGmm("y",2,99), which runs from two lags, and then onwards as much as possible (99
will be larger than the number of time periods). For the unbalanced panel in the example:

Z0 =

 y0,76 y0,77 0 0 0 0 0 0 0
0 0 y0,76 y0,77 y0,78 0 0 0 0
0 0 0 0 0 y0,76 y0,77 y0,78 y0,79

 ,

Z1 =
(

0 0 . y0,77 y0,78 0 0 0 0
0 0 0 0 0 . y0,77 y0,78 y0,79

)
.

The first columns (the dots) inZ1 correspond to the missing equation, and are set to zero.
Several GMM-type instruments may be used, for example:

Gmm("y", 3, 99);
Gmm("y", 2, 2);

corresponds to the single call:

Gmm("y", 2, 99);

Similarly, it is possible to use future instruments, e.g.:

10Unlike the GAUSS version, the instruments are not actually created byGmm. Instead, the instruments for each individual are created when
required in the estimation procedure.



DOORNIK, BOND & A RELLANO: DPD PACKAGE 33

Gmm("y", 1, -1);

which corresponds to:

Z0 =

 y0,76 y0,77 0 0 0 0 0 0
0 0 y0,77 y0,78 y0,79 0 0 0
0 0 0 0 0 y0,78 y0,79 y0,80

 ,

Z1 =
(

0 0 0 y0,77 y0,78 y0,79 0 0 0
0 0 0 0 0 0 y0,78 y0,79 y0,80

)
.

To use all observations use the following two calls:

Gmm("y", 2, 99);
Gmm("y", 1, -99);

DPD::GmmLevel

GmmLevel(const sX, const iLag, const bDiff);
sX in: string, name of variable for GMM-type instrument.
iLag in: m, wheret − m is most recent observation used as instrument.
bDiff in: TRUE: use differenced variable, else use level.

No return value.11

Description
Use this function to specify GMM-type instruments for the levels equation. This function is only relevant
for GMM-SYS estimation where transformed and levels equations are combined. The differences or levels
of the named variables are used depending on the last argument. The instruments are automatically adjusted
for time periods which consist entirely of missing data. A call toDeSelect will also clear all instruments.
UsingGmmLevel switches to combined estimation automatically (also seeSetCombined).
Using the example data given under theGmm function, we could use the lagged difference of the dependent
variable as instruments for the levels equation:

Z+
i = [diag(∆yi1, · · · , ∆yiT−2)] .

This corresponds toGmmLevel("y",1,1). In the example we have an extra observation for the first indi-
vidual, and the actual instrument matrices are:

Z0 =


∆y0,77 0 0
∆y0,78 0 0

0 ∆y0,79 0
0 0 ∆y0,80

 , Z1 =


0 0 0

∆y0,78 0 0
0 ∆y0,79 0
0 0 ∆y0,80

 .

GmmLevel("y",1,0) is:

Z0 =


y0,76 0 0
y0,77 0 0
y0,78 0 0

0 y0,79 0
0 0 y0,80

 , Z1 =


0 0 0
0 0 0

y0,78 0 0
0 y0,79 0
0 0 y0,80

 ,

while GmmLevel("y",2,1) corresponds to:

Z0 =

 ∆y0,77 0 0
0 ∆y0,78 0
0 0 ∆y0,79

 , Z1 =

 0 0 0
0 ∆y0,78 0
0 0 ∆y0,79

 .

11Unlike the GAUSS version, the instruments are not actually created byGmmLevel. Instead, the instruments for each individual are created
when required in the estimation procedure.
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DPD::InitData

InitData()

No return value.

Description
InitData is called byEstimate to initialize the data for estimation. The function callsgetData to
extract the data (getData createsm mGmm to store the GMM-type variable), andgetDummies to create the
dummies. Transforms the data according to the specification given withSetTransform.
The relevant names inm asW are adjusted for the transformations applied.
This function also setsm cObs to the total number of observations used in the estimation. Without first-
differenced or orthogonal transformations this equals the number of rows inmn mYears and the data
matrices:

∑N
i=1 Ti. With such transformationsN observations are lost:

∑N
i=1(Ti − 1), except when com-

bined transformed/levels equations estimation is used.

DPD::Lag

Lag(const mX, const iLag);

mX in: O × k matrix, whereO is the database size.
iLag in: lag length.

Return value
Returns anO × k matrix with the lagged data. Observations which are lost are replaced by the missing
value (NaN).

Description
The panel lag can only be taken if the index is known. The lag is computed in a similar fashion to theDiff
function.
This function is not normally required, because a model is formulated by specifying lag lengths of variables.

DPD::LogLik

LogLik(const vP, const adFunc, const avScore, const amHess);

vP in: 1 × 1 matrix, with currentτ
adFunc in: address of variable

out: log-likelihood atτ
avScore in: should be 0
amHess in: should be 0

Return value
Returns 1 if the likelihood can be evaluated, 0 otherwise.

Description
CallsSetGlsSigma2(1~1~τ) and sets the transformation toT GLS to evaluate the likelihood as in (3).

DPD::OrthDev, DPD::OrthDevToDiff

OrthDev(const mX);
OrthDevToDiff(const mX);

mX in: O × k matrix.

Return value
OrthDev returns aO × k matrix withmX transformed to orthogonal transformations.
OrthDevToDiff transforms an input matrix which is in orthogonal deviations into first differences.
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Description
Orthogonal transformations takes each observation in deviation from the future means, together with a
standardization. As a result, the last observation is lost. However,the data are stored with a one period lag,
so that the missing observation is the first for each individual. This brings the transformation in line with
first differences, allowing the same estimation code to be used.
Both requirem mStartEnd, so can only be called afterInitData.

DPD::Output

Output();

No return value.

Description
Prints estimation results. Output is automatically printed afterEstimate, unless switched off by
SetPrint(FALSE); (this facility is used in Monte Carlo estimation).

DPD::Select

Select(const iGroup, const aSel);

iGroup in: int, group indicator:Y VAR, X VAR, I VAR or IL VAR
aSel in: array, specifying database name, start lag, end lag

No return value.

Description
Selects variables by name and with specified lags, and assigns theiGroup status to the selection. TheaSel
argument is an array consisting of sequences of three values: name, start lag, end lag. For examples, see
§3.2.
The following types of variables are supported:

Y VAR dependent and lagged dependent variable
X VAR regressors which are not to be used as instruments
I VAR regressors which are used to construct the instrument matrix

(first differencing or orthogonal deviations transformation is applied)
IL VAR regressors which are used to construct the instrument matrix

(in levels: these are not transformated)

EachSelect adds to the current selection. UseDeSelect to start afresh.Note: SetSelSample is not
required, as the full sample will always be used (after dropping missing observations).
A model is formulated in levels, with differencing being left to DPD. If there are no instruments, the model
is estimated by OLS.

DPD::SetCombined

SetCombined(const bCombined);
bCombined in: integer,TRUE: use GMM-SYS estimator,FALSE: normal estim-

ation (is the default).
No return value.

Description
Used to switch to the Blundell and Bond (1998) estimator which combines transformed and levels equations.
The GmmLevel function is used to formulate the GMM instruments for the levels equations.GmmLevel
switches to combined estimation automatically, so normally there is no need to useSetCombined.
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DPD::SetDummies

SetDummies(const flDummy);

flDummy in: integer, specifies the dummies to be included, see below.

No return value.

Description
Specifies the set of dummies to be used in the model. By default, a constant is used, which is equivalent to
SetDummies(D CONSTANT). To use no dummies at all specifySetDummies(D NONE). UseSelect prior
to SetDummies to formulate the model.

The following types of dummies are supported:

D NONE (or 0) no dummies at all
D CONSTANT constant term
D TIME time dummies
D GROUP group dummies
D TIMEGROUP time dummies interacted with group dummies
D INDIVIDUAL individual dummies

Group dummies are only available if the group variable has been specified usingSetGroup. Dummies can
be combined by adding the values together, e.g. to use a constant, time and group dummies:

// ... code creating dpd and formulating model
dpd.SetDummies(D_CONSTANT+D_TIME+D_GROUP);

The constant is automatically deleted for within estimation.

DPD::SetGroup

SetGroup(const sGroup);

sGroup in: string, name of the column with a group index.

No return value.

Description
Specifies which column has the group variable. This function is only necessary when group dummies are
required. The group variable should be an integer which specifies the group. The group indicator need not
have a consecutive range (however, the more gaps, the longer it takes to construct the dummy), nor need
the indicator start at 0 or 1.

DPD::SetGlsSigma2

SetGlsSigma2(const vGlsSigma2)

vGlsSigma2 in: 1 × 3 matrix withσ2
v, σ2

a, andσ2
η

No return value.

Description
Sets the variances to be used in the GLS transformation.

DPD::SetIndex

SetIndex(const sIndex);

sIndex in: string, name of the column with the individual index.

No return value.
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Description
Specifies which column has the variable which identifies the individual (or company, etc.). This variable is
used to determine the valid sample for estimation. The individual index should be a non-negative number.
TheDiff andLag functions also require this information in order to lag data correctly, see§2.1.
Observations with a missing value (NaN) in the index are omitted. This allows dropping individuals alto-
gether, for example:

indiv = indiv .== 1 .? M_NAN .: indiv;

will lead to the exclusion of the individual with index 1.
Using this function is recommended, but not compulsary. When omitted, a default index is constructed
from the time information, also see underSetYear.

DPD::SetMethod

SetMethod(const iMethod);

iMethod in: int, estimation method.

No return value.

Description
Specifies the estimation method (also see§4.1 and§3):

M 1STEP one-step estimation
M 2STEP two-step estimation (also reports 1-step with robust std.errors)
M DPD GLS Feasible GLS
M DPD GLS1 GLS (OLS residuals)
M DPD ML Maximum likelihood (ML)

DPD::SetOptions

SetOptions(const fRobust, ...);
SetOptions(const fRobust, const bConcentrateD, const bTransformD,

const bPrintGmm);
fRobust in: integer, TRUE: use robust variances in one-step estimator,

FALSE: no robust variances (is the default) (−1 : argument is
ignored).

bConcentrateD in: integer,TRUE: the dummies will be concentrated prior to estim-
ation (−1 : argument is ignored)

bTransformD in: integer,TRUE: transform dummies,FALSE: dummies are used
unchanged as instruments (is the default) (−1 : argument is
ignored).

bPrintGmm in: integer,TRUE: print contents of GMM instruments for max-
imum T , FALSE: omit this information (is the default) (−1 :
argument is ignored).

No return value.

Description
Specifies less-frequently used estimation options.SetOptions also callsClearModel.
Robust one-step estimation is automatically reported as part of two-step estimation.
The second argument controls the estimation treatment of the selected set of dummies. This options can
be used to have them concentrated out from the dependent variable, regressors and instruments prior to
estimation. By default the dummies are not concentrated out. Concentration could reduce the memory
requirements of the estimation problem, but is not quite exact when instrumental variable estimation is
used.
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DPD::SetPrint

SetPrint(fPrint);

fPrint in: int, TRUE or FALSE

No return value.

Description
Switches printing on (TRUE) or off (FALSE). By default printing is on, but for simulations it must be switched
off.

DPD::SetSelSample

SetSelSample(const iYear1, const iPeriod1, const iYear2,
const iPeriod2);

Description
This function is not used by DPD, unlike many other packages. By default, the whole sample is used, but
DPD drops observations with missing values. This offers a convenient way to estimate over subsamples.

DPD::SetTest

SetTest(const iTestSpec, const iArOrder);

iTestSpec in: integer, 1: compute Wald and Sargan tests (the default); 2: only
Sargan test; 0: neither.

iArOrder in: integer, compute AR tests up to specified order (0 by default).

No return value.

Description
Specifies test options.

DPD::SetTransform

SetTransform(const iTransform);

iTransform in: integer, specifies the transformation to be used in estimation.

No return value.

Description
The following types of transformations are supported:

T DIFFERENCES first differences
T DEVIATIONS orthogonal transformations
T WITHIN within group (deviations from individual means)
T NONE levels (no transformation)
T BETWEEN between group (using individual means)
T GLS GLS transformation (weighted deviations from individual means)

DPD::SetYear

SetYear(const sYear);
SetYear(const sYear, const sPeriod);

sYear in: string, name of the column with the years.
sPeriod in: string, optional argument for non-annual data: the name of the column with

the periods.

No return value.
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Description
Specifies which column has the year variable. This function is compulsary, and must be used after the data
has been loaded, but before the model is formulated.

If seasonal data is used, the variable specified by the second argument should indicate the period for each
observation. The earliest period should be 1; e.g. for quarterly data, the quarter should be either 1,2,3
or 4. If no individual variable is set yet (usingSetIndex), this function will construct one from the year
(and optional period) information. There are situations where this will not work correctly, see§2.1. Any
subsequent calls toSetIndexwill override the version constructed bySetYear. If the variable constructed
by SetYear is used, this is noted in the output behind the number of individuals (as in§3.2).
Observations with a missing value (NaN) in the year are omitted. This allows dropping years altogether, for
example:

newyear = year .< 1980 .? M_NAN .: year;

will lead to the exclusion of the observations before 1980.

DPD::SPrintTime

SPrintTime(const iT);

iT in: time index (0 for earliest in database).

Return value
Returns a string with the time index translated to a sample point.

DPD::TestWald

TestWald(const mWhich);
mWhich in: integer (0 or 1) or matrix.

Return value
Returns a2 × 1 matrix with the test statistic in the first, and the p-value in the second row.

Description
Tests the significance of variables using the Wald test, depending on themWhich argument:

0 tests all regressors except the dummies: ‘Wald (joint)’,
1 tests all dummies: ‘Wald (dummy)’,
2 tests the time dummies: ‘Wald (time)’,
1 × s matrix specifies the indices of variables to test.

Remember that Ox indexing starts at 0, soTestWald(<0:3>)would test the significance of the first three
variables in the model. UseSetPrint to switch printing of the test results on or off.

DPD::TimeAvg, DPD::TimeDev, DPD::TimeDevW

TimeAvg(const mX);
TimeDev(const mX);
TimeDevW(mX, const vGlsSigma2);

mX in: O × k matrix.
vGlsSigma2 in: 1 × 3 matrix withσ2

v, σ2
a, andσ2

η

Return value
TimeAvg returns anN × k matrix with the individual means (i.e. the means over time) ofmX.
TimeDev returns anO × k matrix withmX in deviation from individual means.
TimeDevW returns anO × k matrix withmX in weighted deviation from individual means. The weights are
determined by the values invGlsSigma2, see (2).

Description
Requiresm mStartEnd, so can only be called afterInitData.
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C DPDSim: Monte Carlo experiments

TheDPDSim class derives fromSimulation. It implements a set of experiments as described in§3.4.

DPDSim::DPDSim

DPDSim::DPDSim(const cT, const cN, const cTdiscard,
const dAlpha, const dBeta, const dRho, const dPhi,
const dZsigma, const flDummies, const iTransform, iMethod,
const bTest, const cRep);

cT in: int, T

cN in: int, N

cTdiscard in: int, number of observations to discard
dAlpha in: double, DGP value ofα
dBeta in: double, DGP value ofβ
dRho in: double, DGP value ofρ
dPhi in: double, DGP value ofφ
dZsigma in: double, DGP value ofσ2

e

flDummies in: int, dummy specification of model, seeSetDummies
iTransform in: int, transformation for model estimation, seeSetTransform
iMethod in: int, estimation method; in addition to the ones available

in SetMethod (M 1STEP, M 2STEP, M DPD GLS, M DPD GLS1,
M DPD ML), DPDSim also defines:
M AHd, M AHl, M 1STEP ROBUST, M 1STEP COMBINED,
M 2STEP COMBINED

bTest in: int, TRUE: includet-tests, Sargan and AR tests
cRep in: int, number of replicationsM

No return value.

Description
Constructs a DPD simulation experiment. The notation refers to the DGP in§3.4. An example of its use is:

decl exp;
exp = new DPDSim(7, 100, 10, 0.5, 1, 0.8, 0.0, 0.9,

D_CONSTANT, T_DIFFERENCES, M_1STEP, FALSE, 100);
exp.Simulate();
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D DPD non-exported member functions

The functions documented here are only called from other DPD function members, indicated by a lower case first
letter of the function name. The documentation is only included to help understand the code. Some functions are
quite complex, and should be approached with care.

DPD::doEstimation

doEstimation(const iMethod, const bPrint)

No return value.
iMethod in: estimation method
bPrint in: if both bPrint andm fPrint areTRUE: print output and do specification,

Sargan and AR tests after estimation

Description
Estimation function called byEstimate andEstimateGLS.
When successful,doEstimationsetsm iModelStatus toMS ESTIMATEDandm iMethod to theiMethod
value used in the call.

DPD::doEstimationGls

doEstimationGls(const iMethod);
iMethod in: integer, one of:

M DPD GLS1: GLS estimation based on OLS estimates
M DPD GLS: GLS estimation based on within/between estimates
M DPD ML: maximum likelihood estimation (iterated GLS)

No return value.

Description
Performs GLS estimation using prespecified variance ratios.
It is also possible to set the variances separately usingSetGlsSigma2 to define the weights in the GLS
transformation. This can then be estimated usingSetTransform(T GLS) andEstimate.

DPD::doTests

doTests();

No return value.

Description
Runs the required test statistics (depending onSetTest.

DPD::getData

getData();

No return value.

Description
Extracts the data as specified (normallyin levels) from the database prior to estimation. The status which
was specified usingSelect is used here:
m mY Y VAR variable with lag 0
m mW laggedY VAR variables and allX VAR variables
m mI all I VAR variables
m mIL all IL VAR variables
m mD the dummy variables

First, these are extracted in raw form; next missing observations are dropped as follows:
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(1) Construct a column vectorm mYears, with the years variable, and a row vectormindexwith the index
in the database of each observation.

(2) If a group column was specified, construct a column vectorm mGroups, with the groups.
(3) Construct a column vectormisobs, with a zero for each observation without any missing value in any

of the extracted data matrices.
(4) Drop all rows fromm mYears which have a one in the corresponding column inmisobs; similarly

drop columns of the remaining extracted data matrices.

Note that the model is formulated in levels. For estimation, a transformation such as differencing will
be used. Differencing results in each first observation being lost. The starting and ending index of each
individual is computed as discussed in§2.1.
Finally, sample size information is computed (all integers):
m mnTime earliest time index in sample,
m mxTime latest time index in sample,
m cT maximum number of time-series observations,T = max{Ti},
m cN number of cross-section observations,N ,

These are predifferencing sample sizes, which must be adjusted to get the estimation sample sizes:O − N

for the total number of observations, andT − 1 for the maximum time series (T for transformations other
than differencing or orthogonal transformations; the adjustments are made inInitData).

DPD::getDummies

getDummies(const flDummy);

flDummy in: integer, specifies the dummies to be included, see below.

No return value.

Description
Creates the variablem mD which holds the matrix with dummies (m cD is the number of columns ofm mD).
TheflDummy argument is as passed toEstimate.
The information on which dummies are created is also stored in:

m fConstant TRUE if constant included
m cTimeDummy > 0: number of time dummies included
m cGroupDummy > 0: number of group dummies included
m cTimeGroupDummy > 0: number of time/group interaction dummies

The names of the dummies are appended tom asW. The constant and group dummies are not created when
the transformation isT WITHIN.

DPD::getZSize, DPD::getZSizeLev

getZSize();
getZSizeLev(const bPrint);

Return value
ThegetZSize function returns the number of instrument columnsz∗ (seegetZti).
The getZSizeLev function returns the number of instrument columns for the level equationsz+ (see
getZtiLev).

DPD::getZti

DPD::getZti(const i, const mI, const cZ, const ai1, const ai2);
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i in: int, index of individual.
mI in: O × m matrix, transformedI , normal instruments.
cZ in: int, no of GMM-type instrument columns
ai1 in: address of a variable.

out: starting observation.
ai2 in: address of a variable.

out: ending observation.
No return value.

Description
The instrument matrixZi is created out the selections made usingGmm and theIi (the variables specified
usingI VAR andIL VAR in Select). TheGmm information is stored in:
m mGmm in: O × g matrix, variables for GMM-type instruments.
m mGmmInfo in: g × 4 matrix, with info for each variable: minimum lag, max-

imum lag length, first available observation, last available ob-
servation.

ConstructingZi is a not straightforward, especially when the panel is unbalanced.Zi consists mainly of
zeros, and in each row there is a run ofy values, starting in the column after the end of the previous run.
Whenm (the longest lag ony) is 1, these runs areyi0, yi0yi1, yi0yi1yi2, etc. (indices start at zero here,
as in Ox). Whenm = 2, the runs areyi0yi1, yi0yi1yi2, yi0yi1yi2yi3, etc. In addition, there can be GMM
instruments based on non-modelled variables; further examples are given under theGmm function.

DPD::getZtiLev

DPD::getZtiLev(const i, const mI, const cZ, const ai1, const ai2);

i in: int, index of individual.
mI in: O × m matrix, transformedI , normal instruments.
cZ in: int, no of GMM-type instrument columns for levels equations
ai1 in: address of a variable.

out: starting observation.
ai2 in: address of a variable.

out: ending observation.

No return value.

Description
The instrument matrixZ+

i for the levels equation (used in combined estimation) is created out the selections
made usingGmmLevel and dummies and theIi (the variables specified usingI VAR in Select). TheGmm
information is stored in:
m mGmmLev in: O × g+ matrix, variables for GMM-type instruments.
m mGmmLevInfo in: g+ ×4 matrix, with info for each variable: minimum lag, max-

imum lag length, first available observation, last available ob-
servation.

Examples are given under theGmmLevel function.

DPD::gmmProd1

gmmProd1(const fnGetZti, const cZ, const mY, const mW, const mI,
const mH, const amYZ, const amWZ, const amZHZ);
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fnGetZti in: function to constructZi

mY in: O × 1 matrix, transformedY .
mW in: O × k matrix, transformedW .
cZ in: int, no of GMM-type instrument columns
mI in: O × m matrix, transformedI , normal instruments.
mH in: T × T matrix,H , or 1 for identity matrix.
amYZ in: address of a variable.

out: 1 × p matrix,
∑

i Y ′
i Zi.

amWZ in: address of a variable.
out: k × p matrix,

∑
i W ′

iZi.
amZHZ in: address of a variable.

out: p × p matrix,
∑

i Z ′
iHZi.

No return value.

Description
This function constructs some cross-product matrices involving the instruments. For each individual,Zi is
created usingfnGetZti, and the requested products of data withZi are accumulated.

DPD::gmmProd2

gmmProd2(const fnGetZti, const cZ, const mI, const mV);
gmmProd2mix(const fnGetZti, const cZ, const mI, const mV,

const fnGetZtilev, const cZlev, const mIlev, const mVlev);
fnGetZti in: function to constructZi

cZ in: int, no of GMM-type instrument columns
mI in: O × m matrix, transformedI , normal instruments.
mV in: 0 orO × 1 matrix, residualsV .
fnGetZtilev in: function to constructZ+

i

cZlev in: int, no of GMM-type instrument columns in levels equations
mIlev in: O × m matrix, normal instruments.
mVlev in: 0 orO × 1 matrix, residualsV +.

Return value
gmmProd2 returns

∑
i Z ′

iviv
′
iZi. gmmProd2mix returns

∑
i Z ′

iviv
′
iZi, whereZi consists of bothZ∗

i and
Z+

i .

Description
This function constructs the second-step optimal weight matrixAN involving the instruments and residuals.

DPD::gmmProd3

gmmProd3(const fnGetZti, const cZ, const mI, const mH, const mW,
const amZHw);
fnGetZti in: function to constructZi

cZ in: int, no of GMM-type instrument columns
mI in: O × m matrix, transformedI , normal instruments.
mH in: T × T matrix,H , or 1 for identity matrix.
mW in: 0 orO × 1 matrix, lagged residualsW = V−m.
amZHw in: 0 or address of a variable.

out: 1 × p matrix,
∑

i Z ′
iHwi.

Return value
Returns

∑
i(w

′
iHwi)2.

Description
This function constructs the cross-product matrices involving the instruments and residuals and lagged
residuals as needed in the AR test after one-step estimation.
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DPD::gmmProd4

gmmProd4(const fnGetZti, const cZ, const mI, const mV, const mU,
const mW, const amZVs);

gmmProd4mix(const fnGetZti, const cZ, const mI, const mV, const mU,
const mW, const fnGetZtilev, const cZlev, const mIlev,
const mVlev, const amZVs)
fnGetZti in: function to constructZi

cZ in: int, no of GMM-type instrument columns
mI in: O × m matrix, transformedI , normal instruments.
mV in: 0 orO × 1 matrix, residualsV .
mU in: 0 orO × 1 matrix,U .
mW in: 0 orO × 1 matrix, lagged residualsW = V−m.
amZVs in: 0 or address of a variable.

out: 1 × p matrix,gmmProd4:
∑

i Z ′
ivi(u′

iwi).
gmmProd4mix, the same but withZi consisting of bothZ∗

i and
Z+

i .

Return value
Returns

∑
i(u

′
iwi)2.

Description
This function constructs the cross-product matrices involving the instruments and residuals and lagged
residuals as needed in the AR test after two-step estimation.

DPD::testAr

testAr(/* many arguments */);

Return value
Returns a2 × 1 matrix with the test statistic in the first, and thep-value in the second row.

Description
Tests the model for serial correlation using the test described in equations (8) and (9) of Arellano and Bond
(1991, p.282). UseSetPrint to switch printing of the test results on or off.
This function is called after estimation when requested. UseSetTest to specify the calculation of AR tests.

DPD::testSargan

testSargan(const mYZ, const mWZ, const mAN);

mYZ in: k × p matrix,Y ′Z =
∑

i Y ′
i Zi.

mWZ in: k × p matrix, seetestAr.
mAN in: p × p matrix,A, seetestAr

Return value
Returns a2 × 1 matrix with the test statistic in the first, and the p-value in the second row.

Description
Performs Sargan’s test of overidentifying restrictions. For two-step estimation, the test is based on equation
(10) of Arellano and Bond (1991, p.282). After one-step estimation, the test is based ons1, which is just
given below (10) in Arellano and Bond (1991). Sargan’s test is not reported after one-step robust estimation.
UseSetPrint to switch printing of the test results on or off.
This function is called after estimation when requested. UseSetTest to specify the calculation of this test.


