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Preface

This is a hands-on introduction to the Ox programming language. It may be used for self
study, or in a classroom setting with an instructor. Exercises are spread throughout the
text, both to check and extend the understanding of the language. Some more extensive
exercises are given, which may be set as take home tests for students (for example, the
questions at the end of Chapter 10). Not all details of the language are discussed here;
for more information we refer to Doornik (1998), which contains a full reference of the
Ox language.

We hope that a working knowledge of the material in this booklet will allow you to
use Ox more productively, whether in your studies or research. Please let us know if
you have any comments on this introduction.

It is assumed that you have a copy of Ox installed on your machine and working. If
not, you can download a copy fromhttp://www.nuff.ox.ac.uk/Users/Doornik.

Some conventions are used in this book. Source code, variables in source code and
file names are written intypewriter font. Exercises are indicated with aI in the
margin, and referred to as [3.1] (for example), where 3 is the chapter number, and 1 the
exercise number in that chapter. Sections are referred to as e.g.§3.1. Source code is
listed between dotted lines. For many of these the code is provided to save typing. In
that case, the right-hand side of the top dotted line gives the filename initalics. All the
files will have the .ox extension, although some of those will not be valid Ox code as
such (the file is always an exact copy of the code in the text, and occasionally this is
only part of a program).

We wish to thank Francisco Cribari-Neto for helpful comments.

Jurgen Doornik
Gerrit Draisma
Marius Ooms
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Chapter 1

Ox Environment

1.1 Installing Ox

We assume that you have access to a properly installed version of Ox. If you do not
have Ox yet, you can download a copy fromhttp://www.nuff.ox.ac.uk/Users/Doornik.
Or contact Timberlake Consultants. Timberlake can be found on the internet at
www.timberlake.co.uk and www.timberlake-consultancy.com , or
contacted via telephone in the UK on: +44 (0)181 462 0495/0093, and in the US on:
+1 415 924 3085.

1.2 Ox version

You can follow these tutorials using Ox version 2.00 or newer, on any available com-
puter platform.

1.3 Running an Ox program

All versions of Ox which are free for educational purposes areconsole versions. This
means that the program is launched from the command line in a console window (e.g.
from the MS-DOS command prompt in a Dos window). Output will appear on the
console as well.

To run an Ox source code file calledmyfirst.ox , issue the command (the.ox
extension need not be typed):

command platform
oxl myfirst.ox Windows NT/95 console
oxdos myfirst.ox MS-DOS/Windows 3.1 console
oxl myfirst.ox most Unix consoles

I[1.1] We suggest that you now try to run an Ox program:
(1) Open an MS-DOS command prompt window.

1



2 Chapter 1 Ox Environment

(2) Go to the Ox folder (thiscouldbeC:\Program files\Ox under Win-
dows 95/NT, andC:\ProgramF\Ox under Windows 3.1 or MS-DOS).

(3) Go to thesamples folder (directory).
(4) Run the command (under old MS-DOS and windows 3.1 use theoxdos

command):
oxl myfirst

The output should be (the version of Ox could be newer):
Ox version 2.00 (Windows) (C) J.A.Doornik, 1994-98
two matrices

2.0000 0.00000 0.00000
0.00000 1.0000 0.00000
0.00000 0.00000 1.0000

0.00000 0.00000 0.00000
1.0000 1.0000 1.0000

If the output is:
myfirst.ox (1): ’oxstd.h’ include file not found
myfirst.ox (7): ’unit’ undeclared identifier
myfirst.ox (11): ’print’ undeclared identifier

then your include variable is not yet set (see§A1.1).
If the output is something like ‘bad command or filename’, your path is not
set (again see§A1.1).

If oxl works, that is the preferred program (instead ofoxdos ), together with OxRun,
as discussed below.

1.4 Redirecting output

Output from the console version appears on the console. To capture it in a file,redirect
the output, e.g. tomyprog.out as in:

oxl myfirst.ox > myprog.out

Themore command may be used to page through large amounts of output (but you
may prefer to use an editor):

oxl myfirst.ox | more

1.5 Help and documentation

The reference book for the Ox language is Doornik (1998). Much of that is also avail-
able in the online help. This help system is in the form of HTML documents, which can
be read with an internet browser such as Netscape or the Internet Explorer. The help
files can be found in theox\doc directory; the master file isindex.htm . To read the
file in the Internet Explorer, choose File/Open, then browse to findindex.htm , and
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then open it. The entries at the top give access to thetable of contents, and to theindex.
The capture below shows the help onrank .

I[1.2] Open the help system in your browser. Use the index to find help on therows()
function. Explore other functions and other parts of the help system. You may
also use the browser’s find command to search in the open document.

1.6 Using the OxEdit editor

A powerful editor for use with Ox, calledOxEdit, is available for use with Ox. OxEdit
supports syntax colouring of Ox programs, making them more readable, and reducing
the incidence of typing errors. You can also install Ox within OxEdit, so that programs
can be run from within the editor, and output captured in a text window. Some additional
information and a screen capture is given in§A1.2. OxEdit works under Windows 95
(or newer) and NT, butnotunder Windows 3.1.

1.7 Using GiveWin via OxRun

Ox can also interact with GiveWin. If you use OxRun to run the program, the out-
put (both text and graphics) will appear in GiveWin. The following capture shows
how to use OxRun to runmyfirst.ox , with some graphics and text output from
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ox\samples\simula\simnor.ox in the background. If the include variable is
set as for the console version, then theInclude edit field can be left empty. OxRun can
also run programs from the command line. In addition, it can run interactively, and run
as a debugger of Ox programs.

1.8 Graphics

Graphics is discussed in Chapter 6.

1.9 Compilation and run-time errors

Program statements are processed in two steps, resulting in two potential types of errors:

(1) Compilation errors
The statements are scanned in and compiled into some kind of internal code. Er-
rors which occur at this stage are compilation errors. No statements are executed
when there is a compilation error. Compilation errors could be caused by un-
declared variables, wrong number of function arguments, forgetting a semicolon
at the end of a statement (among many other reasons). For example, these two
messages are caused by one undeclared variable at line 10 of the program:

D:\Waste\myfirst.ox (10): ’y’ undeclared identifier
D:\Waste\myfirst.ox (10): lvalue expected
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Occasionally, a syntax errors leads to a large list of error messages. Then, cor-
recting the first mistake could well solve most of the problem.

(1) Run-time errors
When the code which does not have syntax errors is executed, things can still
go wrong, resulting in a run-time error. An example is trying to multiply two
matrices which have non matching dimension. Here, this happened at line 10 in
themain function:

Runtime error: ’matrix[3][3] * matrix[2][3]’ bad operand
Runtime error occurred in main(10), call trace:
D:\Waste\myfirst.ox (10): main

1.10 A debug session

Ox has debug facilities, which can be useful to locate bugs in your programs. A de-
bug session is started with the-d switch (useoxli.exe under Windows). When
debugging you can:

• inspect the contents of variables;
• change the value of variables;
• set or clear a break point at a source code line;
• trace through the code step by step;
• trace by stepping over a function call;
• trace into a function call (the function must be written in Ox code, not a library

function).

When in debug mode, the prompt is given as(debug) . The commands are:

#break file line - set breakpoint at line of file
#clear file line - clear breakpoint at line of file
#clear all - clear all breakpoints
#go - run to next breakpoint
#go file line - run to line of file
#go line - run to line of current file
? - debug command summary (also: #help)
?? - show all symbols and current break
?symbol - show a symbols
#quit - stop debugging
#step in - step (in to function) (also: press return)
#step over - step (over function)
#step out - step out of current function
#show - shows current break
#show calls - show call stack
#show variable - same as ?variable
#show breaks - show all breakpoints
#show all - show all variables
#show full - show all variables with full value
#trace - lists all lines executed



6 Chapter 1 Ox Environment

#trace off - switches trace off
!command - operating system command
expression - enter an Ox expression,

e.g. x[0][0]=1; or print(x);

Here is a session withmyfirst.ox . The bold text is entered at the prompt. First
we list the program being debugged (samples/myfirst.ox ), with line numbers in
bold in the margin.

1 #include <oxstd.h>// include the Ox standard library header

3 main() // function main is the starting point
4 {
5 decl m1, m2; // declare two variables, m1 and m2

7 m1 = unit(3); // assign to m1 a 3 x 3 identity matrix
8 m1[0][0] = 2; // set top-left element to 2
9 m2 = <0,0,0;1,1,1>;// m2 is a 2x3 matrix, the first row

// consists of zeros, the second of ones

12 print("two matrices", m1, m2); // print the matrices
13 }

C: \ox\samples> oxli -d myfirst
Entering debug mode, use #quit to quit, ? for help.
myfirst.ox (5): break!

(debug) #break 9
(debug) #go
myfirst.ox (9): break!
(debug) ??
=== local symbols ===

0 m1[3][3] matrix 2 ...
1 m2 (null)

myfirst.ox (9): break!
(debug) ?m1
m1[3][3] matrix

2.0000 0.00000 0.00000
0.00000 1.0000 0.00000
0.00000 0.00000 1.0000

(debug) m1[1][1] = -20;
(debug) ?m1
m1[3][3] matrix

2.0000 0.00000 0.00000
0.00000 -20.000 0.00000
0.00000 0.00000 1.0000

(debug)
myfirst.ox (12): break!
(debug)
two matrices

2.0000 0.00000 0.00000
0.00000 -20.000 0.00000
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0.00000 0.00000 1.0000

0.00000 0.00000 0.00000
1.0000 1.0000 1.0000

myfirst.ox (13): break!
(debug) #quit
C: \ox\samples>

• #break 9 sets a breakpoint at line 9 of the current source file.
• #goruns the program until a break is encountered.
• ?? lists all the variables which are visible within the current scope. We can see

thatm1is a3 × 3 matrix (element0, 0 is also given);m2has not been assigned a
value yet, and is listed as(null) .

• ?m1 prints them1variable. Only variable names are allowed after the question
mark. To print part of a matrix useprint , e.g.print(m1[0][1:]); .

• m1[1][1] = -20; changes the second diagonal element. The code must be valid
Ox code, so do not forget the terminating semicolon!

• Just pressing enter does one step in the code, leading to line 12. The next enter
runs to line 13, executing theprint statement in the code.

• #quit aborts the debug session.

1.11 Have you programmed before?

If not, there is a lot to learn initially: not just a new language but also basic program-
ming concepts which take some time to master. Some persistence is required too: a
compiler (that is the program which runs your computer program) is unforgiving. For-
get a comma here, or a semicolon there, and your program will not work at all.

Before continuing it is useful to ask the following question: do I need to solve
problems which require Ox? If the main objective is regression analysis, then there will
be several menu-driven programs (such as, e.g., PcGive) which are easier to use. But, if
you need to do something slightly different, or do very extensive computations, Ox can
be a powerful tool to solve the problem.

If you decide to use Ox and work through this tutorial, you will learn about pro-
gramming and about Ox. Because of its simplicity and similarity to C, C++and Java,
this is not a bad place to start. Moreover, you can immediately apply it to more relevant
subject matter (econometrics, statistics, etc.).

As you will see in the upcoming chapters, the basic building blocks of an Ox
computer program arevariablesand functions(sometimes called procedures or sub-
routines). A variable is like a box in which you can store a number. A function is like
a recipe: it takes some variables as inputs (the ingredients), and gives output back. The
purpose of a function is to isolate tasks which have to be used several times. Functions
also help to break a program down in more manageable blocks. Finally, the complete
program is all the variables and functions put together.



Chapter 2

Syntax

2.1 Introduction

This chapter gives a brief overview of the main syntax elements of the Ox language. Ox
resembles C and C++ (and also Java), so if you’re familiar with these languages, you’ll
recognize the format for loops, functions, etc. The most important differences are:

• The matrix is a standard type in Ox. You can work directly with matrices, for
example adding or multiplying two matrices together. Ox also has the standard
scalar types for integers (typeint ), and real numbers (typedouble ).
A vector is a matrix with one column or one row, whereas a1× 1 matrix is often
treated as a scalar. Ox will keep track of matrix dimensions for you.

• Variables areimplicitly typed. So a variable can start as an integer, then become
a10 × 1 matrix, then a2 × 2 matrix. and so on. As in most languages, variables
must beexplicitly declared.

• Ox has strings and arrays as built-in types, to allow for higher dimensional
matrices, or arrays of strings.

2.2 Comment

Ox has two types of comment:/* . . .*/ for blocks of comment, and// for comment
up to the end of a line:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
/*

This is standard comment, which /* may be nested */.
*/
decl x; // declare the variable x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When writing functions, it is useful to add comment to document the function,
especially the role of the arguments, and the return value. A useful template could be
(here used for the library functionolsc ):

8
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut2a
/*
** olsc(const mY, const mX, const amB);
** mY in: T x n matrix Y
** mX in: T x k matrix X
** amB in: address of variable
** out: k x n matrix with OLS coefficients
**
** Return value
** integer: 1: success, 2: rescaling advised,
** -1: X’X is singular, -2: combines 2 and -1.
**
** Description
** Performs OLS, expecting the data in columns.
**
** Example
** error = ols(my, mx, &mb);
**
** Last changed
** 21-04-96 (Marius Ooms): made documentation
*/
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If you use this template, you can do a find in files (called grep in Unix systems) to create
a listing of all documentations. It may be useful to create a copy of this template for
later use. Good documentation is important: often, it is better to have documentation
and no code, than the other way round.

2.3 Program layout

The smallest complete program is:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut2b

#include <oxstd.h>

main()
{
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This program does nothing, but is worth discussing anyway:

• The first line includes aheader file. The contents of the fileoxstd.h are
literally inserted at the point of the#include statement. The name is between
< and> to indicate that it is astandardheader file: it actually came with the Ox
system. The purpose of that file is to declare all standard library functions, so
that they can be used from then onwards.

• This short program has onefunction, calledmain . It has no arguments, hence
the empty parentheses (these are compulsary). An Ox program starts execution
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at themain function; withoutmain , there might be a lot of code, but nothing
will happen.

• A block of code (here the emptyfunction body), is enclosed in curly braces.

2.4 Statements

Statements are commands to do something, some computation for example. Important
ingredients of statements are variables, to store or access a result, and operators (dis-
cussed in the next chapter) to combine existing results into new ones. A statement is
terminated with a semicolon (; ). Please note when you’re copying code from paper:
Ox makes a distinction between lower case and upper case letters.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut2c
#include <oxstd.h>

main()
{

decl n, sigma, x, beta, eps;

n = 4; sigma = 0.25;
x = 1 ˜ ranu(n, 2);
beta = <1; 2; 3>;

eps = sigma * rann(n, 1);

print("x", x, "beta", beta, "epsilon", eps);
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Some remarks on this program:

• decl is used to declare the variables of this program.
• n = 4 simply assigns the value 4 to the variablen.
• print is a standard library function used for printing.
• * multiplies two variables.
• ˜ concatenates two variables. Here we concatenate an integer with a4×2 matrix.

The process can be pictured as:

1 ∼




x x

x x

x x

x x


 ⇒




1 x x

1 x x

1 x x

1 x x


 .

I[2.1] Run this Ox program. All the program listings which have a name on the right
in the dotted line are made available. If you do not already have them, you can
download then fromwww.nuff.ox.ac.uk/users/doornik . In this case
the file is calledoxtut2c.ox . By default, all these files live inox/tutorial .
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I[2.2] Use the help system to discover the meaning ofranu andprint .

I[2.3] Add a line for computingy = Xβ + ε. Also print the value ofy. This requires:
(1) decl aring the variabley
(2) inserting a statement computingXβ + ε and storing it iny
(3) adding a statement toprint they variable.

I[2.4] The rows() andsizer() functions returns the number of rows of a matrix,
thecolumns() andsizec() functions the number of columns. Add a print
statement to report the dimensions ofx in the above program.

Here are some of the things which can go wrong in the previous exercises:

(1) Forget a comma. For exampledecl a, b c; needs a comma after theb.
(2) Forget a semicolon. For examplen = 4 sigma = 0.25; has a semicolon

missing.
(3) Adding a semicolon after the function header, as in:

main();
{

// code
}

(4) Omitting the curly braces, as in:
main()

print("some text");

(5) Forget to declare a variable. The newy variable must be declared before it can
be used.

(6) Using the wrong case:print(X); would not work, because the variable is
calledx , notX.

(7) Any typo, such as writingpriny instead ofprint .
(8) Matrix dimensions do not match in multiplication:


x x x

x x x

x x x

x x x


 *

(
x

x

)
fails, but




x x x

x x x

x x x

x x x


 *


 x

x

x


 works.

2.5 Identifiers

Identifiers (names of variables and functions) may be up to 60 characters long. They
may consist of the characters [A-Z], [a-z ], [ ], and [0-9], but may not start with a digit.

2.6 Style

It is useful to raise the issue of programming style at this early stage. A consistent style
makes a program more readable, and easier to extend. Even in the very small programs
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of these tutorials it helps to be consistent. Often, a program of a few lines grows over
time as functionality is added. With experience, a good balance between conciseness
and clarity will be found.
Here is one solution to the previous exercise:

#include <oxstd.h>

main()
{

decl n, sigma, x, y, beta, eps;

n = 4; sigma = 0.25;
x = 1 ˜ ranu(n, 2);
beta = <1; 2; 3>;

eps = sigma * rann(n, 1);
y = x * beta + eps;

print("x", x, "beta", beta, "epsilon", eps);
print("y", y);
print("x has ", rows(x), " rows and ",

columns(x), " columns\n");
}

But this solution will work too:
#include <oxstd.h>
main()
{decl n,x1,x,y,x2,x3;
n=4;x1=0.25;x=1˜ranu(n,2);
x2=<1;2;3>;x3=x1*rann(n,1);
y=x*x2+x3;
print("x",x,"beta",x2,"epsilon",x3);
print("y",y);
print("x has ",rows(x)," rows and ",
columns(x)," columns\n");}

Later on (in§4.11) we shall introduce a system of name decoration, which will in-
crease the readability of a computer program. For example, we would prefix all global
variables withg , such asg dMisval (but we shall do our best to avoid global vari-
ables as much as possible).

2.7 Matrix constants

The previous code used various types of constants:4 is an integer constant,0.25 is
a double constant, and"x" is a string constant. Most interesting is the value assigned
to beta , which is amatrix constant. This is a list of numbers inside< and>, where a
comma separates elements within a row, and a semicolon separates rows. The comma
is actually optional. Remember that you can only use numbers in a matrix constant, no
variables:<1,2,sigma> is illegal. In that case use1˜2˜sigma (see§3.3).
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I[2.5] Write a program which assignes the following constants to variables, and prints
the results:

<1,2,3>
<11 12 13; 21 22 23; 31 32 33>
<1:6>

2.8 Using functions

The function is a fundamental building block when writing Ox programs. Functions
allow for splitting complex tasks up in manageable bits. The best ones are those which
only interact with the outside via the arguments (the inputs) and the return value (the
outputs, if any). Then, when there are no external variables used inside the function,
the function can be treated as an isolated piece of code: the only thing which matters is
the documentation of the function.

Up to this point, only one function has been used, themain function. Execution of
an Ox program starts atmain , from which other functions are called; there is no action
outside functions. Ox comes with a vast library of functions for your convenience.
These are all documented in the help and the Ox book. Whether a function is written in
C, and added to the Ox system (as for the standard library), or written in Ox itself (such
as the maximization functions and the Database class), does not make any difference to
the user of the function.

2.8.1 Simple functions

The most simple Ox function has no arguments, and returns no value. The syntax is:
functionname()
{

statements
}

For example:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#include <oxstd.h>

sometext()
{

print("Some text\n");
}

main()
{

sometext();
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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We’ve created thesometext function, and call it from themain function. When the
program is run, it just printsSome text . Note that, to call the function, the empty
parentheses are required.

2.8.2 Function arguments

A function can take arguments. In the header of the function code, the arguments are
listed, separated by comma’s. This example takes one argument:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut2d
#include <oxstd.h>

dimensions(const mX)
{

print("the argument has ", rows(mX), " rows", "\n");
}

main()
{

dimensions( zeros(40, 5) );
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theconst which precedes each argument indicates the function is only accessing
the value, not changing it. Although any change made tomYor mXis only local to
the function (once the function returns, both will have their old values back), it is very
useful to useconst wherever possible: the compiler can then generate much faster
code.

I[2.6] Modify thedimensions function to give it two arguments, printing the number
of rows in both arguments.

2.8.3 Returning a value

The return statement returns a value from the function,and also exits the function.
So, when the program flow reaches areturn statement, control returns to the caller,
without executing the remainder of the function. The syntax of the return statement is:

return return value;

Or, to exit from a function which does not have a return value:
return;

For example:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MyOls1(const mY, const mX)
{

return (mX’mX)ˆ-1 * (mX’mY);
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Or, using the library functionolsc :
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut2e

#include <oxstd.h>

MyOls(const mY, const mX)
{

decl b;

olsc(mY, mX, &b);
print("in MyOls(): b=", b);
return b;

}

main()
{

decl b;
// mY argument, mX argument, both just random

b = MyOls( rann(10, 1), ranu(10, 2) );
// b now holds the result
print("in main(): b=", b);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This function estimates and prints the coefficients of the linear regression model. The
dependent variable is in then× 1 vectormY, and the regressors in then× k matrixmX.
The&b part is explained below. Any local variable (here:b) must be declared;b only
exists while the function is active. Withreturn the result is returned to the caller, and
the function exited

I[2.7] In MyOls , move the line with the return statement to above the print statement
and compare the output with the old version.

I[2.8] Test the function using the program given underneath: the task is to useMy-
Ols() for the regression. The data are observations on the weight of chickens
(y) versus the amount of feed they were given (X). The data source is Judge,
Hill, Griffiths, L ütkepohl and Lee (1988, Table 5.3, p.195).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut2f
#include <oxstd.h>

MyOls(const mY, const mX)
{

decl b;

olsc(mY, mX, &b);
return b;

}
main()
{

decl y = <0.58; 1.1; 1.2; 1.3; 1.95;
2.55; 2.6; 2.9; 3.45; 3.5;
3.6; 4.1; 4.35; 4.4; 4.5>;
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decl x1 = <1 : 15>’; // note transpose!
decl mx;

mx = 1 ˜ x1 ˜ x1 .ˆ 2; // regressors
print(y ˜ mx); // print all data

// 2do: use MyOls to regress y on mx and print results
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.8.4 Function declaration

A function can only be called when the compiler knows about it. In the program listed
below [2.8], theMyOls() function can be used insidemain , because the source code
is already known at that stage. IfMyOls() were to be moved belowmain it cannot
be used any more: the compiler hasn’t yet encounteredMyOls() . However, there is
a way to inform about the existence ofMyOls() , without yet giving the source code,
namely by declaring the function. This amounts to copying the header only, terminated
with a semicolon. To illustrate the principle:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#include <oxstd.h>

MyOls(const mY, const mX);// forward declaration of MyOls,
// so that it can be used in main

main()
{

// now MyOls may be used here
}

MyOls(const mY, const mX)
{

// code of MyOls
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The header files (e.g.oxstd.h ) mainly list all the function declarations together,
whereas the source code resides elsewhere.

An option for small bits of code is to write the function to an.ox file, and just
include the whole file into the source file which needs it.

I[2.9] Add documentation toMyOls , using the template provided in§2.2. Save the
resulting code (comment plusMyOls ) in a file calledmyols.ox . Then adjust
your program resulting from [2.8] along these lines:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#include <oxstd.h>

#include "myols.ox" // insert code from myols.ox file
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main()
{

// now MyOls may be used here
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.8.5 Returning values in an argument

Often, a function needs to return more than one value. It was pointed out before that
a function cannot make a permanent change to an argument. However, this can be
changed using the ampersand (&). The following program illustrates the principle.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut2g
#include <oxstd.h>

test1(x) // no const, because x will be changed
{

x = 1;
print("in test1: ", x, "\n");

}
test2(const ax)
{

// Note: indexing starts at 0 in Ox
ax[0] = 2;
print("in test2: ", ax[0], "\n");

}
main()
{

decl x = 10;

print("x = ", x, "\n");
test1(x); // pass x
print("x = ", x, "\n");
test2(&x); // pass address of x
print("x = ", x, "\n");

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The program prints:
x = 10
in test1: 1
x = 10
in test2: 2
x = 2

This is happening:

• When callingtest2 , it receives in&x the addressof the variablex , not its
contents. In other words, we are now working with a reference tox , rather than
directly with x .

• Insidetest2 , theax argument holds this address. To access the contents at that
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address, we use subscript 0:ax[0] is the contents of the address, which we can
now change.

• ax[0] = 2 does precisely that: it changes x itself, because x resides at that
address.

Consider the variable as a mailbox: a location at which a value can be stored. If the
mailbox can be seen, a value can be put directly in the mailbox. Otherwise (in a func-
tion), we supply the address of the mailbox, and something can be posted to the address,
also ending up in the box.

I[2.10] Modify MyOls to print the following information:
Number of observations: xx
Coefficients:

xx
xx

Error variance:
xx

I[2.11] Modify MyOls to compute the estimated error variance. Return this through an
argument.

Finally, you may use functions in expressions, or ignore the return value altogether.
For example:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b = MyOls(my, mx) * 2;
MyOls(my, mx);
print(MyOls(my, mx));

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Operators

3.1 Introduction

A language like Ox needs at least three kinds of operators to work with matrices:

(1) index operators, to access elements in a matrix;
(2) matrix operators, for standard matrix operations such as matrix multiplication,

etc.
(3) dot operators, for element by element operations.

Below, a number of matrices is created to investigate the various operators.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut3a

#include <oxstd.h>

main()
{

decl im, in, vr, vc, ma, mm, mi;

im = 3; in = 5;
vr = 0.1 * range(0, im - 1);
vc = range(0, in - 1)’;
ma = vr + vc;
mm = rann(im, im);
mi = unit(im);
print("vr", vr, "vc", vc,

"ma", "%4.1f", ma,
"mm", mm, "mi", mi);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This example uses a form of name decoration (‘v’ for vector and ‘m’ for matrix; this is
discussed in§4.11). The print format string"%4.1f" is explained in§7.5.

Theunit function creates the identity matrix, in this case of dimensionim by im .

Finally, range(0,im-1) creates a matrix with values0,1,..., im-1 . Since
we know the value ofim , we could have written<0:2> . Adding a column vector to a

19
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row vector works like this:

(
x0 x1

)
+


 y0

y1

y2


 =


 x0 + y0 x1 + y0

x0 + y1 x1 + y1

x0 + y2 x1 + y2


 .

I[3.1] Try to derive the expected output from this program on paper, then check by
running it. Consult the help if necessary.

3.2 Index operators

Indexing in Ox starts at zero, not at one!
Initially you might forget this and make a few mistakes, but before too long it will
become second nature. Ox has adopted this convention for compatibility with most
modern languages, and because it leads to faster programs. There is an option to start
at index one, which is explained in the Ox manual (and not really recommended).

A matrix usually has two indices:[i][j] indexes element(i, j) of a matrix, where
[0][0] is the first (top left) element. Eitheri or j may be replaced by a range, such
asi1:i2 . If the lower value of a range is missing, zero is assumed; if the upper value
is missing, the upper bound is assumed. An empty index,[] selects all rows (when it
is the first index) or all columns (when it is the second).

When a matrix is used with one index, it is treated as a vector. In tht case it does
not matter whether the vector is a row or a column vector. When one index is used on
a proper matrix, the matrix is treated as if all the rows together make up one column
vector.

Here are some examples:

x =
(

0 1 2
3 4 5

)
, y =

(
0 1 2

)
, z =


 0

3
6


 .

x[0][0] = 0, x[ ][1 : ] =
(

1 2
4 5

)
, x[3 : ] =


 3

4
5


 ,

y[ : 1] = y[0][ : 1] =
(

0 1
)
, z[ : 1] = z[ : 1][0] =

(
0
3

)
.

I[3.2] Write a program to verify these examples.

I[3.3] Append the following code to the previous program. You may also wish to add
additional spaces and linefeeds in theprint() statements. Note: from now on
we will occasionally give just a section of code; it is assumed that you know that
an#include <oxstd.h> statement must be added, and the code inserted
into a function (main() for example).
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut3b
print("vectors:",

"vr", vr,
"vr[0]", vr[0],
"vr[0][0]", vr[0][0],
"vc", vc,
"vc[1]", vc[1],
"vr[0][1]", vr[0][1]);

print("matrices:",
"ma", ma,
"rows(ma)=", rows(ma), "columns(ma)=", columns(ma),
"ma[1][2]", ma[1][2],
"ma[:1][:1]", ma[:1][:1],
"ma[][]", ma[][]);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, it is possible to use a matrix as an index. This can lead to powerful code,
when combined with functions which create such indexing matrices.

I[3.4] Again extend the program:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut3c
decl rix = <1,2>, cix = <0,1>;
print("ma", ma,

"ma[rix][cix]", ma[rix][cix],
"mm", mm);

// change submatrix [rix][cix]:
mm[rix][cix] = unit(2);
print("mm", mm);
// set all elements to 3:
mm[][] = 3;
print("mm", mm);

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The matrix indexingma[rix][cix] in the previous example can be visualized
as: 


↓ ↓

a00 a01 a02 a03 a04

→ a10 a11 a12 a13 a14

→ a20 a21 a22 a23 a24


 .

3.3 Matrix operators

All operators+ - * / work as expected when both operands are an integer or a
double: when both operands are an integer, the result is an integer, otherwise it will be
a double. The exception is division of two integers: this will produce a double, so1/2
equals 0.5 (C and C++ programmers take note!).

When matrices are involved, things get more interesting. Obviously, when two
matrices have the same size we can add them element by element (+) , or subtract them
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element by element (-) . The first example of this chapter also had the ‘tabular’ form:
adding a row vector to a column vector, producing a matrix. For matrix multiplication
use* , then elementi, j of the result is the inner product of rowi (left operand) and
columnj (right operand).

I[3.5] If you’re not so familiar with matrices, try

(
1 2
3 4

)
×

(
2 1
1 2

)

first on paper, then using the computer.

Division (/ ), when the right operand is a matrix, corresponds to post multiplication
with the inverse. We’ve already used matrix transpose (’ ) and horizontal concatenation
(˜ ). We also saw one useful feature when creating the constant term for regression:
when concatenating an integer (or double) and a matrix, the scalar is automatically
replicated to get the same number of rows (˜ ) or columns (| ). When concatenating two
non-matching matrices, the shortest one is padded with zeros at the end. (So there is a
difference between1 ˜ <1;1> and<1> ˜ <1;1> ; a warning is printed for the
latter.)

A square matrix may be raised to an integer power, usingˆ , for exampleAˆ2 equals
A*A. To summarize:

operator operation
’ transpose,X’y is short forX’*y
ˆ (matrix) power
* (matrix) multiplication
/ (matrix) division
+ addition
- subtraction
˜ horizontal concatenation
| vertical concatenation

Some operations are illegal, resulting in an error message. Here is an example:

Runtime error: ’matrix[5][1] * matrix[5][3]’ bad operand
Runtime error occurred in main(42), call trace:
main(42)

The first says that we cannot multiply a5 × 1 matrix into a5 × 3 matrix. The error
occurred in themain function, at line 42.

I[3.6] Return to the first example, and try all combinations of operands and operators
(bearing in mind that some are not allowed). Here is a start:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
print("vr", vr);
print("vr + vr", vr + vr);
print("ma[:2][] + mm", ma[:2][] + mm);
print("ma * vr’", ma * vr’);
print("vc’ * ma", vc’ma);
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[3.7] Write a program to try the following example.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut3d

/* a linear model */
decl ct, mx, vbeta, veps, vy;
ct = 4;
mx = 1 ˜ ranu(ct, 1);
vbeta = <1;1>;
veps = 0.1 * rann(ct, 1);
vy = mx * vbeta + veps;
print("y = X * beta + eps\n",

"X", mx, "beta", vbeta, "eps", veps, "y", vy,
"b_hat", (1/(mx’mx)) * (mx’vy) );

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This example produces the following output:
y = X * beta + eps
X

1.0000 0.020192
1.0000 0.68617
1.0000 0.15174
1.0000 0.74598

beta
1.0000
1.0000

eps
-0.039088
-0.064953
-0.065276

0.075399
y

0.98110
1.6212
1.0865
1.8214

b_hat
0.93849

1.0948

I[3.8] Division in Ox is closely related to inversion, extend the previous example as
follows:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
print("b_hat", invert(mx’mx) * (mx’vy) );
print("b_hat", (mx’mx)ˆ-1 * (mx’vy) );
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print("b_hat", invertsym(mx’mx) * (mx’vy) );
print("b_hat", (1 / mx) * vy );
print("b_hat", vy’/mx’);
decl vb_hat;
olsc(vy, mx, &vb_hat);// olsc,olsr are best way to do OLS!
print("b_hat", vb_hat);
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.4 Dot operators

Dot operators are element-by-element operators. For adding and subtracting matrices
there is only the dot version, already used in the previous section (written as+ and- ).

Element-by-element multiplication is denoted by.* and ./ is used for element-
by-element division. As with addition and subtraction, dot conformity implies that
either operand may be a row (or column) vector. This is then swept through the rows
(columns) of the other operand. For example:

(
x0 x1

)
.*


 y0 y1

y2 y3

y4 y5


 =


 x0y0 x1y1

x0y2 x1y3

x0y4 x1y5


 .

To summarize:

operator operation
.ˆ element-by-element power
.* element-by-element multiplication
./ element-by-element division
+ addition
- subtraction

I[3.9] Try the new operators; to start:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
print("ma*vr’", ma * vr’);
print("ma.*vr", ma .* vr);
print("vc’ma", vc’ma);
print("vc .* ma", vc .* ma);
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[3.10] Adjust the linear model in [3.7] to use a matrixε instead of a vector.

3.5 Relational and equality operators

Relational operators compare both operands, and exist in two versions. the first version
always returns an integer, even when both arguments are matrices. The return value 0
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stands for FALSE, and 1 for TRUE. When comparing a matrix to a scalar, the result is
only 1 (TRUE) if it holds for each element of the matrix.

operator operation
< less than
> greater than

<= less than or equal to
=> equal or greater than
== is equal
!= is not equal

The second form of relational operator is the dotted version: this does an element
by element comparison, and returns amatrix of 0’s and 1’s. The dotted versions are:

operator operation
.< element-by-element less than
.> element-by-element greater than

.<= element-by-element less than or equal to

.=> element-by-element equal or greater than

.== element-by-element is equal

.!= element-by-element is not equal

Often code is more readable when using the predefined constantTRUEandFALSE,
instead of the numbers 1 and 0. These are defined inoxstd.h . Relational operators
are especially important in conditional epressions and loops, and these are discussed in
the next chapter.

3.6 Logical operators

These are closely related to the relational operators, and also have dotted and non-dotted
versions:

operator operation
&& logical-and
|| logical-or

If an expression involves several logical operators after each other, evaluation will stop
as soon as the final result is known. For example in(1 || checkval(x)) the
function checkval is never called, because the result will be true regardless of its
outcome. This is called aboolean shortcut.
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The dotted versions are:

operator operation
.&& element-by-element logical-and
.|| element-by-element logical-or

The dotted operators do not have boolean shortcuts.

I[3.11] As an example, we try to print a logical table. Print format options are used to
label rows and columns, for more information see§7.1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut3e

#include <oxstd.h>

main()
{

decl a1 = <0,1>, a2 = <0,1>, v = <1:3>’;

print("Truth table", "%5g ",
"%r", {"0","1"},
"%c", {"|| 0","|| 1", "&& 0","&& 1"},
(a1’ .|| a2) ˜ (a1’ .&& a2) );

print("Some comparisons: ",
"v ˜ (v .> 1 .&& v .< 3) = ",
v ˜ (v .> 1 .&& v .< 3),
"No dots:",
"v ˜ (v > 1 && v < 3) = ", v ˜ (v > 1 && v < 3),
" v == <1:3>’ = ", v == <1:3>’
);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Which prints the table:
Truth table

|| 0 || 1 && 0 && 1
0 0 1 0 0
1 1 1 0 1
Some comparisons: v ˜ (v .> 1 .&& v .< 3) =

1.0000 0.00000
2.0000 1.0000
3.0000 0.00000

No dots: v ˜ (v > 1 && v < 3) =
1.0000 0.00000
2.0000 0.00000
3.0000 0.00000

v == <1:3>’ = 1

Some procedures are available for selecting or dropping rows/columns based on
a logical decision. These areselectifr , selectifc , deleteifr and de-
leteifc ; vecindex may be used to translate the 0-1’s to indices. A very useful,
but slightly more complex operator is the dot-conditional operator (see§3.8).
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Here are some examples using these functions:

u 1 0 1 0 2
u .> 0 1 0 1 0 1
vecindex(u)’ 0 2 4
vecindex(u .> 1)’ 4
selectifc(u, u .> 0) 1 1 2
selectifc(u, u .> 1) 2

3.7 Assignment operators

It may surprise you, but assignment is an operator like any other, it just has very low
precedence (only one operator is below it: the comma operator). As a result we may
write

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
decl x1, x2, x3, x4;
x1 = 0; x2 = 0; x3 = 0; x4 = 0;
// or more concisely:
x1 = x2 = x3 = x4 = 0;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

There are also compact assignment-and-other-operation-in-one operators, for ex-
ample you could try adding print statements for:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
decl x1, x2, x3, x4;
x1 = x2 = x3 = x4 = 0;

x1 += 2;
x2 -= x1;
x1 *= 4;
x1 /= 4;
x1 ˜= x2;
x3 |= 2;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.8 Conditional operators

Both the conditional, and dot-conditional operators are a bit more advanced, becuase
they have three components. The dot-conditional can be especially useful, because it is
like a filter: a zero in the filter will not let anything through, whereas a non-zero will.
Consider for example:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
decl x = rann(2,2);
x = x .< 0 .? 0 .: x;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Initially, x is a matrix with standard normal random numbers. The next line checks for
negative elements (x .< 0 creates a 0-1 matrix, with 1 in the positions of negative
numbers). For all positions where the filter is not 0, the expression after the.? is used.
For the zeros, the else expression (after.: ) is applied.

I[3.12] Below is an example using theselectifc andvecindex functions. Adjust
it to use the dot-conditional operator (use the help if necessary, see under condi-
tional operator), to set all negative values ofu to zero. Note that dot operators
tend to be much faster than using loops.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut3f
#include <oxstd.h>

main()
{

decl u = rann(6,1), v, w;

v = selectifr(u, u .< 0)’;
print(u’, v’);

w = u;
w[vecindex(u .< 0)][] = 0;
print(u ˜ w ˜ vecindex(u .< 0));

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.9 And more operators

We have not discussed all operators, see the Ox book for the full list. Some will be
needed in the remaining chapters:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
decl x1, x2;
x1 = x2 = 0;

print(x1, " ", ++x1, "\n"); // increment x1 by 1
print(x1, " ", --x1, "\n"); // decrement x1 by 1
x1 = <0,1,2>;
print(x1, " ", !x1, " ", !!x1, "\n"); // ! is negation:

// 0 becomes 1, non-zero becomes 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.10 Operator precedence

Because operator precedence is so important, we replicate the table from the Ox book
here. Table 3.1 gives a summary if the operators available in Ox, together with their
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precedence. The precedence is in decreasing order. Operators on the same line have the
same precedence, in which case the associativity gives the order of the operators.

Table 3.1 Ox operator precedence.

Category operators associativity
primary () :: left to right
postfix -> . () [] ++ -- ’ left to right
unary ++ -- + - ! & new delete right to left
power ˆ .ˆ left to right
multiplicative ** * .* / ./ left to right
additive + - left to right
horizontal concatenation ˜ left to right
vertical concatenation | left to right
relational < > <= >= .< .> .<= .>= left to right
equality == != .== .!= left to right
logical dot-and .&& left to right
logical-and && left to right
logical dot-or .|| left to right
logical-or || left to right
conditional ? : .? .: right to left
assignment = *= /= += -= ˜= |= right to left
comma , left to right

At first, it will be useful to keep Table 3.1 close at hand: we often use the precedence
ordering in our statements to avoid using too many parentheses. But when in doubt, or
when needing to override the default, you can always add parenthesis. For example, in
[2.8] we wrote:

mx = 1 ˜ x1 ˜ x1 .ˆ 2; // regressors
Using the precedence table we know that dot-power comes before concatenation. Also,
concatenation is evaluated left to right. So the expression is evaluated as:

mx = ((1 ˜ x1) ˜ (x1 .ˆ 2));
Writing

mx = (1 ˜ x1 ˜ x1) .ˆ 2;
would have given some problems in the regression.
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Program Flow and Program Design

4.1 Introduction

Ox is a complete programming language, withif statements andfor loops. However,
where you need loops in more traditional languages, you can often use the special mat-
rix statements available in Ox. Try to avoid loops whenever you can: the vectorized
version will often be very much faster than using loops. On the other hand, you’ll dis-
cover that loops cannot be avoided altogether: some code just doesn’t vectorize (or the
resulting code might get too complex to maintain).

4.2 for loops

The authors of the C language came up with a nice solution for the syntax of the for
loop: it is flexible, yet readable:

for ( initialization ; condition; incrementation)
{

statements
}

For example:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
decl i;

for (i = 0; i < 4; ++i)
{

print(" ", i);
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Printing:0 1 2 3 .

It works as follows:

30
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value ofi check condition action
initialize i 0 TRUE→ go on print 0
incrementi 1 TRUE→ go on print 1
incrementi 2 TRUE→ go on print 2
incrementi 3 TRUE→ go on print 3
incrementi 4 FALSE→ stop!

So, at the end of the loop,i will have the value 4. Since the condition is checked prior
to executing the loop, it is possible that the body is not executed at all (theni will have
the initial value).

I[4.1] Write a function which multiplies two matrices usingfor loops. Compare the
results with using the matrix multiplication operator.

It is allowed to have more than one statement in the initialization or incrementation
part of the for loop. A comma is then required as a separator:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
decl i, j;

for (i = 0, j = -1; i < 4 && j <= 3; ++i, j += 2)
{

print(" ", i, " ", j);
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[4.2] Can you see what is wrong with this code?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
for (i = 4; i >= 0; ++i)
{

print(" ", i);
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3while loops

The first example for thefor loop can also be written using a while loop:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i = 0;
while (i < 4)
{

print(" ", i);
++i;

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this case, thefor loop is more readable. But if there is not a clear initialization
or incrementation part, thewhile form might be preferred.
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Again, thewhile loop is not executed at all wheni starts at 4 or above. If a loop
must be executed at least once, use thedo while loop:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
i = 0;
do
{

print(" ", i);
++i;

} while (i < 4);
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here the check is at the end: the body is executed the first time, regardless of the initial
value ofi .

4.4break and continue

Two special commands are available inside loops:

• break;
Terminates the loop in which the command appears, for example:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
for (i = 0; i < 4; ++i)
{

if (i == 2) break;
print(" ", i);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Works as follows:

i check condition action
initialize i 0 TRUE→ go on no break, print 0
incrementi 1 TRUE→ go on no break, print 1
incrementi 2 TRUE→ go on break!

• continue;
Starts with the next iteration of the loop, for example:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
for (i = 0; i < 4; ++i)
{

if (i == 2) continue;
print(" ", i);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Works as follows:
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i check condition action
initialize i 0 TRUE→ go on no continue, print 0
incrementi 1 TRUE→ go on no continue, print 1
incrementi 2 TRUE→ go on continue!
incrementi 3 TRUE→ go on no continue, print 3
incrementi 4 FALSE→ stop!

4.5 Conditional statements

In the previous section we usedif statements to illustrate the use ofcontinue and
break . The full syntax is:

if ( condition)
{

statements
}
else if ( condition)
{

statements
}
else
{

statements
}

here, condition must be an expression. Remember that any non-zero value is true, and
zero is FALSE. Also: a matrix is only true if it has no zero elements at all. At might
seem a bit pedantic to write true in lower case, andFALSEin uppercase (and a different
font). There is, however, a big difference here between true andTRUE. The latter is a
predefined constant which always has the value 1 (equal to!FALSE ). The former refers
to any non-zero value, e.g.1, 2, -12.5 , etc.

4.6 Vectorization

The following program drawsT (set in the variablect ) normally distributed random
numbers, and computes the mean of the positive numbers:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut4a
#include <oxstd.h>

main()
{

decl ct, mx, i, cpos, dsum, time;
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ct = 250;
mx = rann(ct, 1);
time = timer(); // save starting time

for (i = cpos = 0, dsum = 0.0; i < ct; ++i)
{

if (mx[i] > 0)
{

dsum += mx[i];
++cpos;

}
}
println("lapsed time: ", timespan(time));
println("count of pos.nos: ", cpos, " out of ", ct);
println("mean of pos.nos: ", dsum / cpos);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[4.3] In exercise [3.12], we used theselectifr function to select part of a matrix,
based on a boolean condition. Use this knowledge to rewrite the program without
using loops or conditional statements.

I[4.4] Repeat both programs forT = 2000, 8000 and compare the time of the original
and your vectorized program. (You might have to increaseT further to get mean-
ingful timings.)

4.7 Functions as arguments

A function may be passed as argument to another function, and then called from within
that function. To pass a function as argument, just pass the name (without parentheses).
The argument is then used as any other function, but there can be no argument checking
at compile time, only at run time.

The examples in this section involve maximization of a function of several para-
meters. Fortunately, maximization code is provided with Ox, and we shall use that to
illustrate using functions as arguments. The methods available in Ox are the BFGS
(Broyden-Fletcher-Goldfarb-Shanno method), and the Nelder-Mead simplex method
(not to be confused with the simplex method used in linear programming). Technical
information on the used functions (MaxBFGSandMaxSimplex ) is in the Ox manual.
Details of the procedures are beyond our current objectives, but there is a vast literature
on non-linear optimization techniques to consult (see, among many others, Fletcher,
1987, Gill, Murray and Wright, 1981, Cramer, 1986, Press, Flannery, Teukolsky and
Vetterling, 1988, and Thisted, 1988). Note that many texts on optimization focus on
minimization, rather than maximization, but of course that is just a matter of reversing
the sign.
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Consider minimizing the so-called Rosenbrock function:

f(α, β) = 100 ∗ (
β − α2

)2
+ (1 − α)2 .

The minimum is at(1, 1) with function value0; the contours of the function are rather
banana-shaped.

In order to use a function for maximization, it must have four arguments:
func(const vP, const adFunc, const avScore, const amHess)

obeying the following rules:

• vP is ap× 1 matrix of parameter values at which the function is to be evaluated.
• adFunc must be the address of a variable on input. On output, the function value

at the supplied parameters should be stored at the address.
• avScore holds either0 on input, or the address of the score variable. If it was

not 0 on input, the first derivatives of the function (the scores, ap × 1 vector)
should be stored at the address.

• We ignore theamHess argument.
• func should return 0 if it couldn’t evaluate the function at the supplied parameter

values, and 1 otherwise.

The initial program is:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut4b

#include <oxstd.h>

fRosenbrock(const vP, const adFunc, const avScore,
const amHess)

{
adFunc[0] = -100 * (vP[1] - vP[0] .ˆ 2) .ˆ 2

- (1 - vP[0]) .ˆ 2; // function value

return 1; // 1 indicates success
}

main()
{

decl vp, dfunc, ir;

vp = zeros(2, 1); // starting values
ir = fRosenbrock(vp, &dfunc, 0, 0); // evaluate

print(" function value is ", dfunc,
"\n at parameter value:", vp’);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[4.5] Below is a function which can be used to testfRosenbrock . Add it to the
previous program, rewritingmain to usefunceval .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut4c
funceval(const func, const vP)
{

decl dfunc, ir;

ir = func(vP, &dfunc, 0, 0); // evaluate
if (ir == 0)

print("function evaluation failed\n");
else

print("function value is ", dfunc,
"\n at parameter value:", vP’);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is a small step from here to maximize the function usingMaxBFGS. When call-
ing MaxBFGS, a function has to be provided for maximization, andMaxBFGSuses a
syntax identical to that offRosenbrock (which explains all the seemingly redundant
arguments).

In addition to callingMaxBFGS(the help explains the arguments), themaxim-
ize.h header file must be included, and the object code for maximization linked in.
The resulting program is:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut4d
#include <oxstd.h>
#import <maximize>

fRosenbrock(const vP, const adFunc, const avScore,
const amHess)

{
adFunc[0] = -100 * (vP[1] - vP[0] ˆ 2) ˆ 2

- (1 - vP[0]) ˆ 2; // function value

return 1; // 1 indicates success
}

main()
{

decl vp, dfunc, ir;

vp = zeros(2, 1); // starting values

MaxBFGS(fRosenbrock, &vp, &dfunc, 0, TRUE);

print(" function value is ", dfunc,
"\n at parameter value:", vp’);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[4.6] Use the help or documentation to read about theMaxBFGSfunction. Add a
call to MaxControl(-1, 1); to the program in order to print the results
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of each iteration. Also try to inspect the return value ofMaxBFGS: function
maximization can fail for various reasons (tip: useMaxConvergenceMsg() ).

4.8 Importing code

The previous program used the#import statement to incorporate the maximization
code:

#include <oxstd.h>
#import <maximize>

There is no file extension in the argument to#import . The effect is as an
#include <maximize.h> statement followed by markingmaximize.oxo for
linking. The actual linking only happens when the file is run, and#import <max-
imize> statements may occur in other files which need it (including compiled files).

The maximization code as supplied with Ox has three parts:

ox/include/maximize.h the header file
ox/include/maximize.oxo the compiled source code file
ox/src/maximize.ox the original source code file

Because we link the compiled code, the original Ox code is not really needed. Program
organization is discussed further in§4.10.

4.9 Global variables

A golden rule of programming is toavoid global variables as much as possible. The
reason for this is that using global variables makes programs hard to maintain, and
difficult to use. A global variable (also calledexternalvariable) which is only used in
one source file is not too bad, but it becomes more problematic as soon as the global
variables have to be shared between various source code files.

Sometimes you cannot avoid the use of global variables. In that case we recommend
to label themstatic whenever possible. This will indicate that the variable can only
be seen within the current file (i.e. thescopeis restricted to the file). For example, if
a procedure likefRosenbrock above needs to access data, we cannot avoid a global
variable: the data cannot be provided as an argument, because that will stop us from
using the function as an argument toMaxBFGS.

Another solution to the problems caused by global variables is to wrap everything
into aclass. This is the subject of Chapter 9.

To illustrate the issue, we can estimate the parameters from a normal density given
a sample of sizen. The normal density is:

f(xi; µ, σ2) =
(
2πσ2

)−1/2
exp

[
− (xi − µ)2 /2σ2

]
.
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The log-likelihood (divided byn) for the sample is:

`(θ|x)/n =
1
n

n∑
i=1

log f(xi; θ) = −1
2

log
(
2πσ2

) − 1
2n

n∑
i=1

(xi − µ)2 /σ2.

Maximizing the log-likelihood amounts to doing a regression on a constant term (but
in regression the estimated variance is be divided byn − k). So, an explicit solution is
available, and code has only an illustrative purpose.

The maximand is the log-likelihood divided by the sample size, instead of just the
log-likelihood. The reason for this is the convergence decision byMaxBFGS. This
is based on two criteria: relative change in parameters and likelihood elasticities (para-
meter times score). While both are invariant to scaling of parameters, the latter is not in-
variant to sample size. In least squares terminology this amounts to maximizing (minus
the) the residual variance, rather than the residual sum of squares.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut4e
#include <oxstd.h>
#include <oxfloat.h> // defines M_PI, M_2PI
#import <maximize>

static decl s_mY; // the data sample (T x 1)
// use static to avoid any other file from seeing s_mY

fLoglik(const vP, const adFunc, const avScore,const amHess)
{

decl dsum, dsig2;

dsum = sumsqrc(s_mY - vP[0]) / rows(s_mY);
dsig2 = vP[1];

adFunc[0] = -0.5 * (log(M_2PI * dsig2) + dsum / dsig2);

return 1; // 1 indicates success
}

main()
{

decl cn, dmu, dsigma2, vtheta, dfunc;

cn = 50; // sample size
dmu = 21; // distribution parameter: mean
dsigma2 = 49; // and variance

// generate a sample
s_mY = dmu + sqrt(dsigma2) * rann(cn, 1);

vtheta = <20;49>;
fLoglik(vtheta, &dfunc, 0, 0); // evaluate

print("function value is ", cn * dfunc,
"\nat parameter value:", vtheta’);
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MaxControl(-1,5);
MaxBFGS(fLoglik, &vtheta, &dfunc, 0, TRUE);

print("\nConverged function value is ", cn * dfunc,
"\nat parameter value:", vtheta’);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[4.7] Execute this program to maximize the likelihood.
Note thatfLoglik does not check for negative variances. To make the maxim-
ization more robust it is possible to take the absolute value of the variance, using
fabs . Then negative values will give the same likelihood as positive, and the
search may extend to negative values. Of course, when the optimization is done,
you may have converged to a negative variance, which needs to be made positive.
There still is a singularity at zero variance. To avoid this, also insert:

if (dsig2 == 0)
return 0;

You can see what happens when starting with a negative variance.

I[4.8] Adjust fLoglik so that it works on several columns of parameters at the same
time (i.e. vP may be2 × s). Now the function is not suitable anymore for
MaxBFGS.

4.10 Program organization

To summarize program structure as seen up to this point:

• A header file communicates the declaration of functions, constants and external
variables (§2.3).

• Including Ox code makes it available for use ([2.9]).
• Precompiled code can be linked in (§4.8).

For small programs it doesn’t matter so much how you organize the code. It could
be convenient to set some functionality aside in an .ox file (as forMyOls.ox ), and
then include it when required.

For large programs more care is needed. Usually, the project is divided in source
code according to functionality (no need to create a separate file for each function).
Header files then allow the declaration to be known wherever it is required. To run the
program, the code must be linked in with themain function, either including the code,
or linking in the precompiled code.

As an example, pretend that thefLoglik function given above is actually of any
use. First create a source code file calledmyloglik.ox :
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut4f
#include <oxstd.h>
#include <oxfloat.h> // defines M_PI

static decl s_mY; // the data sample (T x 1)
// use static to avoid any other file from seeing s_mY

SetYdata(const mY)
{

s_mY = mY;
}
FMyLoglik(const vP, const adFunc, const avScore,

const amHess)
{

decl dsum, dsig2;

dsum = sumsqrc(s_mY - vP[0]) / rows(s_mY);
dsig2 = vP[1];

adFunc[0] = -0.5 * (log(M_2PI * dsig2) + dsum / dsig2);

return 1; // 1 indicates success
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By makings mYstatic, we hide it from other source files. In order to store data in it,
we provide theSetYdata function. An alternative strategy would have been to omit
thestatic keyword, and provide direct access to the variable.

Next, a header file calledmyloglik.h (don’t forget the semicolons after the de-
clarations!):

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SetYdata(const mY);
FMyLoglik(const vP, const adFunc, const avScore,

const amHess);
// if g_mY is declared without static, then access from
// other files is provided by declaring it as follows
// in the header file:
// extern decl g_mY;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(1) Including the code:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#include <oxstd.h>
#include "myloglik.h" // no <...> but "..."

#include "myloglik.ox" // also get the code

main()
{ // main code has to be supplied
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(2) Linking the pre-compiled code requires compilation first. You could use
oxl.exe for example:

oxl -c myloglik.ox

This will producemyloglik.oxo . Then use:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#include <oxstd.h>
#import "myloglik" // no <...> but "...", no .h

main()
{

// main code
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(3) An alternative way of linking the pre-compiled code is:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#include <oxstd.h>
#include "myloglik.h" // no <...> but "..."

#pragma link("myloglik.oxo") // link object code

// main code
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This pragma may only occur once for each.oxo file in every program.
(4) Or, linking on the command line, assuming that the main program is called

myprog.ox :
oxlw -lmyloglik myprog.ox

Note, that you must recreate themyloglik.oxo file any time you make a change in
myloglik.ox .

I[4.9] Try the various procedures outlined above, and compare the outcomes. Use
SetYdata to change the contents ofmsY.

4.11 Style and Hungarian notation

The readability and maintainability of a program is considerably enhanced when using
a consistent style and notation, together with proper indentation and documentation.
Style is a personal matter; this section describes the style adopted in the Ox manual.
Indent by four spaces at the next level of control (i.e. after each opening brace), jumping
back on the closing brace.

The Ox manual also uses something called Hungarian notation. This involves the
decoration of variable names. There are two elements to Hungarian notation: prefixing
of variable names to indicate type (Table 4.2), and using case to indicate scope (Table
4.1, remember that Ox is case sensitive).
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As an example consider:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#include <oxstd.h>

const decl MX_R = 2; /* a constant */
decl g_mX; /* exported matrix */
static decl s_iCount; /* static external variable */

static func1(const amX)/*argument is address of variable */
{

amX[0] = unit(2);
}

/* exported function */
Func2(const mX, const asX, const cT, const cX)
{

decl i, my, cn;
// etc.

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The func1 function is only used in this file, and gets the address of a variable
as argument.Func2 is exported to other files, and expects acT × cX matrix, and
corresponding array ofcX variable names. Thec prefix is used for the number of
elements in a matrix or string (c for count of). Note however, that it is not necessary
in Ox to pass dimensions separately. You can askmXandasX what dimensions they
have:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Func2(const mX, const asX)
{

decl i, m, ct, cx;
cx = columns(mX);
ct = rows(mX);
if (cx != sizeof(asX))

print("error: dimensions don’t match");
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.1 Hungarian notation, case sensitivity.

local variables all lowercase
function (not exported) first letter lowercase
function (exported) first letter uppercase
static external variable s prefix, type in lower, next letter uppercase
exported external (global) variable as above, but prefixed withg
function argument type in lowercase, next letter uppercase
constants all uppercase
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Table 4.2 Hungarian notation prefixes.

prefix type example

i integer iX
c count of cX
b boolean (f is also used) bX
f boolean (and integer flag) fX
d double dX
m matrix mX
v vector vX
s string sX
a array (or address) aX
as array of strings asX
am array of matrices amX
p pointer (function argument) pX
m class member variable mmX
g external variable with global scopeg mX
s static external variable (file scope) s mX



Chapter 5

Input and Output

5.1 Introduction

Table 5.1 lists the files types which Ox can read and write.

file type default extension
ASCII matrix file .mat
ASCII data file with load information .dat
PcGive/GiveWin data file .in7 (with .bn7)
Excel spreadsheet file .xls
Lotus spreadsheet file .wks/.wk1
Gauss data file .dht (with .dat)
Gauss matrix file .fmt
binary file using low level functions

Table 5.1 Supported file formats.

Simple functions are available for reading and writing, as are low level functions
which can be used to read virtually any binary data file (provided the format is known;
see the examples insamples\inout ). This chapter gives examples of the most
frequently used methods, but is by no means exhaustive.

To read a file directly into a matrix, useloadmat . Theloadmat function uses the
extension of the file name to determine the file type. Usesavemat to write a matrix
to disk, again the file type is determined by the extension.

All versions of Ox, whether for Unix or Windows, will write identical files. So you
can write a PcGive file on the Sun, transfer it to a PC (.in7 and binary transfer for .bn7!),
and read it there.

44
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5.2 Using paths in Ox

If you specify full folder names, you must either use one forward slash, or two back-
slashes:"./data.mat" or ".\\data.mat" . Ox will interpret one backslash in
a string as an escape sequence (as in"\n" , see§7.4); only if it happens not to be an
escape sequence, will the backslash be used. Also note that the Windows and Unix
versions of Ox can handle long file names.

5.3 Using GiveWin or Excel

If you need to enter data from the keyboard, you can enter these into a file using a text
editor, or enter them into a GiveWin database or Excel spreadsheet. These can be read
directly into an Ox matrix or into an Ox database. Examples are given below.

5.4 Matrix file (.mat)

This is a simple ASCII (human-readable) file. The first two numbers in the file give the
number of rows and columns of the matrix, this is followed by the matrix elements, row
by row. If data.mat has the following contents:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 2 // 4 by 2 matrix

1 2 // comment is allowed
3 4
5 6 7 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

then the following program will read it, provided it is in the same directory.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#include <oxstd.h>

main()
{

decl mx;

mx = loadmat("data.mat");

print(mx);
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[5.1] Rewrite [2.8] by putting the data in a .mat file. To save typing the numbers, you
can first run the program with asavemat command.
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5.5 Spreadsheet files

Ox can read and write the following spreadsheet files:

• Excel: .xls files;
• Lotus: .wks, .wk1 files;

provided the following convention is adopted:

• Ordered by observation (that is, variables are in columns).
• Columns with variables are labelled (have a name).
• There is an unlabelled column with the dates (as a string), in the form year–period

(the – can actually be any single character), for example, 1980–1 (or: 1980Q1
1980P1 1980:1 etc.). This doesn’t have to be the first column.

• The data form a contiguous sample (non-numeric fields are converted to missing
values, so you can leave gaps for missing observations). Here –9999.99 is used
as the missing value.

Ox can read the following types of Excel files:

• Excel 2.1, 3.0, 4.0 worksheets;
• Excel 5.0, 95, 97 workbooks.

Workbooks are compound files, and only the first sheet in the file is read. If Ox cannot
read a workbook file, it is recommended to retry with a worksheet file.

When saving a database as an Excel file, it is written as an Excel 2.1 worksheet.
The maximum size of spreadsheet files is65 536 rows by256 columns, and a warning
is given if that maximum is exceeded (Ox can handle much larger datasets). Ox does
not enforce the maximum number of columns, allowing up to65 536 instead; rows and
columns in excess of65 536 are not written.

For example, the format for writing is (this is also the optimal format for reading):

A B C D
1 CONS INFL DUM
2 1980-1 883 2.7 3
3 1980-2 884 3.5 5
4 1980-3 885 3.9 1
5 1980-4 889 2.6 9
6 1981-1 900 3.4 2
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5.6 GiveWin/PcGive data files (.IN7/.BN7)

As for spreadsheet and matrix files, these can be read directly into a matrix using the
loadmat function.

I[5.2] Adjust the program you wrote in§5.4 to save the matrix file in the PcGive file
format. If you have access to GiveWin, then load the file into it. Or, if you have
access to Excel, you can try to use the spreadsheet format instead.

5.7 What about variable names?

Often the columns of the matrix to be read in are variables for modelling which have
a name. It would be nice to have those names in the output, or even select variables
by name. This functionality is offered by thedatabase class. We will start later with
object oriented programming, but the following example could already be useful. The
database class also has facilities to keep track of time-series data.

The examples will use thedata.in7 /data.bn7 file combination, installed with
Ox in theox\samples\database directory.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut5a
#include <oxstd.h>
#include <database.h>
#pragma link("database.oxo")

main()
{ decl dbase;

dbase = new Database();
dbase->LoadIn7(

"C:/Program files/Ox/Data/data.in7");

dbase->Info();

delete dbase;
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

With output:
---- Database information ----

4 variables, 159 observations

name sample period min mean max stddev
CONS 1953 (1) 1992 (3) 853.5 875.94 896.83 13.497
INC 1953 (1) 1992 (3) 870.22 891.69 911.38 10.725
INFLAT 1953 (1) 1992 (3) -0.6298 1.7997 6.4976 1.2862
OUTPUT 1953 (1) 1992 (3) 1165.9 1191.1 1213.3 10.974
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I[5.3] Try the above program, using the correct path for your installation.

I[5.4] With mx = dbase->GetAll(); you can get the whole database matrix into
the variablemx. Usemeanc etc. to replicate the database information.

5.8 Finding that file

In the previous section we hardcoded the file name. That is not always convenient,
especially not with distributed code where it is up to the user to determine the file
locations. There are a couple of tricks which may help:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut5b
#include <oxstd.h>
#import <database>
#import <data/>

main()
{ decl dbase;

decl x = loadmat("data/data.in7");
print("means:", meanc(x));

dbase = new Database();
dbase->LoadIn7("data.in7");
dbase->Info();

delete dbase;
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If you have installed properly (i.e. theOXPATHvariable is set correctly), then in
both cases the files will be found.

• loadmat works, because, when normal file opening fails, the file is searched
alongOXPATH. In this case, the file is inox/data , so the second search suc-
ceeds.

• LoadIn7 works with the help of theimport statement. The argument toim-
port is a partial path (because of the terminating slash). That relative path is
now combined withOXPATHto continue the search.
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Graphics

6.1 Introduction

We assume that you have GiveWin or can handle PostScript files, requiring:

(1) access to OxRun and GiveWin to see graphs on screen, or
(2) access to GhostView or another program to view a saved graph on screen, or
(3) access to a PostScript printer to print a saved graph, or
(4) access to a GhostScript or another program to print a saved graph.

More details follow.

6.2 Graphics output

Several types of graphs are readily produced in Ox, such as graphs over time of several
variables, cross-plots, histograms, correlograms, etc. Although all graph saving will
work on any system supported by Ox, only a few can display graphs on screen (GiveWin
can, for example). If you have GhostView installed, you can use that to display a saved
PostScript file on your screen.

A graph can be saved in various formats:

• Encapsulated PostScript (.eps ),
• PostScript (.ps ), and
• GiveWin graphics file (.gwg ).

When usingGiveWin, graphs can also be saved in Windows Metafile format (.wmf ),
and copied to the clipboard for pasting into wordprocessors.

6.3 Running programs with graphics

• Windows graphics from the console version
Oxl cannot display graphics, but can save graphics.

49
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• Graphics from Unix console versions
These cannot display graphics, but can save graphics.

• Windows graphics (OxRunandGiveWin)
Text and graphics output from the Ox program will appear inGiveWin. There,
text and graphs can be edited further, or copied to the clipboard for pasting into
other programs.

6.4 Example
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The example program generates two drawings from a standard normal distribution,
cumulates these to get two independent random walks. These are then drawn against
time (both in one graph) and against each other, resulting in two graphs.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut6a
#include <oxstd.h>
#include <oxdraw.h>

main()
{
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decl ct = 200, meps, msum;

meps = rann(ct, 2);
msum = cumulate(meps);

DrawTMatrix(0, msum’, {"y1", "y2"}, 1, 1, 1);
DrawXMatrix(1, msum[][0]’, {"y1"}, msum[][1]’, "y2");

ShowDrawWindow();
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theoxdraw.h must be included for the graphics functions. Some remarks on the
functions used:

• DrawTMatrix() graphs variables against time.It expects the data in rows.
The startyear(startperiod) is 1(1), with frequency 1. This gives anx-axis which
is 1, 2, 3, . . .. The first argument is the area index, here 0 for the first plot.

• DrawXMatrix() graphs variables against another variable.It expects the data
in rows.Thex-axis is given by the second variable. The first argument is the area
index, here 1 for the second plot.

• ShowDrawWindow() is required to realize the graph on screen. It also clears
the drawing buffer for subsequent graphs.

• You may add a call toSaveDrawWindow() to save the graph to disk. The
extension determines the file type:.gwg for GiveWin graphics,.eps for en-
capsulatedPostScript and.ps for PostScript .

I[6.1] The listed program only shows the first two graphs of the figure above. The
additional graphs are the two standard normal drawings, and their cross plot.
Add two lines to the program so that the full figure is replicated.
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Strings, Arrays and Print Formats

7.1 Introduction

In addition to matrices (and integers and doubles), Ox also supports strings and arrays.
We have been using strings all the time to clarify the program output. An example of
a string constantis "some text" . Once this string is assigned to a variable, that
variable has the string type.

In [3.11] we even used an array of strings:{"0","1"} . This type is especially
useful to label rows and/or columns of a matrix. Here is another example:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut7a
#include <oxstd.h>

main()
{

print( "%r", {"row 1", "row 2"},
"%c", {"col 1", "col 2"}, "%6.1g", unit(2) );

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

producing:
col 1 col 2

row 1 1 0
row 2 0 1

This program has 7 string constants, and 2 arrays. The strings which have the%
symbol areformat specifiers, to be discussed later.

7.2 String operators

Most useful are string concatenation (˜ but | will also work), and string indexing. Since
a string is a one dimensional construct, it takes only one index. For example:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#include <oxstd.h>

main()
{

decl s = "some";

s ˜= " text";
print(s, s[4:], "\nsize of s = ", sizeof(s));

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3 Thesprint function

Thesprint function works exactly likeprint , but it returns the output as a string,
instead of printing it to the screen. Together with concatenation, this allows for easy
creation of text in the program.

In the next example we usesprint to write intermediate results to a file, where the
filename depends on the replication. This apprach might be useful during very lengthy
computations, to allow inspection of results before the program is complete.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut7b
#include <oxstd.h>

main()
{

decl crep = 4, ct = 50, i, sfile, mx;

for (i = 0; i < crep; ++i)
{

mx = rann(ct, 1); // some lengthy calculation
sfile = sprint("step", i, ".mat");
savemat(sfile, mx);
print("Step ", i, " saved to \"", sfile,

"\"; mean:", meanc(mx));
}

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[7.1] Run the above program, then write the counterpart. This should read in the cre-
ated files, and compute the means of the data in those files.

7.4 Escape sequence

Escape sequences are special characters embedded in a string. They start with a back-
slash. The previous example used\" to insert a double quote in a string. We also used
\n , which inserts a newline character. Some useful ones are:
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\" double quote (" )
\0 null character
\\ backslash (\ )
\a alert (bel)
\b backspace
\n newline
\t horizontal tab

The most important is perhaps the backslash itself, because that is used in filenames.
So write"c:\\ox\\bin" . You may also use forward slashes in Ox, then only one is
required:"c:/ox/bin" .

7.5 Print formats

Without specifying an output format, all output is written in the default format. You can
change both the global default output format, as well as specify a format for the next
object in theprint function.

Examples of the latter were in§7.1. There we used"%6.1g" to print the matrix
in generalformat (which uses scientific notation if the numbers become too small or
large), using an output field of 5 characters with 1 significant digit. In addition"%r"
was used to indicate that the next argument is an array of strings to label the rows,
whereas"%c" was used for column labels. A full description is in the online help, and
in the manual.

Theformat function may be used to set the global format, for example:

format("%#13.5g"); // set new default format for doubles
format(200); // increase line length to 200

"%#13.5g" is actually already the default for writing doubles such as matrix elements.
The defaults will usually suffice, so perhaps it is more common to temporarily override
it in theprint function than using theformat command.

I[7.2] Use the following program to experiment with some formats.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut7c
#include <oxstd.h>

main()
{

decl mx;

mx = ranu(1,1) ˜ ranu(1,1) / 10000;
print("%25.16g", mx, "%25.4g", mx, "%25.4f", mx);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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7.6 Arrays

A matrix is a two-dimensional array of real numbers, and cannot contain any other data
types. Arrays give more flexibility. An array is a one-dimensional array of any object.
Note that this is a recursive definition: an element in an array may be an array itself,
making high dimensional arrays possible.

An array is constructed from variables by the use of curly braces, or by using the
new array[ dim] statement. When an array is printed, all elements are listed. Arrays
can be concatenated, and indexed. Section 7.1 showed an array of strings:{"row 1",
"row 2" }. Here is a more elaborate example which mixes types in an array:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut7d
#include <oxstd.h>

main()
{

decl x = unit(2), ar;

ar = {x, {"row 1", "row 2"}, {"col 1", "col 2"} };
print(ar);

ar = {x, { {"row 1", "row 2"}, {"col 1", "col 2"} };
print(ar);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

producing:
[0] =

1.0000 0.00000
0.00000 1.0000

[1][0] = row 1
[1][1] = row 2
[2][0] = col 1
[2][1] = col 2

[0] =
1.0000 0.00000

0.00000 1.0000
[1][0][0] = row 1
[1][0][1] = row 2
[1][1][0] = col 1
[1][1][1] = col 2

7.7 Missing values

There is one type of missing value which is supported by computer hardware. It is
calledNot a Number, or NaN for short.
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In a matrix constant, you may use a dot to represent a NaN. You may also use the
predefined constantMNAN(defined inoxfloat.h ). The format used when printing
output is .NaN. The spaces around the dot in the example are necessary, otherwise.>
is interpreted as a dot-greater than:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#include <oxstd.h>
#include <oxfloat.h> // defines M_NAN

main()
{

decl m = < . >, d = M_NAN;

print(m + 1, d / 2);
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Any computation involving a NaN results in a NaN. A number of procedures are
available to deal with missing values, most importantly:

• deletec() : deletes all columns which have a NaN,
• deleter() : deletes all rows which have a NaN,
• selectc() : selects all columns which have a NaN,
• selectr() : selects all rows which have a NaN,
• isdotnan() : returns matrix of 0’s and 1’s: 1 if the element is a NaN, 0 other-

wise,
• isnan() : returns 1 ifanyelement is a NaN, 0 otherwise.

isdotnan in combination with the dot-conditional operator is an easy way to
replace missing values by another value:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#include <oxstd.h>

main()
{

decl m1 = <0,.;.,1>, m2;

m2 = isdotnan(m1) .? -10 .: m1; // replace NaN by -10
print(m1, m2);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.8 Infinity

Infinity also exists as a special value supported by the hardware. Infinity can be positive
or negative (printed as+.Inf and -.Inf ), and can be used in comparisons as any
normal number. Theisdotinf() function tests for infinity.
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I[7.3] Write a little program to experiment with NaN and infinity. Generate a NaN as the
logarithm of a negative number, and infinity as the exponent of a large number.
Investigate how they behave when multiplied/divided by each other or a normal
number.
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Summary

8.1 Style

• Use interpretable names for your variables.
• Use Hungarian notation (§4.11) to indicate the type and scope of your variables.
• Use indentation and spaces to structure your programs. For example 4 spaces in

(or a tab) after{ , and four out for the} .
• Document your code.
• Use text to clarify your output.
• Only put more than one statement on a line if this improves readability.

8.2 Functions

• Split large projects up in several files (§4.10).
• First try each function separately on a small problem.
• Avoid the use of global (external) variables. If possible make themstatic ,

otherwise prefix global variables which have global scope withg . Consider
creating a class if you need to set many global variables.

8.3 Efficient programming

• Prepare a brief outline before you start programming.
• Use standard library functions whenever possible.
• Try to find examples which solve a related problem.
• Experiment with small problems before tackling larger ones.
• Start simulation experiments with a small number of replications. Use thetimer

andtimespan functions to estimate the time it will take. If it is a few days or
weeks, split the program in smaller parts.
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8.4 Computational speed

• Use matrices as much as you can, avoiding loops and matrix indexing.
• Use theconst argument qualifier when an argument is not changed in a func-

tion: this allows for more efficient function calling.
• Use built-in functions where possible.
• When optimizing a program with loops, it usually only pays to optimize the inner

most loop. One option is to move loop invariants to a variable outside the loop.
• Avoid using ‘hat’ matrices (such asX(X ′X)−1X ′), i.e. avoid using outer

products over large dimensions when not necessary.
• If necessary, you can link in C or Fortran code, as explained in the Ox manual.



Chapter 9

Classes

9.1 Introduction

Object-oriented programming might sound rather daunting at first, but this chapter will
try to show that it is not that difficult, and can be used to much benefit. Note that it is an
optional feature, and powerful programs can be written without it. The syntax of object
oriented programming in Ox is a subset of that in C++. This makes it similar to the
approach taken in Java.

As always, there is some terminology to get used to. The main vehicle of object-
oriented programming is theclass, which is the definition of an object (somewhat like
the abstract concept of a car). For it to work in practice requires creatingobjectsof that
class (your own car is the object: it is difficult to drive around in an abstract concept).
It is with these objects that the program works.

Classes have two types ofmembers: variables (thedata) and functions (themethods
which work on that data).

Inheritanceis important here: a van can inherit (or derive) much of its functionality
from a basic car. This avoids the need to start again from scratch. The same is applied
in programming: a derived class inherits all the members of the base class; only the
new bells and whistles need to be added.

Say we wish to implement a Monte Carlo experiment. The basic class will store the
replication results, and do all the bookkeeping. To be general, we wish it to be unaware
of what it is actually simulated. But how can it call a function (called Generate, say),
if that function doesn’t exist yet? (And it will not exist until we design the actual
experiment.) This is where avirtual function comes into play: if a derived class has its
own new version ofGenerate , the base class will automatically use that one, instead
of the original version.

A constructorfunction is called when the object is created, and is used to do all
necessary initializations. A constructor has the same name as the class. Adestructor
function cleans up (if necessary) when finished. A destructor has the same name as the
class, but is prefixed with ã.
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9.2 Regression example

The very first example using classes was given in§5.7. Here is another example using
one (actually: three!) of the preprogrammed classes:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut9a
#include <oxstd.h>
#import <pcfiml>

main()
{

decl model;
model = new PcFiml();

model.LoadIn7("data/data.in7");
// create deterministic variables in the database

model.Deterministic(FALSE);
// formulate the model

model.Select(Y_VAR, { "CONS", 0, 1 } ); // lag 0 to 1
model.Select(X_VAR, { "INC", 0, 1 } ); // lag 0 to 1
model.Select(X_VAR, { "Constant", 0, 0 } );// no lags!

model.SetSelSample(-1, 1, -1, 1); // maximum sample
model.Estimate(); // estimate the model

delete model;
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This estimates a model by ordinary least squares:

yt = β0 + β1yt−1 + β2xt + β3xt−1 + εt,

whereyt is CONS(consumption from the artificial data setdata.in7 /data.bn7 ),
xt is INC (income).

The PcFiml class is for estimating linear regression models (even multivariate), with
options for diagnostic testing, cointegration analysis and simultaneous equations estim-
ation (using Full Information Maximum Likelihood estimation, hence the name). Here
it is used in its simplest form.
A few points related to the program:

• The necessary .oxo files must be linked in. Here that is achieved by import-
ing pcfiml . There are actually three linked in:maximize.oxo , data-
base.oxo andpcfiml.oxo .

• new creates a new object of the PcFiml class, and puts it in the variable called
model . Note the parentheses, just like a function call. Actually: there is a
function call, namely the constructor function is called.

• Compare the data loading part with the code in§5.7. They’re exactly the same!
This is because PcFiml derives from the Database class, so it automatically in-
herits all the data input/output functionality.
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• To call functions from the object, use. or -> . (We will use both in this chapter;
the equivalence of. and-> was only introduced with Ox version 2.00.) From
the outside there is only access to functions, not to any of the data members.

• Deterministic() creates a constant term, trend, and seasonal dummies.
Again, this is Database code being used.

• Select formulates the model:Y VAR for dependent and lagged dependent
variabeles,X VAR for the other regressors. The second argument is an array
with three elements: variable name, start lag and end lag.

• SetSelSample sets the maximum sample, but could also be used to select a
subsample.

• Estimate estimates and prints the results. How much work would this have
been starting from scratch?

• Finally, when done, we delete the object. This calls the destructor function, and
then clears the object from memory. When creating objects without callingde-
lete afterwards, memory consumption will keep on increasing.

The output from the program is:
---- System estimation by OLS ----
The estimation sample is 1953 (2) 1992 (3)
CONS lag 0 status Y
CONS lag 1 status Y
INC lag 0 status X
INC lag 1 status X
Constant lag 0 status X

coefficients
CONS

CONS_1 0.98587
INC 0.49584
INC_1 -0.48491
Constant 2.5114

coefficient standard errors
CONS

CONS_1 0.027620
INC 0.037971
INC_1 0.041031
Constant 11.393

equation standard errors
CONS

1.4800

residual covariance
CONS

CONS 2.1903

log-likelihood=-59.9149683 det-omega=2.13489 T=158
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I[9.1] Run the above program. When successful, addINFLAT to the model (without any
lags), and re-estimate. Surprised by the large change in the coefficients? Then
see the chapter called Intermediate Econometrics in Hendry and Doornik (1996).

I[9.2] Building on the knowledge of the previous chapters, replicate the coefficient es-
timates from the first model. Useloadmat to load the data in a matrix (Ch. 5),
the order of the data is:CONS, INC, INFLAT, OUTPUT. Use lag0 to create
lagged variables, andolsc to do the regression.

9.3 Simulation example

The example discussed here generates data from a standard normal distribution, and
estimates the mean and variance (similar to§4.9, but now using analytical solutions. It
also tests whether the mean is different from zero.

The data are drawn from a normal distribution, so that the data generation process
(DGP) is:

yt = µ + εt with εt ∼ N(0, σ2).

We chooseµ = 0 andσ2 = 1. The parameters are estimated from a sample of sizeT

by:

µ̂ = T−1
T−1∑
t=0

yt, σ̂2 = T−1
T−1∑
t=0

(yt − µ̂)2,

and

ŝ =

{
(T − 1)−1

T−1∑
t=0

(yt − µ̂)2
} 1

2

=
{

T

T − 1
σ̂2

} 1
2

.

Thet-test which tests the hypothesisH0: µ̂ = 0 is:

t̂ = T
1
2

µ̂

ŝ
.

The properties of the estimated coefficients and test statistic are studied by repeating
the experimentM times, and averaging the outcome of theM experiments. We could
have done this Monte Carlo experiment analytically (which, of course, is much more
accurate and also much more general). But for more complicated problems, the ana-
lytical solution often becomes intractable, and the Monte Carlo experiment is the only
way to investigate the properties of tests or estimators. For more information on Monte
Carlo analysis see Davidson and MacKinnon (1993, Ch. 21), Hendry (1995, Ch. 3) and
Ripley (1987).

I[9.3] Write a program which draws a sample of size 50 from the DGP and computes
µ̂, ŝ andt̂. When that is working, add a loop of sizeM around this. We wish to
store the results of theM replications to compute the averageµ̂ andŝ from those
M numbers. The added code could be of the form (this is incomplete):
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut9b
decl cm = 1000, mresults;
mresults = zeros(3, cm); // precreate matrix

for (i = 0; i < cm; ++i)
{

// generate results
mresults[0][i] = // store mean here
mresults[1][i] = // store std.dev. here
mresults[2][i] = // store t-value here

}
// compute averages of mean and std.dev
// perhaps draw histogram of t-values
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theory tells us that thet-values have a Student-t distribution with 49 degrees of
freedom. Inmresults[2][] we now have1000 drawings from that distribution,
and a histogram of this data should be close to at(49) distribution. Similarly, after
sorting the numbers, entry 949 should correspond to the5% critical value which may
be found in tables. This is also called the95% quantile of the test.

I[9.4] Add code to your program to print the95% quantile of the simulatedt-values.
Use both thesortr() function and thequantiler() function. Also report
the theoretical quantile from at(49) distribution usingquant().

So much for the theory. The following program repeats the Monte Carlo experi-
ment, based on the Simulation class, and usingT = 50 andM = 1000. The new class
SimNormal derives from theSimulation class. Now there seems to be a setback:
the new program is more than twice as long as the not object-oriented version. Indeed,
for small, simple problems there is a case for sticking with the simple code. Although:
we now do get a nice report as output (without any effort), which is still missing from
the simple code. And, without modifications we can run it for various sample sizes at
once. In the next section, we will create our own (simpler) version of the Simula class.

I[9.5] Run the program below. Note that when a Monte Carlo program is modified,
there could be two reason for getting different results: (1) the initial seed of
the random generator is different, (2) a different amount of random numbers is
drawn, so after one replication they don’t match anymore.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut9c

#include <oxstd.h>
#import <simula> // import simulation header and code

/*--------------- SimNormal : Simulation ---------------*/
class SimNormal : Simulation // inherit from simulation
{

decl m_mCoef; // coefficient
decl m_mTest; // test statistic
decl m_mPval; // p-value of t-test
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SimNormal(); // constructor
// Generate() replaces the virtual function with the

// same name of the base class to generate replications
Generate(const iRep, const cT, const mxT);

//these also replace virtual functions:
GetCoefficients(); // return coefficient values
GetPvalues(); // return p-values of tests
GetTestStatistics(); // return test statistics

};
SimNormal::SimNormal() // define constructor
{

this->Simulation(<50>, 50, 1000, TRUE, ranseed(-1),
<0.2,0.1,0.05,0.01>, // p-values to investigate
<0,1>); // true coefs: mean=0, sd=1

this->SetTestNames({"t-value"}); // set names
this->SetCoefNames({"constant", "std.dev"});

}
SimNormal::Generate(const iRep, const cT, const mxT)
{

decl my, sdevy, meany;

my = rann(cT, 1); // generate data

meany = meanc(my); // mean of y
sdevy = sqrt(cT * varc(my) / (cT-1)); // std.dev of y

m_mCoef = meany | sdevy; // mean,sdev of y
m_mTest = meany / (sdevy / sqrt(cT));//t-value on mean
m_mPval = tailt(m_mTest, cT-1); // t(T-1) distributed

return 1;
}
SimNormal::GetCoefficients()
{

return m_mCoef;
}
SimNormal::GetPvalues()
{

return m_mPval;
}
SimNormal::GetTestStatistics()
{

return m_mTest;
}
/*------------ END SimNormal : Simulation --------------*/

main()
{

decl experiment = new SimNormal(); // create object

experiment->Simulate(); // do simulations
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delete experiment; // remove object
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[9.6] We obtained the output below. Try to interpret these results.
T=50, M=1000, seed=198195252 (common)

test moments
mean std.dev skewness ex.kurtosis

t-value -0.056647 1.0135 -0.012933 0.15601

critical values (tail quantiles)
20% 10% 5% 1%

t-value 0.80563 1.2758 1.6512 2.2456

rejection frequencies
20% 10% 5% 1%

t-value 0.18500 0.097000 0.049000 0.0050000

coefficient moments
mean std.dev

constant -0.0074297 0.14044
std.dev 0.99471 0.10130

coefficient biases
mean bias rmse se meanbias true value

constant -0.0074297 0.14064 0.0044412 0.00000
std.dev -0.0052933 0.10144 0.0032035 1.0000

9.4 MySimula class

9.4.1 The first step

A class is declared as follows (the part in square brackets is only used when deriving
from an existing class, as in the example above):

class classname[: baseclass]
{

classmembers
};

Note the semicolon at the end.

Our class starts as:
class MySimula
{

MySimula(); // constructor
};

Where the constructor is alreadydeclaredas a first function member. A member func-
tion is thendefinedas
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classname:: memberfunction( arguments)
{

functionbody
}

Adding the definition for the constructor yields:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut9d

#include <oxstd.h>

class MySimula
{

MySimula(); // constructor
};
MySimula::MySimula()
{

print("MySimula constructor called\n");
}

main()
{

decl mysim;

mysim = new MySimula();

delete mysim;
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[9.7] Run the program given above.

I[9.8] As does the constructor, the destructor has the same name as the class, but
to distinguish it, it is prefixed with ã symbol. The destructor is called
˜MySimula() . Modify the code to declare the destructor in the class. Add
the destructor function and make it also print a message. No changes have to be
made tomain .

9.4.2 Adding data members

The main variables needed areM , T , and storage for the replicated mean and standard
deviations (we concentrate on those first, calling them ‘coefficients’). We use Hun-
garian notation (§4.11). The constructor receives values forM , T as arguments. A
Simulate function is used to do the experiment, and aReport function to report the
results.

You may have noted that from inside a member function, we can call other member
functions without needing the arrow notation (butthis-> andthis. are allowed).
Member variables may be accessed directly.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut9e
#include <oxstd.h>

class MySimula
{

decl m_cT; // sample size
decl m_cRep; // no of replications
decl m_mCoefVal; // coeff.values of each replication

MySimula(const cT, const cM); // constructor
Simulate(); // do the experiment
Report(); // print simulation results

};
MySimula::MySimula(const cT, const cM)
{

m_cRep = cM;
m_cT = cT;

}
MySimula::Simulate()
{

decl i;

for (i = 0; i < m_cRep; ++i)
{

// do the replication
}
Report();

}
MySimula::Report()
{

print("Did nothing ", m_cRep, " times\n");
}

main()
{

decl mysim;

mysim = new MySimula(50, 1000);

mysim->Simulate();
delete mysim;

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[9.9] Try the modified program. Add aGenerate() function to the class; this should
be called from within the replication loop, and have two arguments: the replica-
tion number, and the sample size.



9.4 MySimula class 69

9.4.3 Inheritance

The base class MySimula is intended to remain unaware of the actual experiment. To
simulate the drawings from the normal distribution, create a SimNormal class deriv-
ing from MySimula. The one difference from C++ is that the constructor of the base
class isnot automatically called, so we must call it explicitly from the SimNormal
constructor. We assume that you did the previous exercise, and created the sameGen-
erate() in MySimula as present in SimNormal:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .oxtut9f
// ...
// code for MySimula is unchanged
// apart from addition of Generate();

class SimNormal : MySimula
{

SimNormal(const cT, const cM); // constructor
Generate(const iRep, const cT);

};
SimNormal::SimNormal(const cT, const cM)
{

MySimula(cT, cM); // call base class constructor
}
SimNormal::Generate(const iRep, const cT)
{
}

main()
{

decl mysim;

mysim = new SimNormal(50, 1000);

mysim->Simulate();
delete mysim;

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[9.10] Reduce the number of replications to 2. In MySimula’sGenerate() add a line
printing ‘MySimula::Generate()’. In SimNormal’sGenerate() a line printing
‘SimNormal::Generate()’. When you run this, the output will indicate that it is
MySimula’s version which is called.

9.4.4 Virtual functions

The previous exercise showed that we have not achieved our aim yet: the wrongGen-
erate() is called.

I[9.11] In the MySimula class declaration replace
Generate(const iRep, const cT);
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with
virtual Generate(const iRep, const cT);

and rerun the program. Did you see the difference?

So, adding thevirtual keyword to the function declaration in MySimula solved
the problem: the generator of the derived class is called. There was no need to do the
same for theGenerate() function in SimNormal (but there is if we wish to derive
from SimNormal and replace itsGenerate() yet again).

What if MySimula wishes to call its ownGenerate() ? In that case, prefix it with
MySimula:: , so that the loop body reads:

MySimula::Generate(i, m_cT);

SimNormal can have access to MySimula’sGenerate() in the same way.

9.4.5 Last step

That really is all we need to know from object-oriented programming to finish this
project. It remains to fill in the actual procedures. Of course, the preprogrammed
Simulation class is much more advanced, but therefore a bit harder to use.

I[9.12] Perhaps you should try to complete the program yourself first. If you got stuck
along the way, the code up to the previous exercise is provided asoxtut9y.ox.

9.5 Conclusion

Ox only implements a subset of the object-oriented facilities in C++. This avoids the
complexity of C++, while retaining the most important functionality.

Several useful packages for Ox are downloadable. Often these derive from the
Database class, as for example the Arfima (for estimating and forecasting fractionally
integrated models) and DPD packages (for estimating dynamic panel data models). You
can look at these to learn more about object-oriented programming. In addition, these
classes can easily be plugged into a simulation class. So, once the estimation side is
done, the Monte Carlo experimentation can be started very rapidly. And, no global
variables: you can use several objects at once, without any possibility of unexpected
side effects.

The next chapter will apply the object-oriented features to develop a small package
for probit estimation.



Chapter 10

Example: probit estimation

10.1 Introduction

In this chapter all the principles of the previous chapters are applied to develop pro-
cedures for probit estimation. The theory is briefly reviewed, and then applied to write
programs of increasing sophistocation. Four version of the program are developed:

(1) Maximum likelihood estimation, numerical derivatives, using global variables
along the lines of§4.9.

(2) Addition of analytical first derivatives, numerical computation of standard errors.
(3) Avoid global variables by using a class.
(4) Create a more sophisticated class.
(5) Use the class in a Monte Carlo experiment.

10.2 The probit model

Several earlier examples involved least squares estimation, where it is assumed that the
dependent variable is continuous. A discrete choice model is one where the dependent
variable denotes a category, so it is discrete and not continuous. This section briefly
reviews the application of maximum likelihood estimation to such models. General
references are Cramer (1991), McFadden (1984) and Amemiya (1981) among others.

An example of a categorical dependent variable is:

yi = 0 if householdi owns no car,
yi = 1 otherwise.

This example is a binary choice problem: there are two categories and the depend-
ent variable is a dummy variable. With a discrete dependent variable, interest lies in
modelling the probabilities of observing a certain outcome. Write

pi = P {yi = 1} .

To test our programs we use the data from Finney (1947), provided in the files
finney.in7 andfinney.bn7 (in theox/samples/maximize folder but also

71
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supplied with the tutorial files). This data set holds 39 observations on the occurrence of
vaso-constriction (the dummy variable, called ‘vaso’) in the skin of the fingers after tak-
ing a single deep breath. The dose is measured by the volume of air inspired (‘volume’)
and the average rate of inspiration (‘rate’). Some graphs of the data are given in Hendry
and Doornik (1996, Ch. 9).

Applying OLS to these data has several disadvantages here. First, it doesn’t yield
proper probabilities, as it is not restricted to lie between 0 and 1 (OLS is called the
linear probability model:pi = x′

iβ). Secondly, the disturbances cannot be normally
distributed, as they only take on two values:εi = 1 − pi or εi = 0 − pi. Finally,
they are also heteroscedastic:E[εi] = (1 − pi)pi + (0 − pi)(1 − pi) = 0, E[ε2i ] =
(1 − pi)2pi + (0 − pi)2(1 − pi) = (1 − pi)pi.

A simple solution is to introduce an underlying continuous variabley∗
i , which is not

observed. Observed is instead:

yi =
{

0 if y∗
i < 0,

1 if y∗
i ≥ 0.

(10.1)

Now we can introduce explanatory variables:

y∗
i = x′

iβ − εi.

and write

pi = P {yi = 1} = P {x′
iβ − εi ≥ 0} = Fε (x′

iβ) .

Observations withyi = 1 contributepi to the likelihood, observations withyi = 0
contribute1 − pi:

L (β | X) =
∏

{yi=0}
(1 − pi)

∏
{yi=1}

pi, (10.2)

and the log-likelihood becomes:

` (β | X) =
N∑

i=1

[(1 − yi) log (1 − pi) + yi log pi] =
N∑

i=1

`i (β) . (10.3)

The choice ofFε determines the method. Using the logistic distribution leads tolo-
git (which is analytically simpler than probit). The standard normal distribution gives
probit. Writing Φ(z) for the standard normal probablity atz:

pi = Φ(x′
iβ).

As explained in§4.7, we choose to maximizè/N , rather thaǹ .
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10.3 Step 1: estimation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .probit1
#include <oxstd.h>
#import <maximize>

decl g_mY; // global data
decl g_mX; // global data

fProbit(const vP, const adFunc, const avScore,
const amHessian)

{
decl prob = probn(g_mX * vP); // vP is column vector

adFunc[0] = double(
meanc(g_mY .* log(prob) + (1-g_mY) .* log(1-prob)));

return 1; // 1 indicates success
}

main()
{

decl vp, dfunc, ir;

print("Probit example 1, run on ", date(), ".\n\n");

decl mx = loadmat("data/finney.in7");

g_mY = mx[][0]; // dependent variable: 0,1 dummy
g_mX = 1 ˜ mx[][3:4]; // regressors: 1, Lrate, Lvolume
delete mx;

vp = <-0.465; 0.842; 1.439>; // starting values

MaxControl(-1, 1); // print each iteration
// maximize

ir = MaxBFGS(fProbit, &vp, &dfunc, 0, TRUE);

print("\n", MaxConvergenceMsg(ir),
" using numerical derivatives",
"\nFunction value = ", dfunc * rows(g_mY),
"; parameters:", vp);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We can discuss this program from top to bottom. First, in addition tooxstd.h , we
need to include themaximize.h header file, and link in the maximization code (cf.
§4.8).

The likelihood function is set up as in§4.7, forcing us to use global variables: the
N × 1 matrixY , containing only zeros and ones, and theN × k matrixX which holds
the regressors.
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fProbit() evaluates the log-likelihood̀(β) at the provided parameter values
(vP holdsβ as a column vector). The function value is returned in thedFunc argument
(see§2.8.5). ThefProbit() function itself returns a 1 when it succeeds, and should
return a 0 otherwise.

The probabilitiespi = Φ(x′
iβ) are computed in one statement, because all the ob-

servations are stacked:

P =




p1

...
pN


 = Φ(Xβ).

All the likelihoods can also be computed in one step as

(1 − Y ) .* log (1 − P ) + Y .* log (P ) .

The resultingN × 1 vector is summed usingsumc() . This returns a1 × 1 matrix,
which is converted to a double using thedouble() typecast function.

This takes us to themain() function. Here the first step is to load the data matrix
into the variablemx. The first column is they variable, which is stored ing mY. The
fourth and fifth (remember: indexing starts at zero) are concatenated with a 1 to create
a constant term (cf.§2.4), this is stored ing mX. Now mx is not needed anymore, and
delete is used to remove its contents from memory.

Starting values have been chosen on the basis of a prior linear regression, using
scaled OLS coefficients:2.5βOLS − 1.25 for the constant term, and2.5βOLS for the
remaining coefficients.MaxControl leaves the maximum number of iterations un-
changed, but ensures that the results of each iteration is printed out. Initially that is
useful, but as the program gets better, we shall want to switch that off again.

We do not meed to specify the initial (inverse) Hessian matrix forMaxBFGS. The
argument0 makes it use the identity matrix, which is the usual starting ‘curvature’
measure for BFGS. As the maximization process proceeds, that matrix will converge to
the true (inverted) Hessian matrix. Also, the matrix on output is not useful for comput-
ing standard errors: imagine starting with the identity matrix, from the optimum values.
Then the procedure will converge immediately, and the output matrix will still be the
identity matrix.

Finally, whenMaxBFGS() is finished, it returns the status of the final results as an
integer. These are predefined constants, and can be translated to a text message using
MaxConvergenceMsg() . Hopefully the return value isMAXCONV, corresponding
to strong convergence.

The maximization converges quickly (the number of iterations depend on conver-
gence criteria and on whether you used` or `/n), with output (the first iterations have
been omitted):

Probit example 1, run on 1-12-1997.

Position after 13 BFGS iterations
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Status: Strong convergence
parameters

-1.5039 2.5117 2.8611
gradients

-3.5936e-005 -1.7996e-005 2.2059e-005
function value = -0.375475160739

Strong convergence using numerical derivatives
Function value = -14.6435; parameters:

-1.5039
2.5117
2.8611

10.4 Step 2: Analytical scores

Computing analytical scores requires differentiating the log-likelihood with respect to
β. This can be done inside the summation in (10.3):

∂`i (β)
∂βk

= (1 − yi)
( −1

1 − pi

)
∂pi

∂βk
+ (yi)

(
1
pi

)
∂pi

∂βk
=

yi − pi

(1 − pi)pi

∂pi

∂βk
.

The derivative of the normal probability is the normal density:

∂pi

∂βk
=

∂Φ(x′
iβ)

∂βk
= φ(x′

iβ)xik .

As for the log-likelihood, the full factor multiplyingxik can be computed in one go
for all individuals:

W = (Y − P ) .* φ ./ ((1 − P ) .* P ) .

W is anN × 1 vector which has to be multiplied by eachx.k to obtain the three score
values for each individual log-likelihood. Again, one multiplication will do:

S = W .* X.

This uses the ‘tabular’ form of multiplication (§3.4): all three columns ofX are mul-
tiplied by the one column inW ; the resultingS is anN × 3 matrix. Then summing
up each column and dividing byN gives the derivatives of the complete scaled log-
likelihood. BecauseMaxBFGSexpects a column vector, this has to be transposed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .part of probit2
fProbit(const vP, const adFunc, const avScore,

const amHessian)
{

decl prob = probn(g_mX * vP); // vP is column vector
decl tail = 1 - prob;
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adFunc[0] = double(
meanc(g_mY .* log(prob) + (1-g_mY) .* log(tail)));

if (avScore) // if !0: compute score
{

decl weight = (g_mY - prob) .* densn(g_mX * vP)
./ (prob .* tail);

avScore[0] = meanc(weight .* g_mX)’;// need column
}

return 1; // 1 indicates success
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The analytical derivatives are more accurate than the numerical ones. A small dif-
ference may just be noted when comparing the final gradients of the two programs.

The final program also computes estimated standard errors of the coefficients using
numerical second derivatives of the log-likelihood at the converged parameter values:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .part of probit2
// if converged: compute standard errors

if (ir == MAX_CONV || ir == MAX_WEAK_CONV)
{

if (Num2Derivative(fProbit, vp, &mhess))
{

decl mcovar = -invert(mhess) / cn;
print("standard errors:", sqrt(diagonal(mcovar)’));

}
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

These are only computed when there is convergence. The complete estimated
variance-covariance matrix is minus the inverse of the second derivatives:

̂V1[β̂] = −Q(β̂)−1, whereQ =
∂2`

∂β∂β′ .

The standard errors are the square root of the diagonal of that matrix. Another way of
computing the variance can be obtained from the outer product of the gradients (OPG):

̂V2[β̂] = (S′S)−1
.

I[10.1] AdjustfProbit in such a way that it returnsS′S in theamHessian argument.
Use this to compare the two variance estimates. The result should be approxim-
ately:

standard errors: 0.63740 0.93635 0.90793
OPG standard errors: 0.59988 1.1910 1.0142



10.5 Step 3: removing global variables 77

10.5 Step 3: removing global variables

Step 3 uses the object-oriented techniques of Chapter 9 to remove the global variables.
The Database class is used to derive from in order to facilitate data loading. The code
listed illustrates by omitting that part of the program which is nearly identical to the
previous program (apart from the switch fromg mY, g mXto mmY, mmX):

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .outline of probit3
#include <oxstd.h>
#import <database>
#import <maximize>

class Probit : Database
{

decl m_mY; /* dependent variable [cT][1] */
decl m_mX; /* regressor data vector [cT][m_cX] */

Probit(); /* constructor */
Estimate(); /* does the estimation */
fProbit(const vP, const adFunc, const avScore,

const amHessian); /* log-likelihood */
};

Probit::Probit()
{

this.Database(); // intialize base class
print("Probit class example 3, object created on ",

date(), ".\n\n");
}
Probit::fProbit(const vP, const adFunc, const avScore,

const amHessian)
{
//...... as before, using m_mY, m_mX instead of g_mY, g_mX
}
Probit::Estimate()
{
//as main() before, using m_mY, m_mX instead of g_mY, g_mX
}

main()
{

decl probitobj;
// create an object of class Probit

probitobj = new Probit();
// load the data, estimate the model

probitobj.Estimate();

delete probitobj; // done with object
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The Probit class derived from the Database class. It adds two data members forY

andX , and three functions:

(1) The constructor to call the base class constructor and print a message.
(2) The loglikelihood function.
(3) TheEstimate() function contains the code which was previously inmain() :

loading the data, estimating and then printing the results.

The newmain() creates the object, callsEstimate() , and deletes the object.

10.6 Step 4: using names of variables

The version of Step 3 has a serious defect: for each new model formulation theEs-
timate() function must be modified. Ideally, the code of the class works for any
binary probit model, and not just for this one. Modifications to achieve this take us
close to the approach taken in packages such as Arfima and DPD.

First, the oldProbit::Estimate() is split in three parts:InitData() , Es-
timate() andOutput . The Database class has the facility to store a model formu-
lation, which is used in this step.

The resulting program is used in a similar way to the PcFiml example in§9.2. The
full listing is in probit4.ox . Here is themain() function:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .part of probit4
main()
{

decl probitobj;

probitobj = new Probit();

// load data file into object
probitobj.LoadIn7("data/finney.in7");
probitobj.Info(); // print database summary
probitobj.Deterministic(FALSE); // create constant

// Formulate the model
probitobj.Select(Y_VAR, { "vaso",0,0 } );
probitobj.Select(X_VAR, { "Constant",0,0,

"Lrate",0,0, "Lvolume",0,0 } );
probitobj.SetSelSample(-1, 1, -1, 1); // full sample

MaxControl(-1, 1); // print each iteration
probitobj.Estimate(<-0.465; 0.842; 1.439>);// maximize

delete probitobj;
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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10.7 A Monte Carlo experiment

One of the claims we made was that, once wrapped up in a class, it is easier to reuse
the code. To make our case, we round off with a Monte Carlo experiment of Probit
estimation. Once again several steps are involved.

All files in this section arebprobit.* and bpro*.* , where the b stands for
binomial.

10.7.1 Split source code

Theprobit4.ox file contains class header, class content andmain() all in one file.
To make it generally useful, this has to be split in three files:

• bprobit.h – class header file,
• bprobit.ox – class implementation file,
• bprotest.ox – main (left overs fromprobit4.ox ).

The header file has one interesting feature:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .part of bprobit.h
#ifndef BPROTEST_INCLUDED
#define BPROTEST_INCLUDED

// class definition

#endif // BPROTEST_INCLUDED
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This prevents the header file from being included more than once in a source code
file (necessary because a class can de defined only once). So if you now write in your
code file:

#include "bprobit.h"
#include "bprobit.h"

Then the first timeBPROTESTINCLUDEDis not defined, and the full file is included.
The second timeBPROTESTINCLUDEDis defined, and the part between#ifndef
and#endif is skipped.

Thebprobit.h file already importsdatabase andmaximize , which then is
not needed in the main code anymore as long asbprobit.h is included. The top of
bprotest.ox includesbprobit.h , but also the Ox file directly (as this file is still
under development at this stage, it is inconvenient to create a precompiled (.oxo) file,
but at a later stage that might be a good idea):

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .part of bprotest.ox
#include <oxstd.h>
#include "bprobit.h"
#include "bprobit.ox"
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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10.7.2 Extending the class

A few extensions are required to make the class more useful. When working from
someone elses class, this is best done by deriving our custom version from it through
inheritance. Here we have control over the class (which is still quite basic), and add the
functions directly:

• SetPrint(const fPrint) – to switch automatic printing on/off,
• IsConverged() – to check for convergence after estimation,
• GetParameters() – returns estimated parameters,
• GetStandardErrors() – returns estimated standard errors of parameters.

In addition,GetStandardErrors() and IsConverged() are now used in
Output() , andEstimate() returns theMaxBFGS() code.

10.7.3 One replication

Continuing with the step-wise refinement of the program, we start with a one-replication
experiment. Instead of loading a datafile, and formulating a model specific to that data,
we need to create artificial data ourselves:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .bprosim1.ox
#include <oxstd.h>
#include "bprobit.h"
#include "bprobit.ox"

main()
{

decl probitobj, ct = 100, x, y;

probitobj = new Probit(); // create object

probitobj.Create(1, 1, 1, ct, 1); // create database
probitobj.Deterministic(FALSE); // create constant

x = ranu(ct, 1); // artificial x
y = 1 + x + rann(ct, 1); // artificial y
y = y .< 1 .? 0 .: 1; // translate into 0,1 variable
probitobj.Append(x ˜ y, {"x", "y"});// extend database
probitobj.Info(); // print database summary

// formulate the model: y on 1,x
probitobj.Select(Y_VAR, { "y",0,0 } );
probitobj.Select(X_VAR, { "Constant",0,0, "x",0,0 } );
probitobj.SetSelSample(-1, 1, -1, 1); // full sample

probitobj.Estimate(<0; 0>); // maximize

delete probitobj;
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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I[10.2] Run this program for various sample sizes. An experiment like this can be useful
to check your coding if you use a large sample size (assuming that the estimator
is consistent): the obtained parameters should be reasonably close to the input
values. ForN = 100 000 we found:

parameters standard errors
-0.0010194 0.0080956

1.0087 0.014805

Can you explain why the constant term is insignificant?

10.7.4 Many replications

Most of the work is done now. What remains is to create a replication loop, and accu-
mulate the results.

• Parameter estimates and their standard errors are stored by appending the results
to params andparses respectively. This starts from an empty matrix (starting
from 0 adds a column of zeros and affects the outcomes).

• The x variable is kept fixed, but they is recreated at every experiment. It is
stored in the database of the probit object, from where the estimation function
will retrieve it.

• The results are only stored when the estimation was successful. Especially when
numerical optimization is used, is it important to take into account that estimation
can fail. Here we reject the experiment, and try again, untilcrep experiments
have succeeded (if they all fail, the program would go in an infinite loop).

• At the end, a report is printed out.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .bprosim2.ox
#include <oxstd.h>
#include "bprobit.h"

#include "bprobit.ox"

main()
{

decl probitobj, ct = 100, x, y, crep = 100, irep,
ires, cfailed, params, parses;

probitobj = new Probit();
probitobj.Create(1, 1, 1, ct, 1); // create database
probitobj.Deterministic(FALSE); // create constant

x = ranu(ct, 1); // fixed during experiment
y = zeros(ct, 1); // 0 as yet, created in replications
probitobj.Append(x ˜ y, {"x", "y"});

probitobj.Select(Y_VAR, { "y",0,0 } ); // formulate
probitobj.Select(X_VAR, { "Constant",0,0, "x",0,0 } );
probitobj.SetSelSample(-1, 1, -1, 1); // full sample
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probitobj.SetPrint(FALSE); // no intermediate output

params = parses = <>;
for (irep = cfailed = 0; irep < crep; )
{

y = 1 + x + rann(ct, 1); // create new y variable
y = y .< 1 .? 0 .: 1; // make into 0,1
probitobj.Renew(y, {"y"}); // replace in database

ires = probitobj.Estimate(<0; 0>);

if (!probitobj.IsConverged())
{

++cfailed; // count no of failures
continue; // failed: reject and try again

}
params ˜= probitobj.GetParameters(); // store
parses ˜= probitobj.GetStandardErrors();
++irep; // next replication

}

println("No of successful replications: ",
crep, " (", cfailed, " failed)");

println("Sample size: ", ct);
println("estimated parameters",

"%c", {"mean-par", "sd-par", "mean-se", "sd-se"},
meanr(params) ˜ sqrt(varr(params)) ˜
meanr(parses) ˜ sqrt(varr(parses)));

delete probitobj;
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I[10.3] ForM = 100, N = 100 we obtained:
No of successful replications: 100 (0 failed)
Sample size: 100
estimated parameters

mean-par sd-par mean-se sd-se
-0.013406 0.25857 0.24224 0.0039480

1.0671 0.46142 0.46980 0.021313

Interpret these results.

I[10.4] Implement a procedure which automatically generates starting values.

I[10.5] Derive and implement analytical second derivatives.

I[10.6] Modify the program to use the simulation class for the Monte Carlo experiment-
ation.

I[10.7] In (10.2) the 0–1 variableyi is used as a selection variable, whereas in (10.3)
this selection is implemented through multiplication by 0 or 1. Can you find the
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(extreme) situations in which this is not the same (hint: compute the value of
0 × inf)?

I[10.8] Extend the program to print the time it took to complete the Monte Carlo experi-
ment.

10.8 Conclusion

If you made it this far you have certainly become anoxpert(to quote from van der Sluis,
1997). From now on we hope that you can spend less time on learning the computing
language, and more on the econometric or statistical content of the problems you intend
to solve. We wish you productive use of the Ox programming language.



Appendix A1

Installation Issues

A1.1 Updating the environment

Skip this section if you managed to run the Ox programs in this booklet. Otherwise,
you probably still have to update thePATHandOXPATHenvironment variable.

The executable (oxl.exe etc.) is in theox\bin folder, for example by default it
is in:

C:\Program files\Ox\bin

So, update yourPATHvariable if necessary. Also, the oxpath environment variable
must be set to theox\include;ox folders, for example:1

set OXPATH=C:\Program files\Ox\include;C:\Program files\Ox

Without these, you can still runmyfirst.ox , but a lot of typing is needed:
"C:\Program files\Ox\bin\oxl"

"-iC:\Program files\Ox\include" myfirst.ox
The double quotes are required because of the space in the file name (under Win-

dows 3.1,Program files would beProgramF ).

A1.2 Using the OxEdit editor

OxEditis a powerful text editor, and a very useful program in its own right. OxEdit has
some features which are especially useful when writing Ox programs:

• Syntax colouring
Three colours are used to distinguish keywords, constants and comment. This
makes the code more readable, and mistakes easier to spot.

• Facility to easily comment in or comment out blocks of text
• Run Ox programs from inside OxEdit

1In Windows 3.1 and 95 thePATHandOXPATHvariables are set by editing the autoexec.bat
file. In Windows NT, you can do it using the Control panel, System: use the environment page in
the system properties.
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The screen capture shows OxEdit withmyfirst.ox after running it from the
Modules menu.

The first time you use OxEdit, execute theAdd Ox modules command on the
Modules menu. From then on you can run your Ox programs without leaving
OxEdit:

– Ox - runs the currently active document window usingoxl.exe . The
output will appear in the window called Ox Output.

– OxRun - runs the currently active document window usingOxRun. The
output will appear inGiveWin .

– Ox - interactive - starts an interactive session. The input/output window is
called Session.ox.
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– Ox - debug - starts a debug session for the currently active document win-
dow. The input/output window is called Debug.ox.

You can even add a button representing Ox on the toolbar: right click on the toolbar
(in the area next to a button), and add the relevant tool to the toolbar. You might need a
few separators at the end to avoid a partial button.
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Subject Index

++ 28
-- 28
.? .: dot conditional operator 28
.Inf 56
.NaN 55
!= is not equal to 24
! logical negation 33
’ transpose 21, 22
** Kronecker product 21
* multiplication 21
+ addition 24
, comma expression 27
-> member reference 62
- subtraction 24
.!= is not dot equal to 24
.* dot multiplication 24
./ dot division 24
.<= dot less than or equal to 24
.< dot less than 24
.== is dot equal to 24
.>= dot greater than or equal to 24
.> dot greater than 24
.? .: dot conditional expression 27
.&& logical dot-AND 25
.ˆ dot power 24, 29
.|| logical dot-OR 25
. member reference 62
/ division 21
<= less than or equal to 24
< less than 24
== is equal to 24
= assignment 27
>= greater than or equal to 24
> greater than 24
? : conditional expression 27
[] indexing 20
&& logical AND 25
& address operator 17
˜ horizontal concatenation 10, 12, 21, 29

ˆ power 21
|| logical OR 25
| vertical concatenation 21

Addition, row vector and column vector
20

Arguments 14
Arrays 55

Multidimensional — 55
Assignment operators 27

Backspace character 53
Boolean shortcut 25
break 32

class 66
Class declaration 66
Classes 60
columns() 11
Comment 8
Compilation 41
Compilation errors 4
Concatenation 10, 22
Conditional operators 27
Conditional statements 33
Console window 1
const 14
Constructor function 60, 66
continue 32
Convergence 38

Data members 67
Database class 47, 61
Debugger 5
decl 11
delete 62
deleteifc() 26
deleteifr() 26
Destructor function 60, 67
Division 22
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Documentation 2
Dot operators 24
Double 8
DrawTMatrix() 51
DrawXMatrix() 51

Editor 3, 84
else 33
Equality operators 24
Errors 4, 22
Escape sequence 53
Excel 45, 46
External variables 37
eye seeunit

FALSE 24
Folder names in Ox code 45
do while loops 31
for loops 30
while loops 31
format() 54
Formats 54
Function 13

— arguments 14
— as argument 34
— declaration 16
Returning a value 14
Returning a value in an argument

17

GiveWin 3, 45, 49, 51
GiveWin data file (.IN7/.BN7) 47
Global variables 37
Graphics 4, 49

Header file 9, 39
Help 2

— index 3
Hessian matrix 74
Horizontal concatenation 10, 22
Hungarian notation 41

Identifiers 11
Identity matrix 19
if 33
#import 37, 41, 48
#include 9
Include variable 84

Including a file 9
Index operators 20
Inf 56
Infinity 56
Inheritance 60, 69
Input 44
Installation 1, 84
Integer 8

Link pragma 41
Linking using#import 37, 41
Linux 1
loadmat() 44
Logical operators 25
Loops 30, 31
Lotus 46

main() 10
Matrix 8
Matrix constants 12
Matrix file 45
Matrix operators 21
MaxBFGS

Convergence 38
MaxBFGS() 34, 36, 74
MaxControl() 74
MaxConvergenceMsg() 74
Maximization 34, 73
Member function 66
Members 60
Missing values 55
Monte Carlo 63, 81

One replication 80
MS-DOS 1
Multidimensional arrays 55
Multiplication 22

NaN 55
Negation 28
new 61
Newline character 53

Object-oriented programming 60
Objects 60
Operator precedence 28
Output 2, 44
Output formats 54
Ox version 1
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OxEdit 3, 84
oxl 1
.oxo file 41
OXPATHenvironment variable 48, 84
OxRun 3

Path names in Ox code 45
Path variable 84
PcFiml class 61
PcGive data file (.IN7/.BN7) 47
pi = 3.1415... 38
PostScript 49, 51
Power 22
print() 11
Print formats 54
Probit 71, 72
Program organization 39

Quantiles 64

range() 19
Redirecting output 2
Relational operators 24
return 14
Rosenbrock function 35
rows() 11
Run-time errors 4

SaveDrawWindow() 51
savemat() 44
Scope 37
selectifc() 26
selectifr() 26
ShowDrawWindow() 51
Simulation 63
Simulation class 64, 70
Spreadsheet files 46
sprint() 53
Statements 10
Static variables 37, 42
String operators 52
Strings 52
Style 11, 41

Timing programs 33
Transpose 22
TRUE 24

unit() 19

Unix 1, 44

Variable type 8
vecindex() 26
Vectorization 33
Virtual functions 60, 69

Windows 1, 3
WKS,WK1 files 46

XLS files 46


