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Abstract

This paper develops and tests a nonlinear general equilibrium model of the term
structure of interest rates based on the framework of Cox, Ingersoll and Ross (CIR,
1985). The contributions of this paper to the literature are both theoretical and
empirical. The theoretical advantages of the general equilibrium model developed in
this paper over the CIR model are (a) the risk premium is endogenously derived as
a nonlinear function of the instantaneous interest rate. (b) The nonlinear model
shows that the term premium need not be strictly increasing in maturity as in CIR's
model; it can be either increasing or humped, a result that is consistent with recent
findings by Fama (1984) and McCulloch (1987). (c) Yields of different maturities are
not perfectly correlated, but exhibit positive correlations. A partial differential
equation for valuing the discount bond price is presented, and a closed-form
expression is derived. The term structure of interest rates derived from this
nonlinear model may be increasing, decreasing, humped or inverted, depending on
parameter values.

In an empirical application of the model, we develop a strategy for estimation which
permits analysis of the model’s temporal stability. Our model–like that of
CIR–expresses the underlying stochastic process as a highly nonlinear function of
two fundamental, time-invariant parameters. Many researchers have found that
general equilibrium models such as CIR’s provide quite poor explanations of the
evolution of the term structure of interest rates. As an alternative strategy to that of
fitting the fundamental parameters, we employ nonlinear system estimation of the
unrestricted reduced-form parameters with a moving-window strategy in order to
capture the term structure volatility caused by factors other than the instantaneous
interest rate. We purposefully do not impose any law of motion on the estimated
volatilities. This methodology is shown to have strong predictive power for the
observed term structure of interest rates, both in-sample and out-of-sample.
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I. Introduction

The study of the term structure of interest rates has been of interest to economists
and financial researchers for more than a decade.  Modeling the movements of the
term structure of interest rates in a world of uncertainty has become a primary
concern because of its importance in the pricing of interest rate contingent claims
and interest rate derivative securities.  Although there is a sizable literature on term
structure modeling, many existing models possess shortcomings that limit their
ability to reflect the interrrelationship between financial markets and the
macroeconomy. This paper presents an alternative nonlinear model of the term
structure of interest rates which overcomes some of these limitations while
maintaining consistency within a general equilibrium framework.

The model presented in this paper is developed within the well-known Cox,
Ingersoll, Ross (CIR, 1985b) general equilibrium framework, in which negative
interest rates are precluded, the solution is internally consistent with the underlying
economy and rules out arbitrage opportunities.  We allow the one state variable
model to follow a stochastic process with constant drift and variance, and permit
production returns to be nonlinearly related to technological change.  

The main contributions of this paper are, first, that within the CIR general
equilibrium framework, we derive the factor risk premium as a nonlinear function
of the instantaneous interest rate r.  This nonlinearity reflects how uncertainty in
technological change in the given stochastic process affects interest rates and the risk
premium.  The closed form solution of our nonlinear general equilibrium model of
the term structure of interest rates has several analytical improvements over
Longstaff's (1989) model, and gives us realistic shapes of yield curves. Second, we
recognise that models of the term structure of interest rates are theories of
predicting the term structures for given parameters and stochastic processes, and
the resulting theoretical term structures usually fail to match the actual term
structures. A plausible explanation for this failure is time variation in the model’s
parameters, as Hull and White (1990) suggested. Thus, the primary focus of our
empirical application is the estimation of time-varying parameters via a “moving
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window” nonlinear system strategy which places no constraints on the motion of
parameters nor on their variance-covariance matrix. We find that these unrestricted
reduced-form parameters are generally sensible, vis-a-vis their “fundamental”
counterparts. The flexibility implied by the unconstrained moving-window
approach allows us to illustrate the time-varying ability of the model to fit the
observed term structure. The model’s fit varies meaningfully over the postwar era,
while the in-sample error variance appears to be correlated with common
macroeconomic factors.

This paper is organized as follows.  In Section II, we highlight the key assumptions
of the CIR (1985b) and Longstaff (1989) models, and discuss some of the relevant
results of their papers.  Our version of the single state variable nonlinear model is
derived in Section III, and a closed form solution is obtained for constant
parameters.  In Section IV, we discuss the properties of the resulting yield curves
and term premiums.  Section V presents our empirical application to interwar and
postwar U.S. term structure data, while Section VI summarizes our results.

II. Review of the Literature

Economists have tried a number of different techniques to model the term structure
of interest rates on discount bonds. Vasicek (1977) derived a general form of a
partial equilibrium one-factor model of the term structure of interest rates, in which
the instantaneous interest rate, r, is the only state variable, and follows a mean-
reverting process of the form

dr = q m - r( )dt + s dz (1)

Arbitrage arguments are used to derive a partial differential equation which all
default-free discount bond prices must satisfy in equilibrium.  In economic terms,
the excess expected return on the default free discount bond with maturity T must
equal the risk premium of the same security. Extensions alone the same line were
made by Dothan (1978), Richard (1978), Brennan and Schwartz (1979) and many
others.  

Richard (1978) uses a Black-Scholes type of arbitrage argument that assumes that a
riskless portfolio can be formed using three default-free discount bonds with distinct
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maturities.  That portfolio can be treated as a perfect substitute for any default free
discount bond of other maturities.

Brennan and Schwartz (1979) developed a two-factor arbitrage model of the term
structure of interest rates.  They assume that at any point in time, the term structure
can be written as a function of time and the yields on the default free discount bonds
with the shortest and longest maturities.  These two yields follow a joint Markov
process in continuous time, as in (1). They estimate the joint stochastic process for
the two yields and evaluate the predictive ability of the model to price a sample of
Canadian government bonds.  They find that the root mean square prediction error
for bond prices is on the order of 1.5%.

These arbitrage models of the term structure of interest rates involve three major
problems. First, the stochastic process governing the instantaneous interest rate fails
to preclude negative values of r. Second, the principal partial differential equation
which all default free discount bond prices must satisfy involves an excess expected
return of a discount bond with maturity T. This excess expected return of the bond
can take many unknown forms depending on the underlying real economic
variables.  As Cox, Ingersoll and Ross (CIR) (1985) described, these arbitrage models
provide no way to guarantee that every choice of this unknown functional form will
not violate the internal consistency of the real variables of the underlying economy.
Third, there is also no way to ensure that every choice of this unknown functional
form will result in the absence of arbitrage opportunities in the bond pricing model.
As CIR show, to eliminate arbitrage opportunities, the excess expected return on a
discount bond with maturity T must be expressed in the form Y(r,t) Pr(r,t,T), where
Y is the unknown form and Pr is the partial derivative of the pricing function.  This
puts restrictions on the form of the excess expected return of a discount bond.  CIR
provide an example that some functional forms of Y  are inherently inconsistent
with the real variables of the underlying economy, and could result in arbitrage
opportunities.1

Cox, Ingersoll and Ross (CIR) (1985a,b) developed a general equilibrium approach
of the term structure of interest rates in a continuous-time, one state variable and
linear production economy.  The single factor Y in the CIR model is the state of
                                                
1 The example in CIR (1985) is Y(r,t) = Y0 + lr , where l is the market price of
interest rate risk.
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technology.  Interest rates are determined endogenously as a function of the state
variable and their evolution can be expressed by the stochastic process

dr = q m - r( )dt + s r dz(t) (2)

where dz(t) follows a Wiener process.2  This continuous time stochastic process
precludes a negative interest rate.  More importantly, based on assumptions about
the economy, CIR derived a principal partial differential equation which all asset
prices must satisfy.  The solution of this partial differential equation automatically
guarantees that the equilibrium discount bond pricing model will eliminate arbitrage
opportunities and will also be consistent with the underlying economy.

Longstaff (1989) extended the CIR model through a nonlinear version of the term
structure of interest rates.  He introduced two forms of nonlinearity:  first, he
assumes that technological change affects production returns nonlinearly through a
form of increasing return to scale;  and second, he derives the instantaneous interest
rate which can be expressed by the stochastic process

dr = q m - r( )dt + s r dz(t ) (3)

where dz(t) follows a Wiener process.

Instead of using CIR's general equilibrium approach by internally deriving the form
of excess expected returns on a default free discount bond, Longstaff assumes a
linear form of the risk premium which is equal to that of the CIR model.  This causes
his model to suffer from the same drawbacks as the partial equilibrium model in
lacking internal consistency and an absence of arbitrage opportunities.  His bond
pricing model also exhibits some counterfactual behavior.  For example, his bond
price is no longer a uniform decreasing function of the instantaneous interest rate,
nor is it a convex function of that rate.  Instead, bond price starts as an increasing
and concave function of the instantaneous interest rate r when r is small, then
become a decreasing and convex function of the instantaneous interest rate r when r
exceeds a certain value.  Empirically, Longstaff finds some support for his model
versus CIR's in his estimates, which are constructed from 1-month through 12-
month Treasury bond data of Fama (1984), but his model fails to predict or

                                                
2 ßsr(r) dz(t) ≡ n Y  dw(t), where Y is the state variable and w(t) is a Wiener process.
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approximate actual yield curves.  As he noted (p. 217) “neither model completely
captures the level and variation of Treasury bill yields during the study period.”

This paper derives an alternative nonlinear bond pricing model within the CIR
general equilibrium framework in which negative interest rates are precluded, the
solution is internally consistent with the underlying economy and no arbitrage
opportunities exist.  This model allows technological change to follow a stochastic
process with constant drift and variance, and permits production returns to be
nonlinearly related to that process with increasing returns to scales, as suggested by
Longstaff.  In our model, the factor risk premium is derived as a nonlinear function
of the instantaneous interest rate r, rather than relying on linear function that
Longstaff assumes for his model.  This nonlinearity reflects how uncertainty in
technological change in the given stochastic process affects interest rates and the risk
premium in a general equilibrium framework.  The discount bond return over the
risk free return is derived as a partial differential equation, and a closed form
solution for discount bond price is provided.  The result shows that the nonlinear
general equilibrium model of the term structure of interest rates from this paper has
several analytical improvements over other one-factor models in providing realistic
shapes of the yield curve and term premium.  

III. The Model

Cox, Ingersoll and Ross (1985b) develop an intertemporal general equilibrium
model for the term structure of interest rates.  It can be summarized as follows:  
C1: There is a single good produced in the economy, which may be allocated to
either consumption and investment.  All values are measured in terms of units of
this good.  
C2: Homogeneous individuals maximize the expected logarithmic Von Neumann-
Morgenstern utility function by choosing optimal consumption/ investment plans.
C3: Technological change, including production and investment opportunities, is
expressed by a single state variable, which follows a diffusion process.  In order to
derive a closed form solution of the term structure of interest rates, CIR assume that
this single state variable Y follows a stochastic process:

dY(t ) = dY + h[ ]dt + u Y dz(t ) (4)
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where g, h and n are constants, and z(t) is a Wiener process.  
C4: The production process is governed by

dX(t ) = F(Y ,t )dt + G(Y, t )dz(t ) (5)

Here CIR assume that the means and variances of the production rate of return are
proportional to Y, so F(Y,t) = aY and [G(Y,t)]'[G(Y,t)] = bY, where a and b  are
constants.  So the production process is simply

dX = aYdt + bY dz (6)

Then the equilibrium interest rate in CIR framework is r(Y,t) = cY, with c a constant.
By Ito’s lemma,

dr = q m - r( )dt + s r dz (7)

In this process, interest rates move elastically toward the long run value µ at
adjustment speed q.  The factor risk premium is the premium due to the single state
variable Y, or the risk premium investors require for holding the risky security. In
equilibrium, the factor risk premium should equal the excess expected return on that
security over and above the risk free return, where the instantaneous risk-free rate
is r. In CIR's model, the risky security is the pure discount bond with price P,  so that
the difference between the expected return on discount bond and rP is the risk
premium.

Under assumptions C1 to C4, it can be shown that the factor risk premium in CIR
(1985b) is a linear function of Y, clPrY, so it is a linear function of r, lrPr.  In
equilibrium,  CIR show that a discount bond price P(r,t) must satisfy the partial
differential equation:

- Pt + Pr qm - (q + l )r[ ] +
1
2

Prr s2r( ) - rP = 0 (8)

where l is the negative coefficient of the linear factor risk premium  lrPr, or the
price of risk.

To derive the nonlinear model of the term structure of interest rates and obtain a
closed form solution, Longstaff (1989) works within the CIR framework but
assumes that the single state variable follows a process with random walk behavior
with constant drift and constant variance:
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dY = a dt + bdz(t) (9)

Longstaff introduces nonlinearity through two different channels.  First he assumes
that the state variable Y affects production return nonlinearly.  More specifically, the
mean and variance of the production rate of return are proportional to Y2, or

dX(t) = aY2dt + bY dz(t) (10)

The instantaneous interest rate is then r(Y,t) = cY2, a nonlinear relationship.  This
extension describes a different set of technologies than those in the linear case.  It
also induces mean reversion in the equilibrium interest rate, as discussed by
Sundaresan (1984).  But Longstaff does not derive the factor risk premium internally
from the CIR framework; he merely assumes that the factor risk premium is linear
in r, and equal to lrPr, the linear form chosen by CIR.  This causes his model to
suffer from the same drawbacks as partial equilibrium models.  His model also
exhibits some counterfactual behavior:  e.g. the bond price is no longer uniformly
decreasing in the instantaneous interest rate, nor is it a convex function of that rate.  

In equilibrium the partial differential equation which a pure discount bond price
P(r,t) must satisfy in Longstaff's model is

- Pt + Pr qm - q r + lr[ ] +
1
2

Prrs
2r - rP = 0 (11)

This partial differential equation for P(r,t) differs from CIR's partial differential
equation for P(r,t) in terms of q r  .  This is the result of assuming that the
production rate of return exhibits increasing returns to scale with respect to
technological change.

Longstaff introduces nonlinearity into the discount bond price formula by taking a
trial solution

P(r, t) = A(t) exp B(t) r + C( t) r[ ] (12)

The closed-form solution can be obtained by substituting equation (12) into equation
(11).  The nonlinear term C r  is confirmed to be nonzero and it is the additional
term added to the expression of the discount bond price in the CIR paper.  This
additional term links the nonlinear term r  from the partial differential equation to
the bond pricing formula, therefore widening the relationship between the interest
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rate r and the bond price P(r,t), and provides a nonlinear version of yield with
respect to the interest rate change.

This paper derives an alternative nonlinear model within the CIR general
equilibrium asset pricing framework (1985a) based on four modified assumptions.
Some of Longstaff's assumptions are maintained, with the important change that
the factor risk premium is internally derived from the CIR general equilibrium asset
pricing model and is shown to be proportional to Y and thus also proportional to r
.  The factor risk premium has an expression l r Pr , where l is the covariance of
the rate of change in interest with the rate of change in the optimal investment.  It is
a negative constant.3  This nonlinear factor risk premium, derived from the system,
broadens the classes of risk to be considered, guarantees the absence of arbitrage
opportunities in bond pricing, and ensures internal consistency with the real
variables of the economy.  

                                                
3 As discussed in the CIR model,  l is the covariance of changes in current interest
rate with changes in optimal investment, or the market portfolio.   So if l increases,
the absolute value |l| decreases, or the covariance of changes in interest rate with
changes in the market portfolio decreases.  This implies that the market price of
interest rate risk is smaller, so the factor risk premium should decrease.  In our
model, this result is guaranteed because the factor risk premium is l r !Pr , where
both l and Pr are negative.  When r increases, there is greater interest rate risk,
therefore a higher factor risk premium, but the premium increases at a decreasing
rate.
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The following table gives us a brief comparison of assumptions and results for the
three models:

CIR Model Longstaff Nonlinear
Model

Alternative Nonlinear
Model

Mean and variance of
production are
proportional to Y

Mean and variance of
production are
proportional to Y2

Mean and variance of
production are
proportional to Y2

r=cY, c is a constant r=cY2, c is constant r=cY2, c is constant

Factor Risk Premium:
 clY=lr

Factor Risk Premium:
 clY2=lr

Factor Risk Premium:
c  lY=l r 

P=A exp(B r) P=A exp(B r+C r ) P=A exp(B r+C r )
Pr< 0 Pr is ambiguous Pr< 0

Prr >0 Prr is ambiguous Prr > 0

Pt< 0 Pt< 0 Pt< 0

Unobserved parameters:
 q, µ and s

Unobserved parameters:
 q and µ

Unobserved parameters:
 q and µ

P is a decreasing and
convex function of mean
interest rate, µ2

Ambiguous P is a decreasing and
convex function of mean
interest rate, µ2

The expected rate of
return on a bond is
r+lBr

The expected rate of
return on a bond is
r+2lBr+lC r 

The expected rate of
return on a bond is

r+lB r +lC
2  

Variance of returns on a
bond is  (Bs)2r

Variance of returns on a

bond is  (B r +C
2 )2s2

Variance of returns on a

bond is  (B r +C
2 )2s2

Term Premium (TP)
is lBr;

TP=0 as t=0 or r=0

TP>0   as tÆ•

Term Premium (TP) is
2lBr + lC r ;

TP=0 as t=0 or r=0

TP ambiguous as tÆ•

Term Premium (TP) is

lB r  + lC
2   ;

TP=0    as t=0

TP= lC
2    as r=0

TP>0   as tÆ•
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The alternative nonlinear model rests on the following four assumptions:

A1: In a continuous time competitive economy, there is a single good produced
which can be allocated  to either consumption and investment.  All values are
measured in terms of units of this good.

A2: Homogeneous individuals maximize expected constant relative risk aversion
(CRRA) utility functions.  The utility function is independent of the state variable Y
in term of choosing consumption and investment plans.

E U(C(s),Y(s), s)ds
t1

t2

Ú (13)

where

U(C(s),Y(s), s) = e-r(s-t) C(s) g-1
g

È 

Î 
Í 

˘ 

˚ 
˙ (14)

and r is constant , t< s< T and (1-g) is the coefficient of relative risk aversion.  The
indirect utility function has the form

J(W,Y ,s) = f (Y,s)U(W, s) + g(Y,s) (15)

The specified utility function (14) implies a convenient separability property for the
indirect utility function which simplifies the solution of the consumption and
investment problem.

A3: Y represents the state of the technology and is itself changing randomly over
time.  Y follows a stochastic process of the form

dY =adt +b dz (t ) 4 (16)

where a, b are constants and a<0.  The mean and variance of dY, the change in the
state of technology, are a and b2, respectively.

                                                
4 This is also called Reflected Brownian Motion: when Y reaches zero, the process
returns immediately to positive values.  This stochastic process has a long run
stationary distribution (- 2a

b2 )Exp (
2aY
b2 ) , Y>0.
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A4: The production return process exhibits increasing returns to scale with
respect to technological change.  Specifically, it is expressed by a single state variable
Y, and governed by the stochastic process in the form of

dX(t) = aY2dt +bY dz( t) (17)

where a, b are constants and a>0.  The mean and variance of dX, the change in the
rate of production return, are proportional to Y2.

Based on these assumptions and the explicit forms of stochastic differential
equations, this paper solves CIR's endogenous equilibrium interest rate of equation
(3) in their paper (1985b) to a simple and explicit form:

r(Y ,t) = a*' F + a*'GG' a*W JWW

JW

Ê 

Ë 
Á ˆ 

¯ 
˜ + a*' GS' JWY

JW

Ê 

Ë 
Á ˆ 

¯ 
˜ (18)

where 

F(Y, t) = a Y2

G(Y ,t )[ ] G(Y, t )[ ]' = b2Y 2

-W JWW
JW

Ê 

Ë 
Á 

ˆ 

¯ 
˜ = 1- g

G(Y ,t )[ ] S(Y, t )[ ]' = bY( )b

-
JWY
JW

Ê 

Ë 
Á 

ˆ 

¯ 
˜ = -

f Y
f

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

a* = (
1

b 2Y2 )(aY 2 ) + (1 -
aY 2

b 2Y 2 ) = 1

The right-hand side of equation (18) is the expected market rate of return minus the
market return variance and covariance, as discussed by CIR. Further we assume the
special case of a logarithmic utility function with g=0.  It can then be shown that

f (Y, s) =
1- e- r( s -t )

r
, so that fy = 0.  Then the equilibrium interest rate has the form:

r(Y ) = a* aY2 + (a*)2 b2 Y2 = cY2 (19)

where a* =1, c is a positive constant and Y follows the stochastic process (15).  As a
result of Ito's lemma, the dynamics of the equilibrium interest rate from the general
equilibrium framework follow the stochastic differential equation :

dr = q m - r( )dt + s r dz (20)
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where q = -2a c , m =
-b2 c

2a
, s = 2b c , qm = b2c.

This characterization has the following properties:

(1)  The instantaneous interest rate has a upward drift q(µ- r ) when r  < µ and a
downward drift when r  >µ.  It has a variance s2r, which depends on r, and s>0, so
the variance increases as the instantaneous interest rate increases.  

(2)  At r=0, the variance is zero and drift is qµ >0, so that negative interest rates are
precluded.  

(3)  The boundary study of the stochastic process of the interest rate based on Feller
(1951), and Karlin and Taylor (1981) by Longstaff shows that if the initial interest
rate is nonnegative, then subsequent interest rates from the process will be
nonnegative.  

(4)  Even if the interest rate reaches zero, since µ>0, the interest rate will
subsequently become positive.  

(5)  The interest rate dynamics represented above are mean reverting towards µ2 at
the speed of adjustment q.

(6)  The interest rate movement can be described by only two parameters q and s2,

since µ = 
s2
4q  ,  a function of q and s2.

Let the equilibrium price of a pure discount bond at time t be P(t,r), where t = (T-t).
It pays one dollar at maturity T.  P(t, r) follows the geometric Brownian Motion

dP
P

= m(t,r) dt + n(t,r)dz( t) (21)

where 
m(t,r) =

1
P

-Pt + Prq m - r( ) +
1
2

Prr s 2r( )È 
Î 

˘ 
˚ 

n(t,r) =
1
P

Prs r[ ]

The expected rate of return on this bond is
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m(t,r) =
1
P

-Pt + Prq m - r( ) +
1
2

Prr s 2r( )È 
Î 

˘ 
˚ 

(22)

The excess expected return on this pure discount bond over the risk-free return
equals

-Pt + Prq m - r( ) +
1
2

Prr s 2r( ) - r P (23)

In equilibrium, the excess expected return on a security over the risk free return rP
must equal the risk premium that purchasers of the security demand:

  -Pt + Prq m - r( ) +
1
2

Prr s 2r( ) - r PÈ 
Î Í 

˘ 
˚ ˙ = fy Pr (24)

where f yPr  is the general form for the risk premium.

In the CIR framework modified by our assumptions, the single factor risk premium
has the form

fy = -
JWW

JW

Ê 

Ë 
Á ˆ 

¯ 
˜ a*' G(Y, t )[ ] S(Y ,t)[ ]' W + -

JWY

JW

Ê 

Ë 
Á ˆ 

¯ 
˜ S(Y ,t)[ ] S(Y, t)[ ]' (25)

where

-W JWW

JW

Ê 

Ë 
Á ˆ 

¯ 
˜ =1 - g

G(Y, t)[ ] S(Y, t)[ ]' = bY( )b

-
JWY

JW

Ê 

Ë 
Á ˆ 

¯ 
˜ = -

f y

f
Ê 

Ë 
Á ˆ 

¯ 

a* =
1

b 2Y 2
Ê 

Ë 
Á ˆ 

¯ 
aY 2( ) + 1 -

aY 2

b 2Y 2
Ê 

Ë 
Á ˆ 

¯ 
= 1

For the logarithmic utility function with g=0, equation (25) becomes

Ê 
Ë 
Á ˆ 

¯ 
˜ = l r

(26)
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where l =
bb

c
  is a constant.  This additional nonlinearity provides a more realistic

class of risk premium.

In equilibrium the excess expected return on a security must be equal to the risk
premium that purchasers of the security demand, so that

-Pt + Prq m - r( ) +
1
2

Prr s 2r( ) - r PÈ 
Î 

˘ 
˚ 

= l r( )Pr (27)

Thus we have the stochastic differential equation of the term structure of interest
rates:

-Pt + Pr f0 - f1 r[ ] +
1
2

Prr s2r( ) - r P = 0 (28)

with boundary condition P(r,0) = 1, and where t=T-t, f0=qµ, f1=q+l, µ=
s2
4q , q=-2a c 

and s2=4b2c>0.  

The equation above can be rewritten as

rP + Pr l r = -Pt + Prq m - r( ) +
1
2

Prr s 2r( ) (29)

The right-hand side is the expected return on the discount bond from Ito’s lemma.
Then the instantaneous rate o f  return can be  written as

rP+Prl
! r

P   = r + l
Pr

! r
!p   which is no longer proportional to the interest elasticity with

respect to bond price as in the CIR model.  The parameter l is the covariance of rate
of change in interest with the rate of change in optimal investment, or the market
portfolio.  CIR call l the “market price of interest rate risk.” Since Pr < 0 (which will

be shown later), a negative covariance l < 0 implies a positive risk premium  l
Pr

! r
!p   

> 0.

To derive a closed form solution, the following expression is hypothesized for the
price of a pure discount bond:
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P(t,r) = A(t )exp B(t )r + C(t ) r[ ] (30)

In contrast, the bond pricing formula for the CIR model is

P(t,r) = A(t )exp B(t )r[ ] (31)

The additional nonlinear term C(t) r  in equation (30) shows how the nonlinearity
in the term structure of interest rate movement affects the discount bond price, and
ultimately the yield curve.  To test whether the nonlinear term C(t) r  belongs to
the discount bond price formula, the partial derivatives of the expression (30) is
calculated and substituted into the partial differential equation

-Pt + Pr f0 - f1 r[ ] +
1
2

Prr s2r( ) - r P = 0 (32)

with boundary condition P(r,0) = 1.  This test confirms that A(t), B(t) and C(t) are
nonzero.  By using variable separation methods, we derived the following closed
form solution:

P(t,r) = A(t )exp B(t )r + C(t ) r[ ] !5 (33)

where

  

A(t) = exp l1t -
1
2 ln 1+ e 2 stÊ 

Ë 
Á 

ˆ 

¯ 
˜ - l 2

1

1+ e 2 st

Ê 

Ë 

Á 
Á 

ˆ 

¯ 

˜ 
˜ 

+ k
È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

(34)

B(t) =
2 1- e 2 s tÊ 

Ë 
Á 

ˆ 

¯ 
˜ 

s 1 +e 2 s tÊ 

Ë 
Á 

ˆ 

¯ 
˜ 

(35)

C(t) =
2f1 1- exp s

2
Ê 

Ë 
Á 

ˆ 

¯ 
˜ t

È 

Î 
Í 

˘ 

˚ 
˙ 

s2 1+ e 2s t[ ]

2

(36)

  
l 1 =

2 2 sf0 - f1
2

2s 2 (37)

                                                
5 Derivations are given in a mathematical appendix available from the authors.
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l 2 =

2 f1
2

s3 (38)

t = T - t (39)

  
k =

1
2 ln(2) +

l 2
2     (40)

f0 = mq     and    f1 =q +l     (41)

P(t, r) satisfies the boundary condition P(r, 0) =1 and is a function of r (the
instantaneous interest rate) and t (term to maturity), where A(t)>0, B(t)<0 and C(t)
can be either positive or negative.  

There are two constraints for this alternative nonlinear model:
(1)  lnA(t) + B(t)r + C(t) r  ≤ 0.  This constraint is a necessary and sufficient condition
for our discount bond pricing model to ensure that the present value of $1 paid at
maturity satisfies 0<P(r,t)≤1.  This is also a necessary and sufficient condition for a
n o n - n e g a t i v e  y i e l d ,  s i n c e  t h e  y i e l d  c u r v e  is
Y(t) = – 1t (ln(A) + Br + C r ) . 

(2) To make our model consistent with economic reality, we further assume that (B
+ C

2 r
  ) ≤ 0 and 0 < A ≤ 1.

There are several important properties of this bond price function:

(1)  P(t,r) is a decreasing and convex function of the instantaneous interest rate r.
This is consistent with the general solution for equilibrium bond pricing.

(2)  The bond price is also a decreasing function of term to maturity t.  The longer
the term to maturity, the lower the discount bond price, because it is the present
value of $1 which you receive at maturity.
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(3)  At the limit as rÆ• , or tÆ•, we have lim
rÆ•  P(r,t) = 0 , or  

lim
tÆ•  P(t, r) = 0

respectively.  These are realistic solutions since the present value of $1 approaches
zero if rÆ• or tÆ•.

(4)  Since  limrÆ•  B(t) = 0 and  limrÆ•  C(t) = 0,  limrÆ•  P(t,r) = A(t), where A(t) is a function of
term to maturity, which is greater than zero for all t.  When r = 0, the systematic risk
in the interest rate process s r  become zero, the interest rate changes become
certain, so that P(t,0) = A(t), only a function of t. Then A(t) must be the interest-rate-
risk-free rate of return on a bond for term to maturity t.  Thus in equilibrium, the
price for a discount bond is P(t, r) = A(t) exp [B(t) r + C(t) r ], which is positive, and
will equal the interest-rate-risk-free rate of return on a bond for t  if the
instantaneous interest rate r equals zero.

(5)  The bond price is a decreasing and convex function of the long term mean
interest rate µ. That is, Pµ< 0 and Pµµ>0.  As the long term mean interest rate
increases, the bond price decreases, or vice versa as the bond price increases, the
long term mean interest rate decreases.  This result indicates that  (i) the long term
interest rate is drawn to a central value µ on average, and the effect of the long term
mean interest rate on discount bond prices has the similar properties as the short
term interest rate r on discount bond prices, that is Pr< 0 and Prr >0;  (ii) bond prices
have negative effects on the expected future interest rate, since as the price of a
bond declines, the long term interest rate rises.  This implies that the expected future
interest rate should also rise.  Bond prices can be both increasing and decreasing in
the speed of adjustment coefficient q and the ‘market price of risk’ l.

IV. The Nonlinear Yield Curve and Term Premium

The yield of a discount bond with price formula (33) can be expressed as

R(t) = –t-1 ln dP
P   = –t-1 (ln A + Br + C r )

which is nonlinear in r.  This is a direct application from the bond pricing formula
with an arbitrary extra term exp[C(t) r ].  It reflects how the nonlinearity in the
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term structure of interest rates model (a function of r ) affects the discount bond
yield.  This nonlinearity of yield curves will provide a much broader range of shapes
for theoretical and empirical studies.

From the model derived in Section III, the yield to maturity of a pure discount bond
has the following closed form solution:

  

R(t , r) = -
1
t

ln A(t ) + B(t )r + C( t) r[ ]

=
1
t

l 1t - l 2 ln 1+ e 2 s t( ) -
l 3

1+ e 2s t( )
+

È 

Î 

Í 
Í 
Í 

2 1- e
2 s t( )

s 1+ e
2 s t( )

r +
2f1

s2

1- exp s t
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ 

2

1+ e
2 s t( )

r + k

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 

(42)

This is a nonlinear function of both the term to maturity t and the instantaneous
interest rate r.  The square root nonlinearity in r will give us empirically realistic
shapes, such as humped and inverted yield curves, for certain combinations of
parameters.

Properties of the Yield Curve

(i)  At the limit tÆ•, as tÆT, the yield to maturity converges to the instantaneous
interest rate at maturity:  

lim
tÆ0   R(t,r)= rT .  As tÆ•, the yield to maturity converges

to a positive constant, independent of the current interest rate:  lim
tÆ• R(t,r)=

2 2sf0+f12

2s2!

!>0.  Between these two limits, yield curves have many possible complex shapes.
These results are consistent with the factors that yield is equal to the spot interest
rate at maturity; that the yield curve has a flattened tail for bonds with long
maturities, and that yield volatility is less for a long term bond than for a short term
bond.  The dependence of the model’s discount yield on tenor and the
instantaneous interest rate is illustrated in Figures 1 and 2.
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(ii)  As the short term interest rate r increases, the yield increases ( dR
dr  > 0)  and the

rate of change can be both positive or negative ( d
2R

dr2   can have either sign).  So the

yield can increase both at increasing or decreasing rate.  If we graph the yield curve
as a function of term to maturity t , the yield curve is shifted upward as the
instantaneous interest rate r increases.  As r further increases, the upward shift could
be either larger or smaller.  At t=0, the upward shift of the yield curve is equal to the
change in r, since  lim

tÆ0 dR
dr  =1.  As tÆ•, the upward shift of the yield curve

approaches zero, since limtÆ• dR
dr  =0.  Also as the long term mean interest rate increases,

the yield curve is shifted upward ( dR
d(µ2)

  > 0) and the rate of change decreases ( d2R
(dµ2)2

  <

0).
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Fig. 1(a) represents the relation between discount bond yield, tenor, and instantaneous rate
with f0 = 0.003073 and f1 = -0.01688.

Fig. 1(b) represents discount bond yield with f0 = 0.003073 and f1 = -0.01688.
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Fig. 2(a) represents the relation between discount bond yield, tenor, and instantaneous rate
with f0 = 0.002699 and f1 = 0.03026.

Fig. 2(b) represents discount bond yield with f0 = 0.002699 and f1 = 0.03026.
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Properties of Bond Return

The dynamics of discount bond prices of our nonlinear model are governed by the
following stochastic partial differential equation:

dP
P

= r + lB(t) r +
l
2

C (t)
È 
Î Í 

˘ 
˚ ˙ 
dt + B(t) r +

C(t )
2

È 
Î Í 

˘ 
˚ ˙ 
s dz (43)

The instantaneous expected rate of return on a discount bond with maturity t is:  

E
dP
P

Ê 
Ë 
Á 

ˆ 
¯ 
˜ = r + lB( t) r +

l
2

C(t) (44)

The variance of the discount bond with maturity t is:

S = B2r + BC r +
C 2

4
Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ s

2 (45)

Both are functions of r and t.  As r increases, the return variance increases, indicating
a larger risk premium.  As t increases, the return variance can rise or fall, reflecting
the possibility of both positive and negative term premium. In the limit, we have
lim
tÆ•  E(dP

P  )=r and limtÆ0  S = 0,  so the instantaneous expected rate of return is risk free as

tÆ0.  As the term to maturity approaches infinity, we have lim
tÆ• E(dP

P  )=(r- 2l
s  r 

+
lf1
s2   ) > 0 and  lim

tÆ• S=(2r-
2 2f1

s
r  + 

f12

s2   )>0; both are positive constants.   As the

instantaneous interest rate approaches zero, we have limrÆ0  E(dP
P  ) = 

l
2  C and lim

rÆ0  S=!C2
4   s2.

This is another important property from our nonlinear model which differs from
both CIR and Longstaff's.  As rÆ 0, the variance in the interest rate process
approaches zero, so interest rate changes become certain.  But the expected rate of

return and variance of returns on a bond are 
lC
2   and C

2
4   s2 respectively, not zero,

because the rate of return and variance on a discount bond are also functions of
term to maturity t.  If t does not approach zero, or the bond is not near to maturity,
then as we discussed earlier in property (4) of interest rate dynamics, there are still
possibilities that interest rates will move away from zero and become positive again.  
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Properties of the Term Premium

The instantaneous term premium is the instantaneous expected return of the bond
over the instantaneous return of the risk-free asset.  It has the following properties:

(i)  The instantaneous term premium of a discount bond with maturity t is TP(t) =
[l!B(t) r  + 

l
2  C(t)] >0, which is a function of both r and t.  The term premium

converges to zero as tÆ0, reflects returns with no risk.  As tÆ•, we have lim
tÆ• TP=

l

s2

[f1- 2r s] , a constant.  As t increases, TP may either increase or decrease.  The term
premium is an increasing and concave function of r (with a limiting value  l2  C(t) >0 as
rÆ0).  Finally it is easy to show that the term premium is a decreasing function of
l,6 (dTP

dl   = b r  + C2  ≤ 0), a measure of the “market price of risk.”  As l increases, TP

decreases.  But since l< 0, an increase in l means a decrease in the “market price of
risk” or a decrease in the covariance of changes in consumption with changes in the
interest rate.  So the risk is lower as l increases, and therefore so is the term
premium. The dependence of the term premium on the tenor and instantaneous
interest rate is illustrated in Figures 3 and 4.

                                                
6 Since l is the covariance of the rate of change in interest with the rate of change in
optimally invested wealth, l<0.  This implies that the term premium is greater than
zero.  As l increases, |l| decreases.  The covariance of the rate of change in the
current interest with the rate of change in the optimal investment in the market
portfolio is actually decreasing, causing the risk premium to decline.
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Fig. 3(a) represents the relationship between the term premium, tenor and
instantaneous interest rate with f0=0.003073 and f1=-0.01688.

Fig. 3(b)  represents term premia TP(t) with instantaneous interest rates r1 = 5%, r2 = 7% and r3 =

12% respectively. Parameters are f0=0.003073 and f1=-0.01688.
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Fig. 4(a) illustrates the relationship between the term premium, tenor
 and instantaneous interest rates with f0 = 0.002699 and f1 = 0.03026.

Fig. 4(b)  represents term premia TP(t) with instantaneous interest rates
r1 = 3%, r2 = 5% and r3 = 10% respectively. Parameters are f0=0.002699 and f1=0.03026.
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(ii)  In our model, if 0< 2rs   < -f1, [B r + C
2  ] = 0  for term t  = 0 or

t = 2
s  ln[

f1+! 2rs

f1- 2rs
 ],  so that the variance of returns on a discount bond S =[B r + C

2  

]2s2 is zero.    But  0< 
f1+! 2rs

ƒf1- 2rs
  < 1 for  0< 2rs  < -f1, so that ln[

f1+! 2rs

f1- 2rs
  ] < 0.  Therefore

the rate of return on a bond is certain and equal to rt only at t = 0.  That is:
dP
P

= r + lB(t ) r +
l
2

C(t )È 
Î Í 

˘ 
˚ ˙ dt + B(t ) r +

C(t)
2

È 
Î Í 

˘ 
˚ ˙ s dz

= rdt
(46)

and the expected rate of return on an instantaneously maturing bond is certain, or
E(dP

P  )!=!r dt.  Investors can form a risk-free portfolio only by repeatedly investing in a
series of instantaneously maturing bonds.  

V. Empirical Findings

The model to be empirically tested in this section is the equilibrium discount bond
price equation (33):  

P(t,r) = A(t )exp B(t )r + C(t ) r[ ]

It is a highly nonlinear function of two variables,  the instantaneous interest rate r
and term to maturity, t, and two fundamental parameters: f0 and f1. Conceptually,
equation (33) should hold for all tenors and values of r, enabling us to price any
default-risk-free bond given consistent parameter estimates of the fundamental
terms. In empirical testing of the CIR model, many researchers have found that the
model does a relatively poor job of pricing, and that its ability to model actual bond
prices varies over both tenor and time. We have found that our alternative model,
expressed in terms of estimates of the fundamental parameters f0 and f1, possesses
a similar weakness in terms of price forecasts. It might be expected that any single-
factor model of the term structure–including our alternative model–would do a
better job of pricing short-term bonds than longer-term bonds, given that the single
fundamental factor is (a proxy for) the instantaneous interest rate. But the lack of
temporal stability suggests that there may be other factors involved which cannot
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be captured by the single-factor framework. Some researchers have responded by
building more complex models of the equilibrium term structure which explicitly
consider a second factor, such as the volatility of rates.

In our empirical analysis, we have taken a different approach: retaining the single-
factor characteristic (and the relative simplicity) of our alternative model, while
allowing the data to yield time-varying parameters, including the volatility of
forecasted bond prices (and derived spot rates). We have done so by eschewing the
direct estimation of f0 and f1, focusing instead on the intermediate parameters A(t),
B(t) and C(t) of equations (34-36). We derive unrestricted estimates of these
parameters (that is, not incorporating the restrictions defining A(t), B(t) and C(t) in
terms of f0 and f1),7 which simplifies the estimation problem considerably, while
allowing us to utilize a nonlinear systems estimator which jointly models the prices
of bonds of varying tenors, incorporating all the information in the current term
structure. Discount bond price equations for various tenors are likely to be
correlated because of the interrelated nature of the markets for bonds with similar
terms to maturity.  A nonlinear system estimator which takes advantage of cross-
equation correlations is thus appropriate. These estimates are derived from ten-year
samples of  monthly data via a moving window approach, with no constraints
imposed on successive window estimates. Thus, we are able to directly analyze the
temporal stability of parameters A(t), B(t) and C(t), as well as the variance-
covariance matrix of equation errors.

To implement equation (33) in this manner, we require prices of zero-coupon bonds
of various tenors, as well as a proxy for the instantaneous interest rate. We utilize
the zero-coupon bond prices constructed by Coleman, Fisher and Ibbotson (1989,
1993) for the postwar era. We make use of their monthly estimates of zero coupon
bond prices for 12 tenors: 1-, 3-, 6-, 9-, 12- and 18-months, as well as for 2, 3, 4, 5, 7,
and 10 years.  CFI provide monthly quotations on price and yield of zero-coupon
bonds for 1955 through 1992. Their one-month rate is used as a proxy for the
instantaneous short rate. A sequence of ten-year windows is constructed, with each
window dropping the earliest month and adding the following month relative to its
predecessor.
                                                
7 We consider whether the constraints on the bond price function presented above
are satisfied by the parameter estimates, although they are not applied in the
estimation. We found that almost all sets of point estimates satisfy both constraints.
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Figure 5 illustrates the coefficients A(t), B(t) and C(t) in point and interval form (for
a one standard error band) for the 12-month tenor. The A(t) coefficient (the level
term in the bond pricing model)  is relatively stable around unity until the 1973-1982
period, when it rises by almost ten per cent (presumably reflecting the stress places
on the financial system by the oil shocks), and then falls substantially in the 1978-
1987 period. The B(t) coefficient–which multiplies the level of the instantaneous rate-
–falls sharply in the 1959-1968 period, then rises to a level of -0.5 in the 1962-1971
and following samples. Its value rises to the zero range in 1974-1982, and falls off
again in the 1978-1987 sample. Coefficient C(t)–the coefficient of the square root
term–is positive for the early years and the later years, becoming significantly
negative in the intermediate range of 1972-1981.

Figures 6 and 7 provide similar estimates for the three-year and ten-year tenors,
respectively. All coefficients are less precisely estimated for these longer tenors, as
might be expected from the form of the single-factor model.  The A(t) coefficients
exhibit greater fluctuation around unity, with the effect of the 1973-1982 period
again evident in the graphs. At the longer tenor, the increase in standard error of
estimate in that period is also quite evident. The variations in coefficients B(t) and
C(t) are also quite marked, with both coefficients taking on larger values at these
longer tenors. The fall in B(t) in the 1960-1969 sample is quite marked at the three-
year tenor, with an associated increase in the C(t) coefficient in that interval. In the
ten-year tenor, B(t) falls markedly in 1960-1969 as well as the 1966-1975 period and
again in the last sample. Coefficient C(t) is positive for the first third of the period,
then falls sharply in both 1969-1978 and 1977-1986 before returning to positive
values.

While the unconstrained movement of these parameter estimates is of interest, we
might have much more concern for the time-varying ability of the model to  predict
bond prices–or, as a more challenging goal, to predict discount yields at the various
tenors. Since the estimated coefficients of the nonlinear system are chosen to best
predict bond price, and not its nonlinear transformation yield, we might expect that
yield forecasts would be of lower quality than their price counterparts. To evaluate
the performance of our model, we consider both in-sample forecast accuracy–as
gauged by the standard errors of estimate–and ex ante forecast performance. The
latter is judged in terms of mean absolute error, root mean square error (RMSE) and
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Theil’s U for one-, three-, six- and twelve-month ahead forecasts of discount yield.
The Theil’s U statistic evaluates the estimated equations’ ability to outperform a
naive (no-change) model over those horizons. Values less than unity indicate that
this model is superior to the naive model in terms of RMSE.

Figure 8 illustrates the sizable variation in standard errors of estimate of short-term
rate equations over the postwar era. The in-sample forecast accuracy of short-term
rates jumps dramatically in the 1970-1979 interval, increasing almost fivefold for the
one-month rate, and doubling at the nine month tenor. Figures 9 and 10 present
standard errors of estimate for medium and longer tenors. The 3-10 year tenors
demonstrate that in-sample accuracy first deteriorates in the 1963-1972 period, with
the same pattern of a sharp increase in the early 1970s’ windows. These measures of
forecast accuracy indicate that the fit of the alternative nonlinear model varies quite
considerably over the postwar era.

Finally, we examine the variation in ex ante forecast accuracy in Figures 11, 12 and
13, which refer to forecasts of the bellwether three-month spot rate for 3, 6, and 12
steps ahead, respectively.8 Figure 11 presents the mean absolute error (MAE) for
these forecast horizons. Again, the forecast error remains relatively low until the
1970-1979 sample, rising sharply in the late 1970s. The graph in Figure 12 of root-
mean-square error (RMSE) shows an even more dramatic increase in the 1970
period (although, surprisingly, it does not seem to affect the 12-month-ahead
forecast) and again in the 1977-1986 sample. Theil’s U remains below the naive
benchmark of unity for most of the period studied, rising to almost 1.5 for 3- and 6-
step ahead forecasts in the 1969-1978 sample. The model appears to forecast
reasonably well during the early 1970s samples, weakening again in the late 1970s.
Overall, these ex ante forecast statistics–generated from forecasts of yield, a
nonlinear transformation of the model’s dependent variable–indicate that the
alternative nonlinear model does a reasonably good job of short term interest rate
forecasting, both in- and out-of-sample.

VI. Conclusions

                                                
8 Similar statistics for other tenors and forecast horizons are available on request.
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This paper develops and tests a nonlinear one-factor general equilibrium model of
the term structure of interest rate within the framework of Cox, Ingersoll and Ross
(CIR, 1985).  The advantage of this general equilibrium approach over the partial
equilibrium counterpart is that the stochastic properties of the instantaneous interest
rate are endogenously determined.  Therefore,  the general equilibrium model
precludes negative interest rates, is consistent with the underlying real economic
variables, and rules out arbitrage opportunities.  A partial differential equation for
valuing discount bond price is presented, and a closed-form expression is derived.
This extension broadens classes of risk premiums and term structures which can be
empirically evaluated.   The model shows that the risk premium need not be strictly
increasing in maturity, and yields of the discount bond may be increasing,
decreasing, humped or inverted, depending on parameter values.

In an empirical application of the model, we develop a strategy for estimation which
permits analysis of the model’s temporal stability. We employ nonlinear system
estimation of the unrestricted reduced-form parameters with a moving-window
strategy in order to capture the term structure volatility caused by factors other
than the instantaneous interest rate. We purposefully do not impose any law of
motion on the estimated volatilities. This methodology is shown to have strong
predictive power for the observed term structure of interest rates, both in-sample
and out-of-sample.
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