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the ex ante contracts are subject to ex post renegotiation, agents with the �xed-wage
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the principal should retain residual rights of control over the public good. This pa-
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units in a franchise company. It adopts and extends important features from both
the multi-task theory of the �rm and the incomplete-contract theory of the �rm.
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1. Introduction

ex ante homogeneous

Business format franchise involves not only product, service and trademark, but also the

entire business format. According to Lafontaine (1992), both the number of the outlets of busi-
ness format franchisors and total nominal sales through them had phenomenal growth between

1972 and 1986.
In 1986, the percentage of franchised units ranged from 76% in McDonald’s to 82% in Burger

King, see Lafontaine (1992).
Hart, Shleifer, and Vishny (1996) discuss incomplete contracts with multiple tasks in a

di�erent context. In particular, they exclude the possibility of revenue-sharing contracts, and

focus on how ownership structure a�ects the allocation of an agent’s attention among his various

As an increasingly prominent economic organization, franchise has both motivated and

challenged recent developments in the theory of the �rm. A franchise company typically

has both company-owned units and franchised units which di�er in at least two important

aspects: (1) Managers in the company-owned units have low-powered incentive contracts;

they receive �xed wages. Managers in the franchised units, however, have high-powered

incentive contracts; they pay a portion of their revenue as royalty to the company and

keep the remainder. (2) Managers in the company-owned units do not own any assets of

the units, whereas managers in the franchised units own part or all of the units’ physical

assets.

The multi-task theory of the �rm, pioneered by Holmstrom and Milgrom (1991), em-

phasizes how incentive pay a�ects the allocation of an agent’s attention among his various

tasks, and rationalizes di�erent-powered contracts based on ex ante heterogeneity in task

importance and task measurability. The incomplete-contract theory of the �rm (Grossman

and Hart (1986), Hart and Moore (1990), Hart (1995)) elucidates how ownership struc-

ture determines payo�s to all parties involved, and justi�es various ownership structures

according to the relative importance of the parties’ investment. For

units of the franchise company, however, neither contract mix nor multiple ownership

structure is an obvious implication of the two theories, let alone the correspondence be-

tween contract mix and multiple ownership structure.

This paper attempts to develop a theory of contract mix and multiple ownership

structure. It adopts and extends important features from both the multi-task theory and

the incomplete-contract theory of the �rm.
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tasks.
The importance of the brand name products and services is well recognized. For example,

Kaufmann and Lafontaine (1994) document incidents where franchised units su�ered signi�cant
loss of revenue once their brand names were revoked.

Following Holmstrom and Milgrom (1991), we assume that the manager may take pleasure

in working up to some limit, and incentives are only required to encourage work beyond that
limit.

The analysis begins with an observation that it is essential for a franchise company to

have reputable goods and services. For example, it was inspired by the success of McDon-

ald brothers’ California drive-in that Ray Kroc (the founder of McDonald’s) proposed to

sell the winning business format together with its brand name to would-be entrepreneurs.

Crucial to the franchise business are thus the e�ort to develop and maintain brand name

products and services shared by all units of the company (henceforth, goodwill), as well

as the e�ort in production and distribution (henceforth, sales).

If a manager’s payo� is tied to the revenue of her unit with a high-powered incentive

contract, she will allocate too little of her e�ort on goodwill and too much of it on sales

activities. This is because goodwill is company wide and thus the manager can free ride on

goodwill provided by other units, whereas sales e�ort is unit speci�c and she can not rely

on other units for its provision. When there are many small units in the company, as is the

case of many franchise companies, such misallocation of e�ort between the two tasks is the

most severe. In that case, if given a high-powered contract, the manager will not expend

any goodwill e�ort. In contrast, if given a low-powered contract, then she is indi�erent

to the allocation of her e�ort between the two tasks and thus is willing to expend some

goodwill e�ort to the extent that it does not bring about disutility. Therefore, in order

to induce goodwill e�ort, the company o�ers some of its managers low-powered contracts,

despite their adverse implications on overall e�ort level. With the goodwill provided by

these units, sales e�ort becomes more important in the remaining units of the company,

and high-powered incentive contracts are thus optimal for managers of the latter units.

Contract mix is optimal in our model, as it allows the company to induce public good

(goodwill) production on the one hand and capture the positive externality of goodwill

on the other hand.
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An alternative theory of contract mix in franchise was provided by Gallini and Lutz (1992).

In their asymmetric-information model, a franchisor owns some units in order to signal the
pro�tability of his business. However, empirical studies by Lafontaine (1993) and Lafontaine

and Shaw (1996) have rejected two major predictions of the signalling theory, namely, higher
company ownership is more likely for higher-quality franchisors, and company ownership declines

as a franchise company matures over time.
In a detailed study of McDonald’s, Love (1986) documents that there were problems of

quality and cleanliness in franchised units (Chapter 4) and that company-owned units were set

up to “encourage wayward McDonald’s franchisees to clean up their act” (Chapter 9).
Optimality of contract mix depends crucially on ex ante heterogeneity when all tasks are of

private good nature.

Our theory of contract mix is consistent with stylized facts about franchise. It is well

documented that company-owned units are much better than franchised units in terms

of quality of services and adherence to uniform standards. This directly supports our

explanation of why there are company-owned units. Our model predicts that franchised

units are more pro�table than company-owned units, because the latter are to provide

goodwill e�ort for the whole company at the expense of sales e�ort that would enhance

their own pro�tability. This is borne out by Shelton’s (1967) �nding that the pro�t

margin was 9.5 percent under franchisee ownership and was 1.8 percent under company

ownership.

Compared with Holmstrom and Milgrom’s multi-task model (1991) which emphasizes

the di�erence in the measurability of various tasks, ours focuses on the di�erence in the

scope of in
uence of the tasks. Moreover, heterogeneity in task importance is endoge-

nously determined in our model, which explains contract mix for ex ante homogeneous

units of the company.

With contract mix understood, it remains to be explained why managers with the

high-powered contracts own part or all of the units’ physical assets whereas these with

the low-powered contracts do not. Our analysis on this issue is inspired by a stylized fact

of franchise, namely incompleteness of franchise contracts. While brand name goods and

services are of paramount importance to a franchisor, their retail markets are signi�cantly

uncertain. It is di�cult or even impossible for the company to specify ex ante (in its

contracts with the managers) how to develop and maintain the brand name products and
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Through examining McDonald’s franchise contracts, Had�eld (1990) found that “many of

the standards with which a franchisee must comply will not even be articulated until well after
the contract has been signed.”

The franchise company’s residual rights of control are well protected by the business judg-

ment approach that is currently adopted in the courts. For example, from , 142
N.J. Super. at 251, 362 A.2d at 1266 (adapted from Had�eld (1990)), “(t)he substantiality of
a franchisee’s noncompliance, as a legal concept, must be gauged in light of its e�ect upon or

potential to a�ect the franchisor’s trade name, trademark, good will and image which, after all,
is in the heart and substance of the franchising method of doing business.”

services ex post in response to market changes. Instead, the company keeps the residual

rights of control and makes necessary business decisions ex post. A recent example is the

outbreak of mad cow disease and McDonald’s subsequent decision of not using UK beef.

However, the residual rights of control also gives the company an opportunity to hold

up the managers ex post. In particular, the company may abuse its power “in order to

transfer the franchisees to more pro�table franchisees or to convert the outlets to company

ownership (Had�eld (1990)).”

Note that, when ex ante contracts are incomplete about development and maintenance

of brand name products and services, disputes between the HQ and the managers are

inevitable. Furthermore, the presence of contractual incompleteness makes it di�cult for

courts to verify ex post which party is at fault in the event of the disputes. Thus, to

examine implications of contractual incompleteness in franchise, we assume that the ex

ante contracts could be renegotiated ex post. From MacLeod and Malcomson (1993),

however, we know that an ex ante contract may or may not be renegotiated depending

on the outside options of the HQ and the manager.

To probe how to make the ex ante contracts renegotiation-proof, we �rst assume

away any contractual remedies, in which case the outside options of the company and

the manager are determined solely by the ownership arrangements of the unit’s physical

asset. When the manager owns the asset, he can deny the company access to the asset.

Then, the manager’s outside option is to provide generic products and services, while the

company’s is to conduct business with only the goodwill. When the company owns the

asset, it can deny the manager access to both the goodwill and the asset. The manager

thus does not have any outside option, while the company has the outside option of

4
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capturing all the revenue. Under reasonable conditions, we show that, to make their

contracts renegotiation-proof, managers with the high-powered contracts need to own

their units’ physical assets whereas those with the low-powered contracts should not. To

conclude our analysis, we then show that contractual remedies, even optimally chosen,

cannot mimic what the ownership arrangements have achieved. Thus, given there is severe

contractual incompleteness in franchise, the di�erent-powered contracts can only be made

renegotiation-proof by the corresponding ownership arrangements.

It is generally held that, because the value of franchisees’ assets depends crucially

on their access to the brand name, franchisees are extremely vulnerable to franchisors’

residual rights of control in general and the power to terminate the franchise contracts in

particular. However, empirical studies by Kostecka (1987) found that franchisors termi-

nated 2,651 units in 1985, which equals only .87 percent of the estimated 301,689 units of

business-format franchise companies existing then. It is interesting to note that our the-

ory of multiple ownership structure can explain this long-standing puzzle in the franchise

literature.

Our model extends the existing incomplete-contracts approach by considering con-

tracts in settings of contractual incompleteness and exploring other roles of ownership.

structures (is this controversial?) In Grossman and Hart (1986), ex ante contracts are

not possible. Consequently, the residual rights of control solely determines the payo�s of

concerned parties, and optimal ownership structure is chosen to elicit ex ante incentive.

In our model, ex ante contracts are possible, but they are subject to ex post renegotiation.

Optimal ownership structure is chosen to make the ex ante contracts renegotiation-proof.

More importantly, when ex ante contracts are not possible, ownership of complementary

assets should be rested in a single party to avoid ex post bargaining and ex ante ine�-

ciency (Hart and Moore (1990)). However, when contracts are possible as in franchise,

the optimality of contract mix in the presence of a multi-task framework implies

ownership arrangements of complementary assets.

Our paper is related to Holmstrom and Milgrom (1994) as both papers address con-

tractual and ownership arrangements. Holmstrom and Milgrom (1994) provides a general
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2.1. Production technology

Assumption 1 The measure, , on space is atomless. That is, there does not exists

an such that .

theory to explain many features of an employment relationship as opposed to an inde-

pendent contracting relationship, including the power of incentive contracts, ownership

of assets, and freedom to act. However, their theory can only explain contract mix and

multiple ownership structure based on ex ante heterogeneity of units (say, in monitoring

costs). Furthermore, it predicts franchised units over company units when monitoring

cost is low, whereas the empirical studies found the opposite (Brickley and Dark (1987)).

The plan of the paper is as follows. In Section 2, we introduce a multi-task model

where there is no contractual incompleteness. In Section 3, the company’s contract design

problem is studied, and the optimality of contract mix is established. In Section 4, we

introduce contractual incompleteness into our model and consider contract renegotiation.

We show that di�erent-powered incentive contracts can only be implemented by various

ownership arrangements of the units’ physical assets as observed in the case of franchise.

The paper concludes with Section 5.

Consider a company (or chain) that consists of the headquarters (HQ) and many units.

The units are indexed by , where is a measurable space with its probability measure

denoted by . To highlight the free-rider problem, we assume that there are in�nite units,

and,

( ) 0

The manager of each unit performs two tasks: and . is a unit-speci�c e�ort that

a�ects only the revenue of the unit, and is a general e�ort that increases the revenue of

all units of the company. For a fast food chain, for example, is the sales e�ort, and is

the e�ort to develop customer goodwill towards the brand name of the chain, or to learn

about customer tastes, or to develop new products. From now on, we will call the sales
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We follow Holmstrom and Milgrom (1991) and (1994) in using this cost function.

e�ort and goodwill. The level of the two e�orts are not veri�able and hence cannot be

contracted on.

We assume, however, that the revenue of each unit is veri�able, as is the case for fast

food chains. Furthermore, it is given by

( ) = ( ( ) ) + ( )

where ( ) is a normally distributed random variable with mean 0 and variance ,

is independent across units, and = ( ) is the total stock of goodwill possessed

by the company. This revenue function, , assumes that is a pure public good. The

results would not change if the revenue function included ( ) as an additional argument

to incorporate the idea that ( ) contributes more to unit than to other units. (is this

true?) We assume that,

( )

The manager incurs a private cost of ( ) to provide these e�orts. We assume that

these e�orts are perfectly substitutable in the manager’s cost function, i.e., = ( + ).

In addition, there exists some positive number such that ( ) = 0 for , ( ) = 0,

and ( ) 0, ( ) 0 for .

It is clear that we adopt a multi-task model pioneered by Holmstrom and Milgrom

(1991). However, we emphasize the di�erence in the scope of in
uence of the two tasks,

whereas they focus on the di�erence in the measurability of the tasks.

We assume that the manager has constant absolute risk aversion. That is, the manager’s

utility function is ( ) = , where is the coe�cient of absolute risk aversion and

is the manager’s net (but risky) payo�. The HQ is assumed to be a risk-neutral pro�t

maximizer.
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3. Contract Mix

3.1. Contract design problem
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One may argue that the HQ could also write: (a) a contract that bases a manager’s reward

only on the revenue of other units, or (b) a contract that bases a manager’s reward on the
revenue of other units as well as on that of the manager’s own unit. Under Assumption 1, each
unit is so small that its level of goodwill does not a�ect the total stock of goodwill of the whole

company, . Furthermore, revenue is stochastically independent across units. Therefore, the
revenue of other units does not contain any information about a unit’s e�orts and thus should

not a�ect the unit’s compensation; including the revenue of other units in the reward of the unit
only add unnecessary uncertainty to the income of the risk averse manager. Refer to Holmstrom

(1982).

The HQ chooses a compensation scheme to induce the manager’s e�orts. The HQ

can o�er di�erent contracts to managers, although all managers are identical ex ante.

Without losing generality, we consider two types of contracts: (1) a �xed-wage contract;

(2) a high-powered contract that rewards the manager according to the revenue of the

manager’s unit.

Let ( ( )) be the incentive contract for the manager of unit . Then the manager’s

expected utility is assumed to take the form

( ) [ ( ( )) ( ( ) + ( ))]

where is the manager’s certainty equivalent money payo�, and is the expectation

operator. Given contract ( ( )), the manager chooses ( ) and ( ) to maximize ( ).

To summarize, the timing of events is as follows.

(1) At t=0, the HQ chooses ( ( )) for all .

(2) At t=1, the manager of unit chooses ( ) and ( ).

In this analysis, we constrain the HQ to the choice of linear contracts. There is no loss

of generality though. Holmstrom and Milgrom (1987) show that the optimal incentive

contract in suitably stationary dynamic environments in which the agent can continuously

monitor his own performance is equivalent to the optimum of a reduced-form static model

in which the principal is constrained to linear contracts.

8



∈ O

� �

�

i

s i ,g i

s i

i

i

� �

{ ∈ I}

� �

� �

O { }

2 2

( ) 0 ( ) 0

2 2

( ) 0

13

13

1
2

2 2

� i < s i , g i , T
� i

s i , g i

r� � i
� i <

w � i x i � i � i � i

CE � i y s i , G � i c s i g i r� � i .

t � i , � i i

s i , g i G i

CE � i y s i , G � i c s i g i r� � i .

� i > i g i

s i

s i � i y s i , G c s i . OP s

i � i

T s i g i T

s i , g i

� i >

� i

s i , g i s i g i T

If ( ) 0, the manager will choose ( ( ) ( )) = (0 ) . For the HQ, a contract with a
negative ( ) is strictly dominated by a �xed-wage contract because, under the former contract,
the HQ has less 
exibility in choosing ( ( ) ( )) than under the latter contract and furthermore

has to pay a risk premium, ( ) , to the manager. Therefore, the HQ will never o�er a
contract with ( ) 0.

For = ( ) ( ) + ( ) where ( ) and ( ) are constants unrestricted in sign, we

have:

= ( ) ( ( ) ) + ( ) ( ( ) + ( ))
1

2
( )

At = 1, given the contracts o�ered by the HQ, ( ( ) ( )) : , the managers

choose ( ( ) ( )). Speci�cally, taking as given, the manager of unit solves

max = ( ) ( ( ) ) + ( ) ( ( ) + ( ))
1

2
( )

If ( ) 0, the manager of unit chooses ( ) = 0. This is because, in this case, a

manager has an incentive to increase the revenue of his unit. The optimal way to do so

is to allocate no e�ort to goodwill and all his e�ort to sales, as goodwill is a pure public

good and has only an in�nitesimal e�ect on the revenue of the unit while sales e�ort has

a non-trivial positive e�ect. ( ) is uniquely determined by

( ) = arg max ( ) ( ( ) ) ( ( )) ( )

Such an incentive contract is called a high-powered contract. A manager who receives a

high-powered contract is called manager H, and his unit H unit.

If the manager of unit receives a �xed-wage contract ( ( ) = 0), then he puts a

combined e�ort level of (i.e., ( ) + ( ) = ) and is indi�erent between the sales and

goodwill e�orts (or the optimal choice of ( ( ) ( )) is not unique). This is because, in

contrast to the case of ( ) 0, the manager’s utility does not depend on the revenue

of his unit and consequently not on how his e�ort is allocated between the two tasks.

Therefore, when ( ) = 0, the manager is assumed to do what is requested by the HQ

among the set of = ( ( ) ( )) : ( )+ ( ) = . Such an incentive contract is called

a low-powered contract. A manager who receives a low-powered contract is call manager

L, and his unit L unit.
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The above discussion shows that the HQ can only induce goodwill e�ort by o�ering

extreme (�xed-wage) incentive contracts to managers. The intuition for this result should

be emphasized. For any manager, his goodwill e�ort has negligible e�ect on his unit’s

revenue, whereas the sales e�ort has non-trivial e�ect on the revenue. It follows that,

once a manager’s payo� is slightly related to his unit’s revenue, the manager would shift

all of his e�ort to sales. (would risk aversion matters?)

Let be the set of L units and be the measure of this set, then = ( )

and the HQ’s expected total pro�t is

� = [ ( ( ) ) ( )] + [(1 ( )) ( ( ) ) ( )]

where ( ) is the level of goodwill e�ort chosen by the HQ for the L-unit and ( ) is the

level of sales e�ort chosen by the manager of the H unit. At = 1, given , ( )

and ( ) ( ) , and also taking ( ) as given, the HQ chooses ( ) to

maximize �, i.e.,

( ) = arg max � ( )

In summary, at = 1, ( ) and ( ) are jointly determined by ( )

and ( ).

At = 0, the HQ chooses , ( ) , and ( ) ( ) to maximize the expected

total pro�t, subject to the incentive compatibility constraints, ( ) and ( ), and

the individual rationality constraints that managers are willing to accept the contracts.

We normalize the reservation utility of the managers to be 0. Then, the HQ’s optimization

problem at = 0 is

max [ ( ( ) ) ( )] + [(1 ( )) ( ( ) ) ( )] ( )

( ) ( ) ( )
( ) 0 for all
( ) ( ( ) ) + ( ) ( ( )) ( ) 0 for all ( )
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3.2. Uniformity of high-powered and low-powered contracts

Assumption 3

Assumption 4

Assumption 5

Proposition 1

, and .

is convex in .

The marginal product of goodwill e�ort, , is increasing and

concave in .

The HQ should (1) request the same level of goodwill e�ort from all man-

agers of L units, and (2) o�er the same high-powered contract to all managers of H units.

Since ( ) and ( ) do not a�ect the incentive compatibility constraints, the individual

rationality constraints must be binding at the optimum. Otherwise, the HQ’s expected

total pro�t can be increased by reducing ( ) or ( ). Substitute constraints (IR) into

the objective function. Then

max ( ( ) ) + [ ( ( ) ) ( ( ))
1

2
( ) ] ( )

( ) ( ) ( )

We make additional assumptions about the production and cost functions.

lim = lim =

This assumption is made to avoid possible complications of corner solutions.

The assumption holds if the cost function is su�ciently convex. In the case that the

production function is Cobb-Douglas and the cost function is = ( + ) , it is satis�ed

if is su�ciently large. is the ratio of the marginal cost, to the marginal bene�t,

of the sales e�ort. The assumption implies that the solution to ( ), ( ), is concave

in ( ).

This assumption says that e�ort and are complementary and the return to in

enhancing the marginal product of diminishes.

To characterize the optimal contracts, we �rst have:
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Technically, for choice of high-powered incentive contracts, the HQ’s optimization problem
is constrained, and in general not concave. However, with Assumption 4, we can show that the

HQ’s optimization problem for any given is concave. Assumption 5 further ensures that the
HQ’s choice of is also well-behaved. Taken together, we have the second result of Proposition
1.

All proofs not provided in the main text are contained in the appendix.

The intuition for the �rst result is quite straightforward. While the HQ may request

di�erent levels of goodwill e�ort from di�erent L units, the managers’ total e�orts remain

the same, i.e., ( ) + ( ) = for . Suppose that the HQ requests two levels of

goodwill e�ort, and , respectively from, and measure of the managers of L

units, where = + and = + . Then, by the concavity of ( ) with

respect to , the HQ could obtain more pro�t by requesting same level of goodwill

e�ort, �, from all managers of L units, where � = + and ( + )� = .

The second result of Proposition 1 is more involved. This is because, in contrast to

the case of L units, both the sales and total e�orts by the managers of H units are directly

a�ected by the high-powered incentive contracts. So is the HQ’s choice of goodwill level.

Instead of o�ering a single high-powered contract, the HQ could o�er two contracts, one

less high-powered and the other more high-powered, under which one group of managers

would decrease their sales e�ort and the other increase their sales e�ort. When the cost

function is not convex enough, the decrease in sales e�ort is not too much while the

increase in the sales e�ort is quite a lot, and the HQ could bene�t by o�ering di�erent

high-powered contracts. However, when the cost function is su�ciently convex, speci�-

cally, when Assumption 4 is satis�ed, o�ering the same high-powered contract increases

the average sales e�ort of managers of H units. When and are complementary as

Assumption 5 says, this also increases the HQ’s incentive to choose high level of goodwill

by increasing the marginal bene�t of goodwill e�ort.

Empirical studies by Lafontaine and Shaw (1996) show that, while franchise contracts

vary from one franchisor to another, they are extremely uniform across franchisees, and

rather stable over time, within any particular franchise company. McAfee and Schwartz

(1994) o�er a market-based explanation for this phenomena. Speci�cally, in their model,

after signing a contract with one franchisee, a franchisor is tempted to o�er another
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3.3. Equilibrium outcomes given the uniform contracts

Lemma 1 The response function increases in and , and is independent of .

w
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franchisee a contract with a lower royalty fee to undercut the �rst franchisee and therefore

obtain a higher lump-sum fee. Knowing the franchisor has such opportunistic behavior,

the �rst franchisee is reluctant to accept the contract and the franchisor is thus better

o� by commiting to a uniform contract for all franchisees. Note that in our set-up,

each manager is a local monopoly and McAfee and Schwartz’s argument is no longer

applicable. Our model thus o�ers an alternative and purely technological explanation for

the uniformity of franchise contracts.

Proposition 1 greatly simpli�es the contract design problem (as described in Section 3.1).

Let ( ) be the low-powered contract o�ered by the HQ to all managers of L units, and

is the goodwill e�ort. Let ( ) be the high-powered contract o�ered by the HQ to all

managers of H units, and is the corresponding sales e�ort.

At = 1, given , ( ) and ( ), H managers choose and the HQ picks . Since

lim = , is concave and is convex, for 0, H manager’s optimal choice of

is characterized by

( ) ( ) = 0 ( )

De�ne the response function of to , = ( ; ) to be the solution to ( ).

Since and are complementary in the production function, i.e., 0, a higher

makes the sales e�ort of the H manager more productive and therefore increases his choice

of . A larger gives the H manager a higher share of revenue and thus increases his

choice of . That is,

The HQ’s objective function at = 1 becomes

� = [ ( ) ] + (1 )[(1 ) ( ) ] where =

Since is concave, it can be easily shown that � is concave in if = 0 and � is

independent of if = 0. Furthermore, as lim = and lim = , for 0,

13
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the HQ’s optimal choice of is an interior solution and is characterized by

( ) ( ) + (1 )(1 ) ( ) = 0 ( )

where the left hand side of the equation is equal to . De�ne the response function of

to , = ( ; ), to be the solution to ( ). Again, the complementarity

between and implies that increases with . As increases, the HQ gets a smaller

share of revenue and thus chooses a lower . The e�ect of on depends on how

a�ects the marginal pro�t of . Therefore, we have,

�
= + (1 ) 0

Thus, at = 1, given , ( ) and ( ), equilibrium ( ) are determined simultane-

ously by ( ) and ( ); they represent the point of intersection of the two

response functions, and , de�ned above. It is shown in the Appendix that there exists

a unique equilibrium ( ) which are functions of ( ).

By the concavity of , it is a standard exercise to show that the equilibrium is stable,

and that and are di�erentiable functions of ( ) when 0 and 0.

Since the response function is independent of , how equilibrium and change

with depends on how the response function depends on . As Figure 1 illustrates,

equilibrium and both increase (decrease, respectively) with if the response curve

moves rightward (leftward, respectively).

Figure 1

By Lemmas 1 and 2, the response function increases with but the response function

decreases with . However, the e�ect of on equilibrium and are ambiguous. In

summary, we have:
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3.4. Characterization of the high-powered contract
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For and : (1) Equilibrium and are di�erentiable functions

of . (2) Equilibrium and both increase (or decrease) with if (or

(3) The e�ects of on equilibrium and are usually ambiguous.

(1) and are continuous at . (2) When , is uniquely

determined by and is continuous in . (3) Note that Lemma 4 does not imply

that is continuous at ; may be di�erent from . This is

because at , and

0 0

( ) 0

0)

As we attempt to investigate the optimality of contract mix (i.e., 0 and

(0 1)), it is important to analyze the boundary case in which = 0 or = 0. The �rst

step of the analysis is to properly de�ne the case of = 0 and that of = 0. Speci�cally,

we de�ne the case of = 0 and 1 to be the limiting case of 0 and 1. It should

be stressed that, even when approaches zero, L units ( = 0) are distinct from H units

( = 0+); the managers of H units choose = and = 0, while the managers of L units

follow the instruction of the HQ on the choice of ( ) from set = ( ) : + = .

Therefore, the case of = 0 and 1 is di�erent from the case of = 1, in which all

units are L units and all managers follow the instruction of the HQ. For the boundary

case of = 0, we have = 0. However, we de�ne the value of at = 0 to be the limit

of the optimal as 0. With these de�nitions, we can show:

= 0 = 0 ( 0)

( )

( ) = 0 lim ( ) ( 0)

= 0 = 0 lim =

To conclude, note that, at = 0, the HQ’s objective function becomes

�( ) = ( ) + (1 )[ ( ) ( )
1

2
] (1)

where and are the equilibrium de�ned by ( ) and ( ), and functions

of ( ). By Lemmas 3 and 4, �( ) is continuous when 0 and di�erentiable when

0 and 0. The HQ chooses and to maximize its objective function, which we

turn to in the next two subsections.
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When the HQ chooses , it considers several factors. First, as increases, H managers

are subject to more risk and therefore need to be compensated more. Second, the value

of a�ects the HQ’s incentives to provide goodwill e�ort and H manager’s incentives to

expend sales e�ort. Di�erentiate � with respect to and simplify the derivative with

( ) and ( ). We have, for 0,

�
= (1 ) + (1 ) + (1 )(1 ) (2)

where a function with a superscript means that it is evaluated at ( ). On the right

hand side of (2), the �rst term captures the risk factor and is negative, and the next two

terms describe the e�ects of on � through and , respectively.

By Lemma 3, the signs of and are usually ambiguous, and so is the sign of .

However, when 1, becomes independent of as shwon in ( ); we then

have 0 as is illustrated by Figure 2. Therefore, as 1, the �rst two terms on the

RHS of (2) are negative and the third term becomes negligible, even though the sign of

remains ambiguous; or 0 as 1, which implies that the optimal is less than

1.

When 0, the �rst two terms on the RHS of (2) become negligible, and the sign of

is determined by that of the third term or . From ( ), we know that = at

= 0. Furthermore, as increases from zero, ( ) of ( ) becomes positive,

which implies that at = 0+. Therefore, we have 0 as 0. Consequently,

0 as 0, which implies that the optimal is greater than 0.

(0 1)

By equation (1), the HQ’s total pro�t is � = + (1 ) , where ( )

is the HQ’s expected pro�t from a L unit, and ( ) ( ) is the HQ’s

expected pro�t from a H unit. If and were independent of , then either a high-

powered contract or a low-powered contract would be o�ered by the HQ to all its units
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For any given , at the corresponding HQ’s optimal choice of

, denoted by . In particular, holds in equilibrium.

(namely, either = 0 or = 1). Contract mix (namely, (0 1)) would not be optimal

unless with probability zero that = .

In this model, however, goodwill is a public good; in addition, only managers with a

low-powered contract (or L units) can provide goodwill e�ort (recall that = where

is the measure of L units and is goodwill e�ort by a L manager). This seems to justify

the existence of L units as they have positive externality on other units of the company.

On the other hand, L managers, because of the low-powered contract, expend a lower

level of total e�ort than H managers ( ( ) + ( ) = for , whereas ( ) for

), which makes the L units less pro�table. Intuition therefore suggests that

the HQ o�ers a high-powered contract to some units and a low-powered contract to the

others.

To investigate the conditions under which the HQ’s optimal choice of is within 0 and

1, we �rst consider the �rst-order derivative of � with respect to for the case of 0.

Simplifying by ( ) and ( ), we have,

�
= ( ) + (1 ) + (1 )(1 ) + (3)

where a function with a superscript ( , respectively) means that it is evaluated at ( )

(( ), respectively). The four terms in (3) represent di�erent e�ects of increasing

p.

When there is one more L unit, the HQ gains but loses . The �rst term on

the RHS of (3) captures this direct e�ect. Proposition 3 says that this direct e�ect is

negative.

( )

Intuitively, there are two reasons for the result of Proposition 3. One is that, to induce

goodwill e�ort, the HQ is constrained to o�ering the low-powered incentive contract to L

managers. As a result, L managers expend a lower level of total e�ort than H managers.

The other reason is that H managers free ride on L managers for goodwill and therefore
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they are able to put more e�ort on sales. Both reasons stem from the public good nature

of goodwill e�ort.

L units showing lower pro�ts on the book than H units does not mean that there

should be none or very few of L units. L units are important because they are the only

providers of goodwill e�ort, which not only increases pro�ts of all units, L or H, directly,

but also a�ects the productivity of sales e�ort in H units. The second and the third terms

in (3) capture, respectively, the e�ect of on � through total stock of goodwill and that

through the level of sales e�ort of H managers. The signs of the second and the third

terms are yet to be determined. They, respectively, are the same as those of and ,

which we discussed in Lemma 3 for the case of 0.

Having more L units to provide goodwill also mitigates ine�cient substitutions be-

tween sales and goodwill e�orts in L units. When = 1, the burden of providing a given

level of goodwill, G, is unevenly borne by di�erent units of the company; only L units

provide goodwill. Because the sales e�ort has decreasing returns to scale, the cost of L

units devoting less e�ort to sales exceeds the bene�t of H units being able to exert more

e�ort in sales (I don’t understand this statement). With more L units, the cost of such

ine�cient substitutions between tasks is reduced. This substitution e�ect is captured by

the fourth term in (3) and is always positive.

Thus far, we have analyzed for the case of 0. To establish conditions for the

optimality of contract mix (namely, (0 1)), it is essential to address the boundary

case of � at = 0.

Note that the optimality of 0 is straightforward, if ( 0) = 0 for all . Speci�-

cally, at = 0, = 0 and � = 0. At 0, 0 and � 0. Therefore, the optimal

must be positive. Intuitively, if the revenue vanishes in the absence of goodwill, then the

HQ must have the L units to provide the essential input.

The following analysis, however, is focused on the scenario that ( 0) 0. It is

then not so apparent that the optimal has to be positive. In that case, the su�cient

conditions for 0 are (1) the limiting value of �( ) as ( ) ( 0) is no lower

than that of �( 0), and (2) 0 as 0.
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Lemma 5 shows that the low bound of lim �( ) is greater than �( 0),

thus ensuring that part (1) of the su�cient conditions is met.

lim inf �( ) �( 0) ( 0) = 0

lim �( ) = �( 0)

To address part (2) of the su�cient conditions (or the asymptotic properties of as

0), we further assume that

( 0) 0 0 0 lim ( ) =

Assumptions 2, 3, 5, and 6 (all about the revenue function) are satis�ed by the func-

tions of ( ) = + + , with , , and nonnegative, which include

Cobb-Douglas functions as special cases. For these revenue functions, Assumption 4 is

also satis�ed for su�ciently large if the cost function is ( + ) = ( + ) .

Note that, in terms of the importance of to the revenue function, Assumption 6

imposes much less restrictions than ( 0) = 0 does. The two conditions in Assumption

6 are concerned with the e�ects of on . lim ( ) = means that, even

with very small , the marginal revenue of sales e�ort is still very large when the level of

is low. In this case, it is very costly to ask a few L units to concentrate almost all their

e�ort on goodwill. Therefore, the substitution e�ect of having 0, ( ), is

su�ciently large to dominate the negative direct e�ect, . 0 says that is

weakly convex. It enables us analyze the properties of as 0. We can prove that

as 0, which implies by Lemma 3 0 and 0. This in turn implies

that the second and the third terms in are positive as 0. All taken together, we

have as 0.

To summarize, we have:

Having spelled out the conditions for 0, we turn to the question of when it

is optimal for the HQ to have some H units, namely, 1. With L units providing
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When , the optimal . , and

, where is the Lagrange multiplier of the constraint and is

positive.

It is more likely for the HQ to have some H units when the managers are

less risk averse ( is smaller), or when the uncertainty about its revenue (measured by )

is smaller, or when marginal cost of e�ort (measured by ) is smaller.

the goodwill, the HQ can o�er managers of the remaining units a high-powered contract

( 0) and thereby elicit high sales e�ort from them. Whether or not high-powered

contracts should be o�ered to some units depends on the magnitudes of their costs and

bene�ts.

One cost of high-powered contracts is that they subject the managers to risks, resulting

in ine�cient risk sharing between the risk neutral HQ and the risk averse managers.

Therefore, it is more likely for the HQ to have some H units when the managers are less

risk averse (with smaller ) or when there is less uncertainty (smaller ).

The main bene�t of high-powered contracts is that they elicit high sales e�ort from H

managers. When the marginal costs of sales e�ort are lower, it is easier to induce it and

thus the bene�t of high-powered contracts is higher. Therefore, it becomes more likely

for the HQ to have some H units.

To formally establish these two predictions, note that at = 1, ( ) becomes

�
= ( ) +

of which the �rst term is negative and the second term is positive. ( ) becomes

( ) ( ) = 0

which implies that does not depend on . Therefore, is chosen to

= max ( ) ( )
( ) ( ) = 0 ( )

where is a cost parameter. Standard exercise shows that

= 1 = 0 = 0

= ( ) ( ) 0

Since at = 1, = ( ) and = ( ) do not depend on or , it

follows from (FOC-p) and Lemma 6 that,
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4. Multiple Ownership Arrangements

Lemma 7

Proposition 6

4.1 Contractual incompleteness and residual rights of control

When , if for and , then

for su�ciently small .

If for and , then the HQ

should have some H units when is small enough.

Proposition 5 gives one set of conditions for the HQ to have H units, namely, H units

are attractive enough. A complementary set of conditions is that L units do not perform

very well. With low-powered incentive contracts, the level of total e�ort is . If is

very small, the pro�ts from L units are very low. Therefore, it is necessary for the HQ

to o�er some high-powered contracts so that more e�ort can be induced. To con�rm this

intuition, we have:

= 1 ( 0) 0 0 lim ( ) = 0

0

It follows that,

( 0) 0 0 lim ( ) = 0

The above analysis has addressed the �rst distinguishing feature of franchise, namely,

both high-powered and low-powered incentive contracts are used. What remains to be

explained is why managers with the high-powered incentive contract own some or all

of their units’ physical assets whereas those with the low-powered incentive contract do

not. In this section, we �rst discuss a stylized fact of franchise, namely, incomplete-

ness of ex ante incentive contracts and the consequent contract renegotiation. We then

show that those di�erent-powered contracts can only be made renegotiation-proof by the

corresponding ownership arrangements.

A basic assumption in Sections 2 and 3 is that contracts are complete. The HQ o�ers the

low-powered contract to some managers who provide the goodwill e�ort, and the high-

powered contract to others who expend all their e�ort on sales. Once these contracts are
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standards and

policies as they exist now and as they may be from time to time modi�ed

Note that contracts could be complete though the goodwill and sales e�orts are not veri�able.
See Hart (1995).

Throughout the paper, we assume that the HQ owns the goodwill stock. This is in fact an
optimal arrangement. We will further discuss this after Proposition 9.

The MS is another production input besides the goodwill and sales e�orts, and is indis-

pensable for maintaining the brand name. Although MS is not contractible ex ante, it can be
enforced if it is agreed upon by both the HQ and the manager ex post.

written, the HQ is no longer needed for carrying out the business. In this complete-

contracting framework, it does not matter whether the units’ physical assets are owned

by the managers or the HQ.

In reality, the retail markets for the HQ’s brand name products and services are

signi�cantly uncertain. The HQ needs to develop and maintain its brand name in response

to market changes. For example, when new scienti�c studies reveal that some of the food

ingredients are not healthy enough, the HQ (of a fast-food business) may choose to replace

those ingredients. To write complete (ex ante) contracts with the managers, it requires

the HQ to foresee all possible future contingencies and devise corresponding strategies for

the managers, which is very costly if not impossible. As a result, “many of the standards

with which a franchisee must comply will not even be articulated until well after the

contract has been signed,” and “the key characteristic of the franchise contract is its

incompleteness (Had�eld (1990)).”

Rather than writing complete (ex ante) contracts, the HQ retains the residual rights

of control to make business decisions as ex ante unforeseen contingencies arise (Grossman

and Hart (1986), Hart and Moore (1990), Hart (1995)). In particular, the HQ may propose

some minimum quality standard (MS) ex post for the managers. An examination of

the McDonald’s franchise contract reveals that the HQ has substantial residual control

rights, and that its franchises are required for “strict adherence to licensor’s

(italics added).”

A recent example is the outbreak of mad cow disease and subsequent McDonald’s decision

of not using UK beef.

While the residual rights of control greatly facilitates the HQ to develop and maintain

its brand name in response to market changes, it also gives the HQ an opportunity to hold
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4.2 Contract renegotiation

In general, the HQ could propose some minimum quality standard which is very costly to

the manager, or brings extra bene�t to the HQ, or both. Renegotiation of ex ante contracts
under such circumstances is much more complicated.

up the managers ex post. A HQ may “be enforcing a minor or curable contract violation

not to promote the quality of its franchisees but to achieve some other, opportunistic

goal at the franchisee’s expense, ” or abuse its power “in order to transfer the franchises

to more pro�table franchisees or to convert the outlets to company ownership (Had�eld

(1990))”.

It should be stressed that the objective of this paper is not to probe why franchise

contracts are often incomplete. There is an extensive body of legal studies on this issue (see

Had�eld (1990) and references therein). Among the reasons suggested are the importance

of brand name products and services, the uncertainty of the retail markets, and the need

for quick responses to possible market changes. See also Anderlini and Felli (1994), Hart

(1995), Maskin and Tirole (1996), and Segal (1995) for the theoretical foundations of

the incomplete-contracts approach. What this paper attempts to show is that, given the

contractual incompleteness in franchise and the consequent contract renegotiation, the

di�erent-powered ex ante contracts can only be made renegotiation-proof by the multiple

ownership arrangements of the units’ physical assets.

In the presence of contractual incompleteness and the HQ’s residual rights of control,

contract dispute between the HQ and the managers is inevitable. The managers could

complain about the unreasonable MS, while the HQ insists on the importance of the MS.

To make things even worse, contractual incompleteness makes it di�cult to verify which

party is at fault, and impossible to implement contingency-based penalty for breach of

contract. This implies that ex ante contracts could be renegotiated ex post.

Accordingly, the model of Section 2 is modi�ed as follows. At = 0, the incentive

contracts (both high-powered and low-powered) are written and the contract mix ratio

( ) is chosen. At = 1, tasks and are chosen by the managers in the H units, and by

the HQ in the L units. What is di�erent from the time line in Section 2 is that, at = 2,
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Proposition 7 (MacLeod and Malcomson (1993))

n.

� �

n. RS n

n.

RS n RS n n. n.

RS n RS n

RS n RS n

u

v u

v

R u v > u v

U V r

rV R rU,

rU
R v , v > v,
u , u > u,
u,

Suppose . The

payo�s to the HQ and the manager in any markov perfect equilibrium of the renegotiation

game are given by and , where is the interest rate,

when
when
otherwise.

As long as the incentive contract is not renegotiated after the uncertainty is resolved, the
argument for linear contracts still applies (Holmstrom and Milgrom (1987)).

uncertainty is resolved and the contract renegotiation could be initiated.

We adopt MacLeod and Malcomson’s (1993) framework to analyze the renegotiation

game. Speci�cally, the renegotiation lasts for a period of unit length, which is divided

into N stages. Each stage has length 1/N. In stage n, (n = 1, 2, ....., N), at 0, nature

chooses either the HQ with probability or the manager with probability 1 to make

an o�er. At 1, the chosen party o�ers a revenue-sharing contract ( ).

The renegotiation game is continued at 2 when the other party responds by taking

the outside option (henceforth “O”), or accepting the o�er (“A”), or rejecting the o�er

(“R”). If “O” is chosen, the game ends. If “R” (or “A”) is chosen, the two parties

decide whether to trade under ( 1) (or ( )) at 3 and 4 sequentially, and the

game continues with ( 1) (or ( )) as the standing contract for the next stage of

renegotiation. See Figure 3 of MacLeod and Malcomson (1993) for details.

In MacLeod and Malcomson (1993), both no-trade and outside option could be the

triggers for contract renegotiation. In our model, however, trade under the mutually

bene�cial revenue-sharing contract (such as ( ) and ( 1)) is preferred by both

parties to no-trade; and the only possible trigger for contract renegotiation is outside

option. Let denote the HQ’s stage payo� under the original revenue-sharing contract,

and denote that of the manager. Let be the HQ’s stage payo� from the outside option,

and be that of the manager. We obtain the following equilibrium of the renegotiation

game.

+ +

= (4)

= (5)
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contractual remedies

4.3 How to make the ex ante contracts renegotiation-proof?

This is because the project (or business opportunity) lasts for a limited period, or with the

track record of taking the outside option the HQ has di�culty in convincing a new manager.

Proposition 7 shows that, whenever the manager (or the HQ) has higher payo� from

the outside option than from the original revenue-sharing contract, renegotiation occurs

and the manager (or the HQ) obtains his outside option payo� under the new revenue-

sharing contract.

As shown in Section 4.2, in the presence of contractual incompleteness, the incentive

contracts could be renegotiated thereby distorting the players’ ex ante incentive. In

this subsection, we �rst assume away any for the event of outside

option, and show that appropriate ownership arrangements of the unit’s physical asset

can make the incentive contracts renegotiation-proof. We then conclude our analysis by

showing that, even optimally chosen, the contractual remedies cannot mimic what the

ownership arrangements do. Taken together, we can explain not only multiple ownership

arrangements, but also their correspondence with the di�erent-powered contracts.

Assume for the time being that there are no contractual remedies for the outside

option, and the players’ payo�s under the outside option are determined solely by the

ownership arrangements of the units’ physical assets. Note that, in contrast to Grossman

and Hart (1986), the managers’ e�orts are not human capital in our model. Once the

goodwill and sales e�orts are made by the manager of a unit, the former is attached to the

HQ’s brand name while the latter is embedded in the unit’s physical asset. Suppose that

the HQ owns the unit’s physical asset. In this case, the HQ can deny the manager access

to the company goodwill and the e�ort-embedded physical asset. Thus the manager does

not have any outside outside. In contrast, the HQ has the outside option of capturing all

the revenue, namely, ( ). Suppose instead that the manager owns the unit’s physical

asset. In this case, the manager can deny the HQ access to the e�ort-embedded physical

asset. The HQ’s outside option is (0 ). Implicitly assumed is that it is very costly for

the HQ to hire another manager who would then expend the sales e�ort. The manager,
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� � �

� �

�

� �

�

� � � � � �

�

� � � � �

� �

y s,

� , � w

s g

G

y T

g ,G

y T g , >

� y s ,G � y s ,G

� ,

y s ,G > � y s ,G

The low-powered incentive contract is renegotiation-proof if and only if

the HQ owns the unit’s physical asset.

To bring about the main idea, we focus on the expected terms only. It is shown in the Ap-
pendix that our main results still hold when the uncertainty terms are taken into consideration.

The argument leading to (FOC-G) in Section 3 shows that or 0.

on the other hand, cannot get access to the company goodwill; and his outside option is

to provide generic goods and services, namely, ( 0).

Having examined the relation between the outside option and the ownership arrange-

ments of the unit’s physical asset, we turn to the question of whether ownership arrange-

ments can make the optimal incentive contracts renegotiation-proof. Recall from Section

3 that, in the complete-contracting framework, the HQ o�ers the high-powered contract

( ) to some managers and the low-powered contract ( ) to the others. The sales

e�ort by the H manager ( ), the goodwill e�ort by the L manager ( ) and the company

goodwill stock ( ) are jointly determined by (FOC-s), (FOC-G) and (3) (equation (3)

is not FOC anymore!).

Consider �rst the low-powered contract. The HQ’s payo� under the contract is (

), while the manager’s is 0. Suppose that the manager owns the unit’s physical

asset. Since ( 0) 0, the manager gets higher payo� from the outside option

than from the original contract, and the low-powered contract would be renegotiated

(Proposition 7). Suppose instead that the HQ owns the unit’s asset. Then neither the

HQ nor the manager gets higher payo� from the outside option than from the original

contract, thereby ensuring the low-powered contract renegotiation-proof. In summary, we

have:

Consider next the high-powered contract. The HQ’s payo� under the contract is

(1 ) ( ), while the manager’s is ( ). Suppose that the HQ owns the

unit’s asset. Since (0 1) (Proposition 2), the HQ gets higher payo� from the outside

option than from the original contract (namely, ( ) (1 ) ( )), and the

high-powered contract would be renegotiated (Proposition 7). Suppose instead that the
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Proposition 9
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� y s ,G > y ,G .

y s,G z s,G k � s k � G ,

z ,G z s, � � > z � �

� y s ,G > y s , k � s ,

� y s ,G > y ,G k � G .

k k

y s,G z s,G s

G k k z s,G y s,G s

G

For and su�ciently small, the high-powered incentive contract is

renegotiation-proof if and only if the manager owns the unit’s physical asset.

manager owns the unit’s asset. Then the high-powered contract is renegotiation-proof, if

( ) ( 0)

(1 ) ( ) (0 )

The two conditions ensure that neither the HQ nor the manager gets higher payo� from

the outside option than from the original contract.

For simplicity of analysis, we consider the following class of the revenue functions:

( ) = ( ) + ( ) + ( )

where (0 ) = 0, ( 0) = 0, (0) = 0, (0) = 0, 0, , and are increasing

and concave. The above two conditions thus become:

( ) ( 0) = ( )

(1 ) ( ) (0 ) = ( )

And we have:

In ( ), ( ) is the component that captures the complementarity between and

. When and are small, ( ) is the dominating component of ( ), and and

are strongly complementary. Therefore, Proposition 9 means that manager ownership

of the unit’s physical asset makes the high-powered contract renegotiation-proof when the

sales and goodwill e�orts are su�ciently complementary.

Propositions 8 and 9 are established under the assumption that the HQ owns the brand

name in which goodwill e�ort is embedded. This is in fact an optimal arrangement.

Following the logic of analysis leading to Proposition 8, we can show that managers

with the low-powered contract should not own any asset, including the brand name. If

managers with the high-powered contract have some claim over the ownership of the brand

name, they will want to renegotiate the low-powered contract, because they are not given
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The low-powered contract is renegotiation-proof so long as there is contractual remedies

at all.

any of L units’ revenue under the contract. Therefore, the HQ should be the sole owner

of the brand name.

One may well ask the following question: can contractual remedies mimic the owner-

ship arrangement to ensure the high-powered contract renegotiation-proof? Speci�cally,

while the HQ owns both the unit’s physical asset and company goodwill, it could write

an ex ante contract which stipulates a payment from the HQ to the manager in the event

of the outside option. Note that, when the outside option is taken, the actual sales

revenue is no longer veri�able. This is because the HQ would hire another manager on a

�xed-wage contract to �nalize the production, and it is impossible for the court to verify

the actual revenue without the help from the HQ or the new manager. Thus, the HQ’s

payment to the manager can only be a �xed payment depending on the expected sales

revenue.

The ideal contractual remedies should (1) ensure neither party initiates the outside

option, and (2) provide each party the e�ort incentive. To meet the �rst criterion, the

HQ’s payment to the manager should be set to the latter’s expected payo� from the ex

ante contract. Otherwise, either the HQ or the manager would have higher payo� from

the outside option than from the ex ante contract. However, if the manager has such an

outside option, he would prefer to shirk on the job and initiate the contract renegotiation.

As a result, the equilibrium e�ort and expected sales revenue are lower than those under

the optimal ownership arrangement.

Underlying the above argument is an important feature of the contractual remedies,

namely, there is no loss of surplus when the outside option is taken. In contrast, under

the optimal ownership arrangement for the high-powered contract, there is loss of surplus

upon the outside option (namely, ( 0) + (0 ) ( )) which is su�cient to

ensure the contract renegotiation-proof (Proposition 9).

Presumably, in the contractual remedies, the parties involved can give money away

when the outside option is taken. Then the optimal contractual remedies would stipulate
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See Kaufmann and Lafontaine (1994) for empirical evidence on the franchisees’ sales of their
assets. In general, the partner’s right to sell his/her asset is well protected by law, though the

sale often needs to be �rst o�ered to other partners (see for example Lynch (1989)).

that, once the outside option is taken, the HQ pays the manager ( 0) and makes a

donation of ( ) ( 0) (0 ) to a third party. However, under some reason-

able circumstances, the optimal contractual remedies is inferior to the optimal ownership

arrangement. Speci�cally, suppose that, after the manager makes the sales and goodwill

e�orts, he may have to quit the business for some benign (family) reasons with certain

probability. If the manager owns the unit’s physical asset, he could sell his asset to a

third party and get his expected payo� ( ). In order for the contractual reme-

dies to reproduce the outcome under the optimal ownership arrangement and thus avoid

the unnecessary loss to the third party, the contract should pay the manager ( )

when she leaves for benign reasons, but pay the manager ( 0) and the third party

( ) ( 0) (0 ) when the HQ and the manager can not agree on the mini-

mum standard. However, this contract can not prevent renegotiation if the reason for the

manager’s leave can not be veri�ed without the help of the HQ or the manager. The HQ

can order the manager to accept ( ), leave the company, and cite a benign reason

for her leave. The manager will not disobey the order because otherwise she can only

get ( 0). The third party can not prevent it either because it can not be veri�ed that

the HQ and the manager have separated under unfriendly terms. Therefore, under such

optimally chosen contractual remedies, there is still no loss of surplus when the outside

option is taken, which makes the contractual remedies inferior to the optimal ownership

arrangement as shown earlier.

In summary, given there is severe contractual incompleteness in franchise, the di�erent-

powered contracts can only be made renegotiation-proof by the corresponding ownership

arrangements.

It is challenging to the recent developments in the theory of the �rm that there is both
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ante homogeneous

multiple

contract mix and multiple ownership structure in franchise. With the observation that

system-wide goodwill and unit-speci�c sales activity are crucial to a franchise company,

we construct a multi-task model in which one task has the feature of public good and the

other has that of private good. We show that, when the two tasks are complementary,

the principal should o�er a �xed-wage contract to some agents and a revenue-sharing

contract to the remaining agents. In addition, by incorporating the stylized feature of

contractual incompleteness in franchise and possible ex post renegotiation, we show that

the di�erent-powered ex ante contracts can only made renegotiation-proof by the corre-

sponding ownership arrangements as in franchise.

This paper thus provides the �rst theory that explains both contract mix and multiple

ownership structure in franchise. More importantly, it adopts and extends important

features from both the multi-task theory of the �rm and the incomplete-contract theory

of the �rm. On the one hand, by incorporating the task of public-good nature, it makes

it possible for the multi-task model to explain the optimality of contract mix for

agents. On the other hand, it considers ex ante contracts in settings of

contractual incompleteness and explores other roles of ownership structures. In particular,

the optimality of contract mix in the presence of a multi-task framework implies

ownership arrangements of complementary assets.
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Proof of Proposition 1: The HQ should (1) request the same level of goodwill e�ort from
all managers of L units, and (2) o�er the same high-powered contract to all managers of
H units.

g j g g j dj/d
g j y s,G s y T g,G g

y T g j ,G dj y T g,G dj.

OP G g j

OP HQ y s,G
s y s,G OP s

� i y s i , G c s i .

OP G

g py T
G

p
,G � i y s i , G � i di,

G pg y s,G s,G

py T
G

p
,G � i y s i , G � i di

G G

py T
G

p
,G y T

G

p
,G � i y s i , G di,

G G
G pT OP G

py T
G

p
,G y T

G

p
,G � i y s i , G di . FOC G

OP HQ

py T g,G y s i , G c s i r� � i di,

G G G
FOC G OP HQ

py T g,G y s i , G c s i r� � i di OP HQ
s.t. py T ,G y T ,G � i y s i , G di IC G

� i y s i , G c s i IC s

(1) Let ( ) be a pro�le of goodwill e�ort levels and ( ) ( ), the average
of ( ) . Since ( ) is concave in , ( ) is concave is . Then by Jensen’s
Inequality,

( ( ) ) ( )

Therefore, the solution to program ( ) is the choose ( ) to be a constant. That
is, The HQ should request the same level of goodwill e�ort from all managers of L units.
(2) Let us consider program ( ). Assumptions 2 and 3 say that ( ) is concave
in and lim ( ) = . Therefore, incentive compatibility constraint ( ) can
be replaced by

( ) ( ( ) ) = ( ( ))

By part (1) of this proposition, incentive compatibility constraint ( ) becomes

= arg max ( ) + [(1 ( )) ( ( ) ) ( )]

where, = . It is easy to show that, since ( ) is concave in ( ),

( ) + [(1 ( )) ( ( ) ) ( )]

is concave in . Its derivative with respect to is

( ) ( ) + (1 ( )) ( ( ) )

which decreases with , by Assumption 3, goes to as 0, and goes to as
. Therefore, ( ) can be replaced by

( ) ( ) + (1 ( )) ( ( ) ) = 0 ( )

The objective function of program ( ) is now

( ) + [ ( ( ) ) ( ( ))
1

2
( ) ]

which is also concave in and the derivative of which with respect to is positive for
satisfying constraint ( ). Therefore, program ( ) can be rewritten as

max ( ) + [ ( ( ) ) ( ( )) ( ) ] ( )
( ) ( ) + (1 ( )) ( ( ) ) 0 ( )

( ) ( ( ) ) = ( ( )) ( )
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Proof of Lemma 4: (1) and are continuous at . (2) When , is
uniquely determined by and is continuous in .

FOC G IC G
OP HQ G

FOC G G
OP HQ G

� s,G c s /y s,G IC s � i � s i , G
s i � i � s i , G

IC G

y s i , G c s i r� � i ,

s i IC G

� i y s i , G ,

s i s i c s i /y s i , G
� i s i y s i , G

s i

s i s s i di/d s i
G

y s i , G c s i r� � i di y s,G c s r� � di,

py T ,G y T ,G � i y s i , G di

py T ,G y T ,G � y s,G di,

� � s,G � s

s G � p s �,
FOC s �

s �, p s , p T FOC s

�y s �, p ,G c s �, p .

c s �, p c s , p �y s �, p ,G �y T, T

� s �, p T G T y s,G
G s c > t > T c ,

When we change the equality sign in ( ) to in ( ), we expand the
feasible region of program ( ) to the left along the -direction, as the left hand
side of ( ) decreases with . This does not change the optimum because the
objective function of ( ) decreases with in the expanded feasible region. Let
( ) ( ) ( ). Then ( ) implies ( ) = ( ( ) ), which by Assumption 4

is convex in ( ). Substitute ( ) = ( ( ) ) into the objective function and constraint
( ). Then the integrand in the objective function,

( ( ) ) ( ( ))
1

2
( )

becomes a concave function of ( ). The integrand in constraint ( ),

(1 ( )) ( ( ) )

is also concave in ( ) in the convex range ( ) : ( ( )) ( ( ) ) 1 , because (1
( )) is non-negative, concave and decreasing in ( ), and ( ( ) ) is, by Assumption 5,

positive, concave and increasing in ( ); the product of two non-negative concave functions
is concave if one of them is increasing and the other decreasing. Given a pro�le of sales
e�ort levels,

( ) , let ( ) ( ), the average of ( ) . Then, for any
given , Jensen’s inequality implies

[ ( ( ) ) ( ( ))
1

2
( ) ] ( ) ( )

1

2

and
( ) ( ) + (1 ( )) ( ( ) )

( ) ( ) + (1 ) ( )

where = ( ). Therefore, choosing the same and for all managers of H units is
better than choosing di�erent ones. That is, the HQ should o�er the same high-powered
contract to all managers of H units.

= 0 = 0 ( 0)
( )

(1) We �rst prove that lim ( ) = (0 ) = . By ( ),

( ( ) ) = ( ( ))

Therefore,

0 ( ( )) ( (0 )) = ( ( ) ) ( ) 0

as 0. The last inequality holds because ( ) , , and ( ) increases
with and decreases with . Since 0 as , ( ) is continuous in [0 ) with
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y T G,G y T G,G ,

G � �

� y s,G c s r� �
s.t. �y s,G c s IC

L y s,G c s r� � � �y s,G c s .

r� � �y s,G ,
� y s,G � �y s,G c s .

s T > �
� < �

s T y T,G >
� ,

( ) (0) = . Therefore, ( ( )) ( (0 )) 0 implies lim ( ) =
(0 ) = , i.e., is continuous at = 0.

When 0,

�
= 2 +

1
+ (1 )(1 ) 0

by ( ) and the concavity of , where a function with a superscript ( , resp.)
means that it is evaluated at ( ) (( ), resp.). Therefore ( ) implies

is a di�erentiable function of ( ) when 0, by Implicit Function Theorem.
When = 0,

( ) (0 0) = 0

(2) Now we prove that ( 0) is continuous in . ( 0) is de�ned by

( ( 0) ) = ( ( 0))

If ( 0) = 0, then ( 0) = 0 for all by the concavity of , and therefore,
( 0) = for all .

If ( 0) = 0, then for 0, ( 0) and thus ( ( 0)) 0. Implicit Function
Theorem then implies that ( 0) is di�erentiable with respect to . The continuity of
( 0) at = 0 is implied by lim ( ( 0)) = ( ( 0)) = 0.

(0 1)

We �rst prove the result for the very special case of = 1. In this case, ( )
becomes

( ) ( ) = 0

which implies that does not depend on . Therefore, is chosen to

= max ( ) ( )
( ) ( ) = 0 ( )

The Lagrangian of the program is

= ( ) ( )
1

2
+ [ ( ) ( )]

Di�erentiation yields

= + ( )
= (1 ) ( ) + [ ( ) ( )]

By the incentive compatibility constraint, 0. Therefore, = 0. If = 1, then
= 0 implies = 0, which in turn implies 0. This is a contradiction. If = 0,

the incentive compatibility constraint implies that = . Therefore, = ( ) 0.
This is again a contradiction. Therefore, (0 1).
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Proof of Proposition 3: For any given , at the corresponding HQ’s optimal
choice of , denoted by . In particular, holds in equilibrium.

p < � FOC �

d

d�
p r� p y

dG

d�
.

FOC s FOC G �

dG

d� J
p y y c ,

J
c s

py y y
�y �y

p � y p � y

� < < �

�
� p

� s T FOC s

FOC p

� � gy

y T g,G y T,G gy T g,G > ,

g s,G s p
�

� � , p <

p � < �
� � p � < �

�
s T � � � y T,G

p <
�

� � � p y T g � , pg � y T g, pg .

y s, G s p <

y T g, pg < py T g, pg p y T, pg � � .

� p

� � � � � p p� � � p p � � � p .

Now, we consider the more general case of 1. At = 1, ( ) becomes

�
= (1 ) + (1 )

Apply the implicit function theorem to ( ) and ( ). We have, at = 1,

=
1

(1 ) ( )

where, the Jacobian matrix

=
( ) 0

0 2 +
+

(1 )(1 ) (1 )(1 )

is positive de�nite; it is the sum of a positive-de�nite matrix and a semipositive- de�nite
matrix. Therefore, at = 1, 0, which implies that 0. Thus the optimal is
not 1.

At = 0, we cannot use the above argument anymore because the Jacobian becomes
singular. We need to utilize the interaction between and and therefore some results
from the next subsection. Suppose = 0, then = by ( ). Thus = 0 and

( ) becomes

= +

= ( ) ( ) + ( ) 0

as ( ) is concave in . This implies that the optimal = 1. The �rst part of the proof
shows that in this case the optimal is not 0, a contradiction to our assumption that

= 0. Therefore, (0 1) for the case of 1 also.

( )

Note from the discussion preceding Lemma 4 that, when = 0, an H manager chooses
= , and ( = 0) � ( 0) = ( ). Now, we prove the result for two separate

cases:
Case 1: 1

By the de�nition of ,

( = ( )) = ( ( ) ( )) max ( )

Since ( ) increases with and 1,

max ( ) max ( ) + (1 ) ( ) = ( = 0)

By the de�nition of ( ),

( = 0) ( = ( )) = ( = ( )) + (1 ) ( = ( ))
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s � , s
s � ,p
s � , s

s

� � � p < p� � � p p � � � p ,

� � � p < � � � p
p

FOC G G � �
� � � � � p � � y T,G > y T

G,G � .

� , p �, y s,
� , p �,

�, p G s �, p

�y s, c s .

� , p > G > FOC G s � , p

� y s,G c s . A

y > s � , p > s � , p p >

� , p py T g,G p y s � , p ,G c s � , p r� � , A

�, y s �, , c s �, r� � . A

� , p �, p y T g,G �, p r� � �
p y s � , , c s � , y s �, , c s �,
p y s � , p , G c s � , p y s � , , c s � , .

p � �
s �, � � �

� , p �,

y s � , p , G c s � , p y s � , , c s � ,

y , G y s,G c s ds y , y s, c s ds

y s,G c s ds A

y s � , p ,G c s � , p ds A

s � , p s � , � y s � , p ,G . A

Combining the above three inequalities, we have:

( = ( )) ( = ( )) + (1 ) ( = ( ))

which implies that ( = ( )) ( = ( )).
Case 2: = 1

In this case, ( ) implies that , and thus , is independent of . Therefore,
the optimal maximizes . Then ( = ( )) ( = 0) = ( ) (

) =

lim inf �( ) �( 0) ( 0) = 0
lim �( ) = �( 0)

At ( = 0), = 0 and ( = 0) is determined by

( 0) = ( )

At ( 0), 0 by ( ) and ( ) is determined by

( ) = ( ) ( 1)

Because 0, it is easy to see that ( ) ( = 0), for 0.
By the de�nition of �,

�( ) = ( ) + (1 )[ ( ( ) ) ( ( ))
1

2
] ( 2)

and

�( 0) = ( ( 0) 0) ( ( 0))
1

2
] ( 3)

By (A2) and (A3) and rearrangement, we have,

�( ) �( 0) = [ ( ) �( 0)] + (1 ) ( )
+(1 )[ ( ( 0) 0) ( ( 0)) ( ( 0) 0) + ( ( 0))]
+(1 )[ ( ( ) ) ( ( )) ( ( 0) 0) + ( ( 0))]

In the above equation, as 0 and , the �rst two terms go to 0. By Lemma 1(2),
( 0) is continuous in and thus the third term goes to 0 as . Therefore, the

last term is crucial in determining the sign of �( ) �( 0). We want to show that
the last term is non-negative.

( ( ) ) ( ( )) ( ( 0) 0) + ( ( 0))

= (0 ) + [ ( ) ( )] (0 0) [ ( 0) ( )]

[ ( ) ( )] ( 4)

[ ( ( ) ) ( ( ))] ( 5)

= [ ( ) ( 0)](1 ) ( ( ) ) 0 ( 6)
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Proof of Proposition 4: It is optimal for the company to have some L units.
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Inequality (A4) is because (0 ) (0 0). Inequality (A5) holds because ( ) ( )
decreases in . Equation (A6) is by (A1). Therefore, lim inf �( ) �( 0).

When ( 0) = 0, by (A2),

lim sup �( )
lim sup ( ) + (1 ) ( ( ) ) (1 )

�(0 )

Combining this with the above result, we have lim �( ) = �(0 ).

If ( 0) = 0 for all , we have argued in the text why the optimal is positive. If
( 0) is not always zero, then the concavity, the monotonicity, and the non- negativity

of implies that ( 0) 0 for all 0.
We consider the limit of as 0. By ( ),

�
= ( ) + + (1 ) + (1 )(1 )

( ) implies that,

( ) (1 )(1 ) ( )

Since and 0,

(1 )(1 ) ( ) (1 )(1 ) ( )

the right hand side of which because = , Assumption 3 says that
lim = , and Proposition 2 says that 1. Therefore, ( ) , which
implies . Then, by Assumption 6, the substitution e�ect in ( ), ;

lim = lim ( ) = lim ( ) =

In ( ), is bounded. Then to determine the sign of as 0, it is

su�cient to show that 0 and 0 as 0. By Lemma 3, it su�ces to show that

0. Substitute ( ) into and rearrange. Then

(1 )
�

= + (1 )
(1 )

( 7)

in which only the last term is negative. By Assumption 6, is weakly convex. Then

( ) ( ) ( )
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Proof of Lemma 6: When , the optimal . ,

and , where is the Lagrange multiplier of the constraint and
is positive.

Proof of Lemma 7: When , if for and ,
then for su�ciently small .

y T g,G

gy gy T g,G .

A

p y p gy gy gy T g,G y

y p gy gy y T,G .

p . p
p

p s > T � � < r�� <

c s �c s < �

� s

L y s,G Kc s r� � � �y s,G Kc s .

� ,
� > s > T

� � < r�� <

c s �c s <

p y s, > s > Gy s,G
< T

T � y T g, T y , p gy Gy T G,G
Gy T G,G G

T
� y s,G c s T r� �

s.t. �y s,G c s T .

T �

� T y s, c s r� �
s.t. �y s, c s ,

T y ,

d�

dp
y , � T < ,

< T

in which ( ) . Therefore,

= ( )

Rearranging ( 7) yields

(1 ) = + (1 ) ( )

+ (1 ) ( )

In summary, we have shown that as 0 Therefore, the optimal is
positive unless the value of � at = 0 is higher than lim �, which Lemma 5 excludes.
This completes the proof of the Proposition.

= 1 = 0 =

0 = ( ) ( ) 0

The Lagrangian of the program that chooses the optimal and is

= ( ) ( )
1

2
+ [ ( ) ( )]

In the proof of Proposition 2, we showed that the optimal (0 1) and = 0. There-
fore, 0 and the optimal .

By the envelope theorem, we have, = 0, = 0 and

= ( ) ( ) 0.

= 1 ( 0) 0 0 lim ( ) = 0
0

As 0, = ( ) (0 0). When = 1, = ( ). By (FOC-G),
This is ( ), which, by the assumption of the Lemma, approaches 0 as both
and go to 0.

= max ( ) ( )
( ) ( ) = 0

As 0, approaches,

( = 0) = max ( 0) ( )
( 0) ( ) = 0

which is independent of and greater than (0 0). Therefore,

lim = (0 0) ( = 0) 0

that is, 0 for su�ciently small .
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Proof of Proposition 9: For and su�ciently small, the high-powered incentive con-
tract is renegotiation-proof if and and if the manager owns the unit’s physical asset.
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p , G , k , k p ,G , k , k p ,G , k , k
p ,G , k , k p ,G

f p ,G , k , k < f p ,G , k , k . A

Consider the HQ’s optimization problem

max ( ) + (1 )[ ( ) ( ) ] ( )

( ) ( ) = 0 ( )
( ) ( ) + (1 )(1 ) ( ) = 0 ( )

where ( ) = ( ) + ( ) + ( ). Let the solution to program ( ) be
denoted with a superscript *. We want to show that, for su�ciently small and ,

( ) ( 0) = ( ) ( 8)

The proof for the second inequality above Proposition 8 is similar.
If the solution to ( ), ( ), is continuous in ( ), then, as

( ) (0 0), ( ) ( ), where ( ) is the equilibrium at
( ) = (0 0). By Proposition 2, ( ) 0. As ( ) (0 0), ( ) 0.
Therefore, ( 8) holds for su�ciently small and . Unfortunately, it is not easy to
show the continuity of the equilibrium because program ( ) is in general not
concave.

To prove the inequality, we �rst perform an exercise similar to the proof of Proposition
1(2). Let ( ) ( ) ( ). Then ( ) becomes = ( ). By Assumption
4, is convex in . Substitute = ( ) into the objective function and constraint
( ) in ( ). Then ( ) becomes

max ( ) + (1 )[ ( ) ( ) ( ) ] ( )

( ) ( ) + (1 )(1 ( )) ( ) 0 ( )

The reason why we can change the equality in ( ) to inequality is the same as
that o�ered in the proof of Proposition 1(2). Now, given ( ), ( ) is a concave
program that chooses the optimal . The solution = ( ) is di�erentiable. Sub-
stitute the solution into the objective function. We have an unconstrained optimization
problem

max ( ) ( 9)

where is di�erentiable. Again, we don’t know whether or not the solution to ( 9) is
continuous in ( ).

De�ne
( ) : ( ) = arg max ( )

We claim that is a closed set. Suppose this is not true. Then there exists a se-
quence ( ) such that lim ( ) = ( ) but
( ) is not in . There exists ( ) such that

( ) ( ) ( 10)
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f p ,G , k , k < f p ,G , k , k ,

p , G , k , k

� y s ,G > . A

� y s ,G .
p ,G , k , k p ,G , k , k p ,G , , � y s ,G

s s p ,G , , � � s ,G p ,G , ,
� , p , s , G k , k ,
� y s ,G A

Let (0 [ ( ) ( )]). Since is continuous, for su�ciently
large ,

( ) ( )

and
( ) ( )

( 10) then implies that

( ) ( )

which contradicts with the fact that ( ) . Therefore, is a closed set.
Now, we want to show that

lim inf ( ) 0 ( 11)

Suppose, on the contrary, lim inf ( ) = 0 Then, there exists a sequence
( ) such that lim ( ) = ( 0 0) and ( ) =
0, where = ( 0 0) and = ( ). Since is a closed set, ( 0 0)
and thus ( ) is an equilibrium for the case of ( ) = (0 0). Proposition 2
implies that ( ) = 0. This is a contradiction. Therefore, ( 11) holds.
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Proof of Proposition 1: The HQ should (1) request the same level of goodwill e�ort from
all managers of L units, and (2) o�er the same high-powered contract to all managers of
H units.

g j g g j dj/d
g j y s,G s y T g,G g

y T g j ,G dj y T g,G dj.

OP G g j

OP HQ y s,G
s y s,G OP s

� i y s i , G c s i .

OP G

g py T
G

p
,G � i y s i , G � i di,

G pg y s,G s,G

py T
G

p
,G � i y s i , G � i di

G G

py T
G

p
,G y T

G

p
,G � i y s i , G di,

G G
G pT OP G

py T
G

p
,G y T

G

p
,G � i y s i , G di . FOC G

OP HQ

py T g,G y s i , G c s i r� � i di,

G G G
FOC G OP HQ

py T g,G y s i , G c s i r� � i di OP HQ
s.t. py T ,G y T ,G � i y s i , G di IC G

� i y s i , G c s i IC s

(1) Let ( ) be a pro�le of goodwill e�ort levels and ( ) ( ), the average
of ( ) . Since ( ) is concave in , ( ) is concave is . Then by Jensen’s
Inequality,

( ( ) ) ( )

Therefore, the solution to program ( ) is the choose ( ) to be a constant. That
is, The HQ should request the same level of goodwill e�ort from all managers of L units.
(2) Let us consider program ( ). Assumptions 2 and 3 say that ( ) is concave
in and lim ( ) = . Therefore, incentive compatibility constraint ( ) can
be replaced by

( ) ( ( ) ) = ( ( ))

By part (1) of this proposition, incentive compatibility constraint ( ) becomes

= arg max ( ) + [(1 ( )) ( ( ) ) ( )]

where, = . It is easy to show that, since ( ) is concave in ( ),

( ) + [(1 ( )) ( ( ) ) ( )]

is concave in . Its derivative with respect to is

( ) ( ) + (1 ( )) ( ( ) )

which decreases with , by Assumption 3, goes to as 0, and goes to as
. Therefore, ( ) can be replaced by

( ) ( ) + (1 ( )) ( ( ) ) = 0 ( )

The objective function of program ( ) is now

( ) + [ ( ( ) ) ( ( ))
1

2
( ) ]

which is also concave in and the derivative of which with respect to is positive for
satisfying constraint ( ). Therefore, program ( ) can be rewritten as

max ( ) + [ ( ( ) ) ( ( )) ( ) ] ( )
( ) ( ) + (1 ( )) ( ( ) ) 0 ( )

( ) ( ( ) ) = ( ( )) ( )
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Proof of Lemma 4: (1) and are continuous at . (2) When , is
uniquely determined by and is continuous in .

FOC G IC G
OP HQ G

FOC G G
OP HQ G

� s,G c s /y s,G IC s � i � s i , G
s i � i � s i , G

IC G

y s i , G c s i r� � i ,

s i IC G

� i y s i , G ,

s i s i c s i /y s i , G
� i s i y s i , G

s i

s i s s i di/d s i
G

y s i , G c s i r� � i di y s,G c s r� � di,

py T ,G y T ,G � i y s i , G di

py T ,G y T ,G � y s,G di,

� � s,G � s

s G � p s �,
FOC s �

s �, p s , p T FOC s

�y s �, p ,G c s �, p .

c s �, p c s , p �y s �, p ,G �y T, T

� s �, p T G T y s,G
G s c > t > T c ,

When we change the equality sign in ( ) to in ( ), we expand the
feasible region of program ( ) to the left along the -direction, as the left hand
side of ( ) decreases with . This does not change the optimum because the
objective function of ( ) decreases with in the expanded feasible region. Let
( ) ( ) ( ). Then ( ) implies ( ) = ( ( ) ), which by Assumption 4

is convex in ( ). Substitute ( ) = ( ( ) ) into the objective function and constraint
( ). Then the integrand in the objective function,

( ( ) ) ( ( ))
1

2
( )

becomes a concave function of ( ). The integrand in constraint ( ),

(1 ( )) ( ( ) )

is also concave in ( ) in the convex range ( ) : ( ( )) ( ( ) ) 1 , because (1
( )) is non-negative, concave and decreasing in ( ), and ( ( ) ) is, by Assumption 5,

positive, concave and increasing in ( ); the product of two non-negative concave functions
is concave if one of them is increasing and the other decreasing. Given a pro�le of sales
e�ort levels,

( ) , let ( ) ( ), the average of ( ) . Then, for any
given , Jensen’s inequality implies

[ ( ( ) ) ( ( ))
1

2
( ) ] ( ) ( )

1

2

and
( ) ( ) + (1 ( )) ( ( ) )

( ) ( ) + (1 ) ( )

where = ( ). Therefore, choosing the same and for all managers of H units is
better than choosing di�erent ones. That is, the HQ should o�er the same high-powered
contract to all managers of H units.

= 0 = 0 ( 0)
( )

(1) We �rst prove that lim ( ) = (0 ) = . By ( ),

( ( ) ) = ( ( ))

Therefore,

0 ( ( )) ( (0 )) = ( ( ) ) ( ) 0

as 0. The last inequality holds because ( ) , , and ( ) increases
with and decreases with . Since 0 as , ( ) is continuous in [0 ) with

34



′

′

1
( ) (0 )

2

2

0

1
2

2 2

2 2

2

′ � ′ ′ ′
→

′

′′

→
′ ′ ′ ′

′

′

′′

� →

� � �

�
� �

� →

�

6

∈

�

� � �

� �
�

� � �

�
� �

�

∈

Proof of Proposition 2: At the optimum, .

�,p ,p

L
GG

L
sG

L
ss

H
GG

G
p

s

s s

s

� s

G s

H
�,s

s

s

∂L
∂� s
∂L
∂s s ss

∂L
∂s

∂L
∂s

∂L
∂�

∂L
∂s s

c T c s �, p c s , p s �, p
s , p T s �

p >

∂

∂G
py y

p
y p � y <

FOC G y H L
s,G T ,G FOC G G

s, �, p p >
p

G �, p G , pg .

s �, � s �,

�y s �, , G c s �, .

y T, y s, s T y
s �, T �

y T, � > s �, > T c s �, >
s �, �

s �, � c s � , � y s � ,

� ,

p FOC G

y T G,G y T G,G ,

G � �

� y s,G c s r� �
s.t. �y s,G c s IC

L y s,G c s r� � � �y s,G c s .

r� � �y s,G ,
� y s,G � �y s,G c s .

s T > �
� < �

s T y T,G >
� ,

( ) (0) = . Therefore, ( ( )) ( (0 )) 0 implies lim ( ) =
(0 ) = , i.e., is continuous at = 0.

When 0,

�
= 2 +

1
+ (1 )(1 ) 0

by ( ) and the concavity of , where a function with a superscript ( , resp.)
means that it is evaluated at ( ) (( ), resp.). Therefore ( ) implies

is a di�erentiable function of ( ) when 0, by Implicit Function Theorem.
When = 0,

( ) (0 0) = 0

(2) Now we prove that ( 0) is continuous in . ( 0) is de�ned by

( ( 0) ) = ( ( 0))

If ( 0) = 0, then ( 0) = 0 for all by the concavity of , and therefore,
( 0) = for all .

If ( 0) = 0, then for 0, ( 0) and thus ( ( 0)) 0. Implicit Function
Theorem then implies that ( 0) is di�erentiable with respect to . The continuity of
( 0) at = 0 is implied by lim ( ( 0)) = ( ( 0)) = 0.

(0 1)

We �rst prove the result for the very special case of = 1. In this case, ( )
becomes

( ) ( ) = 0

which implies that does not depend on . Therefore, is chosen to

= max ( ) ( )
( ) ( ) = 0 ( )

The Lagrangian of the program is

= ( ) ( )
1

2
+ [ ( ) ( )]

Di�erentiation yields

= + ( )
= (1 ) ( ) + [ ( ) ( )]

By the incentive compatibility constraint, 0. Therefore, = 0. If = 1, then
= 0 implies = 0, which in turn implies 0. This is a contradiction. If = 0,

the incentive compatibility constraint implies that = . Therefore, = ( ) 0.
This is again a contradiction. Therefore, (0 1).
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Proof of Proposition 3: For any given , at the corresponding HQ’s optimal
choice of , denoted by . In particular, holds in equilibrium.

p < � FOC �

d

d�
p r� p y

dG

d�
.

FOC s FOC G �

dG

d� J
p y y c ,

J
c s

py y y
�y �y

p � y p � y

� < < �

�
� p

� s T FOC s

FOC p

� � gy

y T g,G y T,G gy T g,G > ,

g s,G s p
�

� � , p <

p � < �
� � p � < �

�
s T � � � y T,G

p <
�

� � � p y T g � , pg � y T g, pg .

y s, G s p <

y T g, pg < py T g, pg p y T, pg � � .

� p

� � � � � p p� � � p p � � � p .

Now, we consider the more general case of 1. At = 1, ( ) becomes

�
= (1 ) + (1 )

Apply the implicit function theorem to ( ) and ( ). We have, at = 1,

=
1

(1 ) ( )

where, the Jacobian matrix

=
( ) 0

0 2 +
+

(1 )(1 ) (1 )(1 )

is positive de�nite; it is the sum of a positive-de�nite matrix and a semipositive- de�nite
matrix. Therefore, at = 1, 0, which implies that 0. Thus the optimal is
not 1.

At = 0, we cannot use the above argument anymore because the Jacobian becomes
singular. We need to utilize the interaction between and and therefore some results
from the next subsection. Suppose = 0, then = by ( ). Thus = 0 and

( ) becomes

= +

= ( ) ( ) + ( ) 0

as ( ) is concave in . This implies that the optimal = 1. The �rst part of the proof
shows that in this case the optimal is not 0, a contradiction to our assumption that

= 0. Therefore, (0 1) for the case of 1 also.

( )

Note from the discussion preceding Lemma 4 that, when = 0, an H manager chooses
= , and ( = 0) � ( 0) = ( ). Now, we prove the result for two separate

cases:
Case 1: 1

By the de�nition of ,

( = ( )) = ( ( ) ( )) max ( )

Since ( ) increases with and 1,

max ( ) max ( ) + (1 ) ( ) = ( = 0)

By the de�nition of ( ),

( = 0) ( = ( )) = ( = ( )) + (1 ) ( = ( ))
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� � � p < � � � p
p

FOC G G � �
� � � � � p � � y T,G > y T

G,G � .

� , p �, y s,
� , p �,

�, p G s �, p

�y s, c s .

� , p > G > FOC G s � , p

� y s,G c s . A

y > s � , p > s � , p p >

� , p py T g,G p y s � , p ,G c s � , p r� � , A

�, y s �, , c s �, r� � . A

� , p �, p y T g,G �, p r� � �
p y s � , , c s � , y s �, , c s �,
p y s � , p , G c s � , p y s � , , c s � , .

p � �
s �, � � �

� , p �,

y s � , p , G c s � , p y s � , , c s � ,

y , G y s,G c s ds y , y s, c s ds

y s,G c s ds A

y s � , p ,G c s � , p ds A

s � , p s � , � y s � , p ,G . A

Combining the above three inequalities, we have:

( = ( )) ( = ( )) + (1 ) ( = ( ))

which implies that ( = ( )) ( = ( )).
Case 2: = 1

In this case, ( ) implies that , and thus , is independent of . Therefore,
the optimal maximizes . Then ( = ( )) ( = 0) = ( ) (

) =

lim inf �( ) �( 0) ( 0) = 0
lim �( ) = �( 0)

At ( = 0), = 0 and ( = 0) is determined by

( 0) = ( )

At ( 0), 0 by ( ) and ( ) is determined by

( ) = ( ) ( 1)

Because 0, it is easy to see that ( ) ( = 0), for 0.
By the de�nition of �,

�( ) = ( ) + (1 )[ ( ( ) ) ( ( ))
1

2
] ( 2)

and

�( 0) = ( ( 0) 0) ( ( 0))
1

2
] ( 3)

By (A2) and (A3) and rearrangement, we have,

�( ) �( 0) = [ ( ) �( 0)] + (1 ) ( )
+(1 )[ ( ( 0) 0) ( ( 0)) ( ( 0) 0) + ( ( 0))]
+(1 )[ ( ( ) ) ( ( )) ( ( 0) 0) + ( ( 0))]

In the above equation, as 0 and , the �rst two terms go to 0. By Lemma 1(2),
( 0) is continuous in and thus the third term goes to 0 as . Therefore, the

last term is crucial in determining the sign of �( ) �( 0). We want to show that
the last term is non-negative.

( ( ) ) ( ( )) ( ( 0) 0) + ( ( 0))

= (0 ) + [ ( ) ( )] (0 0) [ ( 0) ( )]

[ ( ) ( )] ( 4)

[ ( ( ) ) ( ( ))] ( 5)

= [ ( ) ( 0)](1 ) ( ( ) ) 0 ( 6)
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Proof of Proposition 4: It is optimal for the company to have some L units.
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Inequality (A4) is because (0 ) (0 0). Inequality (A5) holds because ( ) ( )
decreases in . Equation (A6) is by (A1). Therefore, lim inf �( ) �( 0).

When ( 0) = 0, by (A2),

lim sup �( )
lim sup ( ) + (1 ) ( ( ) ) (1 )

�(0 )

Combining this with the above result, we have lim �( ) = �(0 ).

If ( 0) = 0 for all , we have argued in the text why the optimal is positive. If
( 0) is not always zero, then the concavity, the monotonicity, and the non- negativity

of implies that ( 0) 0 for all 0.
We consider the limit of as 0. By ( ),

�
= ( ) + + (1 ) + (1 )(1 )

( ) implies that,

( ) (1 )(1 ) ( )

Since and 0,

(1 )(1 ) ( ) (1 )(1 ) ( )

the right hand side of which because = , Assumption 3 says that
lim = , and Proposition 2 says that 1. Therefore, ( ) , which
implies . Then, by Assumption 6, the substitution e�ect in ( ), ;

lim = lim ( ) = lim ( ) =

In ( ), is bounded. Then to determine the sign of as 0, it is

su�cient to show that 0 and 0 as 0. By Lemma 3, it su�ces to show that

0. Substitute ( ) into and rearrange. Then

(1 )
�

= + (1 )
(1 )

( 7)

in which only the last term is negative. By Assumption 6, is weakly convex. Then

( ) ( ) ( )
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Proof of Lemma 6: When , the optimal . ,

and , where is the Lagrange multiplier of the constraint and
is positive.

Proof of Lemma 7: When , if for and ,
then for su�ciently small .
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p y p gy gy gy T g,G y

y p gy gy y T,G .

p . p
p

p s > T � � < r�� <

c s �c s < �

� s

L y s,G Kc s r� � � �y s,G Kc s .

� ,
� > s > T

� � < r�� <

c s �c s <

p y s, > s > Gy s,G
< T

T � y T g, T y , p gy Gy T G,G
Gy T G,G G

T
� y s,G c s T r� �

s.t. �y s,G c s T .

T �

� T y s, c s r� �
s.t. �y s, c s ,

T y ,

d�

dp
y , � T < ,

< T

in which ( ) . Therefore,

= ( )

Rearranging ( 7) yields

(1 ) = + (1 ) ( )

+ (1 ) ( )

In summary, we have shown that as 0 Therefore, the optimal is
positive unless the value of � at = 0 is higher than lim �, which Lemma 5 excludes.
This completes the proof of the Proposition.

= 1 = 0 =

0 = ( ) ( ) 0

The Lagrangian of the program that chooses the optimal and is

= ( ) ( )
1

2
+ [ ( ) ( )]

In the proof of Proposition 2, we showed that the optimal (0 1) and = 0. There-
fore, 0 and the optimal .

By the envelope theorem, we have, = 0, = 0 and

= ( ) ( ) 0.

= 1 ( 0) 0 0 lim ( ) = 0
0

As 0, = ( ) (0 0). When = 1, = ( ). By (FOC-G),
This is ( ), which, by the assumption of the Lemma, approaches 0 as both
and go to 0.

= max ( ) ( )
( ) ( ) = 0

As 0, approaches,

( = 0) = max ( 0) ( )
( 0) ( ) = 0

which is independent of and greater than (0 0). Therefore,

lim = (0 0) ( = 0) 0

that is, 0 for su�ciently small .
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The constraint that [0 1] does not a�ect the argument and is thus omitted.
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Proof of Proposition 9: For and su�ciently small, the high-powered incentive con-
tract is renegotiation-proof if and and if the manager owns the unit’s physical asset.

k k

py T ,G p y s,G c s r� � OP HQ

s.t. �y s,G c s FOC s
py T ,G y T ,G p � y s,G FOC G

y s,G z s,G k � s k � G OP HQ
k k

� y s ,G > y s , k � s . A

OP HQ � , p , s , G k , k
k , k , � y s ,G � y s ,G � , s , G
k , k , � y s ,G > k , k , k � s

A k k
OP HQ

� s,G c s /y s,G FOC s � � s,G
� s � � s,G

FOC G OP HQ OP HQ

py T ,G p y s,G c s r� � s,G OP HQ

s.t. py T ,G y T ,G p � s,G y s,G FOC G

FOC G
p,G OP HQ

s s s p,G, k , k

f p,G, k , k , A

f A
k , k

p,G, k , k p,G f p,G, k , k .

p , G , k , k p ,G , k , k p ,G , k , k
p ,G , k , k p ,G

f p ,G , k , k < f p ,G , k , k . A

Consider the HQ’s optimization problem

max ( ) + (1 )[ ( ) ( ) ] ( )

( ) ( ) = 0 ( )
( ) ( ) + (1 )(1 ) ( ) = 0 ( )

where ( ) = ( ) + ( ) + ( ). Let the solution to program ( ) be
denoted with a superscript *. We want to show that, for su�ciently small and ,

( ) ( 0) = ( ) ( 8)

The proof for the second inequality above Proposition 8 is similar.
If the solution to ( ), ( ), is continuous in ( ), then, as

( ) (0 0), ( ) ( ), where ( ) is the equilibrium at
( ) = (0 0). By Proposition 2, ( ) 0. As ( ) (0 0), ( ) 0.
Therefore, ( 8) holds for su�ciently small and . Unfortunately, it is not easy to
show the continuity of the equilibrium because program ( ) is in general not
concave.

To prove the inequality, we �rst perform an exercise similar to the proof of Proposition
1(2). Let ( ) ( ) ( ). Then ( ) becomes = ( ). By Assumption
4, is convex in . Substitute = ( ) into the objective function and constraint
( ) in ( ). Then ( ) becomes

max ( ) + (1 )[ ( ) ( ) ( ) ] ( )

( ) ( ) + (1 )(1 ( )) ( ) 0 ( )

The reason why we can change the equality in ( ) to inequality is the same as
that o�ered in the proof of Proposition 1(2). Now, given ( ), ( ) is a concave
program that chooses the optimal . The solution = ( ) is di�erentiable. Sub-
stitute the solution into the objective function. We have an unconstrained optimization
problem

max ( ) ( 9)

where is di�erentiable. Again, we don’t know whether or not the solution to ( 9) is
continuous in ( ).

De�ne
( ) : ( ) = arg max ( )

We claim that is a closed set. Suppose this is not true. Then there exists a se-
quence ( ) such that lim ( ) = ( ) but
( ) is not in . There exists ( ) such that

( ) ( ) ( 10)
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k ,k ,

n n n n n n n n n

1
2 10 20 0 0 10 20

1 2 0 0 10 20

1 2 10 20

1 2 1 2

1 2

( ) (0 0)

( ) (0 0)

1 2 1 2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 2

0 0 0

� , f p , G , k , k f p ,G , k , k f
n

f p ,G , k , k f p ,G , k , k < �,

f p ,G , k , k f p ,G , k , k < �.

A

f p ,G , k , k < f p ,G , k , k ,

p , G , k , k

� y s ,G > . A

� y s ,G .
p ,G , k , k p ,G , k , k p ,G , , � y s ,G

s s p ,G , , � � s ,G p ,G , ,
� , p , s , G k , k ,
� y s ,G A

Let (0 [ ( ) ( )]). Since is continuous, for su�ciently
large ,

( ) ( )

and
( ) ( )

( 10) then implies that

( ) ( )

which contradicts with the fact that ( ) . Therefore, is a closed set.
Now, we want to show that

lim inf ( ) 0 ( 11)

Suppose, on the contrary, lim inf ( ) = 0 Then, there exists a sequence
( ) such that lim ( ) = ( 0 0) and ( ) =
0, where = ( 0 0) and = ( ). Since is a closed set, ( 0 0)
and thus ( ) is an equilibrium for the case of ( ) = (0 0). Proposition 2
implies that ( ) = 0. This is a contradiction. Therefore, ( 11) holds.
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