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Abstract

It is widely known that when there are errors with a moving-average root close to −1, a
high order augmented autoregression is necessary for unit root tests to have good size, but
that information criteria such as the AIC and the BIC tend to select a truncation lag (k)
that is very small. We consider a class of Modified Information Criteria (MIC) with a penalty
factor that is sample dependent. It takes into account the fact that the bias in the sum of
the autoregressive coefficients is highly dependent on k and adapts to the type of deterministic
components present. We use a local asymptotic framework in which the moving-average root
is local to −1 to document how the MIC performs better in selecting appropriate values of k.
In monte-carlo experiments, the MIC is found to yield huge size improvements to the DFGLS

and the feasible point optimal PT test developed in Elliott, Rothenberg and Stock (1996). We
also extend the M tests developed in Perron and Ng (1996) to allow for GLS detrending of the
data. The MIC along with GLS detrended data yield a set of tests with desirable size and
power properties.

Keywords: Integrated processes, truncation lag, GLS detrending, information criteria.

JEL Classification: C2,C3,C5

∗Department of Economics, Boston College, Chestnut Hill, MA, 02467. Email: serena.ng@bc.edu
†Department of Economics, Boston University, 270 Bay State Rd., Boston, MA, 02215. Email: perron@bu.edu

This is a substantially revised version of a paper previously circulated as “Constructing Unit Root Tests with Good
Size and Power”. We thank three anonymous referees and the editor for comments on earlier drafts. The authors
thank the Social Science and Humanities Research Council of Canada (SSHRC), the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Fonds de la Formation de Chercheurs et l’Aide à la Recherche du
Québec (FCAR) for financial support.
Correspondence: Serena Ng, Department of Economics, Boston College, Chestnut Hill, MA 02467.



1 Introduction

Many unit root tests have been developed for testing the null hypothesis of a unit root against the

alternative of stationarity. While the presence or absence of a unit root has important implications,

many remain skeptical about the conclusions drawn from such tests. This concern is justifiable, as

these tests generally suffer from two problems. First, many tests have low power when the root of

the autoregressive polynomial is close to but less than unity (e.g., DeJong et al., 1992). Second,

the majority of the tests suffer from severe size distortions when the moving-average polynomial

of the first differenced series has a large negative root (e.g., Schwert, 1989, Perron and Ng, 1996).

Although less severe, the problem also arises when there is a large negative autoregressive root in

the residuals. The consequence is over-rejections of the unit root hypothesis. While few economic

time series are found to have negative serial correlation of the autoregressive type, many do exhibit

a large negative moving-average root. The inflation rate is an example, and omitted outliers have

also been shown to induce a negative moving average root in the error process (e.g., Franses and

Haldrup, 1994). It is therefore desirable to have powerful unit root tests that are robust to size

distortions.

The implementation of unit root tests often necessitates the selection of an autoregressive trun-

cation lag, say, k. This is required in the autoregression used to form the Said-Dickey-Fuller test.

It is also required in constructing an autoregressive estimate of the spectral density at frequency

zero. However, simulations have repeatedly shown a strong association between k and the severity

of size distortions and/or the extent of power loss (e.g., Ng and Perron, 1995, and Lopez, 1997).

To date, there exists no operational procedure for selecting k that yields robust and satisfactory

results. The problem is that while a small k is adequate for finite order autoregressive errors and

ARMA processes with small moving-average components, a large k is generally necessary for noise

functions with a moving-average root that is large. For the latter class of models, selection rules

such as the Schwarz or Bayesian Information Criterion (BIC) and the Akaike Information Criterion

(AIC) tend to select values of k that are generally too small for unit root tests to have good sizes.

This paper sets out to resolve two problems. One is to enhance the power of several tests

that have been shown to have small size distortions. More precisely, in Perron and Ng (1996),

we analyzed a class of modified tests, originally proposed by Stock (1990), and showed that these

tests are far more robust to size distortions than other unit root tests in the literature when the

residuals have negative serial correlation. Exploiting the findings in Elliott et al. (1996) (hereafter

ERS) and Dufour and King (1991) that local GLS detrending of the data yields substantial power

gains, we apply the idea of GLS detrending to the modified tests and show that non-negligible size

and power gains can be made when used in conjunction with an autoregressive spectral density
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estimator at frequency zero provided the truncation lag is appropriately selected.

Our second task is to provide an improved procedure for choosing the truncation lag. We

argue that the penalty of k assigned to overfitting in information criteria such as the AIC under-

estimates the cost of a low order model when the unit root process has a negative moving-average

root and, hence, tends to select a lag length that is too small. We suggest a class of modified

information criteria that takes better account of the cost of underfitting. The modified AIC is

shown to lead to substantial size improvements over standard information criteria in all the unit

root tests considered. Taking the two steps together, GLS detrending along with the selection rule

for k provide procedures which allow for the construction of unit root tests with much improved size

and power. Additionally, using GLS detrended data to estimate the spectral density at frequency

zero is found to have favorable size and power implications.

The paper proceeds as follows. After setting up the preliminaries in Section 2, Section 3

considers the class of M tests with GLS detrending. Section 4 explains why information criteria

will underestimate k and Section 5 proposes an alternative penalty factor in the context of integrated

data. Section 6 presents the properties of the modified information criteria using a local asymptotic

framework and shows why the AIC version is preferable. Simulation results are presented in Section

7 and the procedures are illustrated using inflation rates for the G7 countries in Section 8. Section

9 offers brief concluding remarks. Mathematical derivations are given in the Appendix.

2 Preliminaries

We assume that we have T + 1 observations generated by (for t = 0, ..., T ):

yt = dt + ut, ut = αut−1 + vt, (1)

where E(u2
0) < ∞ (even as T → ∞), vt = δ(L)et =

∑∞
j=0 δjet−j with

∑∞
j=0 j|δj | < ∞ and {et} ∼

i.i.d.(0, σ2
e). The non-normalized spectral density at frequency zero of vt is given by σ2 = σ2

eδ(1)
2.

Also, T−1/2 ∑[sT ]
t=1 vt ⇒ σW (s), where ⇒ denotes weak convergence in distribution and W (s) is a

Wiener process defined on C[0, 1]. In (1), dt = ψ′zt, where zt is a set of deterministic components.

We consider dt =
∑p

i=0 ψit
i, with special focus on p = 0, 1, though the analysis remains valid for

more general cases 1. Of interest is testing the null hypothesis α = 1 against α < 1. The DF

test due to Dickey and Fuller (1979) and Said and Dickey (1984) is the t statistic for β0 = 0 in the

autoregression:

∆yt = dt + β0yt−1 +
k∑

j=1

βj∆yt−j + etk. (2)

1Most of the results presented here, in particular Theorem 1 below, hold with the less restrictive assump-
tion that {et} is a martingale difference sequence with respect to the sigma algebra Ft = {es; s ≤ t} with
σ2

e = limT→∞T−1
∑T

t=1
E(e2

t |Ft−1).
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In Perron and Ng (1996), we analyzed the properties of three tests: MZα, MZt and MSB, collec-

tively referred to as the M tests. These are defined as (for the no deterministic term case):

MZα = (T−1y2
T − s2AR)(2T

−2
T∑

t=1

y2
t−1)

−1, (3)

MSB = (T−2
T∑

t=1

y2
t−1/s

2
AR)

1/2, (4)

and MZt = MZα ×MSB. All three tests are based on s2AR, an autoregressive estimate of the

spectral density at frequency zero of vt. Let β̂(1) =
∑k

i=1 β̂i, σ̂
2
k = (T − k)−1 ∑T

t=k+1 ê
2
tk, with β̂i

and {êtk} obtained from (2) estimated by OLS. Then,

s2AR = σ̂2
k/(1− β̂(1))2. (5)

The M tests for p = 0 and 1 can be obtained upon replacing yt−1 and yT by the residuals obtained

from least squares detrending. The MZα and MZt tests can be viewed as modified versions of

the Phillips (1987) and Phillips-Perron (1988) Zα and Zt tests referred to as the Z tests below

(see Perron and Ng, 1998). The Z tests suffer from severe size distortions when vt has a negative

moving-average root. When the root is close to minus one (e.g., -.8), the rejection rate can be

as high as 100% (see Schwert (1989)). Perron and Ng (1996) showed that the M tests have

dramatically smaller size distortions than most (if not all) unit root tests in the literature in cases

of negative moving-average errors if the autoregressive spectral density estimator defined above is

used in conjunction with a suitably chosen k. The three M tests have similar properties and we

use MZα for illustration.

3 The Tests Under GLS Detrending

To improve power, ERS proposed local to unity GLS detrending of the data. For any series {xt}Tt=0,

define (xᾱ0 , x
ᾱ
t ) ≡ (x0, (1− ᾱL)xt), t = 1, . . . , T, for some chosen ᾱ = 1 + c̄/T . The GLS detrended

series is defined as

ỹt ≡ yt − ψ̂
′
zt (6)

where ψ̂ minimizes S(ᾱ, ψ) = (yᾱ − ψ′zᾱ)′(yᾱ − ψ′zᾱ). If vt is i.i.d. normal, the point optimal

test of the null hypothesis α = 1 against the alternative hypothesis α = ᾱ is the likelihood ratio

statistic, L = S(ᾱ) − S(1), where S(ᾱ) = minψS(ᾱ, ψ). ERS considered a feasible point optimal

test which takes into account that vt may be serially correlated. The statistic is

PT = [S(ᾱ)− ᾱS(1)]/s2AR (7)
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where s2AR is defined as in (5). The value of c̄ is chosen such that the asymptotic local power

function of the test is tangent to the power envelope at 50% power. For p = 0 this is −7.0 and for

p = 1, it is −13.5. The PT test did not perform well in simulations when k was selected by the BIC.

Large size distortions were recorded. ERS then recommended the DFGLS statistic (whose local

asymptotic power function also lies close to the Gaussian local power envelope) as the t-statistic

for testing β0 = 0 from the following regression estimated by OLS:

∆ỹt = β0ỹt−1 +
k∑

j=1

βj∆ỹt−j + etk. (8)

3.1 The MGLS tests

While the power gains of the DFGLS from using GLS detrended data are impressive, simulations

also show that the test exhibits strong size distortions when vt is an MA(1) with a negative

coefficient. For T = 100, ERS report rejection rates of 30 and 50% for p = 0 and 1, respectively,

when the nominal rate is 5%. An explanation is provided in Section 4. Size distortions, however,

are less of an issue with the M tests in theory as we showed in Perron and Ng (1996). In practice,

it does require us to have a way to find the appropriate k. Suppose for the moment that this lag

length selection problem is solved. Since the power gains from the DFGLS over the DF comes from

the use of GLS detrended data, it is natural to consider the M tests under GLS detrending. We

now state the asymptotic properties of the MGLS tests.

Theorem 1 Let yt be generated as in (1) with α = 1 + c/T and consider data obtained from

local GLS detrending at ᾱ = 1 + c̄/T . Also, let s2AR be a consistent estimate of σ2. If p = 0,

MZGLS
α ⇒ (

∫ 1
0 Jc(r)dW (r))(

∫ 1
0 Jc(r)

2dr)−1 and MSBGLS ⇒ (
∫ 1
0 Jc(r)

2dr)1/2. If p = 1, MZGLS
α ⇒

0.5(Vc,c̄(1)2 − 1))(
∫ 1
0 Vc,c̄(r)

2dr)−1 and MSBGLS ⇒ (
∫ 1
0 Vc,c̄(r)

2dr)1/2, where Jc(r) is an Ornstein-

Uhlenbeck process defined by dJc(r) = cJc(r)dr + dW (r) with Jc(0) = 0, and Vc,c̄(r) = Jc(r) −
r[λJc(1) + 3(1− λ)

∫ 1
0 sJc(s)ds], λ = (1− c̄)/(1− c̄+ c̄2/3). Results for MZGLS

t can be obtained in

view of the fact that MZGLS
t = MZGLS

α ×MSBGLS.

The proof is based on standard results for sample moments of GLS detrended data and therefore

omitted. The MZGLS
α , MZGLS

t and MSBGLS have similar size and power properties and will be

referred to as the MGLS tests. We have computed, via simulations, the local asymptotic power

functions of the M tests with OLS and GLS detrending. These showed the MGLS tests to be

uniformly more powerful than the M tests and also to have local asymptotic power functions that

are indistinguishable from those of the DFGLS and the Gaussian asymptotic local power envelope.

A graph is therefore not presented. The important point is that the MGLS tests, like the DFGLS ,
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achieve local asymptotic power that is approximately the same as the feasible point-optimal test.

We also consider two modified feasible point optimal tests and derived their limiting distributions:

p = 0 : MPGLS
T = [c̄2T−2

T∑
t=1

ỹ2
t−1 − c̄T−1ỹ2

T ]/s
2
AR ⇒ c̄2

∫ 1

0
Jc(r)2dr − c̄Jc(1)2, (9)

p = 1 : MPGLS
T = [c̄2T−2

T∑
t=1

ỹ2
t−1 + (1− c̄)T−1ỹ2

T ]/s
2
AR ⇒ c̄2

∫ 1

0
Vc,c̄(r)2dr + (1− c̄)Vc,c̄(1)2.

These tests are based on the same motivation that leads to the definition of the M tests in

Stock (1990), namely, to provide functionals of sample moments that have the same asymptotic

distributions as well known unit root tests. The MPT is important because its limiting distribution

coincide with that of the feasible point optimal test considered in ERS.

Critical values for the limiting distributions of the MGLS tests were obtained by numerical sim-

ulations which approximate the Wiener process W (r) by partial sums of N(0, 1) random variables

with 5,000 steps and 20,000 simulations. These are summarized in Table 1.

3.2 The Construction of the Autoregressive Spectral Density Estimator and the M̄GLS

All that is required for Theorem 1 and the results of ERS to hold is that s2AR converges to σ2

under the null hypothesis of a unit root, and for the tests to be consistent, that Ts2AR diverges

under the alternative of stationarity. The attractiveness of GLS detrending is that it estimates

the deterministic function with more precision and leads to reduced bias in β̂i. Since this should

lead to a more precise estimate of β̂(1), we also consider estimating s2AR using the autoregression

(8) based on GLS detrended data. An additional advantage is that this estimator is invariant to

the slope of the trend function2. Experimentation with different values of c̄ when constructing the

autoregressive spectral density gave similar results. Hence, c̄ = −7.0 and −13.5 will continue to be

used. The tests so constructed are denoted Z̄GLS and M̄GLS . These are to be distinguished from

the ZGLS and MGLS statistics which use least squares detrended data to estimate s2AR.

4 The Size Issue, the Selection of k, and Information Criteria

To see the influence of the lag order k, we consider the finite sample size of the tests M̄ZGLS
α ,

DFGLS and Z̄GLS
α . The setup, which will be used throughout, is to consider data generated by (1)

with α = 1 and vt is either an MA(1), i.e. vt = et + θet−1, or an AR(1), i.e. vt = ρvt−1 + et, with

et ∼ i.i.d. N(0, 1). The errors are generated from the rndn() function in Gauss with 999 as the
2When p = 1, Perron and Ng (1996), Stock (1990) and ERS estimate equation (2) with only a constant by ordinary

least-squares. This still ensures a consistent estimate under the null hypothesis but the omission of the trend term
implies a non-invariance with respect to the slope of the trend function in finite samples under the alternative
hypothesis. This non-invariance is such that the tests loose power as the slope increases.
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seed, and 5,000 replications are used. We use the nominal size of 5% as the benchmark. Reported

in Table 2 are the sizes of the tests for p = 0, 1 at selected values of θ and ρ. We report results for

T = 100 and 250 to highlight the fact that the size issue in the negative moving average case is not

a small sample problem.

Several features of the results for MA errors are of note. First, for a θ of the same absolute

value, a negative θ always requires a larger lag to obtain a more accurate size. Second, for a

positive θ, the size of the tests are significantly better when k is even. Third, the larger the number

of deterministic terms, the more distant are the exact from the nominal sizes. Fourth, there is

always a value of k that will yield an M̄ZGLS
α with a reasonably accurate size when θ = −0.80. For

example, for p = 0 when T = 100 and 250, exact sizes of .077 and .055, respectively, are achievable

with lags of 9 and 8. In contrast, there does not exist a k that will result in an acceptable size

for Z̄GLS
α , and increasing the sample size will not reduce the size distortions adequately. For the

sample sizes reported, the exact sizes for Z̄GLS
α are well above 0.5 at θ = −.8, and size distortions

are non-negligible even when θ = −0.5. Fifth, the DFGLS also exhibits a dependence on k. At

T = 100, the size is .104 at k = 10, but is .624 when k = 2.

For AR errors, size discrepancies between Z̄GLS
α and M̄GLS

α also exist when ρ is large and

negative, albeit not as dramatic as in the MA case. The results reveal that the M̄ZGLS
α is inferior

to the DFGLS when p = 1, the sample size is small, and |ρ| is large. For large negative AR

coefficients, the M̄ZGLS
α has a more accurate size at k greater than 1. For large positive AR

coefficients, the M̄ZGLS
α is oversized for small T , though the size improves as T increases.

Clearly, the choice of k is crucial especially in the case of negative moving average errors. Various

practical solutions have been used against this problem. In ERS, the BIC is used to select k but

they set the lower bound to be 3, because even larger size distortions would have resulted if zero

was the lower bound. An alternative method is the sequential t test for the significance of the last

lag considered in Ng and Perron (1995). It has the ability to yield higher ks than the BIC when

there are negative moving-average errors and reduce size distortions. But, the sequential test tends

to overparameterize in other cases. This, as does ERS’s implementation of the BIC, leads to less

efficient estimates and subsequently to power losses. Neither approach is fully satisfactory.

The AIC and the BIC belong to the class of information based rules (hereafter, IC) where the

chosen value of k is kic = argmink∈[0,...,kmax] IC(k) where3

IC(k) = ln(σ̂2
k) + (k + p+ 1)CT /(T − kmax), (10)

where σ̂2
k = (T −kmax)−1 ∑T

t=k+1 ê
2
tk, CT /T → 0 as T → ∞, and CT > 0. The various criteria differ

3See Ng and Perron (2000) for an analysis pertaining to the adequacy of the particular formulation of the infor-
mation criterion stated.
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in CT , the weight applied to overfitting, but all use k as the penalty to overfitting. We argue below

that, with integrated data, this penalty may be a poor approximation to the cost of underfitting.

5 An Alternative Penalty for Integrated Data.

To motivate the main idea, we consider the derivation of the AIC for data generated by a finite

order AR(k0) with normal errors and a unit root (i.e., the DGP is (2) with k = k0, β0 = 0 and

etk = et ∼ i.i.d. N(0, 1)). The family of parametric models fitted is given by (8). For notation, we

let β0(k) = (0, β1, ..., βk)′, β̂(k) = (β̂0, β̂1, ..., β̂k)′, β
0
−0(k) = (β1, ..., βk)′ and β̂−0(k) = (β̂1, ..., β̂k)′.

In what follows, we adopt the treatment of Gourieroux and Monfort (1995, pp. 307-309). The goal

is to select an autoregressive order between 0 and some upper bound kmax. We assume this upper

bound to satisfy kmax/T → 0 as T → ∞. Let f(∆y|β0(k)) be the likelihood function of the data

(∆ykmax+1, ....,∆yT ) conditional on the initial observations (y0, . . . , ykmax). This ensures that each

competing model is evaluated with the same number of effective observations, namely T−kmax. The

Kullback distance between the true probability distribution and the estimated parametric model is

Q = E0[ln(f(∆y|β0(k))) − ln(f(∆y|β̂(k)))] with sample analog:

Q̃ = (T − kmax)−1
T∑

t=kmax+1

ln(f(∆yt|β0(k)))− (T − kmax)−1
T∑

t=kmax+1

ln(f(∆yt|β̂(k))).

As discussed in Gourieroux-Monfort (1995), Akaike’s suggestion was to find a Q∗ such that limT→∞
E[T (Q − Q∗)] = 0 so that Q∗ is unbiased for Q to order T−1. Let Xt = (ỹt−1, Zt) with Zt =

(∆ỹt−1, ...,∆ỹt−k) and

ΦT (k) = (1/σ̂2
k)(β̂(k)− β0(k))′

T∑
t=kmax+1

XtX
′
t(β̂(k)− β0(k)),

where σ̂2
k = (T − kmax)−1 ∑T

t=kmax+1 ê
2
tk. Using Taylor series expansions, we have TQ = ΦT (k)/2+

op(1) and TQ̃ = −ΦT (k)/2 + op(1). Since T (Q − Q̃) = ΦT (k) + op(1), limT→∞E[T (Q − Q∗)] =

0 if Q∗ = Q̃ + ΦT (k) and the remainder term is uniformly bounded. Now consider the term

ΦT (k) in the context of integrated data. Given the asymptotic block diagonality of the matrix

DT
∑T

t=kmax+1XtX
′
tDT with DT = diag((T − kmax)−1, (T − kmax)−1/2, ..., (T − kmax)−1/2), we have

ΦT (k) = (
1
σ̂2
k

)β̂
2

0

T∑
t=kmax+1

ỹ2
t−1 + (

1
σ̂2
k

)(β̂−0(k)− β0
−0(k))

′
T∑

t=kmax+1

ZtZ
′
t(β̂−0(k)− β0

−0(k)) + op(1)

= (1/σ̂2
k)β̂

2

0

T∑
t=kmax+1

ỹ2
t−1 + χ2

k + op(1) (11)

where χ2
k is a chi-square random variable with k degrees of freedom that is asymptotically inde-

pendent of the first term. Hence, assuming the remainder term is uniformly integrable, a Q∗ that
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will satisfy limT→∞E[T (Q−Q∗)] = 0 is

Q∗ = (T − kmax)−1
T∑

t=kmax+1

ln(f(∆yt|β0(k)))− (T − kmax)−1
T∑

t=kmax+1

ln(f(∆yt|β̂(k)))

+[(1/σ̂2
k)β̂

2

0

T∑
t=kmax+1

ỹ2
t−1 + k].

Since the first term is common to all models and the second term is proportional to −((T −
kmax)/2) ln(σ̂2

k) under normality, minimizing Q∗ is equivalent to minimizing

MAIC(k) = ln(σ̂2
k) +

2(τT (k) + k)
T − kmax

, (12)

where τT (k) = (σ̂2
k)

−1β̂
2

0

∑T
t=kmax+1 ỹ

2
t−1 and σ̂2

k = (T − kmax)−1 ∑T
t=kmax+1 ê

2
tk. Note that the same

result holds in the general case where the data are generated by (1). The important step is the

relation given by (11) which can be shown to hold in the general case, in the sense that the remainder

term is op(1) uniformly in k for 0 < k ≤ KT , where KT = o(T 1/3). This follows using the results of

Berk (1974) and Said and Dickey (1984) provided k → ∞, k3/T → 0 and T−1/2 ∑∞
j=k+1 |βi| → 0.

As a natural generalization of theMAIC(k), we propose a class of Modified Information Criteria

(MIC) which selects k as kmic = argminkMIC(k) where

MIC(k) = ln(σ̂2
k) +

CT (τT (k) + k)
T − kmax

, (13)

with CT > 0 and CT /T → 0 as T → ∞. The MBIC obtains with CT = ln(T − kmax).

There are two important elements that distinguish (13) from standard information criteria.

The first is the imposition of the null hypothesis β0 = 0. This idea of imposing the null hypothesis

in model selection when the ultimate objective is hypothesis testing appears new and may have

implications beyond the unit root issue4. This is an interesting avenue of research, but is beyond

the scope of this paper. The second element is that we retain a term in the penalty function that

is stochastic. Now, as T → ∞, (1/σ̂2
k)β̂

2

0

∑T
t=kmax+1 ỹ

2
t−1 ⇒ (σ2/σ2

e)[W̃ (1)2 − 1]2/[2
∫ 1
0 W̃ (r)2dr] ≡

τ(W̃ ), say, where W̃ is a detrended Wiener process, whose exact form depends on the deterministic

components and the method of detrending. In principle, we could use the mean of τ(W̃ ), which is

independent of k, instead of τT (k), to construct Q∗ and the objective function would then reduce

to the standard AIC. A central theme of our argument for retaining τT (k) is that, unless both

T and k are very large, it varies substantially with k, especially when a negative MA component

is present. In a sense, the imposition of the null hypothesis, β0 = 0, allows us to avoid using

asymptotic expected values to approximate the penalty factor. We can therefore hope that τT (k)

will better capture the relevant cost of selecting different orders in finite samples since it depends
4We thank a referee for bringing this feature to our attention.
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not only on k, but also on the nature of the deterministic components and the detrending procedure.

Hence, the penalty term will also depend on these factors.

To get an idea of the dependence of τT (k) on k, Figure 1 graphs the average over 5,000 replica-

tions of τT (k) against k for p = 0, 1 using the DGP ∆yt = et + θet−1 with et ∼ i.i.d. N(0, 1). For

positive θ, τT (k) is indeed fairly invariant to k (as is the case for AR processes, not reported). But,

there is a clear inverse and non-linear relation between τT (k) and k for negative values of θ. This

relation exists even when θ is -.5 for both p = 0 and p = 1. The basic reason for the dependence of

τT (k) on k is that the bias in the sum of the estimated autoregressive coefficients (i.e., β̂0) is very

high for small values of k. This suggests that τT (k) will play a role in determining the appropriate

k when there are negative moving-average errors. To make this claim precise, the next subsection

uses a local asymptotic framework to analyze the properties of τT (k) and the MIC.

6 Local Asymptotic Properties.

As discussed above, τT (k) will likely influence the choice of k when there is a large negative

moving-average root, a situation for which standard unit root tests exhibit severe size distortions.

To understand the issue of lag length selection in this setting, a useful device is an asymptotic

framework in which the moving average coefficient is parameterized as local to −1.

yt − αT yt−1 = et + θT et−1,

αT = 1 + c/T, θT = −1 + δ/
√
T , (14)

et ∼ i.i.d.(0, σ2
e), y0 = e0 = 0, δ > 0, and c < 0. As T increases to infinity, αT → 1, θT → −1, and

yt becomes a white noise process. However, yt is a nearly integrated nearly white noise process in

finite samples. Nabeya and Perron (1994) used this asymptotic framework to derive approximations

to the finite sample properties of the least-squares estimator in a first-order autoregressive model

with negative moving-average errors and showed these approximations not only to be superior than

those obtained from standard asymptotic distributions but also to be quite accurate even for small

sample sizes. Perron and Ng (1996) used the same setup to analyze the size and power of various

unit root tests based upon augmented autoregressions. Our aim here is to use the same device

to first obtain useful qualitative features about the relative properties of the IC and MIC, and

second, to guide us to an appropriate choice of the penalty weight CT .

6.1 Local Asymptotic Properties of τT (k).

The following Theorem (proved in the Appendix) summarizes the general properties of τT (k) in

this local asymptotic framework.
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Theorem 2 Let yt be generated by (14), Z1 = (1 + δ2
∫ 1
0 Jc(r)

2dr)/[δ2
∫ 1
0 Jc(r)

2dr]2 when p = 0,

and Z1 = (1 + δ2
∫ 1
0 Vc,c̄(r)

2dr)/[δ2
∫ 1
0 Vc,c̄(r)

2dr]2 when p = 1. Let k → ∞, K1T = o(T 1/2),

T 1/2/K2T = op(1) and K3T = o(T ). Then, 1) uniformly in 0 < k ≤ K1T : (k2/T )τT (k) ⇒ Z1; 2) if

k/T 1/2 → κ, τT (k) ⇒ ϑ(κ)2Z2, where E(Z2) = E(Z1) and ϑ(κ) = 2δexp(−2κδ)/(1− exp(−2κδ));

and 3) uniformly in K2T ≤ k ≤ K3T , τT (k) ⇒ Z3, where Z3 is Op(1).

Theorem 2 shows that the local limit of τT (k) is unbounded unless k increases at least at rate

T 1/2. Since τT (0) diverges at rate T (see Nabeya and Perron, 1994), τT (k) diverges at rate T/k2

if k2/T → 0, the cost to overfitting is not linear in k as is assumed for the IC, and Figure 1 bears

this out. Theorem 2 also highlights the fact that τT (k) will depend, via Z1, on the nature of the

deterministic components and the method of detrending.

Given Theorem 2 and the fact that σ̂2
k is consistent for σ2

e irrespective of the rate of increase of

k (shown in the Appendix), it can be shown that, in this local asymptotic framework, the limiting

distribution of the DF test diverges to -∞ unless k grows at least at rate T 1/2.5 Hence, the unit

root will always be rejected if standard critical values are used. This explains why the DF tends to

be oversized when k is small. In Perron and Ng (1996,1998), we showed that k2s2AR = Op(1) but we

also need Ts2AR to be Op(1) for the M tests to be bounded under the null hypothesis in this local

framework. But k2s2AR and Ts2AR can both be bounded only if k/T 1/2 → κ for some 0 < κ < ∞.

In the next section, we will consider model selection procedures with this requirement in mind.

6.2 Local Asymptotic Properties of the MIC and IC

In the standard asymptotic framework, with data generated by (1), τT (k) is invariant to k for T

and k large. It follows that kmic grows at a logarithmic rate from Hannan and Deistler (1988). We

now consider the properties of k chosen by the MIC and the IC in the local asymptotic framework

with the additional technical requirement that C2
T /T → 0. Using Theorem 2 and an expansion for

ln(σ̂2
k) derived in the appendix, we have the following expansions for the MIC and IC.

Lemma 1 Let yt be generated by (14) and K1T , K2T and K3T as defined in Theorem 2; then 1)

uniformly in 0 < k ≤ K1T :

MIC(k) = ln(σ2
e) +

1
k
+
CT

k2
Z1 + CT

k

T
+Op(T−1/2); (15)

2) for k/T 1/2 → κ, with ϑ(κ) defined in Theorem 2:

MIC(k) = ln(σ2
e) +

ϑ(κ)√
T

+
CT

T
ϑ(κ)2Z2 + CT

κ√
T

+Op(T−1/2); (16)

5This is a more general result than Pantula (1991) who used a different local asymptotic framework for modeling
the negative moving average component in unit root tests. Pantula’s result applies only when k = Op(T

1/4).
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3) uniformly in K2T ≤ k ≤ K3T :

MIC(k) = ln(σ2
e) +

2δ√
T exp(2kδ/

√
T )

+
CT

T
Z3 + CT

k

T
+Op(T−1/2); (17)

The expansions for the IC(k) are the same except that the terms involving the Z’s are absent.

The objects of ultimate interest are the values kic and kmic chosen by the IC and the MIC,

respectively, over all possible values of k.

Theorem 3 Let yt be generated by (14) and consider the rate of increase of k as T → ∞. Define:

FMIC(1)(κ) =
−4δ2exp(−2κδ)√
T [1− exp(−2κδ)]2

+ CT

(
−16δ3

T

exp(−2κδ)2Z2

[1− exp(−2κδ)]3
+

1√
T

)
;

FMIC(2)(κ) = −
√
CT /T

κ2
+

√
CT /T − 2C2

T

κ3T
Z1;

FIC(κ) =
−4δ2exp(−2κδ)
[1− exp(−2κδ)]2

+ CT .

When CT is fixed, kmic/(κmic(1)T
1/2) → 1 where κmic(1) solves FMIC(1)(κ) = 0, and kic/(κicT 1/2) →

1, where κic solves FIC(κ) = 0. When CT → ∞, kic/
√
T/CT → 1. When CT → ∞ and C3

T /T → d

(≥ 0), kmic/(κmic(2)

√
T/CT ) → 1, where κmic(2) solves FMIC(2)(κ) = 0. If CT → ∞ and C3

T /T →
∞, kmic/(2Z1T )1/3 → 1.

Provided CT is constant (as is the case with Akaike’s value of 2), both the IC and the MIC

will choose k proportional to T 1/2 asymptotically, much faster than the logarithmic rate attained

under the standard asymptotic framework. The rate of
√
T is optimal for unit root tests because

this is the rate that will render the class of DF as well as the M tests non-divergent under the null

hypothesis in this local asymptotic framework. However, when CT increases with T , this optimal

rate is not achieved.

The proportionality factor for the rate of increase of kic when CT increases with T is one and

highlights a major shortcoming of the IC in such cases, namely a complete independence to δ,

the parameter of the local asymptotic framework. For the kmic when CT increases with T , the

proportionality factor depends on the parameters of the model via Z1. This effect, however, still

vanishes as T increases. This lack of flexibility does not arise when CT is fixed since κmic and κic
always maintain a dependence on δ. Although kic increases at the appropriate rate of

√
T , it too

has drawbacks because κic is invariant to T and it is the same whether p = 0 or p = 1. In contrast,

κmic adapts to the sample size and the trend function via a second order factor involving Z1. Thus,

the MIC with CT fixed maintains a proportionality factor that is the most flexible with respect to

T , the regression model, as well as parameters of the DGP.
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If the weight CT on the penalty factor is too large, that is C3
T /T → ∞, the MIC chooses a rate

that is independent of CT , namely T 1/3, while the IC continues to select a k that is proportional

to
√
T/CT . This, however, is a result of theoretical rather than practical interest since almost all

information criteria that have been suggested are such that C3
T /T → 0.

To illustrate these properties, we consider the MAIC and AIC with CT = 2 and the MBIC

and BIC with CT = ln(T ). We denote the proportionality factors by κmaic, κaic, κmbic and κbic,

respectively. Numerical values of κ are reported in Table 3.a for selected values of δ and T under the

null hypothesis of a unit root with c = 0. In the case of the MIC these values are random variables

because of the presence of Z1. The numerical calculations reported use its expected value.6 Table

3.a shows first that the κmics are drastically larger than the κics when δ is small. Second, the κics

vary much less with δ than the κmics. Third, the κmics are larger when p = 1 than p = 0, but the

κics are invariant to the order of the deterministic terms in the regression.

Values of k selected by the IC and the MIC are in Table 3.b. These are constructed using the

expected value of the MIC given by (for the IC(k) the term with Z1 is absent)

E[MIC(k)] = ln(σ2
e) +

(1− θ2
T )(−θT )2(k+1)

1− (−θT )2(k+1)
+ CT

[
(1− θ2

T )(−θT )2k
1− (−θT )2(k+1)

]2

E(Z1) +
k

T

 . (18)

This expression is valid uniformly in 0 < k ≤ K3T for K3T = o(T ) and is obtained using equation

(A.4) and Lemma A.5. When δ is small and especially when p = 1, the kmic are several folds

larger than the kic. As well, differences between kaic and kmaic are non-trivial even for sample sizes

deemed unrealistically large. Table 3.b also provides some guidance for the ks that would likely be

selected in practice. When θ = −.9, for example, the local asymptotic results for δ = 1 and T = 100

suggest that kbic = 4 for both p = 0 and 1, but that the kmaic are 8 and 13, respectively. The local

asymptotic results therefore support the earlier claim that the IC lacks the flexibility to handle

DGPs with a large negative moving average root and/or alternative deterministic components. The

issue of practical interest is whether in finite samples and for realistic values of the moving average

parameter, such large discrepancies remain and what are the implications for unit root tests. The

rest of the analysis presents evidence to this effect.

6.3 The Finite Sample Properties of kmic

To evaluate the finite samples properties of the MIC vis-a-vis the IC, we performed the following

simulation experiment. For a given DGP, we construct the M̄ZGLS
α and DFGLS tests at each

k ∈ [0, 10], and record the exact sizes. We then find the so-called optimal values of k∗, denoted k∗mz

6To get the expected value we use the following crude approximation. For p = 0, E[Z1] ≈ (E[1 +

δ2
∫ 1

0
W (r)2dr])/δ4E([

∫ 1

0
W (r)2dr]2) = (4+2δ2)/δ4. For p = 1, E[Z1] ≈ E[1+δ2

∫ 1

0
V0,c̄(r)

2dr]/δ4E(
∫ 1

0
V0,c̄(r)

2dr)2.

For c̄ = −13.5, tedious but straightforward algebra gives E[Z1] ≈ (1 + δ2(.10275)/(1 + δ4(.01275)2).
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and k∗dfgls, as the first k with a size closest to within .03 of the nominal size of 0.05. If no such k

exists, k∗ is the k for which the exact size of the test has the smallest absolute deviation from the

nominal size of 5%. We then obtain kbic as the median value selected by the BIC over the range 0

and 10. A similar procedure is used to obtain kmbic, kaic, and kmaic. The setup for the simulations

is as outlined in Section 4.

In Table 4.a (p = 0) and 4.b (p = 1), we report the values for k∗mz, k
∗
dfgls, kic and kmic for

selected parameters for CT = 2 and CT = ln(T − kmax). While the kic’s are in the same range as

the k∗’s for many cases, there are important differences between the two when θ < 0. The kmic is

much closer to k∗mz and k∗dfgls in negative MA models than the kic. For example, when θ = −.8,
k∗mz and k∗dfgls are 10 at T = 250 and p = 1; the BIC chooses 3 over half the time whereas kmaic

has 8 as the median value. The kaic is closer to k∗mz and k∗dfgls than the kbic, but still not as close as

the kmaic. For the AR case, the kmaic indeed selects the appropriate order of one, but when p = 1,

this sometimes differs from k∗mz. This does not reflect a weakness of the MIC but rather that the

M̄GLS tests are undersized when the autoregressive coefficient is large and negative. The results

show that kmaic corresponds closely to the k∗dfgls in the AR case.

7 Size and Power of the Tests in Finite Samples

In this section, we need to establish two things. First, that the MIC chooses values of k that

are appropriate in the sense of minimizing size distortions under the null hypothesis and does

not over-parameterize under the alternative. Second, that the MGLS and M̄GLS statistics have

power comparable to the DFGLS and dominate the M tests. Whenever an estimate of σ2 is

required, s2AR based upon the regression (8) is used. Because theMAIC dominates all other criteria

from both theoretical and numerical perspectives we only consider the MGLS tests constructed

using the MAIC. In the simulations, the lower bound is always zero to reduce the chance of

overparameterizing when a large k is not necessary. The upper bound is kmax = int(12(T/100)1/4).7

The results are tabulated for T = 100, 150, and 250. The ten statistics being considered are detailed

in the notes to Table 5.a and 6.a.

For p = 0, the results for size are reported in Table 5.a. The M and MGLS tests still have

inflated sizes at T = 100 when θ = −0.8. However, use of GLS detrended data to construct s2AR

produces substantial size improvements. The DFGLS based on the BIC yields an exact size around

0.4 at θ = −0.8, but theMAIC improves the size to 0.107. TheMAIC also yields a substantial size

improvement over DFGLS(t), which has a size of .35 when θ = −0.8. The results also confirm that

the PT test constructed with k chosen by BIC suffers from substantial size distortions. However,
7In practice, the upper bound should be set such that the constraint does not bind. In simulations, the upper

bound occasionally binds when T = 100 but not for larger sample sizes (e.g. T = 150).
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the P̄T and M̄PGLS
T show remarkably little size distortions when the MAIC is used to select k.

To assess the relative power of the tests, we tabulate the rejection rates at ᾱ = 1 + c̄/T . For

p = 0 and c̄ = −7.0, the values of ᾱ are 0.93, 0.953 and 0.972 for T = 100, 150 and 250, respectively.8

The size-adjusted power of the tests are reported in Table 5.b. Although the tests should reject

the null hypothesis 50% of the time in large samples, none of the tests quite achieve the 50%

(asymptotic) target for sample sizes less than 200. Thus, in finite samples, the need to account for

serial correlation reduces the power of the tests across the board. However, the GLS based tests

have more power than tests which do not implement GLS detrending. Furthermore, the power

increase from T = 100 to T = 150 is quite substantial, especially when we take into account of the

fact that we are evaluating at a closer alternative at T = 150 than at T = 100.

For p = 1, the results for size are reported in Table 6.a. The size distortions are somewhat

larger when there is a linear trend in the regression, but there are clearly gains from using GLS

detrended data to construct s2AR and selecting k with the MAIC. The resulting M̄GLS tests have

size close to the nominal size for all parameter values, while the M and MGLS tests continue to

have size close to .15. As well, the MAIC yields exact sizes for the DFGLS and the PT tests that

are far more accurate than those obtained using the sequential t test and the BIC.

The size-adjusted power of the tests for p = 1 are reported in Table 6.b. Power is again evaluated

at ᾱ = 1 + c̄/T . For c̄ = −13.5, ᾱ is 0.865 for T = 100, 0.910 for T = 150, and 0.946 for T = 250.

Compared to the size-adjusted power reported in Table 5.b, all GLS based tests have lower power

when p = 1. However, there are non-negligible power gains from GLS detrending.

A feature of interest is that the MIC allows the M̄GLS tests to have an exact size that is closer

to 5% than fixing k at k∗mz assuming a known DGP. For example, in the MA case with θ = −.8 and

p = 1, the size is .059 using the MIC and .159 using a value of k fixed at k∗mz = 6. When T = 150,

the corresponding values are .027 with the MAIC and .093 at k∗mz = 8 (not reported). Hence, the

MAIC chooses a k that adapts to the particular sample analyzed. Size improvements obtained

using the MIC compared to fixing k at k∗ are even larger when the number of deterministic

components increases (see Perron and Rodŕiguez (1998) for the case of a trend with a change in

slope).

The size reported for M̄GLS is remarkable, given that when θ < 0, the Z tests based on kernel

estimates of σ2 reject with probability close to one under the null hypothesis. The DF tests

have higher size-unadjusted power in the case of negative MA errors. Such high probabilities

of rejections are misleading, however, as they reflect size distortions. Although the DFGLS
bic has

higher size-adjusted power than M̄GLS
mic for some parameter values, this result must also be put into

8We also performed extensive power simulations with other values of α and T . The results are qualitatively similar
and do not affect the conclusions concerning the relative performance of the different tests.
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perspective. Consider θ = −0.8, T = 100 and p = 1. While the size-adjusted power of the DFGLS
bic

is higher than the M̄GLS
mic by 5 basis points, its size is more distorted by 45 basis points. This is a

substantial increase in the probability of a Type I error. The DFGLS
mic fares better, but there is still

a size advantage in favor of the M̄GLS
mic .

Overall, the M̄GLS
mic tests have better sizes, while the DFGLS

mic has better power. A drawback of

the M̄GLS
mic test is that it is substantially undersized for pure AR processes with a coefficient close

to −1. Although economic time series rarely display such a property, this nonetheless translates

into lower (size unadjusted) power. As discussed in Section 6.2, this is not due to a weakness of the

MIC in selecting k, but rather is an inherent property of the M̄GLS tests. The trade-offs between

the DFGLS
mic and the M̄GLS

mic are to be determined by the practitioner.

8 Empirical Illustrations.

To illustrate the ease of application of our procedures and the differences in inference that can

result, we consider inflation series from the G7 countries. Data for the GDP deflator are taken

from the OECD International Sector Database. We constructed annualized quarterly inflation rate

series covering the period 1960:2 to 1997:2 (T + 1 = 149 observations) as (400 times) the logged

differences of successive quarters. All estimation results are presented in Table 7. As a preliminary

step, we first estimated simple ARMA(1, 1) model for each series. The results show autoregressive

roots that are indeed close to one (ranging from .92 for Germany to .98 for France). Also, the MA

coefficients are negative for all series, ranging from −.27 for Italy to −.72 for France. This suggests

that such series are likely affected by the types of problems we discussed.

The first step to constructing the tests is to generate GLS detrended series as defined by (6)

with c̄ = −7 as the non-centrality parameter (since inflation series are non-trending; otherwise

use c̄ = −13.5). The next step is to estimate by OLS the autoregression (8) for all values of

k ranging from 0 to some maximal order, say kmax. We use kmax = int(12(T/100)1/4) but other

values are valid. In the model selection stage, each autoregression uses the same number of effective

observations, namely T−kmax. The selected kmaic is obtained as the value of k which minimizes

(12). Given kmaic, the DFGLS
maic is obtained as the t-statistic on β0 = 0 from re-estimation of (8)

with T − kmaic effective observations. The same regression is used to construct s2AR according to

(5). Then, the MGLS tests are constructed from (3) and (4), the PGLS
T test from (7), and the

MPGLS
T test from (9), all with GLS detrended series ỹt. Using the BIC, the steps are the same

except that the term τT (k) is omitted from (12).

The results show interesting differences between using the MAIC or the BIC to select the lag

length. First, for all countries, except the U.S., the selected lag length is higher with MAIC than

with BIC. Second, in all cases (except the U.S.), the evidence in favor of stationarity is weaker
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with the MAIC than with the BIC. For example, with the BIC, the MZGLS
α,bic and DFGLS

bic tests

suggest a rejection at the 1% significance level for Japan and Germany, at the 5% level for Canada,

and at the 10% level for Italy. When using the MAIC, there are only rejections at the 5% level for

Germany (showing that the tests still have power) and at the 10% level for the U.K. For Canada,

the DFGLS
maic is significant at the 10% level but barely. For the U.S. and France, there is no difference

in outcome. Of interest also is the fact that the Z̄GLS
α,maic still shows strong rejections at the 1% level

for Japan, the U.K. and Germany. This accords with the simulation results that the Z̄GLS
α test has

high size distortions even when constructed using the MAIC.

9 Conclusion

The analysis of ERS shows that detrending data by GLS yields power gains for unit root tests. We

find that GLS detrending also allows for a more precise autoregressive spectral density estimate

and ensures that it is invariant to the parameters of the trend function. We also show that the

BIC or AIC are not sufficiently flexible for unit root tests. We suggest a modification, the MAIC,

which is evidently more robust when there are negative moving-average errors. Use of the MAIC

in conjunction with GLS detrended data results in a class of M̄GLS tests that have good size and

power. The key distinction between theMAIC and standard information criteria is that the former

takes account of the fact that the bias in the estimate of the sum of the autoregressive coefficients

is highly dependent on k. In this paper, we show that the MAIC is useful for the DFGLS test and

the construction of the autoregressive estimate of the spectral density at frequency zero. We also

expect theMAIC, or the more generalMIC, to be useful in a broader range of applications because

macroeconomic data are known to be highly persistent, and in such cases, the bias in the estimate

of the sum of the autoregressive coefficients should depend on the order of the autoregression.

However, it should also be noted that while the suggested information criterion is useful in the

context of unit root tests as we have shown, it may not be appropriate when selecting the lag order

in other contexts. The general usefulness of the MIC also awaits further investigation.
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Appendix

Proof of Theorem 2

In this Appendix, for simplicity, we consider the derivations in the case where the DGP is (14)

and no deterministic component is present in the regression (8), in which case yt is used instead

of ỹt. All the results carry over to the more general case with least-squares or GLS detrending.

With GLS detrending, the stated results remain exactly the same when p = 0 and are as stated in

the text with Vc,c̄(r) replacing Jc(r) when p = 1. As a matter of notation, we let ⇒ denote weak

convergence in distribution and → convergence in probability. Also, to alleviate notational burden,

we let N = T − kmax. Note that we can write the DGP as

∆yt = −
k∑

i=1

(−θT )i∆yt−i +
c

T

k∑
i=0

(−θT )iyt−i−1 + et − (−θT )k+1et−k−1.

Let

zt−j =
k−j∑
i=0

(−θT )i∆yt−i−j =
c

T

k−j∑
i=0

(−θT )iyt−i−j−1 + et−j − (−θT )k+1−jet−k−1,

the DGP can also be written as

∆yt =
c

T
yt−1 − (−θT )zt−1 +

c

T

k∑
i=1

(−θT )iyt−i−1 + et − (−θT )k+1et−k−1

= β0yt−1 +
k∑

i=1

βizt−i + etk (A.1)

with β0 = c/T, β1 = θT , βi = 0 for i > 1, and

etk =
c

T

k∑
i=1

(−θT )iyt−i−1 + et − (−θT )k+1et−k−1 (A.2)

Since {zt−i, i = 1, . . . , k} is a linear function of {∆yt−i, i = 1, . . . , k}, the OLS estimate of β0 and

the sum of squared residuals from the regression

∆yt = β0yt−1 +
k∑

i=1

βi∆yt−i + etk (A.3)

have the same properties as the corresponding quantities from estimating (A.1). We start with a

Lemma that will be used extensively.

Lemma A.1 Let Jc(r) =
∫ r
0 exp((r− s)c)dW (s), K3T = o(T ) and δij = 1 if i = j and 0 otherwise

with i, j = 1, ..., k. Then, uniformly for i, j ≤ kmax ≤ K3T = o(T ): a) N−1 ∑T
t=kmax+1 y

2
t−1 = σ2

e(1+

δ2
∫ 1
0 Jc(r)

2dr)+Op(T−1/2); b) N−1 ∑T
t=kmax+1 yt−1zt−j = δ1jσ

2
e+Op(T−1/2); c) N−1 ∑T

t=kmax+1 zt−izt−j =

σ2
e(δij + (−θT )2(k+1)−i−j) +Op(T−1/2); d) N−1 ∑T

t=kmax+1 ∆ytyt−1 = −σ2
e +Op(T−1/2);

e) N−1 ∑T
t=kmax+1 ∆ytzt−j = −δ1jσ2

e +Op(T−1/2).
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Proof : From Nabeya and Perron (1994), we can write yt = aT et + bTXt where Xt = (1 +

c/T )Xt−1 + et, aT = (−θT )(1 + c/T ), bT = 1 − (1 + c/T )(−θT ), aT → 1, T 1/2bT → δ as T → ∞.

Also,
∑T

t=1Xt−1et = Op(T ). For part(a), we have:

N−1
T∑

t=kmax+1

y2
t−1

= N−1
T∑

t=kmax+1

(a2
T e

2
t−1 + b2TX

2
t−1 + 2aT bTXt−1et−1) = σ2

e(1 + δ2
∫ 1

0
Jc(r)2dr) +Op(T−1/2).

For part (b), we have

N−1
T∑

t=kmax+1

yt−1zt−j

= N−1
T∑

t=kmax+1

(aT et−1 + bTXt−1)(
c

T

k−j∑
i=0

(−θT )iyt−i−j−1 − (−θT )k+1−jet−k−1 + et−j).

SinceXt =
∑t

j=1 exp((t−j)c/T )ej ,Xt−1 = Xt−k−1+
∑k

j=1 exp((t−j)c/T )ej . We have
∑T

t=kmax+1 etes =

Op(T 1/2) for t �= s, T 1/2bT = Op(1), and
∑T

t=kmax+1Xt−1et = Op(T ), hence, N−1 ∑T
t=kmax+1 yt−1zt−1−

σ2
e = Op(T−1/2) and N−1 ∑T

t=kmax+1 yt−1zt−j = Op(T−1/2) for j > 1 uniformly in 0 < i, j ≤ kmax ≤
K3T . For part (c),

N−1
T∑

t=kmax+1

zt−izt−j

= N−1
T∑

t=kmax+1

[et−i − et−k−1(−θT )k+1−i][et−j − et−k−1(−θT )k+1−j ] +Op(T−1/2)

= σ2
e(δij + (−θT )2(k+1)−i−j) +Op(T−1/2).

Part (d) follows using the fact that

N−1
T∑

t=kmax+1

∆ytyt−1 = cN−2
T∑

t=kmax+1

y2
t−1 +N−1

T∑
t=kmax+1

(aT et−1 + bTXt−1)(et + θT et−1),

and part (e) using the fact that

N−1
T∑

t=kmax+1

∆ytzt−i

= N−1
T∑

t=kmax+1

(
c

T
yt−1 + et − (−θT )et−1)(

c

T

k−i∑
j=0

(−θT )jyt−i−j−1 + et−i − et−k−1(−θT )k+1−i).

The proof of Theorem 2 follows directly from the following Lemma concerned with the limit of

β̂0, the OLS estimate of β0 from the regression (A.1) which is equivalent to the OLS estimate of

β0 from the autoregression (8).
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Lemma A.2 Consider the OLS estimate of β0 from the autoregression (8). Let x = δ2
∫ 1
0 Jc(r)

2dr

when p = 0 and x = δ2
∫ 1
0 Vc,c̄(r)

2dr when p = 1. Then, 1) uniformly in 0 < k ≤ K1T : kβ̂0 ⇒
−x−1; 2) if k/T 1/2 → κ, T 1/2β̂0 ⇒ A, where A is a random variable with E(A) = −ϑ(κ)E(x−1),

ϑ(κ) = 2δexp(−2κδ)/(1− exp(−2κδ)); 3) uniformly in K2T ≤ k ≤ K3T , T 1/2β̂0 = Op(1).

Case 0 < k ≤ K1T .

Let X ′
t = (yt−1, Z

′
t), Zt = (zt−1, . . . , zt−k)′. Define the following two (k + 1) by (k + 1) matrices:

R̂T = N−1
T∑

t=kmax+1

XtX
′
t = N−1


∑T

t=kmax+1 y
2
t−1

∑T
t=kmax+1 yt−1Z

′
t

∑T
t=kmax+1 Ztyt−1

∑T
t=kmax+1 ZtZ

′
t



R̃ = σ2
e

 1 + x e′

e Ik + ιι′


where x = δ2

∫ 1
0 Jc(r)

2dr, e′ = (1, 01×k) and ι is a k × 1 vector of ones. Using Maple, we obtained

the inverse:

R̃−1 = σ−2
e

1
1 + (k + 1)x



k + 1 −k 1 1 1

−k k(1 + x) −(1 + x) −(1 + x) −(1 + x)

1 −(1 + x) k(1 + x) −x −x
. . . . . .

1 −(1 + x) −x k(1 + x) −x
1 −(1 + x) −x −x −x k(1 + x)


In what follows, the structure of R̃−1 will be exploited. Let

V̂T = (N−1
T∑

t=kmax+1

∆ytyt−1, N
−1

T∑
t=kmax+1

∆ytZ ′
t)
′, Ṽ = (−1,−1, 0

′
k−1)

′.

Note that θ̂ = (β̂0, β̂1, . . . , β̂k)′ = R̂−1
T V̂T .

Lemma A.3 a) max0<k≤K1T
||R̂T−R̃|| = Op(K1T /

√
T ), b) max0<k≤K1T

||R̂−1
T −R̃−1|| = Op(K1T /

√
T ).

Proof : Using Lemma A.1, we have R̂ij−R̃ij = Cij where Ci,j = Op(T−1/2) uniformly in 0 < k ≤
K1T for i, j = 1, . . . , k+1 and part a) follows. To prove part b), note that the lower k×k submatrix

of R̃ is, say, R̃k = (Ik+ιι′). Then (Ik+ιι′)−1 = Ik−(1+ι′ι)−1ιι′ has eigenvalues of 1 and (1+ι′ι)−1.
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Hencemax0<k≤K1T
||R̃−1

k || = Op(1). Using arguments as in Perron and Ng (1998), the (k+1)×(k+

1) matrix R̃ also has eigenvalues of the same order as R̃k. Hence max0<k≤K1T
||R̃−1|| = Op(1). Let

QT = ||R̂−1
T − R̃−1||. Then max0<k≤K1T

QT ≤ max0<k≤K1T
||R̂−1

T ||||R̂T − R̃||||R̃−1|| = Op(K1T /
√
T )

by arguments analogous to Berk (1974).

Lemma A.4 a) max0<k≤K1T
||V̂T − Ṽ || = Op(

√
K1T /T );b) max0<k≤K1T

||V̂T || = Op(1).

Proof : Part (a) follows directly from Lemma A.1 (d,e). Since Ṽ = (−1,−1, 01×k−1)′, max0<k≤K1T

||Ṽ || = Op(1) and max0<k≤K1T
||V̂T || = Op(1) in view of part (a) of the Lemma.

Let e′ = (1, 01×k). We have

β̂0 = e′R̂−1
T V̂T

= e′(R̂−1
T − R̃−1)(V̂T − Ṽ ) + e′(R̂−1

T − R̃−1)Ṽ + e′R̃−1(V̂T − Ṽ ) + e′R̃−1Ṽ

= A+B + C +D.

For a matrix M , denote the i, j-th element of M−1 by mij . We now consider the limit of each of

the four terms. For A,

max
0<k≤K1T

||ke′(R̂−1
T − R̃)(V̂T − Ṽ )||2 ≤ K2

1T

k∑
i=1

||r̂1,i − r̃1,i||2||V̂i,T − Ṽi||2

≤ c
K2

1T

T

k∑
i=1

||r̂1,i − r̃1,i||2 ≤ c

(
K2

1T

T

)2

→ 0

since
∑k

i=1 ||r̂1,i − r̃1,i||2 ≤ ||R̂−1
T − R̃−1||2 = Op(k2/T ) ≤ Op(K2

1T /T ). For the term B, we need

max0<k≤K1T
||ke′(R̂−1

T −R̃−1)Ṽ ||. Recall that R̂T = R̃+C, where Cij = Op(T−1/2), i, j = 1, . . . , k+

1. Then R̂−1
T = R̃−1 + R̃−1CR̃−1 +Op(T−1). We have (ignoring, without loss, the Op(T−1) term):

||e′(R̂−1
T − R̃−1)Ṽ || = ||e′R̃−1CR̃−1Ṽ || = ||

k+1∑
j=1

(r̃1j + r̃2j)
k+1∑
i=1

r̃1iCij ||

≤
k+1∑
j=1

||(r̃1j + r̃2j)||
k+1∑
i=1

||r̃1i||||Cij || ≤ c∗
k∑

j=1

||(r̃1j + r̃2j)||
k+1∑
i=1

||r̃1i||,

where c∗ = maxi,jCij . But the sum of the norms of the elements of the first row of R̃−1 is

[2k+(k−1)][1+(k+1)x]−1 = Op(1), and the sum of the norms of the sum of the first two elements

of each row of R̃−1 is given by 1+kx+(k−1)x
1+(k+1)x = Op(1). Since c∗ = Op(T−1/2), max0<k≤K1T

||ke′(R̂−1
T −

R̃−1)Ṽ || = Op(K1T /T
1/2). For the term C, first note that

(V̂T−Ṽ )′ = N−1[(
T∑

t=kmax+1

∆ytyt−1+1), (
T∑

t=kmax+1

∆ytzt−1+1),
T∑

t=kmax+1

∆ytzt−2, . . . ,
T∑

t=kmax+1

∆ytzt−k].
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Thus,

max
0<k≤K1T

||ke′R̃−1(V̂T − Ṽ )|| ≤

K1T

1 + (K1T + 1)x

||(K1T + 1)(N−1
T∑

t=kmax+1

∆ytyt−1 + 1)|| − ||K1T (N−1
T∑

t=kmax+1

∆ytzt−1 + 1)||

+N−1
k∑

j=2

||
T∑

t=kmax+1

∆ytzt−j ||
 ≤ (cK1T /N

1/2) → 0.

For D,

max
0<k≤K1T

(ke′R̃−1Ṽ ) =
−K1T

1 + (K1T + 1)x
→ −1

x
≡ −1
δ2

∫ 1
0 Jc(r)2dr

.

Combining the results, we have kβ̂0 = op(1) + op(1) + op(1) + Op(1) = Op(1). Thus, kβ̂0 ⇒
(δ2

∫ 1
0 Jc(r)

2dr)−1 uniformly in 0 < k ≤ K1T .

2 Case k/T 1/2 → κ.

For the case where k/T 1/2 → κ, we first note that the relevant matrix R̃ is given by

σ2
e

 1 + x e′

e Ik + µµ′


where µ′ = [(−θT )k, . . . , (−θT )]. The limiting vector Ṽ remains unchanged. Now we have

√
T β̂0 =√

Te′R̃−1Ṽ +
√
TW , whereW = A+B+C. It is easy to see that E(

√
TW ) = 0 in large samples. So,

we need to evaluate
√
Te′R̃−1Ṽ , (minus) the sum of the first two elements of R̃−1. By partitioned

matrix inversion, these are given by

R̃−1
11 : [(1 + x)− e′(Ik + µµ′)−1e]−1,

R̃−1
12 : −[(1 + x)− e′(Ik + µµ′)−1e]−1e′(Ik + µµ′)−1e.

Since (Ik +µµ′)−1 = Ik −µµ′/λ, λ = 1+µ′µ, e′(Ik +µµ′)−1e = e′e− (e′µµ′e/λ) = 1− [(−θT )2k/λ].
Hence, 1− e′(Ik + µµ′)−1e = (−θT )2k/λ and substituting for λ = (1− (−θT )2(k+1))/(1− (−θT )2),

√
Te′R̃−1Ṽ =

−(−θ)2k(1− θT )2

[1− (−θ)2(k+1)]x+ (−θ)2k(1− θT )2

=
−(−θ)2k(1− θT )2

[1− (−θ)2(k+1)]x
+Op(T−1/2) (A.4)

which converges to −ϑ(κ)/x setting k = κT 1/2 and taking limit as T → ∞.
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Case K2T ≤ k ≤ K3T .

Note that (−θT )k → 0 if k/
√
T → ∞. Let

R̃ = σ2
e

 1 + x e′

e Ik


and note that

R̃−1 = σ2
e


x−1 −x−1 01×k−1

−x−1 (1 + x)x−1 0

0k−1×1 0 Ik−1


Thus, ||R̃|| = Op(1) and ||R̃−1|| = Op(1). ¿From Lemma A.1 (a,b,c), maxK2T≤k≤K3T

||R̂T − R̃|| =
Op(K3T /T

1/2). Also, maxK2T≤k≤K3T
||R̂T || ≤ maxK2T≤k≤K3T

||R̂T − R̃|| + maxK2T≤k≤K3T
||R̃|| =

Op(K3T /T
1/2) since maxK2T≤k≤K3T

||R̃|| = Op(1) andK3T /T
1/2 → ∞. Since maxK2T≤k≤K3T

||R̂−1
T || ≤

1/maxK2T≤k≤K3T
||R̂T ||, maxK2T≤k≤K3T

||R̂−1
T || ≤ Op(T 1/2/K3T ). It follows that

max
K2T≤k≤K3T

||R̂−1
T − R̃−1|| ≤ max

K2T≤k≤K3T

||R̂−1
T ||||R̂T − R̃||||R̃−1||

≤ Op(T 1/2/K3T )Op(K3T /T
1/2)Op(1) = Op(1).

We also have maxK2T≤k≤K3T
||V̂T − Ṽ || = Op(K

1/2
3T /T

1/2) and ||Ṽ || = Op(1). Thus,

T 1/2β̂0 = T 1/2e′R̂−1
T V̂T

= T 1/2e′(R̂−1
T − R̃−1)(V̂T − Ṽ ) + T 1/2e′(R̂−1

T − R̃−1)Ṽ

+T 1/2e′R̃−1(V̂T − Ṽ ) + T 1/2e′R̃−1Ṽ

= A+B + C +D.

For A, we have

max
K2T≤k≤K3T

||T 1/2e′(R̂−1
T − R̃−1)(V̂T − Ṽ )||2 ≤ max

K2T≤k≤K3T

T
k∑

i=1

||r̂1,i − r̃1,i||2||V̂i,T − Ṽi||2

≤ max
K2T≤k≤K3T

c
k∑

i=1

||r̂1,i − r̃1,i||2

≤ max
K2T≤k≤K3T

c||R̂−1
T − R̃−1||2 = Op(1).

ForB, ||T 1/2e′(R̂−1
T −R̃−1)Ṽ || = ||T 1/2e′R̃−1CR̃−1Ṽ ||+Op(T−1/2) for some R̃ such that R̂T = R̃+C,

where the matrix C has elements that are Op(T−1/2). Now

e′R̃−1 =
[
x−1,−x−1, 0, 0, 0, . . . , 0

]
,

R̃−1Ṽ = [0,−1, 0, 0, . . . , 0]′ .
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Therefore CR̃−1Ṽ = −C.2 where C.2 is the second column of the matrix C. Then e′R̃−1CR̃−1Ṽ =

x−1(−C12 + C22). Since C12 and C22 = Op(T−1/2), maxK2T≤k≤K3T
||T 1/2e′R̃−1CR̃−1Ṽ || = Op(1).

For the third term C,

max
K2T≤k≤K3T

||T 1/2e′R̃−1(V̂T − Ṽ )|| = max
K2T≤k≤K3T

||T 1/2
[
x−1,−x−1, . . . , 0

]
(V̂T − Ṽ )||

= max
K2T≤k≤K3T

||T
1/2

x

[
(V̂1,T − Ṽ1)− (V̂2,T − Ṽ2)

]
||

≤ T 1/2

x

c

T 1/2
= Op(1).

For D,

T 1/2e′R̃−1Ṽ = T 1/2
[
−x−1 + x−1

]
= 0.

Combining the results, we have T 1/2β̂0 = Op(1) uniformly in K2T ≤ k ≤ K3T .

Proof of Lemma 1

Lemma A.5 Consider the estimated autoregression (8) when the DGP is given by (14). Let σ̂2
k =

N−1 ∑T
t=1 ê

2
tk , then uniformly over 0 < k ≤ K3T

ln(σ̂2
k) = ln(σ2

e) +
(−θT )2(k+1)

1− (−θT )2(k+1)
(1− θ2

T ) +Op(T−1/2).

Proof : Let Ek = (ekmax+1k, e2k, . . . , eTk)′, where etk = cT−1 ∑k
i=1(−θT )iyt−i−1+et−(−θT )k+1et−k−1.

Let X = (X1, ..., XT )′, Then

σ̂2
k = N−1E′

kEk −N−1E′
kX(X ′X)−1X ′Ek.

By direct calculations,

N−1E′
kEk = N−1

T∑
t=kmax+1

e2t + (−θT )2(k+1)N−1
T∑

t=kmax+1

e2t−k−1 +Op(T−1/2) (A.5)

= σ2
e(1 + (−θT )2(k+1)) +Op(T−1/2). (A.6)

Consider N−1E′
kX = (N−1 ∑T

t=kmax+1 yt−1etk, N
−1 ∑T

t=kmax+1 Z
′
t−jetk). Using results established

in the proof of Theorem 2,

N−1
T∑

t=kmax+1

yt−1etk = N−1
T∑

t=kmax+1

(aT et−1 + bTXt−1)(et − (−θT )k+1et−k−1 +
c

T

k∑
i=1

(−θT )iyt−i−1)

= Op(T−1/2), and

N−1
T∑

t=kmax+1

zt−jetk = N−1
T∑

t=kmax+1

(et−j − (−θT )k+1−jet−k−1)(et − (−θT )k+1et−k−1) +Op(T−1/2)
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= (−θT )2(k+1)−jN−1
T∑

t=kmax+1

e2t−k−1 +Op(T−1/2),

= σ2
e(−θT )2(k+1)−j +Op(T−1/2).

Therefore,

N−1E′
kX = σ2

e[0, θ
2(k+1)−1
T , . . . , (−θT )2(k+1)−k] +Op(T−1/2),

= σ2
e(θT )

k+1[0, µ′] +Op(T−1/2),

where µ′ = [(−θT )k, . . . , (−θT )]. From Lemma A.1,

N−1(X ′X) = σ2
e

 1 + x e′

e Ik + µµ′

 +Op(T−1/2) ≡ R+Op(T−1/2) (A.7)

In view of the properties of N−1E′
kX,

N−1E′
kX(X ′X)−1X ′Ek = (−θT )2(k+1)µ′R−1(k)µ+Op(T−1/2),

where R−1(k) is the lower right k × k sub-matrix of R−1. By partitioned matrix inversion,

R−1(k) = [Ik + µµ′ − e′e/(1 + x)]−1,

= [Jk + µµ′]−1,

where Jk = Ik − ee′/(1 + x). For a k × k matrix A and k × 1 vectors u and v, (A + uv′)−1 =

A−1 −A−1u(1 + v′A−1u)−1v′A−1. Hence, for λ = 1 + µ′J−1
k µ,

R−1(k) = J−1
k − J−1

k µµ′J−1
k /λ,

µ′R−1(k)µ = µ′J−1
k µ− (µ′J−1

k µ)2/λ,

=
µ′J−1

k µ

1 + µ′J−1
k µ

.

Since Jk = Ik − ee′/(1 + x), J−1
k = Ik + ee′/x, and

µ′J−1
k µ = µ′µ+ µ′ee′µ/x = µ′µ+ (−θT )2k/x.

We also have µ′µ =
∑k

i=1(−θT )2i, hence

µ′µ =
(−θT )2 − (−θT )2(k+1)

1− (−θT )2 , 1 + µ′µ =
1− (−θT )2(k+1)

1− (−θT )2 .

After some simplifications,

µ′J−1
k µ

1 + µ′J−1
k µ

=
(−θT )2[1− (−θT )2k] + (−θT )2k[1− (−θT )2]/x
[1− (−θT )2(k+1)] + (−θT )2k[1− (−θT )2]/x

,

= (−θT )2
[

1− (−θT )2k
1− (−θT )2(k+1)

]
+Op(T−1/2),
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Hence,

N−1E′
kX(X ′X)−1X ′Ek = (−θ)2(k+1)(−θT )2

[
1− (−θT )2k

1− (−θT )2(k+1)

]
+Op(T−1/2).

It follows that

σ̂2
k = σ2

e

(
1 + (−θT )2(k+1) − (−θT )2(k+2)

[
1− (−θT )2k

1− (−θT )2(k+1)
)

])
+Op(T−1/2),

ln(σ̂2
k) = ln(σ2

e) +

[
(−θ)2(k+1)(1− (−θT )2)

1− (−θT )2(k+1)

]
+Op(T−1/2).

Lemma 1 is a consequence of Theorem 2 and Lemma A.5.

3 Proof of Theorem 3.

The strategy of the proof is to first determine the rate of increase of k through a global minimization

of the objective function. Once this rate is found, the proportionality factor is deduced. In the

following, we use the notation k ∝ f(T ) for the case where k/f(T ) → c for some finite constant c

strictly above 0. We also let d ≥ 0 be a finite constant not necessarily the same throughout.

For both the IC and MIC, it is readily seen that the objective function is Op(CT /T
1/2) when

k/T 1/2 → κ (> 0), and that it is Op(CTk/T ) when k/T 1/2 → ∞. Hence, irrespective of the choice

of CT , having k/T 1/2 → κ will always, in large samples, yield a smaller value of the objective

function than with k/T 1/2 → ∞. Hence, we only need to compare the cases k/T 1/2 → κ (> 0) and

k/T 1/2 → 0.

We start with the analysis for the IC. When k/T 1/2 → 0, there are two cases of interest.

The first is when k2CT /T → d in which case the objective function is Op(1/k). The minimal

value is obtained if k is chosen as the maximal value permissible which means k ∝ √
T/CT . The

minimized objective function is then Op(
√
CT /

√
T ). The second case is when T/k2CT → d and

the objective function is Op(kCT /T ) which is minimized by taking the minimal permissible rate

of increase for k, again k ∝ √
T/CT and the minimized objective function is then Op(

√
CT /

√
T ).

So the case with k/T 1/2 → κ (> 0) yields an objective function of order Op(CT /T
1/2) and the

case k/T 1/2 → 0 an objective function of order Op(
√
CT /

√
T ). Hence, k ∝ √

T/CT . To derive

the constant of proportionality, note that if CT is fixed, k = κ
√
T and the objective function is

(ignoring constants)
2δ√
T
ϑ(κ) +

CT√
T
κ.

Taking derivatives and equating to zero yields the stated solution. When CT → ∞ as T → ∞, the

objective function (ignoring constants) is

1
κ
√
T/CT

+ κ
CT

√
T/CT

T
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and the value of κ that minimizes this expression is 1. Consider now the MIC(k). The first case

is where
CT

k
→ d and

CTk
2

T
→ d . (A.8)

Then the objective function when k/T 1/2 → 0 is Op(k−1). Hence, the highest possible rate is chosen

and is given by k ∝ √
T/CT and the minimized objective function is of order Op(

√
CT /T ). Since

the objective function when k/T 1/2 → κ (> 0) is Op(CT /T
1/2), we have k ∝ T 1/2 if CT is fixed and

k ∝ √
T/CT if CT → ∞. However, in view of the requirement that CT /k → d this implies the need

for C3
T /T → d. To obtain the constant of proportionality when CT is fixed, we substitute k = κ

√
T

in (16) and equate its first derivative of (16) to zero and solve for κ. When CT is increasing, we

substitute k = κ
√
T/CT in (15), and again equate the first derivative to zero and solve for κ.

Consider now the case where C3
T /T → ∞. There are two cases to cover when either of the

conditions in (A.8) is not satisfied. Suppose first that k3/T → d in which case k/CT → d. The

objective function in the case k/T 1/2 → 0 is Op(CT /k
2) and the highest rate for k is chosen, namely

k ∝ T 1/3. The minimized objective function is then of order Op(CT /T
2/3) which is of a smaller

order than the case with k/T 1/2 → κ (> 0). Hence, k ∝ T 1/3 is the resulting rate. If T/k3 → d, in

which case CTk
2/T → ∞, the objective function is of order Op(kCT /T ) and the smallest rate for k

is optimal. So again, k ∝ T 1/3 and the minimized objective function is also of order Op(CT /T
2/3).

To obtain the factor of proportionality, let k = κT 1/3. The objective function is then (ignoring

constants)
1

κT 1/3
+

CTZ1

κ2T 2/3
+
CTκ

T 2/3
.

When C3
T /T → ∞, the first term is negligible compared to the last two. Hence, minimizing the

last two terms with respect to κ yields κ = (2Z1)1/3.
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Table 1: Asymptotic Critical Values

Percentile MZGLS
α MZGLS

t ,ADF GLS MSBGLS P GLS
T ,MP GLS

T

Case: p = 0, c̄ = −7.0
.01 -13.8 -2.58 .174 1.78
.05 -8.1 -1.98 .233 3.17
.10 -5.7 -1.62 .275 4.45

Case: p = 1, c̄ = −13.5
.01 -23.8 -3.42 .143 4.03
.05 -17.3 -2.91 .168 5.48
.10 -14.2 -2.62 .185 6.67

For MZGLS
α , MZGLS

t and ADFGLS with p = 0, the critical values are from Fuller (1976).
The other entries were obtained using 20,000 simulations
and 5,000 steps to approximate the Wiener processes.



Table 2.a: Exact Size of the Tests at Selected Values of k : p = 0.

MA Case T θ k = 0 1 2 3 4 5 6 7 8 9 10
100 -0.8 0.994 0.904 0.808 0.740 0.698 0.672 0.654 0.644 0.636 0.633 0.627

Z̄GLS
α -0.5 0.618 0.322 0.224 0.193 0.176 0.181 0.182 0.192 0.197 0.207 0.216

0.0 0.072 0.082 0.089 0.104 0.112 0.125 0.137 0.152 0.164 0.179 0.190
0.5 0.010 0.143 0.056 0.116 0.100 0.129 0.135 0.153 0.158 0.179 0.187
0.8 0.006 0.172 0.036 0.147 0.071 0.155 0.108 0.166 0.138 0.188 0.169

250 -0.8 0.987 0.861 0.725 0.641 0.592 0.559 0.539 0.524 0.515 0.507 0.504
-0.5 0.553 0.258 0.166 0.124 0.112 0.110 0.106 0.112 0.111 0.115 0.116
0.0 0.060 0.062 0.063 0.066 0.069 0.075 0.077 0.081 0.087 0.087 0.092
0.5 0.008 0.111 0.047 0.080 0.065 0.077 0.076 0.083 0.084 0.091 0.095
0.8 0.004 0.145 0.030 0.108 0.049 0.099 0.062 0.096 0.074 0.100 0.085

100 -0.8 0.990 0.828 0.543 0.319 0.187 0.129 0.095 0.086 0.079 0.077 0.078
M̄ZGLS

α -0.5 0.595 0.241 0.126 0.097 0.084 0.092 0.097 0.106 0.120 0.132 0.141
0.0 0.065 0.070 0.082 0.095 0.104 0.119 0.130 0.145 0.158 0.172 0.185
0.5 0.008 0.139 0.054 0.113 0.097 0.126 0.132 0.150 0.156 0.176 0.186
0.8 0.004 0.168 0.035 0.143 0.068 0.153 0.106 0.164 0.136 0.186 0.168

250 -0.8 0.987 0.828 0.597 0.407 0.260 0.166 0.107 0.075 0.055 0.044 0.035
-0.5 0.545 0.227 0.121 0.081 0.067 0.063 0.062 0.066 0.070 0.071 0.074
0.0 0.058 0.059 0.061 0.064 0.066 0.072 0.076 0.079 0.084 0.084 0.088
0.5 0.008 0.110 0.045 0.078 0.064 0.076 0.075 0.082 0.083 0.090 0.095
0.8 0.004 0.145 0.029 0.108 0.048 0.099 0.061 0.095 0.074 0.100 0.084

100 -0.8 0.991 0.843 0.624 0.455 0.322 0.243 0.187 0.157 0.129 0.114 0.104
DFGLS -0.5 0.605 0.263 0.147 0.108 0.089 0.087 0.081 0.079 0.076 0.078 0.075

0.0 0.073 0.070 0.072 0.074 0.072 0.072 0.070 0.070 0.071 0.074 0.073
0.5 0.010 0.124 0.046 0.081 0.063 0.075 0.074 0.077 0.078 0.075 0.071
0.8 0.005 0.150 0.030 0.107 0.043 0.089 0.054 0.082 0.059 0.080 0.064

250 -0.8 0.985 0.823 0.613 0.449 0.332 0.247 0.194 0.155 0.128 0.109 0.099
-0.5 0.535 0.227 0.123 0.084 0.068 0.064 0.062 0.062 0.061 0.058 0.060
0.0 0.057 0.054 0.054 0.053 0.056 0.055 0.058 0.058 0.056 0.055 0.054
0.5 0.009 0.103 0.043 0.070 0.055 0.061 0.057 0.058 0.057 0.060 0.060
0.8 0.004 0.133 0.027 0.090 0.039 0.074 0.046 0.068 0.049 0.065 0.051

AR Case T ρ k = 0 1 2 3 4 5 6 7 8 9 10
100 -0.8 0.802 0.286 0.286 0.295 0.300 0.308 0.314 0.322 0.328 0.340 0.346

Z̄GLS
α 0.8 0.000 0.102 0.115 0.135 0.143 0.158 0.172 0.191 0.201 0.217 0.226

250 -0.8 0.737 0.170 0.171 0.171 0.173 0.176 0.179 0.182 0.185 0.184 0.183
0.8 0.000 0.069 0.071 0.077 0.082 0.084 0.090 0.094 0.093 0.099 0.100

100 -0.8 0.784 0.027 0.035 0.050 0.065 0.081 0.089 0.113 0.120 0.140 0.149
M̄ZGLS

α 0.8 0.000 0.100 0.114 0.134 0.142 0.157 0.170 0.190 0.199 0.216 0.225
250 -0.8 0.730 0.043 0.041 0.047 0.048 0.050 0.058 0.062 0.064 0.071 0.071

0.8 0.000 0.069 0.071 0.077 0.082 0.084 0.090 0.094 0.092 0.099 0.100
100 -0.8 0.791 0.073 0.074 0.077 0.079 0.080 0.076 0.081 0.075 0.083 0.078

DFGLS 0.8 0.000 0.066 0.070 0.069 0.068 0.069 0.071 0.072 0.071 0.077 0.079
250 -0.8 0.718 0.057 0.054 0.056 0.054 0.055 0.057 0.057 0.057 0.059 0.058

0.8 0.000 0.059 0.061 0.063 0.062 0.060 0.060 0.060 0.058 0.058 0.054



Table 2.b: Exact Size of of the Tests at Selected Values of k: p = 1.

MA Case T θ k = 0 1 2 3 4 5 6 7 8 9 10
100 -0.8 1.000 0.994 0.965 0.940 0.918 0.906 0.893 0.888 0.882 0.882 0.883

Z̄GLS
α -0.5 0.810 0.470 0.340 0.299 0.290 0.309 0.323 0.358 0.376 0.413 0.450

0.0 0.053 0.076 0.100 0.136 0.169 0.222 0.259 0.313 0.346 0.400 0.430
0.5 0.001 0.169 0.059 0.163 0.155 0.226 0.253 0.303 0.343 0.397 0.432
0.8 0.001 0.219 0.023 0.229 0.091 0.284 0.190 0.350 0.297 0.422 0.389

250 -0.8 1.000 0.992 0.960 0.927 0.899 0.875 0.859 0.848 0.839 0.833 0.830
-0.5 0.801 0.404 0.253 0.202 0.181 0.174 0.176 0.179 0.188 0.199 0.209
0.0 0.047 0.057 0.064 0.077 0.081 0.094 0.104 0.113 0.129 0.142 0.154
0.5 0.002 0.127 0.037 0.092 0.071 0.097 0.095 0.120 0.122 0.143 0.153
0.8 0.001 0.176 0.014 0.129 0.038 0.131 0.068 0.139 0.099 0.162 0.136

100 -0.8 1.000 0.925 0.592 0.345 0.220 0.185 0.159 0.163 0.163 0.185 0.183
M̄ZGLS

α -0.5 0.750 0.252 0.104 0.093 0.099 0.132 0.159 0.204 0.234 0.285 0.317
0.0 0.032 0.055 0.080 0.115 0.152 0.206 0.243 0.300 0.332 0.390 0.419
0.5 0.001 0.161 0.054 0.155 0.148 0.219 0.246 0.299 0.338 0.392 0.427
0.8 0.001 0.211 0.021 0.224 0.087 0.277 0.186 0.346 0.294 0.417 0.386

250 -0.8 1.000 0.978 0.800 0.514 0.276 0.147 0.087 0.058 0.048 0.040 0.036
-0.5 0.786 0.311 0.126 0.074 0.057 0.059 0.065 0.069 0.082 0.100 0.106
0.0 0.040 0.049 0.057 0.070 0.077 0.088 0.099 0.108 0.124 0.136 0.149
0.5 0.002 0.124 0.034 0.090 0.069 0.095 0.094 0.117 0.121 0.142 0.150
0.8 0.001 0.174 0.014 0.128 0.036 0.130 0.066 0.137 0.098 0.160 0.135

100 -0.8 1.000 0.977 0.815 0.600 0.415 0.293 0.203 0.167 0.125 0.116 0.098
DFGLS -0.5 0.838 0.375 0.176 0.112 0.087 0.084 0.074 0.070 0.068 0.069 0.065

0.0 0.070 0.072 0.067 0.072 0.069 0.073 0.072 0.071 0.069 0.068 0.061
0.5 0.003 0.160 0.045 0.091 0.064 0.073 0.062 0.066 0.061 0.067 0.062
0.8 0.002 0.209 0.021 0.127 0.036 0.099 0.046 0.085 0.053 0.076 0.061

250 -0.8 1.000 0.984 0.875 0.685 0.504 0.362 0.259 0.194 0.150 0.120 0.099
-0.5 0.809 0.352 0.161 0.101 0.072 0.061 0.059 0.053 0.053 0.056 0.052
0.0 0.053 0.055 0.055 0.056 0.056 0.054 0.054 0.054 0.055 0.055 0.054
0.5 0.002 0.126 0.034 0.071 0.048 0.057 0.053 0.054 0.052 0.056 0.050
0.8 0.001 0.172 0.015 0.098 0.024 0.075 0.032 0.063 0.038 0.058 0.042

AR Case T ρ k = 0 1 2 3 4 5 6 7 8 9 10
100 -0.8 0.960 0.497 0.509 0.526 0.549 0.574 0.593 0.616 0.640 0.669 0.690

Z̄GLS
α 0.8 0.000 0.123 0.162 0.213 0.252 0.312 0.351 0.410 0.441 0.489 0.514

250 -0.8 0.956 0.319 0.327 0.330 0.335 0.345 0.352 0.360 0.369 0.375 0.379
0.8 0.000 0.070 0.077 0.089 0.099 0.119 0.129 0.150 0.159 0.176 0.183

100 -0.8 0.941 0.001 0.008 0.030 0.058 0.104 0.140 0.191 0.233 0.290 0.329
M̄ZGLS

α 0.8 0.000 0.121 0.160 0.211 0.249 0.309 0.349 0.408 0.439 0.487 0.513
250 -0.8 0.952 0.011 0.015 0.020 0.028 0.037 0.050 0.062 0.076 0.092 0.106

0.8 0.000 0.070 0.076 0.089 0.099 0.119 0.128 0.150 0.159 0.175 0.183
100 -0.8 0.967 0.069 0.067 0.067 0.060 0.068 0.059 0.065 0.063 0.065 0.065

DFGLS 0.8 0.000 0.072 0.067 0.070 0.071 0.069 0.069 0.074 0.066 0.072 0.071
250 -0.8 0.959 0.052 0.051 0.052 0.050 0.049 0.050 0.050 0.051 0.052 0.053

0.8 0.000 0.057 0.055 0.057 0.054 0.055 0.058 0.056 0.055 0.059 0.058



Table 3.a: Values of of the proportionalinity factor κ

p = 0 p = 1
T \ δ 0.50 1.00 1.50 2.00 5.00 8.00 0.50 1.00 1.50 2.00 5.00 8.00
100 bic 0.99 0.96 0.93 0.89 0.67 0.54 0.99 0.96 0.93 0.89 0.67 0.54

aic 0.69 0.65 0.61 0.57 0.39 0.30 0.69 0.65 0.61 0.57 0.39 0.30
mbic 3.59 1.73 1.24 1.04 0.68 0.54 6.34 2.89 1.87 0.40 0.71 0.54
maic 1.70 0.88 0.68 0.59 0.39 0.30 2.96 1.37 0.90 0.70 0.39 0.30

150 bic 0.99 0.96 0.93 0.90 0.69 0.55 0.99 0.96 0.93 0.90 0.69 0.55
aic 0.69 0.65 0.61 0.57 0.39 0.30 0.69 0.65 0.61 0.57 0.39 0.30

mbic 3.58 1.73 1.24 1.04 0.69 0.55 6.41 2.92 1.88 1.42 0.72 0.56
maic 1.63 0.85 0.67 0.59 0.39 0.30 2.87 1.32 0.88 0.69 0.39 0.30

250 bic 0.99 0.97 0.94 0.90 0.70 0.57 0.99 0.67 0.94 0.90 0.70 0.57
aic 0.69 0.65 0.61 0.57 0.39 0.30 0.69 0.65 0.61 0.57 0.39 0.30

mbic 3.55 1.71 1.24 1.04 0.71 0.57 6.46 2.93 1.89 1.42 0.73 0.57
maic 1.55 0.82 0.66 0.58 0.39 0.30 2.75 1.27 0.85 0.67 0.39 0.30

500 bic 0.99 0.97 0.94 0.91 0.72 0.58 0.99 0.97 0.94 0.91 0.72 0.58
aic 0.69 0.65 0.61 0.57 0.39 0.30 0.69 0.65 0.61 0.57 0.39 0.30

mbic 3.47 1.68 1.23 1.04 0.72 0.58 6.46 2.92 1.89 1.42 0.75 0.59
maic 1.44 0.79 0.65 0.58 0.39 0.30 2.60 1.20 0.81 0.65 0.39 0.30

5000 bic 0.99 0.98 0.96 0.93 0.76 0.63 0.99 0.98 0.96 0.93 0.76 0.63
aic 0.69 0.65 0.61 0.57 0.39 0.30 0.69 0.65 0.61 0.57 0.39 0.30

mbic 3.06 1.52 1.16 1.02 0.76 0.63 6.12 2.74 1.78 1.36 0.78 0.63
maic 1.14 0.71 0.62 0.57 0.39 0.30 2.12 1.00 0.72 0.60 0.39 0.30

50000 bic 0.99 0.98 0.96 0.94 0.79 0.66 0.99 0.98 0.96 0.94 0.79 0.66
aic 0.69 0.65 0.61 0.57 0.39 0.30 0.69 0.65 0.61 0.57 0.39 0.30

mbic 2.56 1.34 1.08 0.99 0.79 0.67 5.43 2.42 1.59 1.25 0.80 0.66
maic 0.92 0.67 0.61 0.57 0.39 0.30 1.69 0.85 0.66 0.58 0.39 0.30



Table 3.b: k Chosen by Minimizing the Asymptotic Approximation of the MIC and IC (18)
p = 0 p = 1

T \ δ 0.50 1.00 1.50 2.00 5.00 8.00 0.50 1.00 1.50 2.00 5.00 8.00
100 bic 4 4 4 4 3 2 4 4 4 4 3 2

aic 6 6 6 5 3 3 6 6 6 5 3 3
mbic 16 8 5 4 3 2 29 13 8 6 3 2
maic 17 8 6 5 3 3 29 13 9 7 3 3

150 bic 5 5 5 4 3 3 5 5 5 4 3 3
aic 8 8 7 7 4 3 8 8 7 7 4 3

mbic 19 9 6 5 3 3 35 15 10 7 3 3
maic 20 10 8 7 4 3 35 16 10 8 4 3

250 bic 6 6 6 6 4 3 6 6 6 6 4 3
aic 10 10 9 9 6 4 10 10 9 9 6 4

mbic 23 11 8 7 4 3 43 19 12 9 4 3
maic 24 13 10 9 6 4 43 20 13 10 6 4

500 bic 8 8 8 8 6 5 8 8 8 8 6 5
aic 15 14 13 12 8 6 15 14 13 12 8 6

mbic 31 15 11 9 6 5 57 26 16 12 6 5
maic 32 17 14 13 8 6 58 27 18 14 8 6

5000 bic 24 23 23 22 18 15 24 23 23 22 18 15
aic 49 46 43 40 27 21 49 46 43 40 27 21

mbic 74 37 28 24 18 15 148 66 43 33 19 15
maic 80 50 44 40 27 21 150 71 50 42 27 21

50000 bic 67 66 65 63 53 45 67 66 65 63 53 45
aic 154 147 137 128 88 68 154 147 137 128 88 68

mbic 174 91 74 67 54 45 369 164 108 85 54 45
maic 207 151 138 128 88 68 379 190 147 130 88 68



Table 4.a: Selected k for p = 0.
MA case: vt = (1 + θL)et

T 100 250
θ k∗

mz k∗
dfgls kbic kaic kmbic kmaic k∗

mz k∗
dfgls kbic kaic kmbic kmaic

-0.8 8 8 2 4 5 6 7 10 4 6 5 7
-0.7 6 10 2 3 3 4 6 7 3 5 4 5
-0.6 5 7 1 2 2 3 5 6 2 4 3 4
-0.5 3 7 1 2 2 2 4 4 2 3 2 3
-0.4 2 4 1 2 1 2 2 2 1 2 2 2
-0.3 2 3 1 1 1 1 2 2 1 2 1 2
-0.2 1 2 0 1 1 1 1 1 1 1 1 1
-0.1 1 1 0 0 0 0 1 1 0 1 0 1
0.0 0 0 0 0 0 0 0 0 0 0 0 0
0.1 0 0 0 0 0 0 0 0 0 1 0 1
0.2 0 0 0 1 0 1 1 1 1 1 1 1
0.3 2 2 1 1 1 1 2 1 1 2 1 2
0.4 2 2 1 2 1 2 2 2 1 2 2 2
0.5 2 2 1 2 2 2 2 2 2 3 2 3
0.6 2 2 2 3 2 3 2 2 2 4 2 4
0.7 2 2 2 4 2 4 2 2 3 5 3 5
0.8 2 2 3 5 3 5 2 2 4 7 4 7

AR case: (1− ρL)vt = et

100 250
ρ k∗

mz k∗
dfgls kbic kaic kmbic kmaic k∗

mz k∗
dfgls kbic kaic kmbic kmaic

-0.8 1 1 1 1 1 1 1 1 1 1 1 1
-0.7 1 1 1 1 1 1 1 1 1 1 1 1
-0.6 1 1 1 1 1 1 1 1 1 1 1 1
-0.5 1 1 1 1 1 1 1 1 1 1 1 1
-0.4 1 1 1 1 1 1 1 1 1 1 1 1
-0.3 1 1 1 1 1 1 1 1 1 1 1 1
-0.2 1 1 0 1 1 1 1 1 1 1 1 1
-0.1 1 1 0 0 0 0 1 1 0 1 0 1
0.0 0 0 0 0 0 0 0 0 0 0 0 0
0.1 0 0 0 0 0 0 0 0 0 1 0 1
0.2 1 0 0 1 0 1 1 1 1 1 1 1
0.3 1 1 1 1 1 1 1 1 1 1 1 1
0.4 0 1 1 1 1 1 1 1 1 1 1 1
0.5 1 1 1 1 1 1 1 1 1 1 1 1
0.6 1 1 1 1 1 1 1 1 1 1 1 1
0.7 1 1 1 1 1 1 1 1 1 1 1 1
0.8 1 1 1 1 1 1 1 1 1 1 1 1

Note: The entries are the median values of the selected k using 5,000 replications



Table 4.b: Selected k for p = 1.

MA case: vt = (1 + θL)et

T 100 250
θ k∗

mz k∗
dfgls kbic kaic kmbic kmaic k∗

mz k∗
dfgls kbic kaic kmbic kmaic

-0.8 6 10 0 2 6 6 7 10 3 5 7 8
-0.7 4 8 1 2 4 5 5 8 3 4 5 6
-0.6 4 6 1 2 3 4 4 6 2 3 4 4
-0.5 3 6 1 2 2 3 3 4 2 3 3 3
-0.4 2 3 1 1 2 2 2 3 1 2 2 2
-0.3 2 2 0 1 1 1 2 2 1 1 1 2
-0.2 1 4 0 1 1 1 1 1 1 1 1 1
-0.1 0 1 0 0 0 1 1 1 0 1 0 1
0.0 0 0 0 0 0 0 0 0 0 0 0 0
0.1 1 0 0 1 0 0 1 0 0 1 0 1
0.2 1 2 0 1 0 1 1 1 1 1 0 1
0.3 0 2 1 1 0 1 2 2 1 2 1 2
0.4 2 2 1 2 1 2 2 2 1 2 2 2
0.5 2 2 1 2 2 2 2 2 2 3 2 3
0.6 2 2 2 3 2 2 2 2 3 4 2 4
0.7 2 2 2 4 2 4 2 2 3 5 3 5
0.8 2 2 3 5 2 4 4 4 4 7 4 6

AR case: (1− ρL)vt = et

100 250
ρ k∗

mz k∗
dfgls kbic kaic kmbic kmaic k∗

mz k∗
dfgls kbic kaic kmbic kmaic

-0.8 3 1 1 1 1 1 4 1 1 1 1 1
-0.7 3 1 1 1 1 1 1 1 1 1 1 1
-0.6 2 1 1 1 1 1 1 1 1 1 1 1
-0.5 1 1 1 1 1 1 1 1 1 1 1 1
-0.4 1 1 1 1 1 1 1 1 1 1 1 1
-0.3 1 1 1 1 1 1 1 1 1 1 1 1
-0.2 1 1 0 1 1 1 1 1 1 1 1 1
-0.1 0 1 0 0 0 0 0 1 0 1 0 1
0.0 0 0 0 0 0 0 0 0 0 0 0 0
0.1 1 0 0 1 0 0 1 0 0 1 0 1
0.2 1 1 1 1 0 1 1 1 1 1 0 1
0.3 1 1 1 1 0 1 1 1 1 1 1 1
0.4 1 1 1 1 1 1 1 1 1 1 1 1
0.5 1 1 1 1 1 1 1 1 1 1 1 1
0.6 1 1 1 1 1 1 1 1 1 1 1 1
0.7 1 1 1 1 1 1 1 1 1 1 1 1
0.8 1 1 1 1 1 1 1 1 1 1 1 1

Note: The entries are the median values of the selected k using 5,000 replications



Table 5.a: Size of the Tests; p = 0.

MA case: vt = et + θet−1, et ∼ N(0, 1)

T θ Mmic MGLS
mic M̄GLS

mic DFbic DFGLS
bic DFGLS

t DFGLS
mic PTbic P̄GLS

Tmic M̄PGLS
Tmic

100 -0.8 0.058 0.041 0.036 0.394 0.411 0.356 0.107 0.429 0.034 0.036
-0.5 0.028 0.013 0.056 0.082 0.104 0.095 0.073 0.109 0.048 0.051
0.0 0.018 0.005 0.043 0.072 0.077 0.072 0.050 0.094 0.036 0.040
0.5 0.027 0.013 0.062 0.081 0.082 0.080 0.048 0.118 0.048 0.054
0.8 0.042 0.018 0.067 0.095 0.097 0.091 0.039 0.145 0.054 0.062

150 -0.8 0.034 0.018 0.026 0.407 0.390 0.304 0.095 0.420 0.025 0.027
-0.5 0.025 0.009 0.054 0.085 0.093 0.086 0.066 0.091 0.047 0.049
0.0 0.017 0.005 0.049 0.062 0.075 0.070 0.051 0.085 0.040 0.046
0.5 0.028 0.011 0.054 0.066 0.072 0.071 0.046 0.090 0.047 0.050
0.8 0.040 0.013 0.060 0.079 0.077 0.070 0.034 0.108 0.047 0.052

250 -0.8 0.016 0.006 0.022 0.370 0.323 0.236 0.088 0.380 0.021 0.021
-0.5 0.036 0.012 0.058 0.075 0.089 0.079 0.063 0.086 0.049 0.054
0.0 0.021 0.006 0.047 0.059 0.062 0.062 0.045 0.069 0.039 0.042
0.5 0.034 0.009 0.056 0.059 0.068 0.069 0.045 0.078 0.047 0.051
0.8 0.044 0.014 0.059 0.066 0.062 0.058 0.042 0.081 0.050 0.053

AR case: vt = ρvt−1 + et, et ∼ N(0, 1)

T ρ Mmic MGLS
mic M̄GLS

mic DFbic DFGLS
bic DFGLS

t DFGLS
mic PTbic P̄GLS

Tmic M̄PGLS
Tmic

100 -0.8 0.002 0.000 0.015 0.067 0.082 0.076 0.049 0.063 0.013 0.014
-0.5 0.010 0.003 0.037 0.067 0.076 0.071 0.046 0.087 0.028 0.033
0.5 0.029 0.012 0.064 0.082 0.087 0.082 0.053 0.108 0.051 0.057
0.8 0.047 0.025 0.090 0.091 0.081 0.077 0.053 0.125 0.068 0.077

150 -0.8 0.003 0.000 0.021 0.062 0.069 0.067 0.048 0.051 0.019 0.020
-0.5 0.013 0.004 0.039 0.060 0.074 0.069 0.045 0.072 0.031 0.035
0.5 0.030 0.010 0.055 0.063 0.069 0.066 0.047 0.081 0.046 0.051
0.8 0.043 0.017 0.070 0.067 0.071 0.069 0.047 0.092 0.055 0.063

250 -0.8 0.007 0.001 0.029 0.056 0.057 0.054 0.040 0.049 0.026 0.028
-0.5 0.022 0.006 0.046 0.052 0.057 0.058 0.047 0.062 0.040 0.042
0.5 0.028 0.008 0.052 0.056 0.061 0.061 0.045 0.070 0.043 0.046
0.8 0.037 0.010 0.060 0.060 0.061 0.063 0.051 0.073 0.051 0.056

Notes: The results reported for the Mmic tests are those corresponding to MZα. Since the numerical results for

MZα, MZt and MSB are similar, we use the label M in the tables. Three variants of the M tests are considered.

The Mmic is the original MZα, the MGLS
mic uses GLS detrended data to construct the statistic but uses least squares

detrending in the estimation of s2
AR, and M̄GLS

mic use GLS detrending at c̄ = −7.0 when constructing s2
AR. When the

BIC is used, kmax = 6 and kmin = 3 as in ERS. For the MIC, kmax = 12(T/100)1/4, kmin = 0 and CT = 2 giving

the MAIC. The DF GLS
t is based on the 10% sequential t test for the significance of the last lag.



Table 5.b: Size-Adjusted Power of the Tests; p = 0.

MA case: vt = et + θet−1, et ∼ N(0, 1)

T θ Mmic MGLS
mic M̄GLS

mic DFbic DFGLS
bic DFGLS

t DFGLS
mic PTbic P̄GLS

Tmic M̄PGLS
Tmic

100 -0.8 0.193 0.237 0.311 0.241 0.419 0.412 0.385 0.313 0.326 0.311
-0.5 0.253 0.351 0.344 0.191 0.448 0.429 0.385 0.414 0.362 0.355
0.0 0.315 0.452 0.458 0.131 0.432 0.436 0.454 0.418 0.471 0.442
0.5 0.259 0.332 0.324 0.122 0.414 0.402 0.370 0.402 0.351 0.347
0.8 0.180 0.257 0.264 0.134 0.366 0.335 0.343 0.348 0.296 0.281

150 -0.8 0.180 0.252 0.296 0.262 0.448 0.417 0.415 0.381 0.307 0.292
-0.5 0.267 0.387 0.384 0.195 0.450 0.430 0.393 0.421 0.398 0.396
0.0 0.339 0.463 0.460 0.152 0.422 0.405 0.454 0.413 0.467 0.453
0.5 0.263 0.382 0.380 0.160 0.441 0.418 0.405 0.429 0.393 0.398
0.8 0.233 0.346 0.363 0.147 0.382 0.362 0.404 0.387 0.377 0.374

250 -0.8 0.190 0.319 0.334 0.287 0.441 0.420 0.437 0.419 0.335 0.327
-0.5 0.264 0.404 0.396 0.201 0.477 0.455 0.428 0.458 0.425 0.409
0.0 0.338 0.481 0.477 0.152 0.464 0.446 0.483 0.455 0.485 0.478
0.5 0.258 0.411 0.411 0.169 0.439 0.424 0.431 0.441 0.422 0.413
0.8 0.246 0.385 0.395 0.143 0.432 0.413 0.419 0.434 0.406 0.405

AR case: vt = ρvt−1 + et, et ∼ N(0, 1)

T ρ Mmic MGLS
mic M̄GLS

mic DFbic DFGLS
bic DFGLS

t DFGLS
mic PTbic P̄GLS

Tmic M̄PGLS
Tmic

100 -0.8 0.246 0.349 0.350 0.154 0.433 0.429 0.404 0.384 0.362 0.342
-0.5 0.330 0.437 0.432 0.145 0.428 0.420 0.455 0.405 0.452 0.437
0.5 0.279 0.365 0.368 0.115 0.338 0.330 0.385 0.379 0.385 0.374
0.8 0.196 0.251 0.241 0.084 0.297 0.292 0.298 0.261 0.276 0.269

150 -0.8 0.275 0.398 0.416 0.161 0.477 0.437 0.432 0.442 0.419 0.409
-0.5 0.332 0.453 0.454 0.161 0.404 0.390 0.468 0.423 0.463 0.458
0.5 0.307 0.419 0.411 0.140 0.417 0.410 0.446 0.407 0.436 0.430
0.8 0.232 0.333 0.330 0.103 0.341 0.324 0.362 0.325 0.349 0.353

250 -0.8 0.325 0.479 0.472 0.157 0.485 0.480 0.493 0.468 0.477 0.471
-0.5 0.300 0.452 0.447 0.179 0.493 0.477 0.466 0.469 0.459 0.460
0.5 0.336 0.443 0.436 0.158 0.447 0.434 0.456 0.428 0.468 0.456
0.8 0.279 0.375 0.366 0.131 0.386 0.382 0.381 0.381 0.387 0.383

Note: Power is evaluated at ᾱ = 1 + c̄/T , c̄ = −7.0. These are are 0.93. 0.953 and 0.972 for T = 100, T = 150 and

T = 250, respectively.



Table 6.a: Size of the Tests; p = 1.

MA case: vt = et + θet−1, et ∼ N(0, 1)

T θ Mmic MGLS
mic M̄GLS

mic DFbic DFGLS
bic DFGLS

t DFGLS
mic PTbic P̄GLS

Tmic M̄PGLS
Tmic

100 -0.8 0.140 0.123 0.059 0.509 0.567 0.528 0.123 0.562 0.061 0.061
-0.5 0.037 0.025 0.035 0.092 0.107 0.111 0.069 0.145 0.036 0.036
0.0 0.011 0.005 0.018 0.075 0.074 0.078 0.039 0.161 0.017 0.018
0.5 0.032 0.022 0.048 0.084 0.085 0.094 0.038 0.190 0.046 0.047
0.8 0.048 0.033 0.056 0.096 0.105 0.109 0.017 0.250 0.053 0.056

150 -0.8 0.074 0.061 0.027 0.581 0.586 0.477 0.082 0.570 0.028 0.028
-0.5 0.032 0.017 0.028 0.087 0.103 0.104 0.049 0.114 0.028 0.029
0.0 0.017 0.008 0.023 0.066 0.067 0.072 0.038 0.111 0.023 0.024
0.5 0.025 0.016 0.032 0.068 0.084 0.085 0.029 0.142 0.032 0.034
0.8 0.058 0.035 0.058 0.080 0.088 0.085 0.018 0.181 0.055 0.057

250 -0.8 0.025 0.016 0.012 0.566 0.531 0.381 0.064 0.554 0.012 0.012
-0.5 0.031 0.016 0.033 0.094 0.105 0.099 0.048 0.103 0.034 0.035
0.0 0.023 0.011 0.029 0.056 0.059 0.065 0.038 0.083 0.030 0.031
0.5 0.032 0.012 0.037 0.062 0.066 0.070 0.028 0.097 0.036 0.037
0.8 0.059 0.032 0.059 0.062 0.067 0.060 0.026 0.119 0.059 0.060

AR case: vt = ρvt−1 + et, et ∼ N(0, 1)

T ρ Mmic MGLS
mic M̄GLS

mic DFbic DFGLS
bic DFGLS

t DFGLS
mic PTbic P̄GLS

Tmic M̄PGLS
Tmic

100 -0.8 0.000 0.000 0.000 0.072 0.079 0.084 0.034 0.067 0.001 0.000
-0.5 0.006 0.003 0.012 0.071 0.074 0.077 0.037 0.122 0.013 0.013
0.5 0.033 0.021 0.042 0.076 0.083 0.088 0.038 0.178 0.040 0.043
0.8 0.081 0.056 0.093 0.081 0.086 0.091 0.043 0.210 0.080 0.085

150 -0.8 0.001 0.000 0.003 0.061 0.062 0.069 0.028 0.043 0.001 0.004
-0.5 0.017 0.006 0.024 0.059 0.070 0.075 0.038 0.090 0.014 0.023
0.5 0.037 0.018 0.044 0.056 0.070 0.074 0.039 0.127 0.041 0.043
0.8 0.045 0.022 0.056 0.063 0.066 0.073 0.043 0.142 0.056 0.055

250 -0.8 0.001 0.000 0.003 0.057 0.054 0.058 0.028 0.009 0.004 0.004
-0.5 0.017 0.006 0.024 0.046 0.047 0.053 0.038 0.025 0.023 0.023
0.5 0.037 0.018 0.044 0.059 0.063 0.068 0.039 0.046 0.042 0.043
0.8 0.045 0.022 0.056 0.054 0.056 0.061 0.043 0.054 0.052 0.055

Notes: The results reported for the Mmic tests are those corresponding to MZα. Since the numerical results for

MZα, MZt and MSB are similar, we use the label M in the tables. Three variants of the M tests are considered.

The Mmic is the original MZα, the MGLS
mic uses GLS detrended data to construct the statistic but uses least squares

detrending in the estimation of s2
AR, and M̄GLS

mic use GLS detrending at c̄ = −13.5 when constructing s2
AR. When

the BIC is used, kmax = 6 and kmin = 3 as in ERS. For the MIC, kmax = 12(T/100)1/4, kmin = 0 and CT = 2

giving a MAIC. The DF GLS
t is based on the 10% t test for the significance of the last lag.



Table 6.b: Size-Adjusted Power of the Tests; p = 1.

MA case: vt = et + θet−1, et ∼ N(0, 1)

T θ Mmic MGLS
mic M̄GLS

mic DFbic DFGLS
bic DFGLS

t DFGLS
mic PTbic P̄GLS

Tmic M̄PGLS
Tmic

100 -0.8 0.296 0.266 0.348 0.283 0.398 0.414 0.357 0.355 0.350 0.348
-0.5 0.320 0.246 0.300 0.258 0.421 0.420 0.324 0.324 0.311 0.305
0.0 0.450 0.266 0.439 0.175 0.362 0.341 0.432 0.488 0.448 0.442
0.5 0.196 0.147 0.207 0.161 0.316 0.310 0.259 0.320 0.224 0.218
0.8 0.149 0.166 0.154 0.169 0.282 0.269 0.254 0.260 0.163 0.155

150 -0.8 0.236 0.269 0.316 0.309 0.444 0.416 0.354 0.326 0.316 0.314
-0.5 0.283 0.348 0.325 0.291 0.434 0.415 0.358 0.384 0.333 0.330
0.0 0.407 0.470 0.457 0.200 0.384 0.352 0.462 0.369 0.466 0.465
0.5 0.312 0.347 0.348 0.212 0.365 0.365 0.375 0.354 0.344 0.348
0.8 0.171 0.209 0.217 0.201 0.317 0.310 0.309 0.302 0.227 0.225

250 -0.8 0.247 0.285 0.296 0.371 0.460 0.430 0.375 0.406 0.300 0.297
-0.5 0.308 0.370 0.366 0.278 0.459 0.441 0.392 0.422 0.374 0.371
0.0 0.380 0.458 0.451 0.250 0.437 0.418 0.447 0.432 0.455 0.456
0.5 0.311 0.374 0.365 0.258 0.426 0.406 0.388 0.441 0.367 0.363
0.8 0.225 0.268 0.271 0.233 0.364 0.354 0.310 0.388 0.280 0.282

AR case: vt = ρvt−1 + et, et ∼ N(0, 1)

T ρ Mmic MGLS
mic M̄GLS

mic DFbic DFGLS
bic DFGLS

t DFGLS
mic PTbic P̄GLS

Tmic M̄PGLS
Tmic

100 -0.8 0.257 0.308 0.296 0.204 0.380 0.372 0.385 0.256 0.301 0.299
-0.5 0.332 0.396 0.382 0.205 0.367 0.366 0.431 0.303 0.398 0.393
0.5 0.235 0.265 0.270 0.133 0.262 0.264 0.286 0.247 0.279 0.280
0.8 0.114 0.127 0.129 0.098 0.167 0.165 0.206 0.144 0.150 0.144

150 -0.8 0.311 0.363 0.349 0.240 0.435 0.409 0.409 0.345 0.351 0.347
-0.5 0.388 0.433 0.423 0.240 0.404 0.376 0.437 0.385 0.438 0.429
0.5 0.296 0.338 0.345 0.207 0.338 0.313 0.366 0.333 0.358 0.355
0.8 0.189 0.211 0.218 0.133 0.239 0.228 0.251 0.211 0.228 0.224

250 -0.8 0.379 0.452 0.441 0.245 0.472 0.456 0.468 0.464 0.446 0.442
-0.5 0.372 0.453 0.451 0.300 0.509 0.484 0.445 0.445 0.452 0.457
0.5 0.331 0.387 0.385 0.233 0.391 0.372 0.392 0.401 0.395 0.388
0.8 0.259 0.280 0.288 0.189 0.314 0.292 0.289 0.312 0.285 0.284

Note: Power is evaluated at ᾱ = 1 + c̄/T , c̄ = −13.5. These are are 0.865, 0.910 and 0.946 for T = 100, T = 150 and

T = 250, respectively.



Table 7: Empirical Results for Inflation Series from the G7 countries.

USA Canada U.K. Japan Italy France Germany
AR(α) .95 .95 .93 .87 .92 .98 .92
MA(θ) -.32 -.51 -.55 -.42 -.27 -.72 -.54

BIC k 2 1 1 1 0 3 3
Z̄GLS

α -4.04 -9.63b -26.81a -34.12a -7.39c -5.70c -26.58a

M̄ZGLS
α -3.71 -8.13b -18.05a -23.95a -7.17c -3.49 -16.57a

D̄FGLS -1.37 -2.07b -3.31a -3.85a -1.95c -1.36 -3.00a

P̄GLS
T 7.39 3.36c 1.40a 1.01a 4.06c 7.92 1.96b

M̄PGLS
T 6.60 3.12b 1.41a 1.02a 3.42c 7.01 1.98b

MAIC k 2 2 8 12 5 7 5
Z̄GLS

α -4.04 -6.98c -14.75a -13.35a -2.71 -3.27 -18.83a

M̄ZGLS
α -3.71 -5.48 -6.00c -3.17 -2.49 -1.07 -8.82b

D̄FGLS -1.37 -1.69c 1.77c -1.33 -1.08 -0.77 -2.21b

PGLS
T 7.39 4.92 4.13c 7.64 11.68 25.85 3.42c

M̄PGLS
T 6.60 4.58 4.17c 7.73 9.83 22.89 3.44c

Note: a, b and c denotes a statistic significant at the 1%, 5% and 10% level, respectively.



Table 3.a: Values of of the proportionalinity factor κ

T= 100 T=150 T=250 T=500 T=5000
δ bic aic mbic maic bic aic mbic maic bic aic mbic maic bic aic mbic maic bic aic mbic maic bic

p = 0
.5 .99 .69 3.59 1.70 .99 .69 3.58 1.63 .99 .69 3.55 1.55 .99 .69 3.47 1.44 .99 .69 3.06 1.14 .99
1.0 .96 .65 1.73 .88 .96 .65 1.73 .85 .97 .65 1.71 .82 .97 .65 1.68 .79 .98 .65 1.52 .71 .98
1.5 .93 .61 1.24 .68 .93 .61 1.24 .67 .94 .61 1.24 .66 .94 .61 1.23 .65 .96 .61 1.16 .62 .96
2.0 .89 .57 1.04 .59 .90 .57 1.04 .59 .90 .57 1.04 .58 .91 .57 1.04 .58 .93 .57 1.02 .57 .94
5.0 .67 .39 .68 .39 .69 .39 .69 .39 .70 .39 .71 .39 .72 .39 .72 .39 .76 .39 .76 .39 .79
8.0 .54 .30 .54 .30 .55 .30 .55 .30 .57 .30 .57 .30 .58 .30 .58 .30 .63 .30 .63 .30 .66

p = 1
.5 .99 .69 6.34 2.96 .99 .69 6.41 2.87 .99 .69 6.46 2.75 .99 .69 6.46 2.60 .99 .69 6.12 2.12 .99
1.0 .96 .65 2.89 1.37 .96 .65 2.92 1.32 .67 .65 2.93 1.27 .97 .65 2.92 1.20 .98 .65 2.74 1.00 .98
1.5 .93 .61 1.87 .90 .93 .61 1.88 .88 .94 .61 1.89 .85 .94 .61 1.89 .81 .96 .61 1.78 .72 .96
2.0 .89 .57 .40 .70 .90 .57 1.42 .69 .90 .57 1.42 .67 .91 .57 1.42 .65 .93 .57 1.36 .60 .94
5.0 .67 .39 .71 .39 .69 .39 .72 .39 .70 .39 .73 .39 .72 .39 .75 .39 .76 .39 .78 .39 .79
8.0 .54 .30 .54 .30 .55 .30 .56 .30 .57 .30 .57 .30 .58 .30 .59 .30 .63 .30 .63 .30 .66

Table 3.b: k Chosen by Minimizing the Asymptotic Approximation of the MIC and IC (14)

T= 100 T=150 T=250 T=500 T=5000
δ bic aic mbic maic bic aic mbic maic bic aic mbic maic bic aic mbic maic bic aic mbic m

p = 0
.5 4 6 16 17 5 8 19 20 6 10 23 24 8 15 31 32 24 49 74
1.0 4 6 8 8 5 8 9 10 6 10 11 13 8 14 15 17 23 46 37
1.5 4 6 5 6 5 7 6 8 6 9 8 10 8 13 11 14 23 43 28
2.0 4 5 4 5 4 7 5 7 6 9 7 9 8 12 9 13 22 40 24
5.0 3 3 3 3 3 4 3 4 4 6 4 6 6 8 6 8 18 27 18
8.0 2 3 2 3 3 3 3 3 3 4 3 4 5 6 5 6 15 21 15

p = 1
.5 4 6 29 29 5 8 35 35 6 10 43 43 8 15 57 58 24 49 148
1.0 4 6 13 13 5 8 15 16 6 10 19 20 8 14 26 27 23 46 66
1.5 4 6 8 9 5 7 10 10 6 9 12 13 8 13 16 18 23 43 43
2.0 4 5 6 7 4 7 7 8 6 9 9 10 8 12 12 14 22 40 33
5.0 3 3 3 3 3 4 3 4 4 6 4 6 6 8 6 8 18 27 19
8.0 2 3 2 3 3 3 3 3 3 4 3 4 5 6 5 6 15 21 15
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