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1. Introduction

The split-sample approach may be employed for a purely econometric rationale, such as
determining whether a method is over�tting the in-sample data.

Modeling the term structure of interest rates has been the subject of a vast

literature in economics and �nance. Characterizing interest rates as a function

of maturity embodies information about future movements in interest rates and

has direct implications for real economic activity. In �nancial markets, the term

structure is crucial to the pricing of interest-rate-contingent claims and �xed-

income derivative securities. Although many analytical interest rate models

imply particular shapes for the term structure, much of the empirical literature

has been concerned with �tting model parameters to the data in order to faith-

fully re�ect the interrelations among observed prices and yields. A wide gulf

exists between the speci�c predictions of theory and the complex empirically

derived forms of many term structure estimation models.

In this paper, rather than focusing on the adequacy of a speci�c empirical

approach, we consider the relative performance of a number of competing mod-

els. Our contribution to this literature is our emphasis on ex ante predictive

accuracy. Since the empirical methods commonly applied in this literature dif-

fer widely in their degree of parsimony, ex post comparisons are often �awed.

Other researchers have attempted to address this issue by estimating from a sub-

sample and predicting over the remainder of the sample, but this out-of-sample

approach tests a methodology that would hardly be attractive to practitioners.

Since one of the major goals of term structure estimation is the prediction of

near-term interest rate levels, changes, and spreads, we consider that the eval-

uation of short-term ex ante forecasts, or actual out-of-sample predictions, is

a very realistic approach for the comparison of competing methodologies. This

consideration is tempered by the fact that the observed term structure inevitably
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shifts during the forecast period, confounding identi�cation of prediction errors;

but in a very liquid market, the shifts are in the nature of common factors,

affecting all similar bonds in a common fashion. Our approach to these issues

focuses more sharply on how we might reasonably compare these competing

methodologies, using measures of ex ante predictive accuracy, than on the spe-

ci�c scores attained by each model, or the uncertainty generated by the forecast

horizon.

The purpose of this study is to apply ex ante measures of predictive accuracy

to six term structure estimation methods and evaluate their relative performance

over quarter-end dates for a six-year period. These methods can be considered

partial equilibrium, or �no-arbitrage� approaches to the term structure, in that

the no-arbitrage condition is used to empirically determine the shape of the

term structure from price and yield data on individual securities. Five of the six

methods utilize cubic splines to approximate the term structure, differing in the

choice of function which is splined and the degree to which the parameterization

is determined by the data. The sixth method is the well-known Nelson-Siegel

approach, in which the yield curve is derived from a second-order differential

equation applied to Treasury coupon STRIPS data. The spline methods are

applied to essentially all of the Treasury (bill, note, and bond) issues, so that

their performance approximates that achievable by a practitioner with access to

the entire Treasury curve. We analyze the models� performance on the quote

date and for each of the following �ve trading days, and generate an array of

parametric and non-parametric summary measures on the models�p erformance

by date, by tenor of security, and by length of forecasting horizon.

Our main �ndings are as follows. The out-of-sample relative performance of

methods differs, in some cases radically, from that of the in-sample rankings,

and those models which excel at price forecasts are not necessarily those which
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2. Survey of the Literature

2.1. Notation and Basic Framework

generate the best yield forecasts. Several methods show marked differences in

their ability to generate accurate forecasts when the horizon of the forecast is

varied from one to �ve trading days. There is considerable time variation in the

relative performance of the models considered; although one of the spline models

stands out, it dominates the other models in fewer than half of the cases, and is

often dominated by the parsimonious Nelson-Siegel approach. The correlations

between models� forecasts and movements in the yield curve are low at long

horizons; this suggests that the models� relative performance is not strongly af-

fected by shifts in the yield curve. A general statement on the superiority of any

of these competing models would not be justi�ed as their relative performance

is quite sensitive to the level of rates, to the forecast horizon, and to the tenor

of the underlying securities.

The plan of the paper is as follows. Section 2 surveys the literature. In

subsection 2.1 some basic notation and terminology are introduced followed by

a brief description of the various no-arbitrage methodologies in subsection 2.2.

Section 3 presents the data and estimation methods to be compared. The in-

and out-of-sample evaluation of the methods, over the full sample and tenor

subsamples, is presented in section 4. Finally, we summarize the results and

make concluding remarks in section 5.

Let denote the present value at time of $1 repayable in periods.

Alternatively, is the time market price of a discount bond with periods

to maturity and whose principal is $1, commonly known as the discount function.

Further, de�ne by
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Assuming that the discount function is differentiable, the instantaneous forward rate is
computed as:

(2.2)

Cox, Ingersoll and Ross (CIR hereafter) (1985a, 1985b) developed the �rst general equilib-
rium model of the term structure of interest rates. Prior attempts to model the term structure
in a partial equilibrium setting include Vasicek (1977) and Brennan and Schwartz (1979).

(2.1)

Alternatively, is the rate of growth of , or the

yield to maturity. The term structure of interest rates is the function relating

the -period spot rate, , to . In addition to the discount and spot rate

functions, the term structure can also be represented with forward rates, which

are essentially implicit future spot rates. The forward rate for the time interval

to observed at is given by :

(2.3)

Where denotes the time price of a discount bond maturing at time

and . In the absence of arbitrage opportunities, the value of the i

coupon bond at time , maturing in periods, equals the sum of the

present values of its stream of cash �ows,

(2.4)

where denotes the theoretical price of the bond and denotes the

bond�s promised cash �ow at time . is the number of semiannual

coupon payments over the life of the bond.

In general equilibrium models of the term structure, the form of the discount

function �and hence the term structure�is derived theoretically . Alterna-
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2.2. No-Arbitrage Methodologies

2.2.1. McCulloch�s Splining Method

Methods which were used prior to McCulloch�s papers include Durand�s hand �tting yield
curve technique and the point-to-point or �bootstrap� method (e.g. Carleton and Cooper
(1976)). Since none of these techniques are directly relevant to the current literature, we con-
centrate on studies following McCulloch (1971, 1975).

tively, the no-arbitrage approaches generally �t observed bond prices to the

pricing constraint in (2.4) to estimate the parameters of a given function (the

discount, forward rate or the spot rate function) that relates interest rates to

term-to-maturity. We now turn attention to a more detailed description of the

various no-arbitrage approaches to term structure modeling.

The main focus of this second branch of the literature is to use the no-arbitrage

condition in (2.4) to �nd a functional form that can best approximate the term

structure. McCulloch (1971, 1975) introduced the practice of using approximat-

ing functions such as polynomials and splines to empirically approximate the

discount function . Since these papers, various approximating functions

have been proposed to �t either the discount function or one of its variants. In

this section we discuss only those methods which we implement in this study.

Recall the bond price equation from (2.4)

(2.5)

In (2.5), the actual price of the bond deviates from its theoretical price by

the error term . This deviation re�ects not only the statistical error due to

approximation but also other factors such as transactions cost, measurement

error and mispricing.
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This discussion of McCulloch�s cubic spline is based on Baum and Thies (1992).
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In McCulloch�s methodology, the discount function, , takes the form of

a cubic spline. This means that if we divide the maturity spectrum into a number

of intervals, is a different third-order polynomial over each interval. These

piece-wise polynomials are joined at knots or �break� points so that the spline�s

�rst and second derivatives are set equal at those points. A parameterized

representation of this approximation is given by

(2.6)

where

the knot points of the spline

the parameters of the estimated discount function

Substitute (2.6) into (2.5), then the price of the i bond is

(2.7)

In (2.7), the are functions of the cash �ows and of term to maturity

. The are functions of the knots of the spline and the . The parameter

is set equal to unity since it gives the present value of $1 to be received immedi-

ately. In McCulloch�s paper, the remaining parameters of the discount function

are estimated by minimizing a weighted sum of the squared price errors of (2.7),

i.e. via weighted least squares. The residuals are weighted by the inverse of

, where , and denote the ask price of the bond, the
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2.2.2. Fisher et al.: Smoothing Splines

In Fisher et al.�s study, the discount function is parameterized using a Basis Spline (B-
spline) rather than using independent parameters as shown in (2.6). The properties of B-splines
(see de Boor (1978) for details) provide for the efficient and numerically stable calculation of
spline functions. A cubic spline which is formed as a linear combination of B-splines can be
easily evaluated and manipulated.

bid price and brokerage fees, respectively. This adjustment prevents the esti-

mates from being affected by large errors that are caused solely by transactions

costs. McCulloch chooses the knots such that there is an equal number of

bonds in each interval. Estimating the discount function as a cubic spline allows

for greater �exibility in approximating complex shapes since the parameters of

the curve in a given interval are heavily in�uenced by observations in that in-

terval. However, this �exibility can sometimes result in curve shapes that seem

unreasonable, such as the negative forward rates in McCulloch�s paper. Shea

(1984) discusses placing constraints on the spline and varying the number and

placement of break points as potential solutions to these problems.

The methodology developed by Fisher et al. (1995, 1996) implements some

of these suggestions. Their study introduces two main innovations to the Mc-

Culloch framework. First, smoothing splines rather than regression splines are

used to approximate the functional form chosen to represent the term structure.

Second, they propose placing the spline directly on the forward rate function

rather than on the discount function. In smoothing splines, the criterion used to

estimate the spline parameters requires a compromise between closeness of �t,

as measured by the least squares criterion, and the smoothness of the resulting

function. This implies that the number and location of knots is chosen optimally

rather than predetermined by the modeler. Assuming, as in McCulloch, that

the discount function takes the form of a cubic spline, this is achieved by

minimizing the criterion function
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(2.8)

where is the number of bonds in the sample. The second term in (2.8)

measures the non-smoothness in the approximating function as it will be

larger the greater the variation (�wiggliness�) in . Note that if , a

knot will be placed at each observation, as this achieves a perfect �t. Thus in

choosing the optimal number of knots, the �t as measured by the least squares

term is balanced against smoothness according to , the weight given to the

non-smoothness term. In this method, is chosen to minimize the Generalized

Cross Validation criterion

(2.9)

where is the number of parameters of the spline. Craven and Wahba (1979)

developed the approach as an approximation to the Cross-Validation

score with equal to the residual for the th observation

obtained from estimates of the model with the th observation omitted from

the sample. The process of omitting an observation and predicting it using the

remaining observations is repeated for all data points to generate the average

residuals of the omitted observations given by the score. Choosing the

optimal smoothness parameter by minimizing (2.9 ) and essentially simulating

true out-of-sample prediction errors amounts to limiting the in�uence of each

data point in determining the variability in the �tted curve.

Fisher et al. (1995, 1996) apply smoothing splines to the discount function,

, the of , and the forward rate function, . They compare the

pricing accuracy of the �xed-knot speci�cations of the three functional forms

to their GCV counterparts. In addition, they use Monte Carlo simulations to
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evaluate the ability of each method to produce stable and reasonable estimates

of the forward and discount functions. Their �ndings indicate that splining the

forward rate function with GCV produces the best overall results.

In the Nelson and Siegel (1987) (NS hereafter) approach, the relationship be-

tween yield and maturity is derived from the assumption that spot rates follow

a second-order differential equation and that forward rates, being forecasts of

the spot rates, are the solution to this equation with equal roots. Thus we have

(2.10)

By integrating (2.10) from to , we get the yield to maturity or discount

rate function

(2.11)

Following NS, we parameterize (2.11) in order to �t the yield curves. The

equation to be estimated is given by

(2.12)

Where denotes yield as a function of maturity , and is a time constant

associated with the differential equation. The parameters , and are to

be estimated. NS estimate the model using U.S. Treasury bills and �nd that

it can adequately characterize the shape of the Treasury bill term structure.

Cecchetti (1988) uses this method to construct estimates of the term structure

from coupon bearing bonds for the period 1929-1949, since it provides for a broad

set of alternative shapes while requiring estimation of only a few parameters.
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3.1. The Data
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Journal

3. Data and Estimation Methods

Bliss� approach also takes the recorded bid and ask prices into account; in his treatment,
predicted prices within the observed bid-ask spread are considered to have zero prediction errors.

The method has been used in a slightly different manner by Baum and Thies

(1992) in that they apply it to smooth or post-�lter their cubic spline term

structure estimates, obtained from applying McCulloch�s methodology to U.S.

railroad bond quotations. In a recent paper, Bliss (1997) applies an extended

form of the Nelson-Siegel approximating function (2.11) directly to Treasury

bond prices. In this context, the estimation problem is rendered highly nonlinear

by the inclusion of all of the security�s cash�ows in a single observation of the

dataset. In contrast, the use of Treasury STRIPS, each with a single cash�ow,

greatly simpli�es the estimation problem.

In this section, we brie�y describe the data and outline the estimation methods

which will be compared in the empirical analysis of the next section. We do not

present the estimation results in this paper since our focus is on the forecasting

accuracy of the various models. Details on the estimation results are available

upon request.

In order to estimate the NS model for longer maturities, we use data on U.S.

Treasury STRIPS from quotes in the on the last trading day

of the month every three months starting in June 1989 (when the started

publishing these quotes) and ending in September 1995, a total of 26 quarter-end

dates. The number of Treasury STRIPS quotations used in the Nelson-Siegel

approach is between 116 and 120, which include all coupon strips from quoted

issues. Although data on Treasury principal STRIPS are also available for this

11
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We also estimated the models in this paper with coupon and principal STRIPS. Although
the mean forecast errors are larger at all forecast horizons when principal STRIPS are included,
our conclusions regarding the relative rankings of the models remain unchanged.

All available quotations on bills, notes and bonds (with the exception of ��ower bonds�)
were extracted from the CRSP Daily Government Bond Master dataset. Noncallable securities
were �agged as such; callable securities priced at a discount to par were given their stated
maturity, while (by �Street� convention) callable securities priced at a premium were given
their next call date as their maturity. Our analyses can readily be executed omitting all callable
securities.

period, we have chosen to exclude them from the analysis on the advice of

practitioners. Many of the heavily traded strippable Treasuries are �on special,�

implying that they may be used as speci�c collateral in repurchase agreements

(RPs) at an RP rate signi�cantly below market rates. This raises the price

of such a security above that which would otherwise prevail, by an amount

related to the lower future borrowing costs (for details on the workings of this

relationship, see Duffie, 1996, pp. 494-496). To link this discrepancy (which

has been found to explain a signi�cant portion of the �on-the-run� effect) to

coupon and principal STRIPS, we need only consider practitioners�claims (e.g.

Gilles, 1997) that the �specialness� of the coupon security is fully embodied

in the principal STRIP, rather than allocated evenly throughout the security�s

decomposed cash �ows. Given the large number of relatively small coupon cash

�ows, the concentration of �specialness� in the principal STRIP is surely a

reasonable assumption. Restricting our analysis to coupon STRIPS generates a

more homogeneous data set for the estimation of the zero-coupon (spot) curve.

For the spline models, we used between 226 and 245 quotes of Treasury bills,

notes, and bonds, drawn from the CRSP Daily Government Bond Master data

set . A detailed description of the data for each date is available upon request.
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3.2. Splining Methods: Fixed and Endogenous Knots

DF1:

LDFGCV:

FGCV:

DFGCV:

DF2:

We are indebted to Mark Fisher for providing us with his programs to perform
the empirical analysis for this section.

See Fisher et al. (1995, 1996) for more details on the implementation of the splining tech-
niques using B-Splines.

Following Fisher et al. (1995, 1996), we employ both �xed knots as well as

adaptive knot placement speci�cations to estimate the following �ve models :

The discount function, , is speci�ed as a cubic spline with the

number of interior knots set equal to one-third of the number of bonds in

the sample.

The of the discount function is modelled as a cubic spline with

adaptive parameters chosen with GCV.

The forward rate function, , is modelled as a cubic spline with

adaptive parameters chosen with GCV.

The discount function, , is speci�ed as a cubic spline with

adaptive parameters chosen with GCV.

The discount function, , is speci�ed as a cubic spline with the

number of interior knots set equal to 10.

In the implementation of the GCV methods (the second, third and fourth),

a large number of knots is initially speci�ed (again, equal to one-third of the

number of observations) and the effective number of parameters is determined

according to the optimal value of the smoothness parameter in (2.8) . The

models are estimated for the 26 sample dates from June 1989�September 1995

using the average of bid and ask prices quoted for the Treasury securities in the

CRSP Daily Government Bond Master dataset.
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3.3. The Nelson-Siegel Estimates

4. Evaluation of Alternative No-Arbitrage models of the
Term Structure

The Nelson-Siegel methodology is applied to data on U.S. Treasury coupon

STRIPS to obtain estimates of the term structure from the approximating func-

tion (2.12) on the 26 quarter-end dates between June 1989 and September 1995.

is calculated from the average of the quoted bid and ask prices as the

continuously compounded yield from settlement to maturity date annualized to

a 365-day year. In our implementation, is the number of years to maturity.

Following NS, we search over a grid of values for to obtain the best �tting

values for , and and .

The no-arbitrage approaches differ in two main respects: �rst, in terms of the

functional form �tted to the bond price data, and second, with respect to the

criterion function to be minimized to obtain the parameter estimates. In this

section, we assess the performance of the various treatments of these aspects

cross-sectionally as well as over time in terms of in- and out-of-sample price and

yield errors. We concentrate our attention on out-of-sample performance, given

the focus of this study. Although the out-of-sample errors include the effects of

day-to-day shifts of the yield curve, the comparisons of methods� performance

on this basis is a more realistic evaluation of their varying abilities.

The price error for each bond is calculated from (2.5) as:

(4.1)

with as the estimated discount function. For the �ve splining models

described in section 3.3, these are identical to the estimation errors. For the NS

14
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4.1. Price Errors

We focus on the MAPE criterion, as we are in agreement with Bliss (1997) who states that
there is �...no particular economic rationale for utilizing a squared-error loss function other than
econometric convenience.�

approach, we calculate from the predicted spot rate, using (2.1) and

(2.12).

In order to evaluate the overall performance of the models, we start by examining

summary statistics of the price and yield forecast errors, evaluating the models�

abilities to predict bond prices and yields both in- and out-of-sample. The price

and yield prediction errors may be compared in terms of root mean squared

error (RMSE), mean absolute error (MAE), or mean absolute percentage error

(MAPE). The average price errors for all maturities for each method (averaged

over the 26 quotation dates) are given in Table 1 for the quotation date and

one-, two-, three-, four- and �ve-step-ahead forecasts, while the corresponding

median price errors are presented in Table 2. It is obvious from both tables that

the results differ greatly between in- and out-of-sample. We focus on the out-of-

sample results since the more highly parameterized model will almost always do

better in sample. Using median MAPE as the preferred criterion, we �nd that

model FGCV (splining the forward rate curve with GCV) is best for one, two

and three steps ahead and is second to model NS (the Nelson-Siegel approach)

at �ve steps ahead. Somewhat similar results are obtained using median MAE,

in that model FGCV is the best model for two to four steps ahead. The results

appear to be different if we use median RMSE as the criterion, in that model

FGCV is best for three to �ve steps ahead and NS does not appear as either of

the two best models. It should be noted that the rankings do not vary over

criteria when we use the mean over dates rather than the median.

Figure 1 plots the median MAPE for each model over the forecast horizon

15
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Figure 1
Median MAPE for Price Errors over Forecast Horizon

4.2. Yield Errors

for price errors. The median MAPE increases steadily for all models except the

NS model where the increase is less pronounced. We can see from Figure 1 that

the NS median MAPE relatively improves at three steps ahead and becomes

lower than all other models at �ve steps ahead.

The average yield errors for all maturities for each method (averaged over the

26 quotation dates) are given in Table 3, with median yield errors over the

quotation dates in Table 4. RMSE and MAE �gures are given in basis points.

Using median MAPE as a criterion, FGCV is best for two to �ve steps ahead;

similar results are obtained using RMSE and MAE. NS is best only at �ve steps

ahead using MAE while it�s second best at the same horizon using MAPE.

Figure 2 plots the median MAPE for each model over the forecast horizon

for yield errors. As with price errors, the NS median MAPE holds fairly steady

for yields, although in this case, NS remains second best to model FGCV. The
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Figure 2
Median MAPE for Yield Errors over Forecast Horizon
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4.3. Cost of the Second-Best Model

other models�forecasts worsen with the forecast horizon. Overall, model FGCV

is the best model both in terms of price and yield errors. NS appears to perform

best when applied to longer-horizon forecasts.

In this section, we ask how well does each of the competing models track the best

model. We compute the percentage increase in median MAPE for each model

as compared to the best model. This measure is meant to capture the �penalty�

incurred (in percent of MAPE) by the modeler when the best model is not used.

Figures 3 and 4 plot the penalty for price and yield errors respectively. The yield

penalty is larger than the price penalty for all models at all forecasting horizons.

Model DFGCV (splining the discount function with GCV) has the largest yield

penalty at all forecasting horizons followed by model LDFGCV (splining the

log of the discount function with GCV) and model DF1 (splining the discount

function with a large number of knots). With the exception of the NS method,

the penalty for all models increases with the forecast horizon. In terms of yield
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Figure 3
Percentage Penalty over Best Method based on MAPE of Price Errors

4.4. Time Series Analysis of Results

error, the parsimonious model DF2 (splining the discount function with a �xed

number of knots: McCulloch�s method) has a very low penalty at one to three

steps ahead (less than 20%) while the NS model has the lowest penalty at four

and �ve steps ahead.

Tables 5 and 6 show the best and runner-up models based on the MAPE for

price and yield errors respectively at each date and for all forecasting horizons.

By looking at the performance of the models over time, we can see that the

average results over all dates may be misleading. For example, for price errors,

at the one-step ahead forecast horizon, the overall best model, FGCV, has the

lowest MAPE only 7 out of 26 times, while model DF1 is best on 11 out of 26

days, and model NS is best for 4 out of 26 dates. At two steps ahead, model

FGCV is best on 10 of 26 dates, model NS on 7 of 26 dates, and model DF1
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Figure 4
Percentage Penalty over Best Method based on MAPE of Yield Errors

on 6 of 26 dates. The percentage of times that each model is best (in terms of

MAPE) is given in Tables 7 and 8 for price and yield errors respectively. The

most striking result is that the performance of the NS model closely trails that

of the best model, FGCV, at the two- to four-step-ahead horizon for price errors.

At �ve steps ahead, model NS is best 42 per cent of the time as compared to

only 31 per cent for the overall best model FGCV. Model NS�s performance is

even more impressive in terms of yield errors where it outperforms model FGCV

at three to �ve steps ahead, approaching a high of 54 per cent as compared to

31 per cent for model FGCV. Model DF2 does relatively well at short horizons

in terms of yield errors, whereas the much less parsimonious model DF1 also

does better in terms of price errors at short horizons (1-3 steps ahead). Given

that the overall best model (model FGCV) fails to excel more than 50 per cent

of the time suggests the need for further investigation of the performance of the

models over time.

Figures 5 and 6 plot the time series of the median MAPE for price errors

19



Figure 5
Time Series of Median MAPE of Price Errors from One-Step-Ahead Forecasts
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at one- and �ve-steps-ahead respectively. We can see that the performance of

the models varies a great deal over the sample period. Figure 5 illustrates that

the one-step-ahead MAPEs for all models seem to move together over time,

except for that of model NS, which does not closely track the other models on

a number of dates. For example, on March 1992, all models� MAPEs increase

except for that for model NS. After June 1994, model NS�s performance appears

to deteriorate relative to all other models. The picture looks similar at �ve steps

ahead but with NS performing considerably better on all dates especially on

March 1992. Although all models� MAPEs increase on that date, model NS�s

performance is much better than that of the other models. Next, we examine

whether the time series performance of the models is related to movements in

the yield curve over the forecast horizon.
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Figure 6
Time Series of Median MAPE of Price Errors from Five-Step-Ahead Forecasts
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Figure 7
Average Absolute Percentage Change in Bond Prices at One and Five Steps Ahead

We compute the average absolute percentage change in bond prices and bond

yields at each date of our sample in an attempt to measure shifts in the yield

curve between the quote and the forecast dates. Figures 7 and 8 show plots of

these series for bond prices and yields, respectively, at the one- and �ve-steps-

ahead forecast horizons.

On several dates, including March 1992, bond prices on average change by

more than one per cent one day after the estimation date, whereas changes in

bond yields can be as large as six per cent. The largest one-step-ahead average

price increase occurs in March 1992, when all models� MAPE increased (except

for model NS, as Figure 5 indicated). One question is the extent to which move-

ments in the yield curve, as measured by average absolute percentage changes,

are related to the change in forecast MAPE of the models. Tables 9 and 10
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Figure 8
Average Absolute Percentage Change in Bond Yields at One and Five Steps Ahead
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13

13

4.5. Analysis of Whole Sample Results

When yield curve shifts are expressed in terms of yield changes, the NS model has the lowest
correlation at one-step-ahead, while model FGCV has the highest correlation.

report simple correlation coefficients of the price and yield change and the price

MAPE series over our 26 sample dates. The correlations between price MAPE

and average price and yield changes are positive and quite high at one-step-

ahead for all models; in general they are much lower at two- to �ve-steps-ahead.

In fact, they become negative at the four-step-ahead horizon, suggesting that

models� forecasting performance improves the larger the absolute change in the

yield curve. Note that the overall best model, FGCV, and model NS, have the

lowest correlations at one-step-ahead when we express movements in the yield

curve in terms of price changes. This re�ects the results illustrated in Figures

5 and 6 and is also apparent in Figure 9, which plots the average price change

series against the median price MAPE for models FCGV and NS. Figure 9 in-

dicates that model FGCV�s and NS�s MAPEs do not increase commensurately

with the price change on those dates with large price changes, such as Sep. 1989,

Dec. 1990, March 1992, and March 1994.

Before we turn to evaluating the models�forecast performance in various matu-

rity ranges, let us summarize the results we have so far for the whole sample (all

maturities). As previously stated, our comparison centers on the models� ability

to predict bond prices and yields up to �ve days ahead, thus testing the models

in an actual out-of-sample setting. Several main conclusions emerge from this

analysis.

First, as expected, the performance of the models varies a great deal between

in- and out- of sample. Models� relative rankings depend on the forecast horizon

and on whether price or yield errors are compared. On average over the 26 sam-
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Figure 9
Average Absolute Price Change and MAPE of Models FGCV and NS Forecasts, One Step Ahead
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ple dates, the highly parameterized model DF1 (splining the discount function

with a large number of knots) is always best in sample. In terms of yield errors,

model FGCV (splining the forward rate curve with GCV) excels out-of-sample

(from two to �ve steps ahead) but only for one to three steps ahead for price

errors. Interestingly, the NS model, estimated from STRIPS data, is best for the

longest horizon price forecast (�ve steps ahead) and second best at the �ve-step

horizon in terms of yield errors. At long horizons, the loss in forecast accuracy

(as measured by percentage increase in MAPE) from using the �wrong� model

is as high as 40% for price errors and 100% for yield errors. Overall, models

DFGCV (splining the discount function with GCV) and LDFGCV (splining the

log of the discount function with GCV) appear to be the least reliable at all

forecasting horizons.

Second, comparing the models over time suggests that relying solely on mea-

sures of average performance may overstate the case for the overall best model

(FGCV). Particularly, model FGCV is best at most in 42% and 38% of the cases

for price and yield errors respectively. In terms of price errors, models DF1 and

NS closely track the overall best model for short and longer horizons respec-

tively. In terms of yield errors, DF2 is best at least 26% of the time for short

horizons while NS is best in up to 54% of the cases at the �ve-step horizon.

Third, there is a high positive correlation between movements in the yield

curve (as measured by average price and yield change from the quote date)

and models� MAPEs at the one-step horizon for all models. The correlations

are considerably lower at two and three steps ahead and become very small and

negative at four and �ve steps ahead. This suggests that, at least for long-horizon

forecasts, the performance of the models cannot be attributed to movements in

the yield curve. The fact that the NS model has some of the lowest correlations

of all models may be viewed as bene�cial in hedging against unexpected large
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4.6. Performance by Tenor Category

movements in the yield curve.

A common difficulty with any term structure estimation method is presented

by the convexity of the price/yield relation, which causes price and yield er-

rors of very different magnitudes to be generated along the yield curve. Many

estimation techniques have attempted to account for this relation by duration

weighting, minimizing the product of price and yield errors, and so on. Our

goal in this study is not to add to this arsenal of methodology, but to evaluate

the suitability of several techniques. It is likely that a technique which works

quite well at short maturities may not exhibit the same performance at long

maturities, and vice versa. To consider the relative suitability of the several

techniques for securities of short, medium and long tenors, we summarize ex

ante forecast performance for four tenor categories: 0-3 years, 3-7 years, 7-15

years, and greater than 15 years to maturity, where the category for a particular

security is de�ned by its current remaining term.

More than half of the price quotations used in the analysis are associated

with securities with no more than three years to maturity. Between 49% and

52% of the quotations fall in this range, with an additional 23% (22-26%) as-

sociated with securities in the 3-7 year tenor range. On average, 15% (12-17%)

of the quotations are associated with medium-term tenors (from 7 to 15 years

to maturity) while the remaining 11% (10-14%) are associated with longer term

securities. The heavy weight given to short-term (0-3 year) securities in our

analysis suggests that forecasting reliability must be associated with reasonable

performance at the short end of the yield curve.

Tables 11 and 12 show the median MAPE for each tenor category for price

and yield errors respectively, while Tables 13 and 14 present the percentage
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penalty (in terms of median MAPE) incurred by choosing a method other than

the best method for each forecast horizon and method. In the short-term tenor

bracket, model FGCV is superior at all but the one-step-ahead horizon, while

model NS is the least accurate method at each horizon. In the 3�7 year bracket,

model NS performance steadily improves, surpassing model FGCV by small

margins at four and �ve steps ahead. Models DF1 and LDFGCV are also

contenders in this bracket; in the 7-15 year bracket, model DF1 is marginally

superior to FGCV at two steps ahead, with model NS superior at four and �ve

steps ahead. A somewhat similar pattern is realised for long-term securities,

where model DF1 is superior at one and four steps ahead, model FGCV only

at the two-step-ahead horizon, and model NS taking the remaining horizons.

Thus, there are few clear lessons to be learned at medium to long tenors; model

FGCV�s performance never bears more than a ten per cent penalty over the best

model, but it is not dominant in those three brackets. For short-term securities,

the picture is clear, with model FGCV superior by a considerable margin. The

three- to �ve-step-ahead price error in that 0�3 year category is in the range of

10 to 12 cents per $100.00. Substantially greater errors are realised at longer

horizons; �ve-step-ahead price errors range from 43 cents (at 3�7 years) to 79

cents (at 15-30 years) per $100.00, re�ecting the convexity of the price-yield

relation.

Turning to yield errors, model FGCV stands out, with superior performance

at three to �ve steps ahead in the short tenor range, at one to three steps ahead

in the 3�7 year range, and at all ex ante horizons for the 7�15 year range.

Its performance is weaker for long-term securities, with model NS superior at

three and �ve steps ahead and model DF2 best at two steps ahead. Model DF1

also has some power in the long-term bracket. Of considerable interest is the

weak in-sample performance of model FGCV for 0�3 and 15�30 year brackets;
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4.7. Performance for Treasury Bills

from the in-sample results, one would not consider this method a success, but

the out-of-sample forecasting performance is much stronger. The penalty for

unconditional use of model FGCV is somewhat higher for the 3�7 year and 15�

30 year categories, with model FGCV underperforming model NS by up to 17

per cent and 16 per cent, respectively. The yield errors (measured by median

MAPE) decline with tenor, amounting to 2�4 per cent for short-term securities,

but only about one per cent for long-term securities. At a 7% yield, this would

amount to about 30 basis points on a short-term security, and under 10 basis

points for a long-term security.

All of the methods applied here make use of Treasury Bill quotations to anchor

the short end of the estimated term structure. Some researchers (e.g. Bliss,

1997) have found that term structure estimation methods which use both bill

quotations and coupon security quotations perform very poorly in predicting

Treasury bill prices and/or yields. Since Treasury bill pricing is an essential

element of many strategies in the interest rate derivatives markets, poor per-

formance would be of considerable concern. Accordingly, we investigate the

reliability of the six methods applied in this paper over the set of Treasury

bill quotations in terms of ex ante forecast accuracy. There are between 30

and 33 Treasury bills in each quotation day�s dataset: roughly half of the quo-

tations available in the 0-3 year tenor category considered above. Table 15

presents the median MAPE for Treasury bill price and yield prediction over

the 26 quote dates, while Table 16 presents the percentage penalty (in terms of

median MAPE) suffered by choosing a method other than the best method for

each forecast horizon and method.

In this comparison, model FGCV is the most accurate price predictor at
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5. Conclusions

horizons of three, four and �ve days ahead, while model DF2 (using a �xed

number of knots) is either �rst- or second-best at all horizons, with similar

MAPE statistics for all but the �ve-day horizon. The Nelson-Siegel (NS) model

is never better than third, with sizable penalties over the best model at all

horizons. This same pattern of �ndings holds for yield errors, in which model

FGCV is again superior for three-step-ahead or longer forecasts (while exhibiting

much weaker performance on the quote date). Model DF2 is also quite reliable,

with percentage penalties of no more than 35% over model FGCV in terms of

median MAPE.

In summary, then, it appears that model FGCV performs quite well in terms

of ex ante forecasts of Treasury bill prices and yields. At the three-, four- or

�ve-day forecasting horizon, this model achieves percentage pricing errors of two

to three cents per $100.00 and percentage yield errors of 1.5 to 3.0 per cent�

equivalent to less than 20 basis points at rates of 5�7%. Considering that the

models generating these errors have not been �t over bills alone, this would

seem to be very respectable performance indeed. A serious effort to generate ex

ante forecasts of Treasury bill prices and yields would presumably consider only

bill quotations, but would have limited ability to improve upon the forecasting

results summarized here.

We compare six term structure estimation methods in terms of their ex ante

price and yield prediction accuracy. Our contribution centers on comparing the

various models based on actual out-of-sample price and yield forecasts from one

to �ve days ahead. Relative to in-sample and split-sample comparisons made in

other studies, this approach is more realistic and does not depend on arbitrary

division of the sample. Further, this approach enables us to evaluate whether the
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models� price and yield forecasting accuracy depends on the forecast horizon, an

issue of likely interest to many practitioners. We evaluate �ve splining method-

ologies that differ in the choice of function which is splined and the degree to

which the parameterization is determined by the data. The sixth method is the

well-known Nelson-Siegel approach, in which the yield curve is derived from a

second-order differential equation applied to Treasury coupon STRIPS data.

On average over the 26 sample dates, model FGCV (splining the forward

rate curve with generalized cross-validation) produces the lowest out-of-sample

price and yield forecast errors for most horizons. The model appears to perform

particularly well for securities with 0-3 years to maturity in terms of price errors

and for all securities up to 15 years to maturity in terms of yield errors. We

�nd that model FGCV is best in terms of price and yield forecasts for Treasury

bills at the three-to �ve step ahead horizons. This contradicts �ndings reported

by Bliss (1997) indicating that this splining methodology is not appropriate for

modeling short-maturity securities� prices or yields.

When we compare the models over time, we �nd that the overall best model

(FGCV) is best at most in 42% and 38% of the cases for price and yield errors

respectively. Surprisingly, the highly parsimonious NS model excels at long

forecast horizons: up to 42% of cases for price errors and 54% for yield errors.

Of the splining methodologies, models LDFGCV (splining the log of the discount

function with GCV) and DFGCV (splining the discount function with GCV) are

always dominated, whereas model DF2 (splining the discount function with a

�xed number of knots: McCulloch�s method) is best in up to 38% of the short

horizon forecasts of yield errors.

In summary, we conclude that a general classi�cation or ranking of the mod-

els is not reasonable, since a model�s relative performance varies with time, level

of rates, forecast horizon and tenor category. However, models FGCV, NS and
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DF2 emerge as the most promising candidates for the generation of short-term

out-of-sample forecasts, depending on the modeler�s particular interest.

32



Table 1: Average Price Errors for All Maturities

0.247152
0.450985
0.502758
0.538717
0.578643
0.683226

0.118641
0.287469
0.338654
0.370442
0.406943

0.481311

0.104275
0.252339
0.297143
0.326710
0.360812
0.429919

bold

(a) Root Mean Squared Error
DF1 LDFGCV FGCV DFGCV DF2 NS

Quote 0.280955 0.279429 0.276835 0.282603 0.415137
1-S 0.467394 0.489547 0.486379 0.483983 0.550584
2-S 0.530724 0.549203 0.546171 0.543202 0.589320
3-S 0.615749 0.632083 0.629263 0.598356 0.592420
4-S 0.644560 0.660581 0.657753 0.630593 0.623941
5-S 0.821705 0.834508 0.831851 0.784347 0.706681

(b) Mean Absolute Error
DF1 LDFGCV FGCV DFGCV DF2 NS

Quote 0.141526 0.138952 0.142651 0.136663 0.266981
1-S 0.306624 0.321723 0.322428 0.312000 0.363949
2-S 0.370173 0.385591 0.385897 0.374609 0.393880
3-S 0.442600 0.457564 0.457432 0.425520 0.401244
4-S 0.474783 0.489388 0.489024 0.459231 0.426527
5-S 0.607245 0.620319 0.487448 0.620403 0.583327

(c) Mean Absolute Percentage Error
DF1 LDFGCV FGCV DFGCV DF2 NS

Quote 0.126006 0.12348 0.127389 0.120736 0.242216
1-S 0.268347 0.28327 0.284039 0.273830 0.327563
2-S 0.324722 0.340017 0.34034 0.329516 0.353276
3-S 0.391217 0.406237 0.406186 0.376842 0.360041
4-S 0.421863 0.436579 0.436256 0.408825 0.384419
5-S 0.536388 0.549447 0.549629 0.516639 0.431550

Note: minimum entry for each horizon displayed in .
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Table 2: Median Price Errors for All Maturities

0.249058
0.328411
0.425066

0.499083
0.515831
0.586355

0.114763
0.204302

0.28549
0.325941
0.361164

0.391155

0.100066
0.184126
0.25142
0.272283
0.321386

0.366991
bold

(a) Root Mean Squared Error
DF1 LDFGCV FGCV DFGCV DF2 NS

Quote 0.288407 0.277639 0.278205 0.292936 0.403516
1-S 0.365883 0.344186 0.361772 0.368867 0.494385
2-S 0.439028 0.425831 0.435771 0.437237 0.494093
3-S 0.512558 0.530665 0.526479 0.51079 0.550869
4-S 0.550141 0.571718 0.565973 0.544487 0.552410
5-S 0.739052 0.749959 0.748821 0.669604 0.667095

(b) Mean Absolute Error
DF1 LDFGCV FGCV DFGCV DF2 NS

Quote 0.138124 0.136912 0.14277 0.131931 0.265084
1-S 0.223907 0.210373 0.228109 0.218591 0.325144
2-S 0.312434 0.321912 0.321525 0.312286 0.341022
3-S 0.351165 0.369439 0.372604 0.344615 0.344603
4-S 0.407639 0.418785 0.426605 0.384389 0.362819
5-S 0.564271 0.568839 0.439222 0.570685 0.478575

(c) Mean Absolute Percentage Error
DF1 LDFGCV FGCV DFGCV DF2 NS

Quote 0.124848 0.121723 0.126517 0.115488 0.230192
1-S 0.184534 0.197977 0.205595 0.189017 0.282279
2-S 0.269329 0.278195 0.280321 0.268853 0.303894
3-S 0.299513 0.314646 0.31344 0.295393 0.304658
4-S 0.358618 0.377209 0.386312 0.332687 0.323885
5-S 0.501725 0.506632 0.390983 0.508492 0.414452

Note: minimum entry for each horizon displayed in .
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Table 3: Average Yield Errors for All Maturities

11.0772
15.9735

18.0754
20.2626
26.6707
36.2815

5.16757
9.86506
11.5189
12.7975
14.6303
17.4074

1.00716
1.77939

2.12751
2.37139
2.60819
3.13233

bold

(a) Root Mean Squared Error
DF1 LDFGCV FGCV DFGCV DF2 NS

Quote 17.4104 16.2896 19.2617 13.7724 26.8950
1-S 17.5138 20.8659 16.5483 21.6529 26.9479
2-S 23.5325 26.8094 27.2927 18.7184 28.3773
3-S 31.2476 33.8326 34.3368 23.0829 30.0170
4-S 38.6712 41.7911 42.2327 30.0947 34.6741
5-S 54.6455 56.255 56.6181 40.3668 39.5553

(b) Mean Absolute Error
DF1 LDFGCV FGCV DFGCV DF2 NS

Quote 7.97423 7.3566 9.14992 5.98373 15.1124
1-S 10.2749 12.7797 13.3184 9.95255 16.2564
2-S 14.1437 16.9475 17.245 12.7283 17.2894
3-S 18.4208 21.3589 21.6328 15.6478 17.7902
4-S 22.2695 25.3247 25.6235 18.2163 19.1162
5-S 29.3406 32.3426 32.6549 23.3715 20.2587

(c) Mean Absolute Percentage Error
DF1 LDFGCV FGCV DFGCV DF2 NS

Quote 1.68634 1.47453 1.9552 1.15061 2.88174
1-S 1.80512 2.51811 1.83103 2.70974 2.96308
2-S 2.49961 3.29901 3.46735 2.25112 3.17733
3-S 3.2499 4.12509 4.29548 2.77784 3.27099
4-S 3.89844 4.81413 4.99136 3.16912 3.49264
5-S 5.07493 6.0789 6.25878 4.08668 4.04212

Note: minimum entry for each horizon displayed in .
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Table 4: Median Yield Errors for All Maturities

10.419
14.315
15.871
17.331
24.0774

28.8863

4.61009
8.1234
11.039

11.7972
14.0802

14.8385

0.855686
1.44465

1.94167
2.03273
2.16549
2.79604

bold

(a) Root Mean Squared Error
DF1 LDFGCV FGCV DFGCV DF2 NS

Quote 16.5444 16.5616 17.6965 13.2542 19.7471
1-S 16.2256 19.4071 20.2888 15.4738 17.6396
2-S 22.5143 26.2283 26.3681 17.6228 20.2990
3-S 25.4352 33.8697 33.412 19.3144 18.0887
4-S 34.9253 43.3593 41.465 28.2569 33.4522
5-S 51.7297 59.3482 30.3817 57.3714 34.9706

(b) Mean Absolute Error
DF1 LDFGCV FGCV DFGCV DF2 NS

Quote 7.62482 7.14827 8.67079 5.7854 10.7950
1-S 8.30869 11.5518 8.64949 12.2121 11.2180
2-S 12.8922 16.3565 11.0510 15.4412 12.3801
3-S 15.1336 17.9323 19.4698 11.8903 12.5821
4-S 19.4305 21.7975 23.4312 14.7297 14.7815
5-S 25.6167 29.0451 15.0490 29.4610 19.5363

(c) Mean Absolute Percentage Error
DF1 LDFGCV FGCV DFGCV DF2 NS

Quote 1.44069 1.18917 1.7846 0.970327 2.07960
1-S 1.49863 2.08346 1.51754 2.44103 2.20664
2-S 2.1876 2.61492 3.12146 1.95434 2.54066
3-S 2.88721 3.28566 3.71294 2.32398 2.37584
4-S 3.42008 4.28164 4.40533 2.6552 2.61363
5-S 4.72008 5.53727 5.5704 3.77156 3.18339

Note: minimum entry for each horizon displayed in .
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Table 5: Best and Runner-Up Models by Date and Horizon,

MAPE of Price Errors
Date Quote 1-Step 2-Step 3-Step 4-Step 5-Step
Jun-89 DF1,DF2 FGCV,DFGCV FGCV,DFGCV FGCV,DFGCV FGCV,DF2 FGCV.NS
Sep-89 DF1,LDFGCV FGCV,NS NS,FGCV NS,FGCV NS,FGCV NS,FGCV
Dec-89 DF1,LDFGCV DFGCV,FGCV DF1,DFGCV DFGCV,DF1 DFGCV,LDFGCV DFGCV,DF2
Mar-90 DF1,DF2 DF1,DFGCV FGCV,DFGCV NS,FGCV NS,FGCV NS,FGCV
Jun-90 DF1,FGCV DF1,FGCV FGCV,DFGCV FGCV,DFGCV DFGCV,DF2 DF2,DFGCV
Sep-90 DF1,DF2 FGCV,DFGCV FGCV,DFGCV FGCV,DFGCV FGCV,DF2 FGCV,NS
Dec-90 DF1,FGCV DF2,DF1 DF1,DFGCV FGCV,NS FGCV,DF1 FGCV,DF1
Apr-91 DF1,DF2 DF1,FGCV FGCV,DF1 DF2,FGCV DF2,FGCV DF2,FGCV
Jun-91 DF1,DF2 DF1,DF2 DF1,DF2 DF1,FGCV DF1,DF2 DF2,DF1
Sep-91 DF1,DF2 DF1,FGCV DF1,FGCV FGCV,NS NS,FGCV NS,FGCV
Dec-91 DF1,DF2 DF1,DF2 DF2,DF1 DF1,DF2 NS,FGCV NS,FGCV
Mar-92 DF1,FGCV NS,FGCV NS,FGCV NS,FGCV NS,FGCV NS,FGCV
Jun-92 DF1,DF2 DF1,NS NS,FGCV NS,FGCV NS,FGCV NS,FGCV
Sep-92 DF1,DF2 NS,DF1 NS,FGCV NS,FGCV NS,FGCV FGCV,DF2
Dec-92 DF1,DF2 NS,DF1 NS,DF1 NS,FGCV DF1,DF2 NS,FGCV
Mar-93 DF1,FGCV DF1,FGCV DF1,DF2 DF1,FGCV FGCV,DF1 FGCV,DF1
Jun-93 DF1,DF2 DF1,DF2 NS,FGCV FGCV,DF2 FGCV,DF2 NS,FGCV
Sep-93 DF1,FGCV NS,FGCV NS,FGCV NS,FGCV NS,FGCV NS,FGCV
Dec-93 DF1,DF2 DF1,DF2 DF1,DF2 DF1,DF2 FGCV,DF1 NS,FGCV
Mar-94 DF1,DF2 LDFGCV,DF2 DF2,DF1 DF1,DF2 DF1,DF2 DF2,DF1
Jun-94 DF1,DF2 FGCV,DF1 FGCV,DF1 FGCV,NS FGCV,NS FGCV,NS
Sep-94 DF1,DF2 DF2,DF1 DF1,DF2 DF2,DF1 DF2,DF1 DF2,DF1
Dec-94 DF1,DF2 DF1,DF2 FGCV,DF1 DF1,DF2 FGCV,DF2 DF1,DF2
Mar-95 DF1,LDFGCV FGCV,DF1 FGCV,DF1 FGCV,DF1 FGCV,DF1 FGCV,DF2
Jun-95 DF1,DF2 FGCV,DF1 FGCV,DF2 FGCV,DF2 FGCV,NS FGCV,NS
Sep-95 DF1,LDFGCV FGCV,DF1 FGCV,DF2 FGCV,DF2 FGCV,NS NS,FGCV
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Table 6: Best and Runner-Up Models by Date and Horizon,

MAPE of Yield Errors
date Quote 1-Step 2-Step 3-Step 4-Step 5-Step

Jun-89 DF1,DF2 DFGCV,FGCV FGCV,NS FGCV,NS FGCV,NS FGCV,NS
Sep-89 DF1,DF2 FGCV,NS NS,FGCV NS,FGCV NS,FGCV NS,FGCV
Dec-89 DF1,DF2 DF2,FGCV NS,FGCV NS,FGCV NS,FGCV NS,FGCV
Mar-90 DF1,DF2 DFGCV,FGCV FGCV,DFGCV NS,FGCV NS,FGCV NS,FGCV
Jun-90 DF1,DF2 FGCV,DFGCV FGCV,NS FGCV,NS NS,DF2 NS,FGCV
Sep-90 DF1,DF2 FGCV,DFGCV FGCV,NS FGCV,NS FGCV,NS NS,FGCV
Dec-90 DF1,DF2 NS,DF1 NS,DF1 NS,FGCV NS,FGCV NS,FGCV
Apr-91 DF1,DF2 FGCV,DF2 FGCV,DF2 FGCV,DF2 NS,FGCV NS,FGCV
Jun-91 DF1,DF2 DF2,DF1 DF2,DF1 DF2,DF1 DF2,DF1 NS,FGCV
Sep-91 DF2,DF1 DF2,FGCV FGCV,NS NS,FGCV FGCV,DF2 NS,FGCV
Dec-91 DF1,DF2 DF1,NS DF2,DF1 NS,FGCV NS,FGCV NS,FGCV
Mar-92 DF1,FGCV NS,FGCV NS,FGCV NS, FGCV NS,FGCV NS,FGCV
Jun-92 DF1,FGCV FGCV,DF1 NS,FGCV NS,FGCV NS,FGCV NS,FGCV
Sep-92 DF1,DF2 NS,FGCV NS,FGCV NS,FGCV NS,FGCV FGCV,DF2
Dec-92 DF1,DF2 NS,DF1 NS,DF1 NS,DF1 NS,DF2 DF1,FGCV
Mar-93 DF1,FGCV DF1,FGCV DF2,FGCV FGCV,DF2 FGCV,NS FGCV,NS
Jun-93 DF1,DF2 DF1,DF2 NS,DF2 DF2,FGCV FGCV,DF2 NS,FGCV
Sep-93 DF1,FGCV FGCV,DF2 FGCV,DF2 FGCV,DF2 FGCV,NS FGCV,NS
Dec-93 DF1,DF2 DF2,DF1 DF2,DF1 DF2,FGCV DF2,FGCV NS,FGCV
Mar-94 DF1,DF2 FGCV,DF1 DF2,DF1 DF2,DF1 DF2,DF1 DF2,FGCV
Jun-94 DF1,DF2 DF1,DF2 DF2,DF1 DF2,DF1 DF2,FGCV FGCV,DF2
Sep-94 DF1,DF2 DF2,DF1 DF2,DF1 DF2,DF1 DF2,DF1 DF2,FGCV
Dec-94 DF1,DF2 DF2,DF1 DF2,DF1 DF2,DF1 DF2,FGCV DF2,FGCV
Mar-95 DF1,DF2 DF2,FGCV FGCV,DF2 FGCV,DF2 FGCV,DF2 FGCV,DF2
Jun-95 DF1,LDFGCV FGCV,DFGCV FGCV,DF2 FGCV,DF2 FGCV,DF2 FGCV,DF2
Sep-95 DF1,LDFGCV FGCV,DF2 FGCV,DF2 FGCV,DF2 FGCV,DF2 FGCV,DF2



Table 7: Percentage of Cases in which each model is best,

MAPE of Price Errors

Table 8: Percentage of Cases in which each model is best,

MAPE of Yield Errors

model 1-Step 2-Step 3-Step 4-Step 5-Step
DF1 42.31 26.92 23.08 11.54 3.85
LDFGCV 3.85 0.00 0.00 0.00 0.00
FGCV 26.92 38.46 38.46 42.31 30.77
DFGCV 3.85 0.00 3.85 7.69 3.85
DF2 7.69 7.69 7.69 7.69 19.23
NS 15.38 26.92 26.92 30.77 42.31

model 1-Step 2-Step 3-Step 4-Step 5-Step
DF1 15.38 0.00 0.00 0.00 3.85
LDFGCV 0.00 0.00 0.00 0.00 0.00
FGCV 34.62 38.46 34.62 34.62 30.77
DFGCV 7.69 0.00 0.00 0.00 0.00
DF2 26.92 30.77 26.92 23.08 11.54
NS 15.38 30.77 38.46 42.31 53.85
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Table 9: Correlations between Average Price Change

and MAPE of Price Errors

Table 10: Correlations between Average Yield Change

and MAPE of Price Errors

model 1-Step 2-Step 3-Step 4-Step 5-Step
DF1 0.80 0.31 0.38 -0.17 0.06
LDFGCV 0.80 0.31 0.37 -0.17 0.07
FGCV 0.62 0.37 0.18 -0.07 -0.06
DFGCV 0.79 0.30 0.36 -0.18 0.08
DF2 0.79 0.30 0.21 -0.14 0.13
NS 0.42 0.32 0.10 -0.09 -0.03

Note: The price change series contains average absolute percentage changes in

bond price.

model 1-Step 2-Step 3-Step 4-Step 5-Step
DF1 0.85 0.62 0.47 -0.25 0.13
LDFGCV 0.86 0.64 0.48 -0.24 0.12
FGCV 0.92 0.75 0.56 -0.14 0.10
DFGCV 0.86 0.64 0.49 -0.24 0.13
DF2 0.85 0.61 0.52 -0.18 0.09
NS 0.80 0.58 0.38 -0.16 0.16

Note: The yield change series contains average absolute percentage changes in

bond yield.
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Table 11: Median MAPE of Price Errors by Tenor Category

0.041355
0.071831

0.099629
0.097156
0.125417
0.12643

0.0978682
0.218118

0.267204
0.328485

0.384470
0.431740

0.272192
0.423399

0.519443
0.580446

0.605199
0.712300

0.0541203
0.384072

0.593907
0.608901

0.633187
0.789631

bold

(a) Securities with 0�3 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS Full
Quote 0.057647 0.056517 0.075278 0.045449 0.111705 0.100066
1-S 0.072474 0.094600 0.075782 0.094129 0.120954 0.184126
2-S 0.100925 0.115865 0.122959 0.102338 0.121619 0.251420
3-S 0.125254 0.145133 0.155753 0.116524 0.139872 0.272283
4-S 0.142055 0.160857 0.169119 0.136017 0.143571 0.321386
5-S 0.171021 0.189539 0.195266 0.158979 0.164866 0.366991

(b) Securities with 3-7 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS Full
Quote 0.0998163 0.10392 0.10374 0.109199 0.269941 0.100066
1-S 0.235154 0.243411 0.236971 0.247965 0.285583 0.184126
2-S 0.270453 0.272475 0.268964 0.278767 0.299114 0.251420
3-S 0.372749 0.382541 0.379128 0.39006 0.331844 0.272283
4-S 0.448644 0.460271 0.402441 0.460955 0.458951 0.321386
5-S 0.47986 0.462087 0.450521 0.463972 0.465603 0.366991

(c) Securities with 7-15 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS Full
Quote 0.302664 0.303969 0.296767 0.331185 0.424667 0.100066
1-S 0.429222 0.437532 0.437647 0.434365 0.501361 0.184126
2-S 0.534779 0.522022 0.533479 0.534175 0.581360 0.251420
3-S 0.628074 0.637765 0.641759 0.584812 0.631992 0.272283
4-S 0.629701 0.643622 0.609421 0.640345 0.619902 0.321386
5-S 0.870721 0.872315 0.743426 0.868834 0.796315 0.366991

(d) Securities with 15-30 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS Full
Quote 0.154805 0.143715 0.120204 0.149313 0.406867 0.100066
1-S 0.434007 0.3874 0.411932 0.422089 0.567215 0.184126
2-S 0.613553 0.616728 0.617579 0.60819 0.595221 0.251420
3-S 0.662924 0.678163 0.617893 0.671576 0.654702 0.272283
4-S 0.668914 0.693802 0.65907 0.665908 0.689437 0.321386
5-S 1.01554 1.02524 0.908154 1.0192 1.01229 0.366991

Note: minimum value over models for each tenor category presented in .

Value in �Full� is the minimum achieved by any model over all tenors.
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Table 12: Median MAPE of Yield Errors by Tenor Category

1.32526
1.95069
2.50592

2.80508
3.42076
3.88385

0.395073
0.903704
1.0878
1.2933

1.69910
1.63899

0.668106
0.905532
1.15224
1.25853
1.23922
1.44738

0.0747147
0.501944

0.769142
0.754363

0.868876
1.020520

bold

(a) Securities with 0�3 years to maturity

model DF1 LDFGCV FGCV DFGCV DF2 NS Full
Quote 2.31072 1.8487 3.01267 1.41543 2.93978 0.855686
1-S 2.12119 3.33225 2.19015 4.19942 3.28018 1.44465
2-S 3.24391 3.89878 2.56333 4.83422 3.48377 1.94167
3-S 4.24714 5.36038 5.89728 3.16521 3.28293 2.03273
4-S 5.19701 6.87342 7.69246 3.74546 3.61587 2.16549
5-S 7.29745 9.13318 9.45022 5.26022 4.11486 2.79604

(b) Securities with 3�7 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS Full
Quote 0.40224 0.411712 0.422794 0.417359 1.05745 0.855686
1-S 0.988681 1.0432 1.02207 1.02594 1.12779 1.44465
2-S 1.09385 1.13516 1.12339 1.16255 1.16136 1.94167
3-S 1.58999 1.58929 1.57417 1.61874 1.38380 2.03273
4-S 1.98498 2.01117 1.714 2.003 2.00687 2.16549
5-S 2.55595 2.46515 1.91168 2.47311 2.37902 2.79604

(c) Securities with 7-15 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS Full
Quote 0.704729 0.715163 0.707078 0.72407 0.93723 0.855686
1-S 0.992218 1.01195 1.0146 0.997435 1.12664 1.44465
2-S 1.2952 1.30747 1.3022 1.30886 1.33136 1.94167
3-S 1.43095 1.43157 1.42719 1.40138 1.54691 2.03273
4-S 1.38948 1.40533 1.40534 1.34761 1.33109 2.16549
5-S 2.03311 2.0556 2.05631 1.82028 1.47140 2.79604

(d) Securities with 15-30 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS Full
Quote 0.205923 0.184648 0.155663 0.198777 0.523428 0.855686
1-S 0.566058 0.511504 0.538426 0.559037 0.718061 1.44465
2-S 0.77826 0.780202 0.782415 0.783337 0.771668 1.94167
3-S 0.85119 0.875308 0.817194 0.856558 0.837093 2.03273
4-S 0.917675 0.923477 0.903982 0.919852 0.932578 2.16549
5-S 1.30013 1.31742 1.18038 1.30755 1.3068 2.79604

Note: minimum value over models for each tenor category presented in .

Value in �Full� is the minimum achieved by any model over all tenors.
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Table 13: Percentage Penalty of Price Errors by Tenor Category

(a) Securities with 0�3 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS
Quote 0 39.3972 36.6643 82.0286 9.90057 170.113
1-S 0.895317 31.6986 5.50057 31.0428 0 68.386
2-S 1.30047 16.2969 0 23.4173 2.71908 22.071
3-S 28.92 49.3804 0 60.3112 19.9348 43.966
4-S 13.266 28.2575 0 34.8453 8.45185 14.475
5-S 35.2694 49.9162 0 54.4467 25.7454 30.410

(b) Securities with 3�7 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS
Quote 0 1.99048 6.18355 5.99965 11.5771 175.821
1-S 7.8104 11.5958 0 8.6435 13.6838 30.9307
2-S 0 1.2156 1.97239 0.658413 4.32709 11.9422
3-S 13.4753 16.456 0 15.4171 18.7451 1.0227
4-S 16.6915 19.7157 4.6742 19.8937 19.3723 0
5-S 11.1456 7.0289 4.3501 7.4656 7.8434 0

(c) Securities with 7-15 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS
Quote 0 11.195 11.6743 9.02855 21.6732 56.0174
1-S 1.37524 3.33812 0 3.36513 2.59014 18.4134
2-S 0 2.95234 0.49647 2.70207 2.83599 11.9198
3-S 8.20537 9.87485 0 10.563 0.752176 8.8804
4-S 4.0486 6.3489 0.6976 5.8074 2.4295 0
5-S 22.2408 22.4645 4.3698 21.9758 11.7949 0

(d) Securities with 15-30 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS
Quote 0 186.038 165.547 122.105 175.892 651.781
1-S 0 13.0014 0.866516 7.25382 9.89833 47.6846
2-S 3.30803 3.84265 0 3.98586 2.40497 0.2213
3-S 8.8722 11.3749 1.4767 10.2931 7.5218 0
4-S 0 5.64236 9.57294 4.08763 5.1676 8.8835
5-S 28.6098 29.8382 15.0099 29.0735 28.1981 0
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Table 14: Percentage Penalty of Yield Errors by Tenor Category

(a) Securities with 0�3 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS
Quote 0 74.359 39.497 127.326 6.80338 121.826
1-S 8.74013 70.8237 12.2756 115.279 0 68.1549
2-S 29.4497 55.5827 2.29091 92.9119 0 39.0216
3-S 51.4088 91.0952 0 110.235 12.8384 17.0350
4-S 51.9255 100.933 0 124.876 9.49206 5.7036
5-S 87.8921 135.158 0 143.321 35.4383 5.9479

(b) Securities with 3�7 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS
Quote 0 1.81411 4.21152 7.01664 5.64088 167.658
1-S 9.40314 15.4365 0 13.098 13.5257 24.7963
2-S 0.557036 4.35391 0 3.27253 6.87253 6.7627
3-S 22.9409 22.8862 0 21.717 25.1636 6.9973
4-S 16.8249 18.3662 0.8764 17.8855 18.1136 0
5-S 55.9464 50.4067 16.6375 50.8926 45.1514 0

(c) Securities with 7-15 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS
Quote 0 5.4816 7.04332 5.83323 8.37647 40.2823
1-S 9.57304 11.7522 0 12.0444 10.1491 24.4170
2-S 12.4069 13.4718 0 13.0147 13.592 15.5446
3-S 13.7 13.7493 0 13.4013 11.3509 22.9136
4-S 12.1252 13.4039 0 13.4051 8.74673 7.4138
5-S 40.4684 42.0223 0 42.0712 25.764 1.6597

(d) Securities with 15-30 years to maturity
model DF1 LDFGCV FGCV DFGCV DF2 NS
Quote 0 175.613 147.138 108.343 166.048 600.569
1-S 0 12.7732 1.90469 7.26831 11.3745 43.0561
2-S 1.1856 1.4381 1.7257 1.8457 0 0.3285
3-S 12.8355 16.0327 8.3290 13.5471 10.9667 0
4-S 0 5.61639 6.28417 4.04047 5.86693 7.3316
5-S 27.3980 29.0926 15.6638 28.1250 28.0515 0
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Table 15: Median MAPE for Treasury Bills

0.00880527
0.0145105
0.0196475

0.0228137
0.0250907
0.0244604

0.796772
1.18681
1.58425

1.52563
2.13098
2.92778

bold

(a) Price Errors
model DF1 LDFGCV FGCV DFGCV DF2 NS
Quote 0.020914 0.0177765 0.0276213 0.00976778 0.052031
1-S 0.015862 0.0313875 0.0203268 0.0353665 0.048836
2-S 0.0250686 0.0428039 0.0210726 0.0432806 0.047613
3-S 0.0319612 0.0566628 0.0552664 0.026548 0.049468
4-S 0.0432801 0.066793 0.0661124 0.0308675 0.058193
5-S 0.0638737 0.0809441 0.0856178 0.0491018 0.051764

(b) Yield Errors
model DF1 LDFGCV FGCV DFGCV DF2 NS
Quote 1.60218 1.49004 2.14318 0.961537 4.80937
1-S 1.44603 2.5043 1.28598 3.25211 3.93438
2-S 2.28349 3.40034 1.63677 3.81861 4.59787
3-S 3.30232 4.18825 5.13248 2.07375 4.26124
4-S 4.33967 5.31338 6.08526 2.75941 4.91517
5-S 5.964 7.15206 7.81706 3.69184 4.74682

Note: minimum entry for each horizon displayed in .
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Table 16: Percentage Penalty for Treasury Bill Prediction

(a) Price Errors
model DF1 LDFGCV FGCV DFGCV DF2 NS
Quote 0 137.517 101.884 213.691 10.9311 490.904
1-S 9.31417 116.309 40.0836 143.731 0 236.557
2-S 27.5919 117.86 7.2537 120.286 0 142.337
3-S 40.097 148.372 0 142.251 16.3687 116.837
4-S 72.4947 166.207 0 163.494 23.0239 131.931
5-S 161.131 230.919 0 250.026 100.74 111.623

(b) Yield Errors
model DF1 LDFGCV FGCV DFGCV DF2 NS
Quote 0 101.084 87.0098 168.982 20.679 503.607
1-S 21.8413 111.011 8.35547 174.02 0 231.509
2-S 44.1369 114.634 3.31499 141.036 0 190.224
3-S 116.456 174.525 0 236.417 35.9273 179.310
4-S 103.646 149.339 0 185.561 29.4899 130.653
5-S 103.704 144.282 0 166.996 26.0966 62.130
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