
ANALYSIS OF VECTOR AUTOREGRESSIONS IN THE PRESENCE OF

SHIFTS IN MEAN

Serena Ng� Timothy J. Vogelsangy

July 1997

Abstract

This paper considers the implications of omitted mean shifts for estimation and

inference in VARs. It is shown that the least squares estimates are inconsistent, and the

F test for Granger causality diverges. While model selection rules have the tendency

to incorrectly select a lag length that is too high, this over-parameterization can reduce

size distortions in tests involving the inconsistent estimates. The practical issue of how

to remove the breaks is shown to depend on whether the mean shifts are of the additive

or innovational type in a multivariate setting. Under the additive outlier speci�cation,

the intercept in each equation of the VAR will be subject to multiple shifts when the

break dates of the mean shifts to the univariate series do not coincide. Conversely,

under the innovative outlier speci�cation, the unconditional means of the univariate

time series are subject to multiple shifts when mean shifts to the innovation processes

occur at di�erent dates. Techniques designed to detect multiple shifts are recommended

when break dates do not coincide.
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1 Introduction

In recent years, many univariate statistics have been developed to test for the presence of

structural breaks in stationary and non-stationary time series. When applied to macroeco-

nomic data, the evidence suggests that breaks in the form of a shift in mean and/or the trend

function have occurred in many series. Clearly, if there are breaks in the univariate series

and these breaks are not accounted for in multivariate work, misspeci�cation will result.

While it is fairly well known how an unstable mean a�ects univariate analysis, much less is

known about how unstable means a�ect multivariate analysis. The purpose of this paper

is to explore the rami�cations of unstable means in a vector of time series on estimation

and inference using vector autoregressions (VARs). We focus on whether shifts in the mean

of one or more series will induce bias in the OLS estimates of the VAR and consider the

properties of tests for Granger causality and lag length selection in the presence of unstable

means.

Vector autoregressions are widely used in macroeconomic analyses. Any model misspec-

i�cation will a�ect the impulse response functions and the decomposition of variances and

hence mislead our understanding of macroeconomic dynamics. This point has long been

recognized. For example, Stock and Watson (1989) suggested that because in
ation has a

time trend, the money-income causal relationship can be shown to be signi�cant when the

neglected trend is properly included in the VAR. Evidence that mean shifts a�ect analyses

of VARs also exists in the literature. For example, Gambe and Joutz (1993) �nd that if the

mean shift in the growth rate of output in 1973 and the trend in the unemployment rate

were not taken into account, the importance of labor-demand shocks in variations in real

wages dropped, while those of aggregate demand shocks rose. On a larger scale, Stock and

Watson (1996) found that in a sample of 76 representative U.S. monthly postwar macroeco-

nomic time series there is substantial structural instability in bivariate relationships. Some of

that structural instability is no doubt due to unstable means. Although simulations studies

by Lutkepohl (1989) and Bianchi (1995) have shown that Granger causality tests have ex-

cessive size in �nite samples when mean shifts are ignored, there does not exist a systematic

theoretical analysis of how omitted mean shifts a�ect VARs in the literature.

This paper provides a formal analysis for the properties of VARs when shifts in the

function of deterministic variables are ignored. In particular we examine the consistency

properties of estimates of reduced form VARs in the presence of mean shifts and discuss

implications for Granger causality tests and lag length selection in the associated regressions.
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Since structural VAR parameters are functions of reduced form parameters, implications for

structural estimation (e.g. impulse responses and variance decompositions) follow directly

from our results. However, we do not explicitly consider structural estimation as this subject

is beyond the scope of the paper.

E�ects of omitted mean shifts are similar in spirit to the e�ects of omitted time trends,

and both can prove equally treacherous in applied work. However, there is a fundamental

di�erence between the two problems. For data of a given span, the time trend for the sample

in question is de�ned up to scale. That is to say, the trend is sample speci�c rather than

variable speci�c. It follows from the Frisch-Waugh theorem that univariate detrending or

including a trend in the VAR has the same e�ect on the parameter estimates. However, mean

shifts are variable speci�c to the extent that the break dates in a n-vector model may not

coincide. Therefore, even if each variable experiences just one break, the number of omitted

breaks in the VAR will be larger than one unless all variables experience mean shifts at the

same time.

The issue of how to remove breaks in a univariate series has been analyzed under a

variety of conditions. In general, the coe�cients associated with the deterministic terms

can be consistently estimated by projecting the observed series on a constant and/or trend,

and the break dummies, and based on these estimated coe�cients, a mean zero stochastic

process can be constructed. Alternatively, break dummies can be added directly to the

autoregressive representation of the series. Essentially, there is little practical di�erence

between these two approaches. In the multivariate setting things are more complicated, and

consideration needs to be given to dates of the breaks and how the breaks �lter through

the system. Similar to the univariate setting one approach is to identify and remove breaks

series by series before estimating the VAR. The second approach is to place break dummies

directly into the VAR representation. But, depending on how mean shifts are modeled,

mean shifts at di�erent break dates can induce multiple intercept shifts in each equation of

the VAR or multiple mean shifts in the univariate representations of the series. Therefore,

techniques that can identify multiple shifts such as Bai and Perron (1995) may be required

when estimating VARs subject to mean shifts.

The rest of the paper proceeds as follows. Section 2 considers the properties of the OLS

estimates for a bivariate VAR when mean shifts are omitted. Implications for inference are

considered in Section 3. Model selection in the context of a misspeci�ed model is also consid-

ered. Section 4 considers the appropriate methods for removing the breaks in multivariate

models. An empirical example is presented in Section 5. Section 6 concludes. Although the
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focus of this paper is on mean shifts, qualitatively similar results are found to hold if there

are breaks in the trend instead of the mean. The generality of the results stated in this paper

are also be discussed.

2 The Model

There are two common approaches to modeling mean shifts in a univariate time series which

are based time series models with outliers (e.g. Tiao (1985) and Box and Tiao (1975)).

The �rst is the \additive outlier" (AO) approach which speci�es a series yt as the sum of

a deterministic component � + �DUt and a stochastic component, zt = azt�1 + et, where

DUt = 1(t > TB), 1(t > TB) is the indicator function, TB is the break date and et is a

martingale di�erence sequence. The second is the \innovational outlier" (IO) approach

which models the break as occurring to the mean of the innovation series. More formally,

yt is speci�ed as yt = � + zt, where zt = azt�1 + �DUt + et. Both approaches were used by

Perron (1990), among others, in the context of univariate unit root tests that allow a shift

in mean. The IO model has the advantage of permitting mean shifts to occur gradually over

time, but has the disadvantage that the dynamic path of the break is constrained to follow

the dynamics of the stochastic part of the series.

The AO and IO approach to modeling mean shifts in univariate processes provides a

natural starting point to modeling mean shifts in multivariate time series. To simplify the

analysis and notation, we only focus on the bivariate case. Consider the following model for

the bivariate series fytg = (y1t; y2t)0 for t = 1; : : : ; T . A bivariate additive outlier mean shift

model can be speci�ed as follow:

yt = �+Dt� + zt (1)

zt = Azt�1 + et (2)

where zt = (z1t; z2t)0, et = (e1t; e2t)0, � = (�1; �2)0, Dt is a 2 � 2 diagonal matrix with

diag(Dt) = (DU1t;DU2t), DUit = 1(t > TBi), i = 1; 2 where TBi is the break date for the

series yi and A is a 2 � 2 matrix with elements aij.

By transforming the above model in standard fashion, (1) and (2) can be written as,

yt = �� +D�

t
� +A�Dt� +Ayt�1 + et; (3)

where �� = (I2�A)�,D�

t
= (I2�A)Dt and �Dt is a 2�2 diagonal matrix with diag(�Dt) =

(DTB1t;DTB2t), where � is the �rst di�erence operator, DTBit = 1(t = TBi + 1); i = 1; 2.
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Model (3) is the VAR representation of (1) and (2). Note that the unconditional mean for

the univariate and the vector representation of the series are invariant to the parameters

pertaining to the dynamics of the model. Since D�

t
� is a 2 � 1 vector with elements that

are linear combinations of DU1t and DU2t, both equations of the VAR potentially have

two intercepts shifts depending on the timing of the breaks and values of the dynamics

parameters, aij. Therefore, the VAR described by (3) inherits the shifts in the means of the

two series as shifts in the intercepts of the autoregressive equations.

A bivariate innovational outlier mean shift model can be speci�ed as:

yt = � + vt (4)

vt = Avt�1 + et +Dt�: (5)

By transforming the model in the usual way gives the VAR

yt = �� +Dt� +Ayt�1 + et: (6)

Notice that the mean shifts now a�ect the innovation series e1t and e2t. Unlike the additive

outlier model, the unconditional mean of yt depends on the dynamic parameters. More

importantly, each equation of the VAR is subject to a single shift in intercept whereas the

univariate time series are possibly subject to multiple shifts. The opposite is true of the

additive outlier model. This distinction is crucial to how mean shifts should be dealt with

in a multivariate setting, an issue to which we will return.

Throughout, we assume that et is iid with E(e21t) = �21, E(e
2
2t) = �22, E(e1te2t) = �12,

and y0 = (0; 0)0. We only consider cases where the roots of jI2 � ALj lie outside the unit

circle. Therefore zt and vt are �rst order stationary bivariate time series. Both the AO and

the IO model can also be used to characterize shifts in the mean of the �rst di�erence of two

I(1) but not cointegrated series. Cases in which the DGP has a unit root and cointegration

exists are deliberately ruled out as the unit root asymptotics complicate the algebra without

adding intuition to the problem at hand. We assume for now that the breaks in the two

series coincide, so that DU1t = DU2t = DUt. This assumption simpli�es the algebra and

analytic results while allowing us to illustrate important results. We discuss later in the

context of trend removal additional issues that arise when the break dates di�er.

The e�ects of AO mean shifts on the VAR can best be seen by considering one of the

equations, say, y2t, which can be written as

y2t = ��2 + ��2DUt + 
�2DTBt + a21y1t�1 + a22y2t�1 + e2t; (7)

4



with ��2 = (1 � a22)�2 � a21�1, ��2 = (1 � a22)�2 � a21�1, and 
�2 = a21�1 + a22�2. Equation

(7) reveals that the e�ects of mean breaks on y2t will depend on whether or not a21 = 0. If

y1 does not Granger cause y2, i.e. a21 = 0, y1 is weakly exogenous for y2. When a21 = 0,

��2 and 
�2 do not depend on �1, and a mean break in y1 will not appear in the equation for

y2. Under Granger non-causality, a mean break dummy will appear in the equation for y2

only if there is a break in the mean function for y2 itself, i.e. �2 6= 0. However, when y1

Granger causes y2, the mean shift in y1 will, in general, appear in the conditional model for

y2 whether we have mean shifts in y1, y2, or both.

In the IO mean shift model we have for y2t:

y2t = ��2 + �2DUt + a21y1t�1 + a22y2t�1 + e2t: (8)

In this case, the intercept shift in y2t is the same magnitude as the mean shift to e2t and does

not depend on the mean shift to e1t. Thus, the IO mean shift to e1t has no direct e�ect on

the y2t equation of the VAR. Conversely, the unconditional means of y1t and y2t are functions

of both �1 and �2. This is easily seen be rewriting (4) as

yt = � + (I �AL)�1Dt� + zt (9)

zt = Azt�1 + et:

From (9) we have

y1t = �1 + g1(L)DUt + z1t (10)

y2t = �2 + g2(L)DUt + z2t; (11)

where g1(L) = (a12�2L + (1 � a11L)�1)=d(L), g2(L) = (a21�1L + (1 � a22L)�2)=d(L) and

d(L) = (1 � a11L)(1 � a22L) � a21a12L
2. The long run impact on the unconditional means

from the IO mean shifts are given by g1(1) and g2(1). Whether or not the IO mean shift

from one series �lters into the unconditional mean of the other series depends on the Granger

causality relationship between the series. For example, if y1 does not Granger cause y2, then

a21 = 0 and the unconditional mean of y2t is una�ected by �1.

Detecting a break in univariate time series is by now standard practice. There is abundant

evidence for breaks in the trend function of many macroeconomic series. For example,

Perron (1989) analyzed the Nelson-Plosser data set and found that many series are stationary

around segmented means and/or trends. Structural change in many of these series was

con�rmed by Vogelsang (1997a) and Chu and White (1992) using direct tests for shifts in
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trend. Vogelsang (1997b) found evidence of a mean shift in the unemployment rate. Series

for international output were also found to have segmented trends by Banerjee, Lumsdaine

and Stock (1992), Ben-David and Papell (1995) and Perron (1991). In spite of these �ndings,

many VARs continue to be estimated as though there were no breaks in the series.

For a VAR in which the regressors are the same for each equation, Kruskal's theorem

applies and each equation can be estimated consistently by OLS. The OLS estimates arep
T consistent, asymptotically normal, and (if the errors are normally distributed) e�cient.

But suppose one omits mean shifts in the regression model. Without loss of generality we

consider the regression for equation y2:

y2t = �̂�2 + â21y1t�1 + â22y2t�1 + ê2t: (12)

Regression (12) is a misspeci�ed model. The misspeci�cation is obvious upon rewriting the

DGP as:

y2t = ��2 + a21y1t�1 + a22y2t�1 + e�2t; (13)

with e�2t = e2t + ��2DUt + 
�2DTBt in the AO model and e�2t = e2t + �2DUt in the IO model.

Regressions based upon (12) su�er from omitted variables bias since the regressor DUt is

excluded in the AO model when �2 6= 0 and/or when �1 6= 0 and a21 6= 0 and in the IO model

when �2 6= 0. It remains to be precise about the asymptotic e�ects of omitted breaks. The

results are summarized in the following theorems.

Theorem 1 Let yt = (y1t; y2t)
0, t = 1; : : : ; T be generated by the AO model (1) and (2).

Let the parameters a2 = (a21; a22)0 be estimated from (12) by OLS to yield â2 = (â21; â22)0.

Let C be a 2 � 2 matrix with elements cij = �i�j�(1 � �) + �ij where �ij = cov(zit; zjt) and

� = TB=T remains constant as T increases.

A. Under Granger non-causality with a21 = 0,

1. plim(â2 � a2) = 0 if �2 = 0;

2. plim(â2 � a2) = C�1��(1� �)��2 if �2 6= 0;

3. plim(â21� a21) = 0 if �1 = 0, a12 = 0 and �12 = 0;

B. Under Granger causality with a21 6= 0, plim(â2 � a2) = C�1��(1 � �)��2 if �1 6= 0

and/or �2 6= 0 unless (1 � a22)�2 = a21�1 in which case plim(â2� a2) = 0.

Theorem 2 Let yt = (y1t; y2t)0, t = 1; : : : ; T be generated by the IO model (4) and (5). Let

the parameters a2 = (a21; a22)
0 be estimated from (12) by OLS to yield â2 = (â21; â22)

0. Let
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Q be a 2� 2 matrix with elements qij = gi(1)gj(1)�(1��) +�ij where �ij = cov(zit; zjt) and

� = TB=T remains constant as T increases. De�ne the 2� 1 vector g(1) = (g1(1); g2(1))0.

A. Under Granger non-causality with a21 = 0,

1. plim(â2 � a2) = 0 if �2 = 0;

2. plim(â2 � a2) = Q�1g(1)�(1 � �)�2 if �2 6= 0;

3. plim(â21� a21) = 0 if �1 = 0, a12 = 0 and �12 = 0;

B. Under Granger causality with a21 6= 0, plim(â2 � a2) = Q�1g(1)�(1 � �)�2 if �1 6= 0

and/or �2 6= 0 unless g1(1) = g2(1) = 0 in which case plim(â2� a2) = 0.

It can easily be seen that the theorems also apply when y1 is the dependent variable.

For that equation, the properties of the estimates will depend on whether a12 = 0, with the

impact of the mean break measured by �1 and ��1 = (1 � a11)�1 � a12�2.

The theorems establish that when there are breaks in both y1 and y2, the estimates

associated with the autoregression which omits the intercept shifts will, in general, be in-

consistent. This is due to the fact that plim(T�1
P
y1t�1e

�

2t) and plim(T�1
P
y2t�1e

�

2t) can

be nonzero. Whether or not the OLS estimates are consistent depend on these probability

limits.

Consider the AO model. For this simple �rst-order VAR, it follows from Theorem 1 that,

under Granger non-causality,

â21 � a21 / (�1�22 � �2�12)��2�(1� �);
â22 � a22 / (��1�12 + �2�11)�

�

2�(1� �);
(14)

Under the assumption that a21 = 0 we have: �22 = �22=(1 � a222), �11 = �21=(1 � a211) +

2�12a11a12=[(1 � a211)(1 � a11a12)] + �22a
2
12(1 + a11a22)=[(1 � a211)(1 � a222)(1 � a11a22)] and

�12 = �12=(1 � a11a22) + �22a12a22=[(1 � a222)(1 � a11a22)]. Since ��2 = (1 � a22)�2 under

Granger non-causality, it will be zero when �2 = 0 whatever the value of �1 might be, and

leads to A1 of the theorem. In general, â21 � a21 = Op(1) when �2 6= 0, as shown in A2 of

the theorem. As in classical regression analysis, the least squares estimates of a misspeci�ed

model with omitted regressors are shifted from their true values by quantities determined

by the correlation between the regression error and the included regressors. In the present

case of omitted mean shifts, the estimates will also depend on the timing of the breaks as

determined by �.
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There is an exception when �2 6= 0 and yet one of the estimated coe�cients is consistent.

The situation arises when �1 = 0, a12 = 0 and �12 = 0. In this case, â21 is consistent as

suggested by A3 of Theorem 1. Formally, the result arises because �12 = 0 when a12 = 0

and �12 = 0. Hence with �1 = 0, the e�ect of the break on â21 is nil. This is a special

case because with a21 = a12 = �12 = 0, y1 and y2 are uncorrelated. Therefore, although the

regression based on (12) is misspeci�ed and has a non-zero mean in the error term, y1t is

uncorrelated with the regression error and is asymptotically orthogonal to y2t. Hence, the

misspeci�cation does not contaminate the estimate for a21. However, â22 is still inconsistent

even if a12 = 0, and hypothesis testing based on combinations of â21 and â22 will still be

invalid.

Given the de�nition of ��2 = (1 � a22)�2 � a21�1, the properties of the OLS estimates

improve the closer is a22 to +1 and deteriorate the closer is a22 to -1. The reason, as in the

univariate additive outlier case, is that as a22 increases, the size of any mean shift is reduced

relative to the unconditional variance of y2, as de�ned by �22=(1 � a22). When a22 is unity

with a21 = 0, y2 is a random walk, and a mean shift only induces a one time outlier in the

�rst di�erences of the data. On the other hand, negative serial correlation in y2t reduces the

unconditional variance of the series and e�ectively increases the relative magnitude of the

break. These results also highlight the point that the intercepts of the VAR [i.e. (3)] are

tied to the dynamics in the additive outlier model. One cannot tell if a shift in �� is due to

variations in the parameters pertaining to the dynamics, or to a shift in the unconditional

mean of the data. To the extent that our ultimate interest is in the impact of the mean shift

holding the dynamics �xed, it is desirable to be explicit about the source of the mean shift.

This makes clear that a mean shift in the AO case is speci�cally a break to the unconditional

mean of the model.

Di�erences between parts A and B of the Theorem 1 formalize our earlier observation

that the extent by which â2 deviates from a2 will depend on the value of a21. Under Granger

causality, the least squares estimates will be inconsistent so long as there is a mean shift.

Furthermore, the e�ects of the omitted break in y1 will no longer be isolated to the equation

for y1 alone. The regression error for y2 which contains the omitted break is now correlated

with lags of y1. Thus, under Granger causality, no con�guration of � and A can resurrect

consistency of the least squares estimates.

The consistency results for the IO model are very similar to the results for the AO model.

Interestingly, part A3 continues to hold for the IO model. This can be seen by writing the
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equivalent of (14) for the IO model

â21 � a21 / (g1(1)�22 � g2(1)�12)�2�(1 � �);
â22 � a22 / (�g1(1)�12 + g2(1)�11)�2�(1 � �):

(15)

When a12 = 0 and �1 = 0, it follows that g1(1) = 0, and since it is still true that �12 = 0

when a12 = 0 and �12 = 0, we see that â21 � a21 is proportional to zero even when �2 6= 0.

Thus, â21 is a consistent estimate in spite of the omitted regressor DUt when y1t has no IO

mean shift and y1 and y2 are asymptotically orthogonal.

There are some subtle di�erences between the AO and IO consistency results that are

useful to highlight. First, as a22 approaches �1, it is no longer clear how the magnitude

of the bias of the OLS estimates changes in the IO model. As a22 approaches one, it is

still true that the unconditional variance of y2 increases. But, unlike in the AO model, the

magnitude of the unconditional shift in mean is not independent of a22 and increases as a22

approaches one. When a22 = 1 the mean shift becomes a trend shift and y2t becomes a unit

root series with a slope shift. Therefore, it is di�cult to determine the net e�ect on bias1.

Second, in the AO model the exception to part B of Theorem 1 arises when the mean shifts

and dynamics are such that the intercept to the y2 equation of the VAR is not a�ected by

the mean shifts. Thus, regression (12) is not misspeci�ed in this case. In the IO model,

regression (12) is always misspeci�ed as long as �2 6= 0. However, when g1(1) = g2(1) = 0,

the unconditional means of both series are una�ected by the IO mean shifts as the dynamics

are such that the means shifts cancel each other. In this case the regressors y1t�1 and y2t�1

and the omitted regressor DUt are asymptotically orthogonal and OLS remains consistent.

A more general parameterization of the DGPs would allow the mean breaks to occur

at possibly di�erent dates across series, but this will not change the qualitative aspects of

the theorems. Repeating the analysis, it is easy to see that omitting one of the breaks

will still lead to inconsistent least squares estimates even under Granger non-causality. The

discrepancy between the OLS estimates and their true value can be quite large if the two

break dates are su�ciently far apart. Although it would be practical to include one break

dummy for the most likely break date in a VAR, this may not be adequate when there

are genuinely multiple breaks in multivariate time series. We defer the issue of appropriate

detrending of VARs to Section 4.

When the models are expanded to allow for time trends with a possible break, the

additive outlier DGP, for example, becomes yit = �i + �it + �iDUit + �iDTit + zit(i = 1; 2)

1This illustrates a discontinuity in the functional form of the deterministic components of the series as
autoregressive roots approach one in the IO model.
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where DTt = 1(t > TB)(t� TB). Then y2 takes the form

y2t = ���2 + ���2DUt + �
�2DTBt + ��t+ ���2DTt + a21y1t�1 + a22y2t�1 + e2t;

where ��2; ���2; �

�

2 ;
���2 are functions of �; �; and �. Regressions of the form

y2t = �̂�2 + �̂�2t+ a21y1t�1 + a22y2t�1 + e2t;

are misspeci�ed because of the omitted shifts in mean and/or the trend. When there is an

omitted mean shift (but not in the trend), the least squares estimates have properties as

stated in Theorem 1. When there is an omitted shift in the trend function, consistency of

the estimates in the y2 equation still depend on the presence or absence of Granger causality.

By analogy to the preceding analysis, we now have ���2 = (1�a22�2�a21�1) which controls the
impact of the omitted trend shifts on the regression model. When both series have a slope

shift, y1t�1 and y2t�1 are asymptotically collinear. Using transformations similar to those

suggested by Sims, Stock and Watson (1990), it is possible to establish the inconsistency of of

â2. In fact, a theorem nearly identical to Theorem 1 holds when there are slope shifts. Details

are available upon request. Finally, when z1t and/or z2t are I(1) and are not cointegrated,

Theorem 1 obviously applies to �zt. Similar developments apply to the IO model.

Since Theorems 1 and 2 establish that the least squares estimates are inconsistent, func-

tions of these estimates will also be inconsistent. The consequence from a practical point of

view is that the conditional forecasts and impulse response functions based upon the OLS

estimates will also be inconsistent. This easily can be seen by forming the companion matrix

(B) for the vector process y(t) = (y1t; y1t�1; y2t; y2t�1)0, with y(t) = By(t� 1) + E(t). Since

B̂ depends on âij, B̂ is inconsistent, from which it follows that B̂i is also inconsistent, where

i is the horizon of the forecast.

2.1 Finite Sample Properties of the Estimates in the AO Model

In this subsection we use a simulation study to assess the empirical implications of the

consistency theorems. For brevity, we focus on the AO model and Theorem 1. Similar

results hold for the IO model . We generated series according to (1) and (2) using T = 500

and TB = 250 with et iid draws from a standard bivariate normal distribution. Since the

variances of the eit's are unity, the magnitude of the mean shift is measured in terms of

the standard deviations of the eit's. Four possible combinations of (�1; �2) were considered:

(0,0), (1,0),(0,1),(1,1). This allows for the possibility that a break occurs in none, one, or

both series. For the base case, we considered three values of a11 (-0.5,0.0,0.5) and three
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values for a21 (-0.3, 0.0, 0.3). Values for a12 and a22 are taken from the parameter set

�0:6;�0:4;�0:2; 0:0; 0:2; 0:4; 0:6 for each value of a11. All parameterizations have eigenvalues

of A that lie inside the unit circle with unequal roots. This rules out explosive models, and

models whose moment matrix of regressors are singular. In all cases, 1000 replications were

used. For each replication, (12) was estimated by OLS. For analysis in a subsequent section,

we focus on the properties of â21. Reported are the averages of the estimates over simulations.

When there is no break in either series, the coe�cients are precisely estimated. When

�0 = (1; 0), the estimates are still very close to the true value in accordance with A1 of

the theorem. These results are not reported to conserve space. When �0 = (0; 1) there are

signi�cant deviations between â21 from its true value of zero. A synopsis of the results is

given in Table 1a for a21 = 0, i.e. Granger non-causality is assumed. There are several

features of note. The properties of the estimates are sensitive to the true value of a12, even

though the omitted variable is not a function of a12. From (14), it can be seen that when

�1 = 0, the direction of the bias is completely determined by the size of ��12. Accordingly,
the bias is negative when a12a22 > 0 and positive otherwise. When a12 = 0, the two series

are independent. The bias is small as predicted by A3 of Theorem 1.

The errors in estimating â21 are orders of magnitude larger when �0 = (1; 1) than when

�0 = (0; 1). In such cases, a12 a�ects â21 in a complex way. From (14), it is clear that for

breaks of the same sign, â21 � a21 will be larger when �12 is negative. Although for a given

a12, â21 � a21 is smaller when a22 is closer to one, â21 is still far from its true value. An

average estimate for â21 of 0.10 is common, and could be as large as 0.22 when the true value

is zero.

When y1 Granger causes y2 and hence that a21 6= 0, mean shifts in y1 and/or y2 will

always a�ect the estimates for the VAR because of feedback between the two series. A

representative set of results for a21 = 0:3 is given in Table 1b and for a21 = �0:3 in Table

1c. Recall that in the Granger non-causality case, â21 was precisely estimated when only y1

has a mean shift. Under Granger causality, even â21 is imprecisely estimated under these

conditions. In general, â21 tends to be over-estimated when a21 > 0 and underestimated (in

absolute terms) when a21 < 0 under Granger causality. It is also interesting to note that the

biases are generally larger when a21 = �0:3 than when a21 = 0:3. This is because â21 � a21

is proportional to ��2 = (1� a22)�2 � a21�1, and a negative a21 magni�es ��2. This, of course,

is a consequence of the fact that �1 and �2 are both positive in the simulation experiments.

However, the point to be made is that the least squares estimates will be less a�ected by

the omission of mean shifts if these shifts can be o�set in the sense of reducing ��2. In the
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extreme when (1 � a22)�2 = a21�1, the estimates are una�ected by the omission of mean

shifts as given by Part B of Theorem 1. This special case corresponds to a restriction on

the dynamics and magnitudes of the mean shifts. Engle and Kozicki (1993) have analyzed

the presence of co-features in stationary models. Our analysis provides an example of such

a phenomenon.

The conclusion to be drawn from the preceding analysis is that the direction and magni-

tude of â2 � a2 depends in important ways on the presence or absence of Granger causality.

Omitting the break dummies in the regression when there are mean shifts in the data will

generally lead to OLS estimates that deviate from the true value by 10 percent, if not more.

The poor properties of the least squares estimates will likely a�ect inferences. We now turn

to these issues.

3 Properties of the F tests for Granger Causality and Lag Length Selection

This section consists of three parts. The �rst examines the Granger causality test when the

lag length of the regression model corresponds to the true order of the autoregression. The

next subsection examines the properties of the test when the regression is over-parameterized.

The third subsection considers the the choice of the lag length using the AIC. Again, we focus

on the additive outlier DGP with similar results holding for the innovational outlier DGP.

Results for Granger causality tests based on the innovational outlier DGP can be found in

Bianchi (1995) and Lutkepohl (1989).

3.1 Granger Causality Tests at the Correct Lag Length

Suppose we are interested in testing whether y1 Granger causes y2, but we omit the mean

shift in one or both series. Assuming that one knows the correct lag length corresponding

to the DGP given by (1) and (2), the statistic is simply the F -test for testing the hypothesis

that a21 = 0 in (12). More precisely, we have

GC =
(â21 � a21)2

s2(fX 0fX)�111
=

T (â21� a21)2

s2(T�1fX 0fX)�111
; (16)

whereX is the (T�1)�2 matrix of values ofXt = (y1t�1; y2t�1) and for a variable x, ex denotes
the demeaned variable. Under the null hypothesis of no Granger causality, a21 = 0 and the

test statistic asymptotically has a �2
1 distribution in the absence of mean shifts. When �2 6= 0

and the mean shift is omitted, â21 is not consistently estimated and T (â21 � a21)2 diverges
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to 1. Since, s2 = T�1ê02ê2 and T�1(fX 0fX)�111 are Op(1) for any �2, the GC statistic diverges

to 1 when �2 6= 0. We have the following formal result.

Theorem 3 Suppose the data is generated under the AO model (1) and (2), and (12) is

used to test whether y1 Granger Causes y2. Then under the null hypothesis of no Granger

Causality (a21 = 0) as T !1,

1. If �2 = 0 then GC ) �2
1;

2. If �2 6= 0 then T�1GC = Op(1) > 0, unless �1 = 0, a12 = 0 and �12 = 0 in which case

GC = Op(1);

If the mean shift is to y1 alone, then ��2 = 0 and regression (12) is correctly speci�ed.

That y1 has a shift in mean is immaterial for the regression and standard OLS results

apply asymptotically. Therefore GC has the usual �2
1 limiting distribution. When �2 6= 0,

the statistic for testing Granger non-causality has properties that can a�ect inference in

important ways. SinceGC diverges as T increases, the size of the test is unity asymptotically.

In �nite samples we should expect size to be biased upwards. Therefore, GC tends to reject

non-causality even when y1 does not Granger cause y2. The exception is when y1 and y2 are

independent because â21 is consistent for a21. Although Theorem 3 is stated in terms of the

AO model, similar conclusions can be drawn for the IO model.

We now use simulations to assess the implications of Theorem 3. Since we are interested

in size distortions of the GC test, we set a21 = 0 in all cases. For �0 = (0; 0) and (1; 0), the

GC test has an exact size close to the nominal size of 5% following part 1 of Theorem 3.

These results are shown in the top panels of Figure 1 which graph the size of the test with

a11 = 0 for various values of a12 and a22 (qualitatively similar results hold for a11 6= 0). Of

interest are the two cases with �2 6= 0. The results are presented in the lower panels of Figure

1. When �1 = 0 but �2 = 1, size distortions are larger the closer is ja12j to unity and/or a22

to -1, and are smaller the closer is a22 to unity. When �0 = (1; 1), the size distortions are

magni�ed relative to the �0 = (0; 1) case. When the autoregressive coe�cients are negative,

there can be a rejection of Granger non-causality with probability one even if there is no

causal relationship in the data.

The issue of how shifts in mean a�ect the F -test for Granger causality have also been

studied by Lutkepohl (1989) and Bianchi (1995) using simulations. Although not explicit,

both studies used the innovational outlier model as the data generating process and hence

the unconditional mean of each series depends on the dynamic parameters of the model.
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Since the simulations presented in this analysis are based on an additive outlier framework,

the unconditional mean is invariant to the a0
ij
s. Nonetheless, all results show that when the

regression model is misspeci�ed in the sense of omitting the break dummy, we will be misled

into �nding evidence of Granger causality too often, and size distortions are larger when a22

is negative than when it is positive. Our analysis shows that these size distortions are due

to inconsistency of the OLS estimates, and we make precise how the dynamics parameters

interact with the least squares bias.

3.2 Granger Causality Tests using Higher Order Autoregressions

We have thus far assumed that the true order of the autoregression (i.e. one) is known. In

practice, this information is rarely available, and the lag length is usually selected according

to criteria such as the Akaike Information Criteria (AIC). There are two issues that need to

be addressed. The �rst is the performance of these information based criteria in the case of

a misspeci�ed model. The second is the implications for the Granger causality test when the

order of the autoregression does not coincide with the true model. We begin with the latter.

Because the properties of the Granger causality F test depend on the consistency or lack

thereof of the least squares estimates, it is instructive to �rst compare the properties of the

estimates from a kth order autoregression versus the estimates derived from a lower order

model. Let W1t = (y1t�1; y2t�1; : : : ; y1t�k+1; y2t�k+1), and W2t = (y1t�k; y2t�k) for k � 2.

Hence the DGP is

y2t = ��2 + ��2DUt + 
2DTBt +W1t�1 +W2t�2 + e2t; (17)

with �1 = (a21; a22; 01�2(k�2))0, and �2 = (0; 0)0.

The regression model is:

y2t = �̂�2 +
P

k

i=1 â21(i)y1t�i +
P

k

i=1 â22(i)y2t�i + ê2t

= �̂�2 +W1t�̂1 +W2t�̂2 + ê2t:
(18)

LetW1,W2 and Y2 denote the (T�k)�(2k�2), (T�k)�2 and (T�k)�1 matrices of values

of W1t, W2t and y2t. By partitioned regression, �̂2 = (fW 0

2M1
fW2)�1fW 0

2M1ey2 and �̂2 � �2 =

(fW 0

2M1
fW2)�1fW 0

2M1e
�

2, where e
�

2t = e2t+��2DUt+
2DTBt,M1 = IT�fW1(fW 0

1
fW1)�1fW 0

1. Since

the elements of fW2 inherit properties of the mean shifts, it is correlated with e�2. Hence �̂2

will deviate from its population value of zero.

It is well-known that including irrelevant regressors in a well-speci�ed model will lead

to ine�cient but unbiased estimates. However, the present setting of including more lags
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than the true model is non-standard because the model with the correct number of lags

is misspeci�ed. The elements of W2 are no longer irrelevant in the sense that each lagged

regressor is correlated with the omitted mean shift. The additional lags will unambiguously

increase the variance of the estimates, though it could reduce the bias depending on the sign

of the partial correlation between e�2 and W2 conditional on W1. The latter in turn depends

on whether one or both series have breaks, and on the dynamics of the model. The overall

e�ect of including additional lags on the properties of the estimates is ambiguous a priori.

Simulations reveal that the point estimate for a21(1) tend to be more precise as k increases.

The reduction in bias is monotonic in k when a12 > 0, and non-monotonic when a12 < 0.

The results are reported in Table 2a and 2b for a12 = 0.4 and -0.4 respectively. For example,

when a12 = 0:4, the average point estimate for â21 at lag one is 0.21 at k = 1, and improved

from 0.1872 at k = 2 to 0.1069 at k = 4 and eventually to 0.0617 at k = 8. The intuition is

that each additional set of lags contain relevant information which help purge the correlation

between the regression error and the included regressors. When a12 < 0, a small increase in

k could actually make the estimates less precise, but with a su�ciently large enough increase

in k, an improvement in the precision of â21 is still possible.

In hypothesis testing such as testing for Granger causality, it is the properties of a set of

estimates that matter. Although the point estimates are more precise in a kth order than in

a k � 1th order autoregression, the number of inconsistent coe�cients also increases as the

lag length increases. Not surprisingly, the desirability of increasing k in Granger causality

tests critically depend on whether increasing the number of lags can reduce the bias of the

estimates in the autoregression by enough to o�set the increase in variability in the estimates

induced by the additional lags. More formally, the Granger Causality test is now the F -test

for the joint hypothesis â21(1) = â21(2) : : : = â21(k) = 0. It is straightforward to show that

the GC test can be written as

GC =
eY 0

2M1
fW2(fW2M1

fW2)
�1fW 0

2M1
eY2

ks2
k

; (19)

where s2
k
= T�1PT

t=1 ê
2
2t. It is clear that k has two e�ects on the test: it in
uences the bias

of the estimates and the variability in the moment matrix of regressors. More precisely, we

can show that the results of Theorem 3 continue to hold when k > 1 (we do not state a

formal theorem for brevity). In the case where �2 6= 0, though, it is useful to make results

of Theorem 3 more explicit. Let � be a k � 1 vector of ones. De�ne the k � k matrix

�ij(k) = E[(zit�1; zit�2; : : : ; zit�k)0(zjt�1; zjt�2; : : : ; zjt�k)]. As long as a21 6= 0 it can be shown
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that:

plimT�1GC =
1

k

K 0L�1K

(�22=�
�2
2 )(M �K 0L�1K)

> 0; (20)

where K = �1�(1 � �)�� [�1�2�(1 � �)��0 + �21(k)0][�22�(1 � �)��0 + �22(k)]�1��(1 � �)�2,

L = �21�(1��)��0�[�1�2�(1��)��0+�21(k)0][�22�(1��)��0+�22(k)]�1[�1�2�(1��)��0+�21(k)],
M = �(1 � �)� �22�

2(1� �)2�0[�22�(1� �)��0 + �22(k)]�1�.

Clearly, increasing k has a non-linear e�ect on GC asymptotically. The interesting ques-

tion is whether the additional regressors reduce or magnify �nite sample size distortions of

the GC statistic. The simulation results are reported in Tables 3a and 3b for a12 = 0.4 and

-0.4 respectively for k = 2,4,8. When the break is to y2 alone, increasing the lag length can

aggravate size distortions with a small increase in k but eventually improve the size as k

increases further. However, when there are breaks to both series, the size improvement from

increasing k can be quite dramatic. For example, with a22 = 0 and a12 = :4, size distortions

are reduced from .86 at one lag to .33 at four lags and to .12 at eight lags for a nominal size

of 5%. These results essentially mirror those for â21(1) reported in Table 2, showing that

when the point estimates for a21(L) can be made more precise by increasing k, the size of

the F test will also improve. The lesson to be learned from these results is that if the po-

tential for misspeci�cation of a VAR from omitted shifts in means remains (such as if some,

but not all, shifts in mean have been identi�ed), then VARs with long lag lengths tend to

reduce potential size distortions of Granger causality tests compared to more parsimonious

lag lengths.

3.3 Lag Length Selection in the Presence of Mean Shifts

In the standard framework when the regression model is assumed to be correctly speci�ed,

it has been shown that information based model selection criteria such as the AIC will

choose an order, k, that is no smaller than the true order, k�, at least asymptotically [see,

for example, Lutkepohl (1993)]. To understand the implications of omitted mean shifts for

model selection, consider the case of testing whether y1 Granger causes y2. Let �̂22(k) be

the conditional MLE estimate of �22 in a regression of y2 on k lags of y1 and y2 (and a

constant) assuming Gaussian errors. The AIC for this regression is given by AIC(k) =

log(�̂22(k)) + 2k=T . When there are omitted mean shifts in the series, it is easy to establish

that plimAIC(k) is decreasing in k. This leads to the following observation: If AIC is used

to select k 2 [1; kmax] when testing whether y1 Granger causes y2, AIC will choose kmax

asymptotically.
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To show that plimAIC(k) is decreasing in k it is su�cient to show that plim[AIC(k)�
AIC(k� 1)] < 0. First note that AIC(k)�AIC(k� 1) = log[�̂22(k)=�̂

2
2(k � 1)] + 2=T . It is

straightforward to show that plim(�̂22(k�1)) > plim(�̂22(k)) > 0 when there are omittedmean

shifts since �̂22(k) is decreasing in k. This implies that plim(�̂22(k)=�̂
2
2(k�1)) < 1. Therefore,

log[plim(�̂22(k)=�̂
2
2(k � 1))] < 0 which gives the result since plim(2=T ) = 0. Note that the

Schwarz (1978) criterion will also choose kmax asymptotically since plim(log(T )=T ) = 0.

Intuitively, the omitted mean shifts cause the kth lagged variables (which depend on the

shifts) to be correlated with the implied regression error (which also depends on the shifts)

conditional on the other k � 1 lagged variables, and this correlation persists as T increases.

This in turn results in �̂22(k� 1) > �̂22(k) asymptotically. Therefore, log(�̂22(k)) is decreasing

in k and dominates the penalty term 2k=T in large samples. (In a correctly speci�ed model

plim�̂22(k � 1) = plim�̂22(k) and log(�̂22(k)) is not decreasing in k in the limit.) In �nite

samples, even a small correlation between the kth lag and the omitted break will make the

AIC choose a k over k � 1. Of course, when working with a VAR, k should be chosen

to be optimal for the system as a whole. The criterion is based on the determinant of the

estimated error variance matrix. However, the problem remains that when there is a genuine

correlation between the kth lagged variables and the regression error conditional on the k�1

lags, the AIC will tend to over-parameterize the model.

In �nite sample the frequency with which the AIC chooses k 2 [1; kmax] for kmax = 4

is reported in the last four columns of Table 4 for selected parameter values. Clearly, the

presence of a break increases the probability that the AIC will choose a higher k. In unre-

ported results for kmax=8, the probability mass is piled up at eight, leaving the probability

of choosing six or less to nil.

The �rst column of Table 4 reports the size of the Granger causality test when k is set

to one (the true order of the autoregression). The next two columns give the size of the test

and when k is chosen according to the AIC with kmax set to four and eight respectively.

When only y1 has a mean shift, using the AIC to select k leads to a test that is slightly

oversized. When the break is to y2 only, the distortions are smaller the larger is k, as we

saw in Table 3, or the larger is kmax as Table 4 indicates. Although the data dependent

rule selects k = kmax frequently, it is sometimes selected to be below kmax, giving size

distortions that are larger on average than �xing k at kmax. When there are breaks in both

series, using a data dependent rule to select k generally yields a better size for the Granger

causality test than when the k = 1. Indeed, when size distortions from omitting the mean

shifts are severe as in the a22 = �0:2 case, overparameterizing the regression model can yield
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substantial reduction in size distortions.

4 Treatment of Mean Shifts in a VAR in Practice

Structural shifts in a multivariate setting have been dealt with in a number of ways in

the empirical literature. For example, Canova (1995) performed residual diagnostics to

verify that the recursive residuals of the VAR are stable over time but he found evidence of

deviations from normality in one of the series. He therefore included a dummy for 1974:1 in

the VAR. Because the variables in Canova's VAR are I(1), this corresponds to a22 ! 1 in

our framework. However, in this case of a mean shift in the level of a non-stationary series,

the one time outlier would not have a�ected consistency of the parameter estimates even

if the outlier was left unattended. Other researchers often check for sub-sample parameter

instability by running the VAR for di�erent samples. See, for example, Stock and Watson

(1989). This is an extreme form of a break as it allows all parameters in the VAR to take

a discrete shift after a certain period. In Blanchard and Quah (1989) and Gambe and

Joutz (1993), a mean shift in output growth in 1973 was suspected, and the break was

removed from the series prior to estimating the VAR. These studies report results with the

breaks removed from the series one by one along with results which assumed breaks do not

exist.

How should mean shifts be dealt with in a VAR? Suppose we adopt the additive outlier

model as the DGP but the mean shifts in the two series do not coincide. That is, DU1t 6=
DU2t. From (1) and (2) we have that y1t and y2t are simple regression models with stationary

but serially correlated errors. Since zt follows a bivariate VAR(1) process it is easy to

show that z1t and z2t can written as stationary ARMA(2; 1) processes.2 Because z1t and

z2t are stationary ARMA processes it follows from the classic results of Grenander and

Rosenblatt (1957) that if the break dates are known a priori, the OLS estimates equation

by equation of �1, �2, �1 and �2 are asymptotically equivalent to GLS and are optimal.

Therefore, the mean shifts can be removed by OLS and the VAR analysis applied to the

residuals.

Of course, in practice it is often unknown whether individual series have stable means.

A �rst step in the VAR analysis would be to �rst test the individual series for stable means

using one or more of the tests available in the literature e.g. Andrews (1993), Andrews

2For example, we have z2t = (a11+ a22)z2t�1+ (a12a21� a11a22)z2t�2+ �t+ ��t�1 where �t is i:i:d: with
var(�t) = (�2

2
(1 + a2

11
)� 2�12a11a21 + �2

1
a2
21
)=(1 + �2) and � solves �2

2
a11�

2 + (�2
2
(1 + a2

11
)� 2�12a11a21 +

�2
1
a2
21
)�+ a11�

2

2
= 0.
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and Ploberger (1994), Perron (1991), Vogelsang (1997a) or Vogelsang (1997b). If there is

evidence of a shift in mean, then the date of the shift can be consistently estimated by least

squares following Bai (1994). Using the estimated break dates, dummy variables can be

formed and the series demeaned. Because yit = �i+�iDUit+zit, there is only one mean shift

in the univariate representation of each series. Hence, techniques which remove one break

are generally adequate unless multiple shifts are suspected in which case procedures of Bai

and Perron (1995) would be required.

An alternate approach to demeaning series by series would be to work directly with the

VAR and test for stability of the intercepts in each equation. At �rst glance, this would

appear to be a similar approach and perhaps equivalent asymptotically. If each series has at

most a single shift in mean and the break dates are all the same, then working directly with

the VAR is asymptotically equivalent to demeaning series by series. However, if the break

dates are di�erent, working directly with the VAR is potentially much more complicated.

Recall equation (3) where the intercepts in the VARwere given by ��+D�

t
�. The intercept for

the y1t equation is given by (1�a11)�1�a12�2+(1�a11)�1DU1t�a12�2DU2t and analogously

for the y2t equation. Therefore, depending on the values of the dynamic parameters in the

A matrix, both equations have multiple intercept shifts. In a VAR with n equations there is

the possibility of each equation having n intercept shifts. So, if the VAR is analyzed directly,

the techniques of Bai and Perron (1995) would be required to identify the multiple intercept

shifts whereas single shifts in means need only be identi�ed series by series. Naturally, if

the individual series were subject to multiple mean shifts, then the intercepts in the VAR

would be subject to additional intercept shifts. In the end, a simpler analysis is obtained if

the series are �rst demeaned before estimating the VAR.

It is important to keep in mind that the above recommendations are contingent upon the

model being of the additive outlier form. The additive outlier approach implicitly models

the mean shifts as a�ecting each series individually independent of the correlation between

series. This is in contrast to the innovative outlier approach in which it is the means of the

innovations that are subject to shifts. A closer examination of IO model reveals that a shift

in the mean of e1t initially only a�ects the mean of y1t. Over time, the shift will also a�ect

the mean of y2t unless y1 does not granger cause y2. Therefore, in general, the means of

y1t and y2t will have two shifts each if the dates of the mean shifts to e1t and e2t occur at

di�erent dates. In this case direct analysis of the VAR requires identi�cation of single shifts

in intercepts equation by equation whereas analysis of the individual time series in yt requires

identi�cation of potential multiple shifts. Thus, analysis of the VAR directly is simpler than
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analyzing the individual series if the structural change is the result of innovational mean

shifts.

In practice applied researchers should be aware of the model underlying the intercept

shifts (and other shifts in trend) in their VARs because the methods used to deal with these

shifts do depend on what is the model being assumed. Removing mean shifts series by series

should be based on the additive outlier approach. Placing intercept dummy variables in a

VAR should be based on the innovational mean shift approach. When the break dates are

the same in each equation, the two approaches are for practical purposes identical and di�er

only with respect to the the one-time dummy variables, DTBt that appear. Asymptotically

there will be no di�erence between the two approaches in terms of estimation and hypothesis

testing. But, when the break dates are di�erent across series, the underlying model of the

mean shifts is important since using an inappropriate method of removing the shifts may

lead to problems if the inherent multiplicity of shifts are not fully identi�ed in each series or

equation.

5 An Empirical Example

Many researchers have found evidence for shifts in the mean and/or the trend function in

macroeconomic time series. As an example, we consider a three-variable VAR. The data are

quarterly output growth for Germany, France, and Italy, analyzed in a recent paper by Bai,

Lumsdaine and Stock (1997). The authors reported that for the trivariate system, a shift

in mean in the growth rate of GDP in 1973:4 was estimated with a tight con�dence band.3

We estimated a three variable VAR of demeaned variables with four and eight lags. We call

this Model A. We then removed the mean shift from the data. Because the break date is

identical across countries, we took the residuals from a projection of output growth, country

by country, on a constant, and DUM734 = 1(t > 73 : 4). The residuals were then used to

form a VAR, which we refer to as Model B. The p-values for the Granger causality tests are

as follows:

3The data for France includes observations for the 1968 strike. A dummy for 68:2 and one for 68:3 are
included to control for these outliers.
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Granger Non-Causality Tests for the Output Growth of Germany, France, and Italy
Four Lags Eight Lags

Null Hypothesis Model A Model B Model A Model B
Germany does not GC France 0.5840 0.6889 0.6814 0.7474
France does not GC Germany 3.7E-5 0.0001 0.0007 0.0824
Italy does not GC France 0.0018 0.0782 0.0068 0.2264
France does not GC Italy 0.0637 0.1316 0.3822 0.3967
Italy does not GC Germany 0.0158 0.2872 0.0041 0.1209
Germany does not GC Italy 0.4814 0.5863 0.7485 0.8695

Note that for a given lag, the p values are uniformly larger when breaks are removed from

the data. Had the break been omitted, we would have falsely concluded that Italy Granger

causes Germany at the one percent level, and that France and Italy Granger cause each

other at the ten percent level. When the breaks are included, such relationships either do

not exist or are much weaker. Quantitative di�erences in the results are also re
ected in the

decomposition of variances for the two models. In Model A, France and Italy accounted for

seven and two percent of the variance in Germany's output growth and stabilized at those

levels after 5 periods. In Model B, these statistics rose to seventeen and six respectively.

More dramatic are the di�erences in the decomposition of Italy's output growth. Without the

mean shifts, France is found to account for twenty-eight percent of Italy's variance in output

growth, and Germany accounts for eight. Once the mean shifts are taken into account, the

numbers dropped to six and one respectively. Italy's output therefore appears considerably

more exogenous in Model B.

6 Conclusion

This paper has examined the implications of omitted mean shifts in the context of a bivariate

VAR. It was shown that the least squares estimates of the VAR are inconsistent, and hy-

pothesis testing using those estimates can lead to incorrect inference. The results extend to

omitted shifts in the trend function. Although we have focused on a two-variable model for

analytical convenience, qualitatively similar results are expected to hold in higher dimension

models. An interesting result of our study is that when the model is misspeci�ed in the sense

of omitted mean shifts, information criteria such as the AIC will tend to over-parameterize

the model. Including more lags to the misspeci�ed model can alleviate size distortions inso-

far as the additional lags reduce the signi�cance of the omitted mean shift in the regression

error. In simulations, this situation occurs when both series have shifts in the same direction.

We also discussed how to remove the breaks in a multivariate setting. Under the additive
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outlier speci�cation, the intercept in each equation of the VAR will be subject to multiple

shifts when the break dates of the mean shifts to the univariate series do not coincide. Under

the innovative outlier speci�cation, the unconditional means of the univariate time series are

subject to multiple shifts when mean shifts to the innovation processes occur at di�erent

dates. Therefore, techniques designed to detect multiple shifts may be required when break

dates do not coincide.
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Appendix

Proof of Theorem 1

Let eY2, gDU , gDTB, and ee2 be (T � 1) � 1 vectors of demeaned y2t, DUt, DTBt, and e2t

respectively. Let fX be the (T � 1) � 2 matrix of demeaned (y1t�1; y2t�1). The model given

by (7) can be written as

eY2 = gDU��2 + gDTB
�2 + fXa2 + ee2: (A1)

Using regression (12) and plugging in for eY2 using (A1), we have
â2 = (fX 0fX)�1fX 0 eY2

= a2 + (fX 0fX)�1fX 0(gDU��2 + gDTB
�2 + ee2)
We now consider the following limiting results:

T�1fX 0fX =

"
T�1ey21t�1 T�1P ey1t�1ey2t�1

T�1P ey1t�1ey2t�1 T�1P ey22t�1
#
;

where all summations are from 1 to T . From (1) we have ey1t�1 = �1gDU t�1 + ez1t�1 and

ey2t�1 = �2
gDU t�1 + ez2t�1, and it follows directly that

T�1
X ey21t�1 = T�1

X
(�1gDU t�1 + ez1t�1)2

= �21T
�1
XgDU 2

t�1 + T�1
Xez21t�1 + op(1)

p! �21�(1 � �) + �11:

Likewise we have T�1
P ey22t�1 p! �22�(1��)+�22 and T�1

P ey1t�1ey2t�1 p! �1�2�(1��)+�12.

This establishes that T�1fX 0X
p! C. Since C is positive-de�nite for all values of �1 and �2,

it follows that (T�1fX 0fX)�1
p! C�1. Furthermore,

T�1fX 0fDU��2 =
"
T�1P ey1t�1gDU t�

�

2

T�1
P ey2t�1gDU t�

�

2

#
p!
"
�1�(1 � �)��2
�2�(1 � �)��2

#
= ��(1� �)��2:

Finally, T�1fX 0( gDTB
�2+ ee2) = op(1): Using these convergence results it directly follows that

plim (â2 � a2) = plim[(T�1fX 0fX)�1T�1fXgDU��2]
= C�1��(1� �)��2
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which establishes parts A2 and B. Part A1 of the theorem follows since �2=0 and a21=0

imply that ��2 = 0 giving plim(â2� a2) = 0. Part A3 follows from (14) since �1 = 0, a12 = 0

and �12 = 0 gives �12 = 0 and it follows that (�1�22 � �2�12) = 0. The exception to part B

follows since ��2 = 0 when (1 � a22)�2 = a21�1.

The proof of Theorem 2 follows using similar arguments and is omitted.

Proof of Theorem 3

When �2 = 0 (and a21 = 0), the model given by (7) reduces to y2t = ��2+a22y1t�1+a22y2t�1+

e2t. Therefore regression (12) is correctly speci�ed and standard OLS results apply giving

part 1 of the Theorem. When �2 6= 0, we have from Theorem 1 that (â21�a21)2 = Op(1) > 0

and (T�1fX 0fX)�111 = Op(1) > 0. Let M = I � fX(fX 0fX)�1fX 0. The limit of s2 follows from

s2 = T�1 eY 0

2M
eY2 = T�1(gDU��2 + gDTB
�2 + ee2)0M(gDU��2 + gDTB
�2 + ee2)

= T�1(gDU�2 + ee2)0M(gDU��2 + ee2) + op(1)

= ��2T
�1gDU 0

MgDU + T�1ee02M ee2 + op(1)

= (��2)
2(T�1gDU 0gDU � T�1gDU 0fX(T�1fX 0fX)�1T�1fX 0fDU) + �22 + op(1)

p! (��2)
2(�(1 � �)� �(1 � �)�0C�1��(1� �)) + �22:

Since 0 < plim(s2) < 1, we have 0 < plim(1=s2) < 1. Combining these results gives

T�1GC = (â21 � a21)2=(s2(T�1fX 0fX)�111 ) = Op(1) > 0. When �1 = 0, a12 = 0 and �12 = 0,

it is straightforward to show that T (â21 � a21)2 = Op(1), and since it is still true that

(T�1fX 0fX)�111 = Op(1) and 0 < plim(1=s2) <1, we have GC = Op(1).
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Table 1a. Average Estimates for â21 when a21 = 0
a22 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

� = (0; 1)
a12 = -0.6 -0.0745 -0.0409 -0.0163 0.0004 0.0105 0.0151 0.0148

-0.4 -0.0661 -0.0348 -0.0137 -0.0002 0.0075 0.0108 0.0105
-0.2 -0.0419 -0.0215 -0.0087 -0.0010 0.0033 0.0051 0.0049
0.0 -0.0021 -0.0020 -0.0019 -0.0018 -0.0017 -0.0016 -0.0016
0.2 0.0380 0.0177 0.0051 -0.0024 -0.0066 -0.0082 -0.0080
0.4 0.0630 0.0316 0.0106 -0.0028 -0.0105 -0.0138 -0.0134
0.6 0.0722 0.0384 0.0138 -0.0030 -0.0131 -0.0177 -0.0174

� = (1; 1)
-0.6 0.0717 0.0931 0.1012 0.0994 0.0904 0.0756 0.0556
-0.4 0.1221 0.1285 0.1246 0.1141 0.0988 0.0798 0.0572
-0.2 0.1793 0.1636 0.1451 0.1250 0.1038 0.0812 0.0568
0.0 0.2214 0.1864 0.1561 0.1288 0.1034 0.0788 0.0538
0.2 0.2307 0.1890 0.1541 0.1240 0.0972 0.0724 0.0484
0.4 0.2128 0.1747 0.1413 0.1121 0.0863 0.0630 0.0411
0.6 0.1843 0.1526 0.1232 0.0968 0.0733 0.0523 0.0330

Table 1b. Average Estimates for â21 Under Granger Causality: a21 = 0:3.
� a22= -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

a12=0.0 (1,0) 0.3599 0.3298 0.3085 0.2947 0.2878 0.2265 0.2583
0.0 (0,1) 0.3395 0.3393 0.3339 0.3263 0.3182 0.3105 0.3041
0.0 (1,1) 0.5077 0.4723 0.4377 0.4047 0.3732 0.3427 0.3126
-0.4 (1,0) 0.3443 0.3273 0.3139 0.3039 0.2975 0.4325 0.3869
-0.4 (0,1) 0.2793 0.3028 0.3174 0.3243 0.3254 0.3224 0.3164
-0.4 (1,1) 0.4304 0.4288 0.4165 0.3971 0.3729 0.3454 0.3149
0.4 (1,0) 0.2853 0.3004 0.3103 0.3155 0.3157 0.2617 0.2783
0.4 (0,1) 0.4325 0.3869 0.3533 0.3284 0.3105 0.2985 0.2919
0.4 (1,1) 0.5099 0.4626 0.4226 0.3882 0.3582 0.3316 0.3077

Table 1c. Average Estimates for â21 Under Granger Causality: a21 = �0:3.
� a22= -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

a12=0.0 (1,0) -0.2530 -0.2528 -0.2528 -0.2529 -0.2530 -0.2532 -0.2534
0.0 (0,1) -0.3435 -0.3431 -0.3375 -0.3297 -0.3214 -0.3137 -0.3072
0.0 (1,1) -0.0547 -0.0941 -0.1246 -0.1492 -0.1703 -0.1898 -0.2092
-0.4 (1,0) -0.2622 -0.2616 -0.2611 -0.2607 -0.2603 -0.2601 -0.2599
-0.4 (0,1) -0.4349 -0.3896 -0.3560 -0.3312 -0.3132 -0.3012 -0.2946
-0.4 (1,1) -0.2147 -0.1976 -0.1895 -0.1878 -0.1910 -0.1987 -0.2108
0.4 (1,0) -0.2645 -0.2615 -0.2592 -0.2575 -0.2562 -0.2553 -0.2546
0.4 (0,1) -0.2823 -0.3058 -0.3203 -0.3272 -0.3283 -0.3252 -0.3192
0.4 (1,1) -0.0766 -0.1068 -0.1358 -0.1622 -0.1856 -0.2066 -0.2261
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Table 2a. Average Estimates for â21(1) at Di�erent Lag Lengths, k.
a21 = 0:0, a12 = 0:4.

k � a22= -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

1 (1,0) -0.0021 -0.0023 -0.0024 -0.0025 -0.0026 -0.0026 -0.0027
2 (1,0) -0.0015 -0.0016 -0.0016 -0.0016 -0.0016 -0.0017 -0.0017
4 (1,0) -0.0014 -0.0014 -0.0014 -0.0013 -0.0013 -0.0013 -0.0012
8 (1,0) -0.0018 -0.0018 -0.0018 -0.0018 -0.0018 -0.0018 -0.0018
1 (0,1) 0.0630 0.0316 0.0106 -0.0028 -0.0105 -0.0138 -0.0134
2 (0,1) -0.0871 -0.0811 -0.0741 -0.0660 -0.0566 -0.0457 -0.0331
4 (0,1) -0.0514 -0.0515 -0.0507 -0.0487 -0.0449 -0.0388 -0.0297
8 (0,1) -0.0305 -0.0318 -0.0329 -0.0335 -0.0330 -0.0307 -0.0253
1 (1,1) 0.2128 0.1747 0.1413 0.1121 0.0863 0.0630 0.0411
2 (1,1) 0.1872 0.1739 0.1582 0.1399 0.1189 0.0947 0.0670
4 (1,1) 0.1069 0.1040 0.0989 0.0912 0.0805 0.0661 0.0478
8 (1,1) 0.0617 0.0610 0.0592 0.0559 0.0504 0.0422 0.0308

Table 2b. Average Estimates for â21(1) at Di�erent Lag Lengths, k.
a21 = 0:0, a12 = �0:4.

k � a22= -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

1 (1,0) -0.0006 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005
2 (1,0) -0.0015 -0.0015 -0.0016 -0.0016 -0.0016 -0.0016 -0.0016
4 (1,0) -0.0014 -0.0014 -0.0014 -0.0014 -0.0013 -0.0013 -0.0013
8 (1,0) -0.0018 -0.0018 -0.0018 -0.0018 -0.0018 -0.0018 -0.0018
1 (0,1) -0.0661 -0.0348 -0.0137 -0.0002 0.0075 0.0108 0.0105
2 (0,1) 0.0854 0.0794 0.0723 0.0640 0.0545 0.0435 0.0308
4 (0,1) 0.0498 0.0499 0.0490 0.0469 0.0431 0.0368 0.0275
8 (0,1) 0.0279 0.0291 0.0302 0.0308 0.0304 0.0281 0.0227
1 (1,1) 0.1221 0.1285 0.1246 0.1141 0.0988 0.0798 0.0572
2 (1,1) 0.2751 0.2464 0.2164 0.1850 0.1520 0.1172 0.0803
4 (1,1) 0.1334 0.1242 0.1129 0.0994 0.0836 0.0655 0.0453
8 (1,1) 0.0733 0.0688 0.0631 0.0560 0.0473 0.0371 0.0254
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Table 3a. Size of the Granger Causality Test at Di�erent Lag Lengths, k.
a21 = 0:0, a12 = 0:4.

k � a22= -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

1 (1,0) 0.0580 0.0600 0.0590 0.0540 0.0590 0.0590 0.0630
2 (1,0) 0.0540 0.0570 0.0540 0.0550 0.0540 0.0600 0.0560
4 (1,0) 0.0470 0.0480 0.0470 0.0490 0.0520 0.0490 0.0420
8 (1,0) 0.0570 0.0560 0.0550 0.0550 0.0550 0.0570 0.0550
1 (0,1) 0.1830 0.1100 0.0870 0.0680 0.0740 0.0810 0.0870
2 (0,1) 0.3510 0.3100 0.2670 0.2130 0.1740 0.1270 0.0970
4 (0,1) 0.2650 0.2660 0.2700 0.2510 0.2190 0..1910 0.1330
8 (0,1) 0.1380 0.1530 0.1690 0.1860 0.1960 0.1920 0.1360
1 (1,1) 1.0000 0.9980 0.9610 0.8650 0.6210 0.3360 0.1470
2 (1,1) 0.9640 0.9200 0.8140 0.6590 0.4510 0.2460 0.1170
4 (1,1) 0.5010 0.4720 0.4080 0.3300 0.2510 0.1600 0.0820
8 (1,1) 0.1240 0.1310 0.1290 0.1260 0.1200 0.0950 0.0770

Table 3b. Size of the Granger Causality Test at Di�erent Lag Lengths, k.
a21 = 0:0, a12 = �0:4.

k � a22= -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

1 (1,0) 0.0450 0.0430 0.0470 0.0490 0.0510 0.0510 0.0580
2 (1,0) 0.0470 0.0460 0.0450 0.0480 0.0470 0.0470 0.0450
4 (1,0) 0.0500 0.0500 0.0500 0.0500 0.0520 0.0520 0.0550
8 (1,0) 0.0590 0.0600 0.0630 0.0620 0.0600 0.0600 0.0600
1 (0,1) 0.1940 0.1250 0.0750 0.0580 0.0530 0.0660 0.0750
2 (0,1) 0.3210 0.2800 0.2390 0.2020 0.1670 0.1300 0.0990
4 (0,1) 0.2470 0.2530 0.2570 0.2470 0.2240 0.1790 0.1300
8 (0,1) 0.1410 0.1680 0.1860 0.2000 0.2030 0.1960 0.1540
1 (1,1) 0.9680 0.9560 0.9320 0.8890 0.8020 0.6530 0.4170
2 (1,1) 0.9930 0.9880 0.9780 0.9580 0.8910 0.7330 0.4560
4 (1,1) 0.9630 0.9630 0.9600 0.9460 0.9100 0.7730 0.4940
8 (1,1) 0.6960 0.7550 0.8000 0.8190 0.7960 0.6850 0.4400
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Table 4a: Size and Frequency Distribution of the Lag Order Selected by AIC: kmax = 4.
a11 = 0:5; a12 = 0:4.

GC(1) GC(kkmax=4
aic

) GC(kkmax=8
aic

) � k=1 k=2 k=3 k=4
a22 = 0:2
0.0640 0.1040 0.1090 (0,0) 0.3450 0.1850 0.2080 0.2620
0.0610 0.0910 0.1040 (1,0) 0.2040 0.1600 0.2050 0.4310
0.0660 0.2330 0.2190 (0,1) 0.0040 0.0250 0.1510 0.8200
0.7110 0.3210 0.1750 (1,1) 0.0290 0.0600 0.2160 0.6950

a22 = �0:2
0.0640 0.0870 0.1000 (0,0) 0.3530 0.1850 0.1840 0.2780
0.0590 0.0760 0.0940 (1,0) 0.2150 0.1560 0.2080 0.4210
0.0770 0.2710 0.1910 (0,1) 0.0000 0.0000 0.0170 0.9830
0.9690 0.4260 0.1640 (1,1) 0.0000 0.0010 0.0570 0.9420

Table 4b: Size and Frequency Distribution of the Lag Order Selected by AIC: kmax = 4.
a11 = 0:5; a12 = �0:4.

GC(1) GC(kkmax=4
aic

) GC(kkmax=8
aic

) � k=1 k=2 k=3 k=4
a22 = 0:2
0.0570 0.0800 0.0840 (0,0) 0.3560 0.1740 0.1890 0.2810
0.0480 0.0720 0.0900 (1,0) 0.1940 0.1570 0.2260 0.4230
0.0510 0.2380 0.2360 (0,1) 0.0040 0.0290 0.1390 0.8280
0.8120 0.9100 0.8160 (1,1) 0.0000 0.0010 0.0400 0.9590

a22 = �0:2
0.0590 0.0770 0.0870 (0,0) 0.3400 0.1810 0.2050 0.2740
0.0480 0.0680 0.0770 (1,0) 0.1970 0.1660 0.2400 0.3970
0.0720 0.2570 0.2050 (0,1) 0.0000 0.0000 0.0190 0.9810
0.9610 0.9600 0.8190 (1,1) 0.0000 0.0000 0.0020 0.9980
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