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Abstract

This paper develops an asymptotic theory of inference for a two-regime threshold au-
toregressive (TAR) model with an autoregressive root which is local-to-unity. We find that
the asymptotic null distribution of the Wald test for a threshold is non-standard and mildly
dependent on the local-to-unity coefficient. We also study the asymptotic null distribution of
the Wald test for an autoregressive unit root, and find that it is non-standard and dependent
on the presence of a threshold effect. These tests and distribution theory allow for the joint
consideration of non-linearity (thresholds) and non-stationarity (unit roots).

Our limit theory is based on a new set of tools which combines unit root asymptotics with
empirical process methods. We work with a particular two-parameter empirical processes
which converges weakly to a two-parameter Brownian motion. Our limit distributions involve
stochastic integrals with respect to this two-parameter process. This theory is entirely new
and may find applications in other contexts.

We illustrate the methods with an application to the U.S. monthly unemployment rate.
We find strong evidence of a threshold effect. The point estimates suggest that in about 80%
of the observations, the regression function is close to a driftless I(1) process, and in the other
20% of the observations, the regression function is mean-reverting with an unconditional
mean of 5%. While the conventional ADF test for a unit root is quite insignificant, our TAR
unit root test is arguably significant, with an asymptotic p-value of 3.5%, suggesting that

the unemployment rate follows a stationary TAR process.



1 Introduction

The threshold autoregressive (TAR) model was introduced by Tong (1978) and has since
become quite popular in non-linear time series. See Tong (1983,1990) for reviews. A sam-
pling theory of inference has been quite slow to develop, however. Chan (1993) provided
the first major contribution, showing that the least squares estimate of the threshold is
super-consistent and the slope estimates have conventional asymptotic distributions. More
recently, Hansen (1996) found the asymptotic distribution of the likelihood ratio test for a
threshold, and Hansen (1997) found the asymptotic distribution of the threshold estimate.
Chan and Tsay (1997) analyzed the related continuous TAR model, and found the asymp-
totic distribution of the parameter estimates in this model.

In all of the papers listed above, an important maintained assumption is that the data
are stationary and ergodic. Tsay (1997) attempts an analysis for non-ergodic data, but his
results require that the threshold is known a priori, which is not relevant for applications.
Balke and Fomby (1997) introduce a multivariate model of threshold cointegration, but
offer no rigorous distribution theory. An interesting simulation experiment is reported by
Pippenger and Goering (1993) who document that the power of the Dickey-Fuller (1979)
unit root test falls dramatically within one class of TAR models.

We extend this literature by examining a two-regime threshold autoregression allowing
for an autoregressive root which is local-to-unity. We study the Wald test for a threshold,
and find that its asymptotic null distribution is non-standard. This is partially due to the
presence of a parameter which is not identified under the null (see Davies (1987), Andrews
and Ploberger (1994) and Hansen (1996)), and partially due to the assumption of a near
non-stationary autoregression. The asymptotic null distribution appears to mildly depend on
the local-to-unity parameter but is otherwise free of nuisance parameters. To our knowledge
ours is the first theory which allows for non-stationarity while testing for threshold effects.

We also examine the Wald test for a unit root in our threshold autoregressive model.
We find that the asymptotic null distribution depends on whether or not there is a true
threshold effect, and the critical values for the case where there is no threshold effect may
be used as an asymptotic conservative bound. To our knowledge this is the first unit root
test which allows for non-linearity in the regression function.

Our distribution theory is based on a new set of asymptotic tools utilizing a double-
indexed empirical process which converges weakly to a two-parameter Brownian motion.
We tabulate appropriate critical values and calculate approximating p-value functions based

on a chi-square approximation. Monte Carlo simulations are provided to illustrate the finite



sample size and power of the tests. The simulations show that our unit root test has much
improved power over the conventional ADF unit root test (Said and Dickey, 1984) when the
true process is non-linear.

The methods are illustrated by an application to the monthly U.S. unemployment rate
among adult males. We provide very strong evidence that the autoregression has a threshold
non-linearity. This non-linearity takes the following form. When the unemployment rate has
been relatively constant or increasing, the process behaves similarly to a driftless random
walk. On the other hand, when the unemployment rate has experienced a recent sharp
decrease, the process attempts to mean-revert towards 5%.

There is a substantial literature documenting non-linearities and threshold effects in the
U.S. unemployment rate. A partial list includes Rothman (1991), Chen and Lee (1995),
Montgomery, Zarnowitz, Tsay and Tiao (1996), Altissimo and Violante (1996), Chan and
Tsay (1997), Hansen (1997) and Tsay (1997). This literature is connected to a broader
literature studying non-linearities in the business cycle, which includes contributions by
Neftci (1984), Hamilton (1989), Beaudry and Koop (1993), Potter (1995), and Galbraith
(1996).

This paper is organized as follows. Section 2 presents the specific TAR model we study.
Section 3 introduces a new set of asymptotic tools which are useful for the study of threshold
processes with possible unit roots. Section 4 presents the distribution theory for the threshold
test. Critical values and a Monte Carlo simulation of size and power are presented. Section
5 presents the distribution theory for the unit root test, including critical values and a
simulation study. Section 6 is the empirical application to the U.S. unemployment rate. The
mathematical proofs are presented in the Appendix.

A GAUSS program which replicates the empirical work is available from the webpage
http://www2.bc.edu/ hansenb/.

2 TAR Model
The model is the following threshold autoregression (TAR) :
Ayy = 017, 11z, <y + 0320 11(z,_, 52 + a(L) Ay, + ey, (1)

t=1,..,T wherex, ; = (1t y._1), 114 is the indicator function, a(L) = a;L+- - +a,LFisa
k’th order lag polynomial, and Z; ; is any predetermined stationary variable with continuous

marginal distribution function F(-). For our empirical analysis, we set Z; = y — y;_, for



some m > 1.. Note that (1) specifies that the intercept, trend, and the slope coefficient on
y;—1 may switch between regimes, but the coefficients on the lagged Ay, variables do not
switch. The threshold A is unknown. It takes on values in the interval A\ € A = [A1, Ao
where A\; and \s are picked so that P(Z; < A\;) =m >0 and P (Z; < Ay) = m < 1. For the
tables, simulations, and empirical work which follows, we set m; = .15 and m, = .85.

For some of our analysis, it will be convenient to separately discuss the components of

0, and 6,. Partition these vectors as

H1 H2
01 = ﬁl ) 02 = 52
P1 P2

Thus (p1, p2) are the intercepts, (51, B2) the trend slopes, and (p1, p2) are the slope coefficients
on y; 1 in the two regimes.
The TAR model (1) is estimated by least squares. For each A € A, (1) is estimated by
OLS:
Ay = él()\)/xt—l Liz,_icny + éQ()\)/xt—l Liz,_i>a + ax(L)Ay + é:(N). (2)

Let

A =T e

be the OLS estimate of o2 for fixed \. The least-squares estimate of the threshold ) is found
by minimizing o%(\) :
A = argmin 62(\).

A€A

The least-squares estimates of the other parameters are then found by plugging in the point

estimate A, i.e. ji; = ji;()), etc. We can write the estimated model as
Ayt = éll.rt_ll{zt_1<;\} + él?'rt—ll{Zt_lz;\} + &(L)Ayt + ét. (3)

The estimates (3) can be used to conduct inference concerning the parameters of (1)
using standard Wald statistics. We are particularly interested in restrictions concerning the
presence of a threshold and the presence of a unit root. First, the threshold effect disappears
under the joint hypothesis

Hy: 0, =0,. (4)

An appropriate test of (4) is the standard Wald statistic Wy for this restriction from (3).
To establish notation, let Wr(A) denote the Wald statistic of the hypothesis (4) for fixed A



from regression (2). It is useful to note that because the parameter A does not enter the
model under H,, we have the relationship

Wrp = Wrp(X) = sup Wr(}).
AeA
The other hypothesis of major interest is the presence of a unit root in the autoregressive

structure. A unit root in y;_; occurs in (1) when
Ho:p1:p2:0. (5)

The appropriate test of (5) is the standard Wald statistic Ry from (3). To fix notation, let
Ry (\) be the standard Wald statistic for hypothesis (5) for fixed A, then Ry = Rp()). The
statistic Ry may be viewed as a two-parameter generalization of the standard Dickey-Fuller
statistic.

From the estimates (3) we have proposed two Wald tests — W and Ry — which test
restrictions on the coefficients implying the absence of threshold effects and presence of a
unit root, respectively. While the statistics are standard, their sampling distributions are

non-standard. We explore large-sample approximations in the following sections.

3 Unit Root Asymptotics for Threshold Processes

The sampling distributions for our proposed statistics require some new asymptotic tools.

The problems and solutions are easiest to illustrate in a simplified setting. Take the model

Ay = pyr-1l{z,_,<x + e, (6)

where the restriction p = 0 implies that y; is a random walk with no threshold effect.
The test of this hypothesis is the maximal pointwise squared t-statistic for p, where the
maximum is taken over all values of \. Let p(\) denote the point estimate of p, considered
as a function of . It is helpful to note that 1;;,  <x1 = ez, 1)<y for any monotonically
increasing function G(-). Since Z; ; has a continuous distribution F, we have in particular
that 17z, <x} = L{u,_,<uy Where U, = F(Z;) and u = F(A). Thus p(\) = p*(u), where

T
1
T Z 1{Ut—1<u}yt—lAyt
Tp*(u) = —= (7)

1 T
T2 Z 1{Ut—1<u}yt2—1
t=2

>
=
S



say. We will focus our attention on (7). We need the following restrictions.

Assumption 1 (e, Z;) is strictly stationary and ergodic and adapted to the sigma-field 3.
In addition,

FE (et ’ C\?tfl) =0 (8)
E (e} | Sir) =07, (9)

and for some v > 1,
E(e]"|Si1) < B < . (10)

Conditions (8) and (9) specify that the error is a conditionally homoskedastic martingale
difference sequence. Condition (10) bounds the extent of heterogeneity in the conditional
distribution of e;.

Under the null hypothesis, y; is random walk, so T /2y;1y) = oW (s), a Brownian motion.
Since Np(u) and Dr(u) are a function of y,_;, one might think that they could be studied
using the asymptotic techniques introduced by Phillips (1987). A major difficulty arises,
however, due to the presence of the indicator functions 1y, , <u}-

First consider the denominator Dy(u). Its asymptotic distribution can be found from
a generalization of the fact that integrated and stationary processes are asymptotically

uncorrelated.

Theorem 1 If the array Xy satisfies Xryrs) = X (s) on s € [0,1], and X (s) is continuous

almost surely, then
1 « !
T Z Liv,_ <y X7t = u/ X(s)ds.
t=1 0

on u € [0,1].
Setting X7y = T~ Y/?y,, Theorem 1 implies that
1
Dy(u) = u02/ W (s)%ds
0

on u € [0,1]. We see that Dy(u) is asymptotically a (random) linear function of its argument
u.

We now turn to the numerator. To develop a sampling theory, define

el(u) = Ly, <uyér.



Note that for each u, e;(u) is a is a strictly stationary and ergodic martingale difference

sequence with variance

Eet(u)2 = E(].{Ut,1<u}e§)
= E(l{Ut—1<u}) 02

= UO'Q.

The second equality follows since e; is conditionally homoskedastic, and the third equality
holds since the marginal distribution of U, ; is U|0, 1].
Under the null hypothesis p = 0,

T
1
Ny (u) = T Zyt—let(u)a
t=2

which takes a form to which we can apply the theory of convergence to stochastic integrals

(e.g. Kurtz and Protter (1991)). Define the partial-sum process

t

Vilw) = Y eiw)

i=1

and scaled array

Yi(s,u) = —=Yiryg(u)

Note that EYr(s,u) =0 and

1 [T's]

EYr(s,u)? = ?ZE(eil{Ui—lﬁﬁ})Q
i=1

8U0’2

12

which is linear in both s and w. It is helpful to recall that the variance of a Brownian motion
is linear in its argument. The double-linearity of the variance of Y (s, u) suggests the need

for a double-argument generalization of Brownian motion.

Definition 1 W(s,u) a two-parameter Brownian motion on [0,1]* if it is a zero-mean

Gaussian process with covariance kernel

E (W(S‘l,ul)W(SQ,Ug)) = (81 A 82) (U1 VAN Ug) .



Indeed, we can show that Y7 (s, u) can be approximated in distribution by a two-parameter

Brownian motion.

Theorem 2 Under Assumption 1,
Yr(s,u) = oW (s,u) (11)
on (s,u) € [0,1)* as T — oc.
It may be helpful to think of Theorem 2 as a two-parameter generalization of the usual
functional limit theorem.
To use Theorem 2 to establish the asymptotic distribution of Ny (u), we need to consider

Nr(u) as a stochastic integral with respect to a two-parameter process, which we define as

integration over the first argument, holding the second argument constant. Specifically,

/OlX(S)dZ(s,u = ]}\OIEIO%ZX (‘7;[1> (Z (%u) s (j];lu» :

which is a stochastic process in u. Using this notation, we have

Ny () = /0 Yi(s)dYi(s, u)

where Yr(s) = Yy (s,1) = T~2y;;. We will need a somewhat more general class of inte-
grating functions. Let X, be any 3;_;— adapted process such that X(s) = Xqpg = X ()
on s € [0,1] (jointly with (11)) and X (s) is continuous almost surely.

Theorem 3 Under Assumption 1,

/0 Xr(s)dYr(s,u) :U/O X (s)dW (s,u)
onu € [0,1] as T — 0.

This result is a natural extension of the theory of weak convergence to stochastic integrals
to the case of integration with respect to a two-parameter process. Theorems 2 and 3 will
serve as the building blocks for the subsequent theory developed in this paper.

Theorem 3 thus implies that Np(u) = o2 [ W (s)dW (s,u), where W(s) = W(s,1) is a

standard Brownian motion. Theorems 1 and 3 combine to yield

_ Np(u) fo s)dW (s, u)
B DT(U) ufo s)%ds.

T (u) (12)



on u € [0,1]. (12) gives the asymptotic distribution for p*(u) considered as a function of u
under the null hypothesis p = 0.

While model (1) is more complicated than (6), the basic methods of analysis developed
in this section can be generalized appropriately. These results are presented in the following

sections.

4 Testing for a Threshold Effect

In Section 2 we introduced the test statistic Wy as the natural Wald statistic for the test
of the hypothesis (4) of no threshold effect within model (1). Under this hypothesis the
parameter A\ is not identified. The asymptotic distribution of W7y for stationary data has
been investigated by Davies (1987), Andrews and Ploberger (1994) and Hansen (1996). Our
concern is with data which is either non-stationary or near-non-stationary. We incorporate
this condition by specifying the largest root as local-to-unity. Let p = p; = ps be the
coefficient on y; ; which is common to the two regimes under (4). For fixed ¢, we specify

that this coefficient is local-to-zero:
p=—c/T. (13)

Under (13), the presence of a linear trend in the model (1) induces a quadratic trend in
the reduced form for y;. To prevent this possibility we assume that the true values of the
trend coefficients is zero:

p1= P2 =0. (14)
This is conventional in the analysis of autoregressions with unit roots or near unit roots.

Let W (s,u) be a two-parameter Brownian motion as defined in the previous section. Let

W(s) = W(s,1) be a standard Brownian motion derived from W (s,u) and let W,(s) be the

Ornstein-Uhlenbeck process that is the solution to the stochastic differential equation
dWe(s) = —cW,(s) + dW(s).
Set X.(s) = (1 s We(s))".
Theorem 4 Under the null of no threshold Hy : 601 = 05 and Assumption 1,
Wr=1T.= sup S.(u),

w1 <u<mo

where

(o) = T (V)) (Jy Xel)Xels)ds) () — wle(1))

Se(u) = T : (15)

10



Jo(u) = /0 X, (8)dW (s, 1),
m = F(\), and my = F(Xg).

Theorem 4 gives the large sample distribution of the conventional Wald statistic for
a threshold for the non-stationary autoregression (1). It is noticeably different from the
distribution found by Hansen (1996). Unlike the stationary case, the limit distribution 7
is relatively free of nuisance parameters, only depending on the local-to-unity parameter
c. (The limits m; and 7, are not considered nuisance parameters since they are under the

control of the econometrician.)

Table 1: Asymptotic Critical Values for Threshold Test

c=| —10 0 15 30 45
1% | 17.23 17.14 17.15 17.29 17.44
5% | 13.30 13.30 13.28 13.38 13.39
10% | 11.51 11.51 11.54 11.56 11.65
20% | 9.63 9.62 9.62 9.63 9.74

Calculated from 50,000 simulations using samples of size 10,000.

Estimates of the critical values for T, are given in Table 1. These critical values were
calculated by simulation, using 50,000 replications of samples of size T = 10,000 using
Gaussian innovations. The estimates indicate that the critical values are not very sensitive
to ¢, and they appear to be minimized at ¢ = 0. Our concrete recommendation is to use the
critical values corresponding to ¢ = 0. These are the correct critical values in the leading
case where the series actually has a unit root. If the leading root is non-unity, but reasonably
close, there will be only a slight distortion in the asymptotic approximation.

It is often convenient to report p-values for observed tests. Hansen (1997) shows how to
use chi-square distributions to fit non-standard asymptotic distributions. Using his methods,

we obtained the approximation

—2.0001 + 1.096 - T ~ X2(6). (16)
to the distribution of 7T, for the case ¢ = 0. This means that the statistic

W3 = —2.0001 4 1.096 - Wr

11



has an asymptotic distribution which is approximately x*(6). The approximation is extremely
good. If (16) is used to calculate asymptotic p-values, the maximal error is less than 0.2%

(relative to simulated p-values).

4.1 A Monte Carlo Experiment

In order to examine the size and power of the proposed test a small sample study is conducted.

The model used is equation (1) with £ =1 and z;—1 = Ay;—1 :

Ay, = (1 + Bit + prye—1)1{ay_1<x}

+  (p2 + Bot + paye—1) LAy =)

+ a1 Ay + ey,
and e; iid N(0,1). The sample size we use is T = 100. We fixed 8; = [, = 0 for all
exercises. We examine nominal 5% size tests using the asymptotic critical values for ¢ = 0.
All calculations are empirical rejection frequencies from 1000 monte carlo replications.

We first examined the size of the test. Under the null hypothesis of no threshold, data is

generated by the process

Ay =+ py—1 + a1 A1 + ey (17)

We set = 0 and varied p among -.15, -.10, -.05 and .02. (The negative values correspond
to stationary processes and the positive value implies a mildly explosive process.) We also
varied the second AR parameter a; among the values -.7, -.5, -.2, .2, .5, and .7 to assess

sensitivity to additional serial correlation. The results are presented in Table 2.

Table 2: Size of Threshold Test

p=|-.15 -10 -05 0 .02
a1=-7| 94 95 97 86 10.3
a;=-5| 91 85 88 90 88
a;=-2| 82 82 83 81 7.3
a;=0| 70 66 68 6.7 6.3
a=2| 77 89 89 90 10.6
ai=5| 91 87 85 95 185
ar=.7] 91 100 101 12.0 36.5

Note: T' = 100. Nominal size 5%. Rejection rates from 1000 replications.

12



When a; = 0, the actual size of the test is reasonable, ranging from 6% to 7% depending
on p. For a # 0, however, the rejection rates are larger. For p < 0, the actual size ranges
from 8% to 12%. When p > 0 and a is large, the size can be quite poor. This parameter
configuration is probably not meaningful for most economic applications, however. We
conclude that the size of the test is reasonable for the non-explosive region p < 0.

Second, we explored the power of the test against local alternatives. We set the threshold
at A = 0 and the serial correlation parameter a; = 0 for this study. The alternative includes
both w1 # ps and p; # po which we examined separately.

To study the impact of a switching intercept, we considered the symmetric case pu; =
—po = Ap and varied Ap among .2, .5 and 1.0. We also varied the nuisance parameter
p = p1 = po among 0, -.05 and -.10 to assess sensitivity. The results are presented in Table
3. We see that the power of the test is increasing in Au as expected, and that the power is

not sensitive to the nuisance parameter p.

Table 3: Power of Threshold Test Against Intercept Switch

p=] 0 -05 -10
Ap=2] 23 19 20
Ap=5| 93 95 01

Ap=1.0[100 100 100

Note: T' = 100. Nominal size 5%. Rejection rates from 1000 replications.

To study the impact of a switching p coefficient we define Ap = py — p; as the size
of the threshold effect. We let Ap range over {—.05,—.10, —.15}, p; among {0, —.10} and
p = p1 = po among {0,.5,1.0}. The results are presented in Table 4. As expected, the power
of the tests is increasing in |Ap|. What is somewhat surprising is the strong dependence
of power on the nuisance parameters, with power increasing in g > 0, and much higher
for py = 0 than p; = —.10. Our best guess is that small p; and large p induces trends
(stochastic and/or deterministic) into the stochastic process which increase the signal to

noise ratio, hence decreasing standard errors and increasing power.

13



Table 4: Power of Threshold Test Against Switch in p

P1 = 0 L1 = —.10
p=1| 0 05 10| 0 05 1.0
Ap=—-05|14 57 99|10 10 24
Ap=-10]21 73 100 |13 18 58
Ap=—-15{29 79 100|15 27 79

Note: T' = 100. Nominal size 5%. Rejection rates from 1000 replications.

5 Testing for a Unit Root

In section 4 we introduced R; as the appropriate test statistic for a unit root. We now
derive large sample approximations to the distribution of Ry under the null hypothesis of a
unit root (5). A difficulty arises in specifying the threshold effect, as the null of a unit root
is compatible with either the existence or non-existence of a threshold effect. Since p; = po
under the null, a threshold effect occurs when pq # po but there is no threshold effect when
p1 = po. It turns out that the asymptotic distribution of Ry is different in these two cases.
Since the truth is typically unknown we consider both cases.
Let 7(s) = (1 s)’. Let W(s) = W(s,1) (a standard Brownian motion) and let

-1

W*(s) =W(s) — /1 W(a)r(a)'da (/1 r(a)r(a)’da) r(s)
0 0
be detrended W (s). Let Sp(u) be defined in (15) with ¢ = 0.
Theorem 5 Suppose that iy = ps. Under Hy : py = po =0,
Rr = R* = R (u")

where

u* = argmax Sp(u),
uglmy,ma]

2 2

fol W*(s)dWs(s,u)

(fol W*(S)st) v
W(s,u
Vu

[ W= (s)dWi (s, u
(Jiwe(sas) "

Wi(s,u) =

+

I

R(u) =

~—

14



and

W(s,1) — W(s,u)
V1i—u '

The limiting maximizer u* is random since the threshold is not identified under the

Wa(s,u) =

conditions of Theorem 5. The processes W(s,u) and Wa(s, u) are scaled so that for fixed u
they are standard (and independent) Brownian motions. What is important for inference is

that the limiting distribution in Theorem 5 is free of nuisance parameters.

Theorem 6 Suppose that py # pe. Under Hy : p1 = po =0, for some a € [0, 1),

Rr = Ro=x*+ (aN(O, 1)+ (1-a?)"?

< xi+ DF*?

DF)2

where )
(Jy wreaw)
DF?=~>~————~
fO W=2
is the square of the conventional detrended Dickey-Fuller t-distribution, and x3 is an inde-

pendent chi-square random variable with one degree of freedom.

Theorem 6 shows that the limiting distribution of the unit root test Rp takes a mix-
ture form, but can be bounded by the sum of the squared Dickey-Fuller and chi-square
distributions, which is free of nuisance parameters.

Theorems 5 and 6 together give asymptotic approximations to the null distribution of
the TAR unit root test Ry under differing assumptions concerning the threshold. The source
of the differences lies in the identification of the threshold parameter \. When there is no
threshold effect, then )\ is not identified, so )\ remains random in large sample. Thus RT(S\)
inherits randomness both from the random function Ry ()) and the random argument A. In
contrast, when there is a threshold effect (A; # A;) then A is identified and A will be close
to A in large samples. Hence the randomness in RT(S\) will be due mostly to the random
function Ry (A). This heuristic analysis suggests that R* will be “more random” than R,, in
the sense that R* should have large critical values. Table 5 reports critical values for both
R* and R,, and it is indeed the case that the critical values of R* exceed those of R,.

Using the methods of Hansen (1997), chi-square approximations were fit to these two
distributions. We found that

1.006 + 1.105 - R, =~ 2

15



and
1.221 +1.001 - R* =~ X?).

were excellent approximations.

Table 5: Asymptotic Critical Values for Unit Root Test

R, R
1% | 17.29 20.37
5% | 13.12  15.69

10% | 11.17 13.43

20% | 9.07 11.02

Calculated from 50,000 simulations using samples of size 10,000.

5.1 Finite Sample Study

Using Monte Carlo methods, we now examine the finite sample performance of the unit root
test Ry in the context of an AR(2) model, and contrast its performance with the conventional
Augmented Dickey-Fuller (ADF) t-test.

We first study the size of nominal 5% tests. The data is simulated under the null from
model (1) with £ = 1 and m = 1, setting p; = p» = 0 and ; = > = 0. Thus the data is
generated by

Ay = pr1liay, <ny + t2liay, >xp + a1 Ay1 + ey

We used samples of size T' = 100 and generate e; as iid N(0,1). The tests should be a
function of (u, p2) only through the difference Ay = py — po, so we set py = —po and
varied Ay among {0,.4,1,2}. We also varied a; among {—.5,—.2,0,.2,.5}, and set A = 0
for simplicity. Table 6 contains the results, reporting rejection frequencies from 1000 Monte
Carlo replications. As discussed in the previous section, there are two sets of critical values:
the liberal critical values R, and the conservative critical values R*, so we report rejection
rates using both critical values.

It is clear from Table 6 that the R, critical value is a poor approximation for all cases
examined, as the rejection rates are uniformly above the nominal size. The R* critical values
produces conservative rejection rates for large Ap and aq, yet liberal rates for small Ay. The
rejection rates are quite sensitive to the autoregressive parameter a;. Based on the simulation

results, we recommend the R* critical values for the R test.

16



Table 6: Size of Unit Root Tests

Rt test ADF test
R, critical values R* critical values
Ap = 0 4 1 2 0 4 1 2 0 4 1 2

a=-—5| 176 155 128 90| 97 76 75 59|65 5.7 46 2.7
a=-—21153 184 96 91| 96 87 58 25|78 54 65 3.1
a;=01]20.0 168 105 79|11.5 &84 6.0 3.0/66 6.3 6.1 3.6
a=.2]|183 160 108 73]109 85 5.7 28|61 7.6 6.1 4.5
a;=.5)238 197 143 72]129 110 79 3762 75 7.5 6.2

Note: T' = 100. Nominal size 5%. Rejection rates from 1000 replications.

We next explore the power of the tests against some local alternatives. The model is
the same as before except that we fix the serial correlation parameter at a; = 0 and do
not impose p; = po = 0. We consider two sample sizes, T' = 100 and 7" = 200. We report
size-adjusted power (rejection rates based on finite sample critical values) to control for the
size distortions found in Table 9.

We consider two experiments. In the first, we restrict p; = ps = p, and vary p among
{—=.05,—.15,—.25}. This is the setting which should be the most favorable to the ADF test,
as there is no difference in the serial correlation coefficients between the two regimes. The
results are presented in Table 7. When Ay = 0 there is no threshold effect and the ADF
test has considerably more power than the Ry test. As Ay is increased, however, the power
of the Ry test remains roughly invariant, while the power of the ADF test falls to zero, even
for the larger sample size. Apparently, the conventional ADF test does not have the ability
to discriminate a unit root from a stationary root when there is a strong threshold effect.
These results are similar to those reported by Pippenger and Goering (1993), who find that
the power of the Dickey-Fuller unit root test falls in a similar TAR model.

For our second power experiment, we allow for a threshold effect in the serial correlation
coefficient, setting p; = 0 and letting py vary among {—.05,—.15,—.25}. The results are
presented in Table 8, and are similar to those from the first experiment. The obvious
conclusion from the simulation exercises if the true process is a TAR, the standard ADF
statistic (from a linear model) will not be able to distinguish a non-stationary process from
a stationary process. Other experiments (not reported) using other choices for m, p; and Z;

reached similar conclusions.
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Table 7: Power of R and ADF unit root tests
pr=p2=p<0

Ry ADF
p=—05 p=—=15 p=-25|p=—-05 p=-15 p=-.25
T =100
Ap=0 7 29 56 14 60 94
Ap=04 7 21 49 2 10 34
Ap=1 7 20 47 0 1 3
Ap =2 8 24 26 0 0 0
T =200
Ap=0 27 81 99 53 98 100
Ap =04 13 66 99 6 96 97
Ap=1 13 66 99 0 6 43
Ap =2 14 76 99 0 0 0

Note: Nominal size 5%. Rejection rates from 1000 replications.

Table 8: Power of Ry and ADF unit root tests,

p1 =0, p2 <0
Ry ADF

T =100
Ap=0 2 17 39 8 22 43
Ap =04 6 17 41 2 3 5
Ap=1 8 17 41 0 0 1
Ap =2 3 18 43 0 0 0

T =200
Ap=0 18 78 96 31 26 73
Ap =04 3 43 90 2 12 41
Ap=1 10 61 94 0 1 3
Ap =2 14 63 95 0 0 0

Note: Nominal size 5%. Rejection rates from 1000 replications.
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6 U.S. Unemployment Rate

Our application is to the U.S. unemployment rate among adult males, monthly from 1956
through April 1997. To establish a baseline, we first fit a linear model with k£ = 12 lagged
differences. The OLS estimates and standard errors are reported in Table 9. Note that
the point estimate for p is p = —0.016. Its t-statistic (the ADF test for a unit root) is
insignificant at —2.408. This leads to the standard conclusion that the linear representation

for the unemployment rate has a unit root.

Table 9: OLS Estimates, Linear Model

Regressor | Estimate S.e.
Constant 0.069 (0.030
t | 0.00005 (0.00007
Yi—1 -0.016 (0.007

Ay, q 0.072 (
Ay, 0.252 (
Ay 3 0.152 (
Ay 0.121 (
Ay;_s 0.042 (
Ays_g -0.022 (
Ay 7 -0.032 (0.047

(

(

(

(

(

Ay, g -0.020
Ayi_g 0.005
Ay_10 0.042
Ays_11 0.073
Ay 19 -0.184
ADF= —2.408

The next question to ask is if there is any evidence to support a threshold model of
the form (1). Setting Z; = y — y:—m we need to select an appropriate value for m. In
Table 10, we report the values of the threshold test statistics Wy for each fixed m from 1
through 12. We see that 10 of the 12 W7 statistics exceed the asymptotic 1% critical value
of 17.1 from Table 1. The asymptotic p-values for the Wald statistics are also reported,

calculated using the approximating p-value function. Since the Monte Carlo simulation of

19



section 4 indicated that there may be some size distortions in finite samples, we also report a
bootstrap p-value for each test statistic. This p-value is calculated as follows. 1000 samples
were generated from an AR(13) with the estimated coefficients from Table 9, using the initial
conditions in the data and the empirical distribution of the OLS residuals to generate the
errors. These samples satisfy the null of no threshold, so are valid bootstrap replications
of the null distribution. For each sample and each m, the Wy statistic was calculated from
the simulated data, and the percentage which exceeded the actual Wy of Table 10 is the
simulation estimate of the bootstrap p-value. These are also reported in Table 10. While
the bootstrap p-values are slightly higher than the asymptotic p-values, they do not change

any conclusions.

Table 10: Threshold Tests, Fixed m

m | Wy Asymptotic p-value Bootstrap P-Value
1 ]15.0 0.025 0.028
2 336 0.000 0.000
3 | 185 0.006 0.013
4 | 20.5 0.002 0.004
5 | 20.5 0.002 0.004
6 | 13.3 0.049 0.063
7 |21.6 0.001 0.003
8 [20.9 0.002 0.005
9 |30.0 0.000 0.000
10| 27.3 0.000 0.000
11 | 22.7 0.001 0.002
12 | 23.9 0.000 0.002

Since the W7 test reject the null of no threshold for practically any choice of m, it appears
obvious that we can reject the linear AR model in favor of the TAR model. As a general
rule, however, this testing methodology is subject to the criticism that it conditions on m,
while m is generally unknown. We can address this criticism by making the selection of
m endogenous. The least squares estimate of m is the value which minimizes the residual
variance. Since the Wald test Wy is a monotonic function of the residual variance, this is
equivalent to selecting m as the value which maximizes Wyp. This estimate is m = 2, yielding
a threshold test statistic of Wy = 33.6. The reported asymptotic p-value of 0.000 assumes
that m is known and fixed. Our theory does not explicitly allow for estimated m. It is easy,

however, to incorporate into the calculation of bootstrap p-values. For each of the 1000
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bootstrap samples described above, the largest Wy across the 12 values of m was stored.
The percentage of these statistics which exceeded the observed value of W = 33.6 is the
bootstrap p-value. We found that this p-value is still 0.000, implying that it is extremely
unlikely that the linear AR model (1) could generate a test statistic this large. These results
are summarized in Table 11. We conclude that there is very strong evidence for a TAR

model.

Table 11: Threshold Tests, Estimated m

m Wy
2 336

Asymptotic p-value Bootstrap P-Value
0.000 0.000

Table 12: LS Estimates, TAR Model, m = 2

A =—0.240
Regressor | Estimate s.e.
(Z;_1 < A) | Constant 0.243  (0.071)
t | 0.00050 (.00015)
Y1 -0.050 (0.015)
(Z;_1 > A) | Constant 0.062  (0.032)
t | -0.00000 (0.00008)
Y1 -0.017 (0.007)
a(L) Ay q 0.178 (0.051)
Ayi_s 0.333 (0.050)
Ayy_3 0.107 (0.046)
Ay 4 0.109 (0.046)
Ay 5 0.051 (0.046)
Ay ¢ -0.037 (0.046)
Ay;_7 -0.017 (0.046)
Ay;_g -0.009 (0.046)
Ayi_g 0.028 (0.046)
Ay, 10 0.038 (0.045)
Ay 11 0.078 (0.045)
Ay_1o -0.178 (0.045)

The point estimates and standard errors from the model are reported in Table 12. The
point estimate of the threshold A is -0.24. Thus the TAR splits the regression function
depending on whether the variable Z;_; = y;_1 — y;_3 lies above or below —0.24. The first

regime is when Z;_; < —0.24, which occurs when the unemployment rate has fallen by more
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than .24 points (e.g. from 5.64 to 5.40) over a two month period. Approximately 20% of the
observations fall in this category. The second regime is when Z; ; > —0.24, which occurs
when the unemployment rate has fallen by less than .24 points, has stayed constant, or has
risen, over a two month period. Approximately 80% of the observations fall in this regime.
Comparing the coefficients in the first regime (falling unemployment) versus those in the
second (constant or rising unemployment), we see the following differences. The second
regime behaves essentially as a driftless random walk, as the constant and trend estimates
are insignificant, and the coefficient on y; ; is near zero. In contrast, the coefficients in the
first regime imply mean-reversion. It is perhaps helpful to observe that an AR process with
the “regime 1” parameters has an unconditional mean of —u,/p; = 4.86 (if we set 5; = 0),
so regime 1 may be viewed as having a tendency to revert to an unemployment rate of 5%.
Since 80% of the observations fall in the random walk regime 2, it is not surprising that the
linear representation “looks” like a unit root process.

We can of course rigorously address the unit root question using the Ry test. Table
13 reports the Ry test statistic, the asymptotic p-values calculated using both the liberal
lower bound and the conservative upper bound, and two bootstrap p-values. For both
bootstrap p-values the same 1000 samples were generated. These samples were generated
from TAR processes with parameters taken from Table 12 except that we set p; = ps =0
and 3, = (2 = 0 to enforce the null hypothesis of a unit root. For the “Fixed m” bootstrap,
the Ry statistic was calculated setting m = 2. For the “Estimated m” bootstrap, first m was
calculated by least squares, then R, was calculated for this m. In both cases, the bootstrap
p-value is the percentage of the 1000 samples for which the simulated Ry exceeded the actual
value of Ry = 16.7.

Table 10 shows that the if m = 2 is considered as fixed, the conservative and bootstrap
p-values agree at approximately 3.5%, suggesting that we can reject the null of a unit root
in favor of a stationary process. If we view the delay parameter as estimated, the bootstrap

p-value for Ry is 8.9%, which provides less strong evidence against the unit root hypothesis.

Table 13: Unit Root Test and P-Values, m = 2

Asymptotic P-Values Bootstrap P-Values
Ry | Liberal Conservative | Fixed m Estimated m
16.7 | 0.012 0.035 0.033 0.089
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7 Conclusion

This paper developed a new asymptotic theory for threshold autoregressive models with a
possible unit root. The joint application of the two tests — for a threshold and for a unit root —
allow a researcher to distinguish non-linear from non-stationary processes. We illustrate the
methods with an application to the U.S. unemployment rate, and find evidence to support
the hypothesis that the process is a stationary TAR.

Several extensions of our methods could be explored in future research. For example, it
would be useful to allow for the coefficients on the lagged Ay; to switch between regimes,
and it would be interesting to allow for multiple (more than two) regimes. Of particular
interest are multivariate extensions, such as the threshold cointegration model of Balke and
Fomby (1997).

8 Appendix

Throughout the appendix, we simplify notation by setting 1;(u) = 1{y,<.}. Observe that
since U; = F(Z;) ~ U[0,1], E1,(u) = .

Proof of Theorem 1: Let v;(u) = 1,(u) — u so that Ev,(u) = 0. Since

1 — 1 1
f ;XTtlt(U) = f tz:; XTt/Ut(u) + U? ;XT,:

and
1 & 1
fZXTt:/ X (s)ds,
t=1 0

it is sufficient to show that

Fix ¢ > 0. Since X (s) is continuous almost surely, there is some 6 > 0 such that

|s—s/|<s

P (2 sup |X(s) — X(s)] < 5) >1—e. (A.2)
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Set N =[1/6], and for k =0,..., N — 1 set t,, = [kT6] + 1 and ¢} = t;41 — 1. Then

N-1 L b
1 1
E sup |= v(u)| =F sup |—= ve(u)| — 0
> o, 7 Do) =B | St
by the uniform weak law of large numbers. Hence
1 T 1 N-1 t
sup | Xpvg(u)] = sup |= Xrvg(u
2, |7 2 K| = s ) 0 Kl
1 N1 t N-1 tg
< 7 | X714, | sup Z ZZ’XTt XTtk’ SUP ’Ut( )]
k=0 Osusl ;o Iz &
k k

t*
1 k

< sup | X7yl E Sup1 T E v(u)|+2 sup | X — Xro|
t=t4,

1<i<T 5 0<u< [t—t'|<Té

= 2 sup |X(s)—X(s’)|

[s—s'|<6
< e

where the last inequality is (A.2). This establishes (A.1) as needed. [

Proof of Theorem 2:
As noted in the text, for all u, {e;(u), 3¢} is a strictly stationary and ergodic MDS with

variance Fe;(u)? = o?u. Thus by the MDS central limit theorem, for any (s,u),

1 [T's]

Yr(s,u) = Wi Zet(u) —q N (0, suc?) .

Furthermore, the asymptotic covariance kernel is determined by

T81 /\[T82
1

E(Yr(sy,u1)Yr(s2,uz)) = T E(e71-1(u1)1i1(u2))

= o? (31 A 32) (ug A ug).

This yields the convergence of the finite dimensional distributions.
The stochastic equicontinuity of Y7 (s,u) over [0, 1]? follows from the stochastic equicon-

tinuity of

Yi(s,u) =

Z (Lo (u) — u).

ﬂl
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This is established by Bai (1996, Theorem A.1) using a different set of dependence as-
sumptions and moment bounds. A careful reading of his proof shows that these moment
and dependence conditions are only used to prove inequality (A.3) below (his Lemma A.1).
Thus (A.3) is sufficient to establish that Yr(s,u) is stochastically equicontinuous.

Forany 0 < sy <so <land 0 < up <ug <1, let

Y7 = Yi(s2,u9) — Y7(s1,u) — Y7 (s2,u1) + Y7(s1,u).

We need to show that for some K < oo,

(82— 81)(ug —w1)

E|Y: P < K |(sq— 1) (ug — up)” + Tl +0o(1) (A.3)
Direct calculation shows that
[Ts2]
Y;* =72 Z €tTl—1-
t:[Tsl]

where 1y = 1y, <v,<up} — (U2 — u1). Note that En, = 0, E|n” < uy —uy and En? <
uy — uy. Furthermore, n,_1 is ;_;—measurable, so by (10), E (efn? ; | S¢_1) < B} | and
E (led [nea[") < B (uz — w).

The fact that e;n;_1 is a martingale difference sequence allows the application of Rosen-
thal’s inequality (Hall and Heyde (1980, p. 23)): For some M < oo,

2y 04

[Tso] 1 [T's2] 1 [T's2]
E T2 Z etNt—1 < M|E T Z E (63771‘2—1 | %t—l) T T Z E (|et|27 |77t—1|27)
—[Ts1] t=[T's1] t=[T's1]
[T55] !
B 9 (52 — 1) (ug —uy)
= K |E T t %: | Mi—1| + Tv—1
=[Ts1

where we set K = M B. Since n? — En? | is bounded, its sample average converges in L” to

zero, hence
) " ) ) RN
E T Z 7]?71 < T Z Em24+ E T Z (771:271_E771:271)
t:[Tsl] t*[TSl] t:[Tsl]

< ((s2—s1) (ug —w1) +o(1))".

These bounds establish (A.3) as needed. [
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Proof of Theorem 3:

For all u, Y7 (s,u) is a martingale with square integrable innovations T~/2¢;(u). For fixed
u, Theorem 2 above and Theorem 2.2 in Kurtz and Protter (1991) yield the stated result.
Technically, Kurtz and Protter (1991) only allow fixed u, while we need uniformity over
u € [0, 1]. A careful reading of their proof shows that uniformity over u holds if their equation

(1.13) holds uniformly in u, which can be verified using the bounded convergence theorem.
O

Proof of Theorem 4. To simplify the derivations, we will assume that no lags of Ay
appear in the regression. The inclusion of the intercept and trend variables in the regression
means that the test statistic is invariant to the actual values of u as well as 0. We can thus
without loss of generality set © =0 and o = 1. Under Hy, we see that y; is generated by the

stochastic process

c
e =(1— =)y—1 + e

T
SO T’l/Qy[TS] = W,(s). Letting
1
t
XTt - T )
ﬁyt—l
we find that
1 1
Xrirs) = [T—;] = s = X.(s). (A.4)
ﬁy[Ts]fl WC(S)

Due to the equality 1;4, , <} = l{u,_,<r(n)3}, the change-of-variables s = F'()) allows us
to re-write the test statistic as
Wr= sup Wi(u), (A.5)

wE[m,7w2)

where W7 (u) is the Wald statistic for the equality of #; = 5 in the regression
Ay = X 01 () L, <uy + Xiba ()L, 50y + e0(u), (A.6)
Standard algebra shows that

W)  Si0) M3 ()55 ) o

N % (u)
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where
My(u) = % Z Xy X 11 (u),
My (u) = Mp(u) — Mp(u)Mp(1) My (u)

Si(u) = Sp(u) — Mp(u)Mr(1)~Sp(1),

and

ﬂ|

T
E tet

Theorem 1 and (A.4) imply
)= u / X( )ds = ubl,,

say, and hence

M (u) = uM, — (uM,) M7 (uM.) = u(1 — u)M..

Theorem 3 and (A.4) show that
1
St(u) = / X (s)dW (s,u) = J.(u)
0

and thus

Si(u) = Jo(u) — uM M J.(1) = J.(u) — u.(1).

Equations (A.7), (A.8), and (A.9) together show
Wi(u) = Se(u).

(A.5) and (A.10) yield
Wr = sup Sc(u)

u€[my,m2]

which is the stated result. O

Proof of Theorem 5.

(A.9)

(A.10)

To simplify the derivations, we will assume that no lags of Ay; appear in the regression.

Since the regression includes a trend and is studentized, the test statistic is invariant to the

intercept p = p; = po and the variance o2, so we set =0 and 0 = 1 to ease exposition.

We reparameterize the model as in (A.6) letting u = F(\). Standard algebraic results

for linear regression show that



where #1(u) and #,(u) are the OLS t-statistics for p1(u) and py(u) in equation (A.6), respec-
tively. Letting

. 1
Yia(u) = g1 — Zyj 17514 (Z Tjﬁh—l(“)) Tt
=1

we can write t;(u)? explicitly as

~ NT(U)2

t 2 All
where

Zyt () Ayl o (u)

and

TU ngytl 1t1 )

Our approach to finding the limit distribution of Ry = Ry (u) is to find the limit distribution
of Rr(u) considered as a function of w, find the limit distribution of @, and combine these
two results with the continuous mapping theorem.
We first examine the denominator Dr(u). Since under the null hypothesis (5), ¢; = ¢o =0,
it follows that
TV 2yrg = W(s).

Letting ryy = (1 t/T')" so that rpips = 7(s), two applications of Theorem 1 yield

T

T -1
T2 () = T2y =S g arh 1 (ZrTjr'Tj1j_1(u)> rory (A12)
7j=1

j=1
-1

N W(s)—u/OIW( Jr(a )da( /Olr(a)r(a)’da> r(s)
W(s).

Theorem 1 and (A.12) yield
1
u) = u/ W*(s)*ds. (A.13)
0

We next turn to the numerator Np(u). Since py = po, Nr(u) = Ni(u), where

Ni () = o 3w (et ()
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From Theorem 3 and (A.12) we find
1
Nj(u) = / W*(s)dW (s, u). (A.14)
0
(A.11), (A.13) and (A.14) together yield

() (s, )|
u fol W(s)%ds

tAl (U)2 =
where Wi (s, u) = u~Y/?W (s,u). Using similar arguments, we can show that

o W (5) (A (s, 1) — W (s, )]
(1 — ) [} W*(s)2ds

to(u)? =

where Wa(s,u) = (1 —u)™"* (W(s,1) — W(s,u)).
Using the definitions Wi (s, u) = u Y/2W (s, u) and Wa(s,u) = (1 — u) /> (W (s, 1) — W (s, u)),
we conclude that
2 2
s W)W s, u) |+ | [y W (s)dWa(s, u)

Ry(u) = W = R(u), (A.15)

yielding the limit distribution of the function Ry(u) considered as a function of w.

In our re-parameterized space the threshold estimator is defined as

4 = argmax W7 (u).
u€[my,ma]

In equation (A.10) we showed that W7 (u) = Sp(u) (since ¢ = 0 under the null). This limit
process Sp(u) is continuous in v and has a unique maximum in |7y, m] with probability one.
This allows the application of Theorem 2.7 of Kim and Pollard (1990), hence

4 = argmax Sp(u) = u”. (A.16)

w€[my,ma)

Equation (A.15) and (A.16) combine for the desired result:

Proof of Theorem 6.
As in the previous proof we use the reparameterized model (A.6) where u = F()),

U = F(S\) and ug = F'(X\g). As in the previous proof, to simplify the derivations, we will
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assume that no lags of Ay, appear in the regression. Since the test statistic is invariant to

2

the variance o2, we set 0% = 1.

Let 14 1 =14 1(up) and g = p1 E1y 1 + po(1 — E1, ). Under Hy,

Ay =l +pe(l =1 9) +ep=p+&.

The sequence &, is zero-mean and strictly stationary. We have the joint convergence over

(s,u) € [0,1]2:
( %21[:1:181] et]-tfl(u) ) = ( Wa(svu) >
1 N7l
VT D=1 & Wi (s)

where W, (s,u) is a two-parameter Brownian motion, W, is a standard Brownian motion,
and the two processes are correlated. Since the regression includes a time trend, the test

statistic is invariant to the parameter p so we set = 0. In this case we have

1
—=Y[Ts] = O'EWb(S)

VT

and

1 * *
—=Yrg () = oWy (s)

VT

where Wy (s) is a detrended version of Wj(s).
Let Dp(u), Np(u), and N (u) be defined in the previous proof. Theorems 1 and 3 yield
1
Dr(u) = uag/ Wi (s)*ds
0
and .
N (u) = o / Wi (s)dWa(s, u).
0

We need to show that Nr(u) is asymptotically equivalent to Nj.(u). For u < ug, Nr(u) =
Nj(u). For u > uy,

Ay = mlw,_i<uod T H2l{u,_;>u0) + €
= pio + (1 — p2) L, <ue) + €
= o+ (1 — p2) Lo, <uy — (11 — p2)Ljug<tr_<u} + €1

Linear projection shows that
Np(u) = Np(u) = (g — p2) Ar(u)

where

T
1 *
AT(U) = ? Zyt—l (u)l{uoﬁUt71<u}‘
t=1
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Observe that
T

A < s T 0] 7 D Hwsviosco
= O0,(1)-TY?(u — up). :
Since p11 # po, the threshold ug is identified and T (4 — ug) = Op(1) (see Hansen, 1997). It
follows that Np(u) = Nj(4) + 0,(1) as desired.
We find that as @ —, uo,
B@? = % +op(1)
kG fo Wi (s)dW,(s, uo)}2
UgOE fo Wi(s)%ds
W )am)]
W ()

where we have defined
Wa(sv UO)

Vo

Similar arguments for #,(@)? allow us to find that

W1 (8) =

o Wi (s)dWa (s )r
fo Wb*(S)QdS

to(11)?

where

Wa(s, 1) — Wy(s, uo)'

Wels) == 1=

It is important to observe that Wi (s) and Wa(s

) are mutually independent standard Brown-
ian motions which are both correlated with W,(s). We have shown that

Ry = ()% 4 ty(0)?
[fow* )W, (s } [fow* )dWa(s)
fo Wy (s)2ds

2

=

= R,

We now simplify the limiting distribution. Let

Wo(s) = ( Wils) ) ~ BM(L).

WQ(S
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For any H such that H'H = I,, we have that

Wi'(s) — H'Wo(s) ~ BM(I).
<w2ﬂ<s>> (5) ~ BMI(E)

We can pick H so that W} and W, are uncorrelated. Then by projection for some a € [0, 1),
WH (s) = aWas(s) + (1 — a®)/* W, (s)
where W, is independent of W, (and also of W{). We thus have

Jo WE(s)aWa(s)'| |3 dWa(s) Wy (s)]

o J3 Wy (s)2ds
W | |y a5 wis)]
- Jo Wi (s)2ds

Wi )]+ [ e )]
] fo Wi (s)2ds

_ fOW* (s)dWH (s) + fOW* )dWa L1 ) fOW* YdW(s)

() W;(s)2ds) " (U W;(s)2ds) " (U Wy (s)2ds) v

~ X2+ [aN(0,1) + (1 — a®)/*DF]".

The final equality in distribution holds since W, Wy, and W}, are mutually independent.
O
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