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1 Introduction

Modeling Fixed Income Excess Returns

Abstract

For example, if a bond maturing in 5 years is held for one month, the (one-month) excess return on this bond is
calculated as the di�erence between the return realized from holding the 5-year bond for one month and the interest
rate on a one-month security.

Other recent studies have analyzed the role of time-variation in term premia in a di�erent setting. Tzavalis
and Wickens (1997) 4nd that when they account for a time-varying term premium by including excess returns in a
regression of the change in the long term interest rate on the yield spread, their estimated coe5cients are consistent
with the predictions of the expectations theory. Using a discrete time approximation for the term premium which
is derived in the continuous time CIR model, Klemosky and Pilotte (1992) estimate the term premium as a

Excess returns earned in 
xed-income markets have been modeled using the ARCH-M model

of Engle et al. and its variants. We investigate whether the empirical evidence obtained from an

ARCH-M type model is sensitive to the de
nition of the holding period (ranging from 5 days to

90 days) or to the choice of data used to compute excess returns (coupon or zero-coupon bonds).

There is robust support for the inclusion of a term spread in a model of excess returns, while the

signi
cance of the in-mean term depends on characteristics of the underlying data.

Keywords: term premium, excess returns, GARCH modeling

JEL: E43, C22, C52

Excess returns or bond term premia have been studied extensively in the empirical 
nance literature.

The excess return on a period bond is de
ned as the di2erence between the holding period

return on the bond and the one-period interest rate. The excess return represents the realized

(or ) premium from holding the long maturity bond as compared to the one-period security

and is commonly referred to as the term or liquidity premium. One of the 
rst studies

to empirically model time variation in term premia is Engle, Lilien, and Robins (1987) where the

authors introduced the autoregressive conditional heteroskedasticity-in-mean model (ARCH-M).

In the ARCH-M model, the term premium depends on the conditional variance of the underlying

interest rate process. A number of studies applying and extending this methodology followed (see

Bollerslev, Chou and Kroner (1992) for a survey of the literature). More recently, Brunner and

Simon (1996) 
nd that the exponential generalized autoregressive conditional heteroskedasticity-in-

mean model (EGARCH-M) is a good representation of weekly excess returns on ten-year Treasury

notes and long-term Treasury bonds .



function of the level and the variability of the riskless interest rate process. They 4nd that the term premium varies
positively with the variability of the interest rate and negatively with its level.

Although conditional heteroskedasticity models have been widely applied to excess returns,

there have been no studies on the robustness of empirical 
ndings that are based on these models

with respect to varying characteristics of the data that are used in calculating bond term premia.

This paper attempts to 
ll this gap in the literature by providing evidence on the sensitivity of

empirical results to the choice of holding period over which excess returns are measured, the data

set which is used to calculate excess returns, and the bonds’ term to maturity. This is a particularly

interesting issue since the empirical literature has largely focused on modeling excess returns that

are calculated from Treasury bills. We document and compare the time series characteristics of

excess returns on medium to long-term Treasury securities for various sampling intervals which we

set equal to the holding period. Using the class of conditional heteroskedasticity models which

have been previously used in the literature, we analyze excess returns series for three holding

periods: 
ve days (one week), one month, and three months, and for a number of maturities.

Our study contributes to the literature in two other respects. We employ a general conditional

heteroskedasticity model which allows for the inclusion of in-mean e2ects, lagged returns, and a

term spread variable which has been found to be signi
cant in previous studies. In addition, the

model allows for a general class of distributions for the error term rather than assuming that the

errors are normal. Finally, we provide new evidence on modeling excess returns of medium-term

zero coupon bonds and medium- to long-term coupon bonds which have not received attention in

the literature.

Our 
ndings can be summarized as follows. The model of excess returns presented here, in-

corporating the term spread, conditional heteroskedasticity, and a more ?exible error distribution,

appears to be quite robust to variations in tenor, holding period, and the form of the underly-

ing data. This robust behavior holds up over a lengthy sample period encompassing structural

changes in the behavior of the Federal Reserve as a dominant force in the Treasury markets, with

concomitant ?uctuations in the volatility of interest rates and returns from holding 
xed-income

securities. Alternative sampling intervals and holding periods, ranging from 
ve days to 90 days, do

not appear to have a qualitative impact on these 
ndings. Explicit consideration of the conditional

heteroskedasticity of excess returns series appears to be an essential component of a characteriza-

tion of their stochastic properties. However, inclusion of an in-mean term in the conditional mean

equation is not consistently supported by our 
ndings.

The rest of the paper is constructed as follows. Section 2 presents the theoretical background
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2 Theoretical background and methodology
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and methodology underlying our investigation, while the data used in the analysis are described in

Section 3. The following section presents our empirical results. Section 5 concludes with an outline

of further research.

Let be the yield per period on a zero-coupon bond with periods to maturity. The one period

holding return on this -period bond is given by:

= ( 1) (1)

According to the expectations theory, investors seek to equalize expected holding returns from all

available investment strategies. Therefore, the expected return from holding any -period bond for

one period (say one month) is related to the yield on a one-period bond as shown in (2) below.

= + (2)

is the expectations operator conditional on information available at time and is a constant

term premium. The one-period excess holding return on a -period bond ( ) is de
ned as

the di2erence between the holding return and the one-period yield which, assuming that

expectations are rational, is equal to the unobservable term premium plus noise unforecastable at

time :

= = + (3)

Given the assumption of a constant term premium, the expectations hypothesis implies that excess

returns are unforecastable using information available at time . Equation (3) can be used to

test this implication by regressing on observable and relevant variables and testing for their

signi
cance. Previous studies have found that excess returns are forecastable using variables such

as the spread between the -period and the one-period rates (see for example Campbell (1995)).

Evidence of the predictability of excess returns has been interpreted to indicate the existence of

a time-varying term premium. To explicitly model the behavior of the (unobserved) term premium

using the time series of (observable) excess returns as in equation (3), Engle et al. (1987) assume

that term premia are given by:

= + (4)
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Engle et al.’s (1987) 4nal model uses log in the mean equation and applies declining weights on the lags in the
variance equation.

where is the standard deviation of the holding return forecast error, , which represents the

risk of holding the period bond. This formulation assumes that the term premium has a less

than proportional relation to the variance of the holding return, , consistent with a two-asset

model in which the supply of the risky asset is 
xed. Substituting (4) into (3) and specifying an

autoregressive process for , the model, termed the autoregressive conditional heteroskedasticity

in mean (ARCH-M) model, is formulated as:

= + + (0 ) (5)

= + (6)

Engle et al. (1987) 
nd that the ARCH-M model with = 4 is a good representation of quarterly

excess returns on six-month Treasury bills .

Since our study employs a number of excess return series which vary by maturity and sampling

frequency, we consider a more general version of the model in (5)-(6), a GARCH-M, which allows

for autoregressive terms and exogenous variables in the mean and variance equations. In addition,

the model is estimated using a generalized error distribution (GED) when we 
nd evidence that

the errors are non-normal. The general model is formulated as:

= + + + + (0 ) (7)

= + + + (8)

Where is the number of autoregressive lags in the mean equation and and are

the number of exogenous variables, and , entering the mean and the variance equations,

respectively. An exogenous variable which is likely to be signi
cant in the mean of is the

spread between the long term yield and the one-period yield, = . To illustrate this it is

helpful to rewrite equation (2) as:

= (9)

After substituting for from (1), adding and subtracting , and rearranging we get:

4
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Engle et al. (1987) suggest that the spread can predict excess returns since it represents information about the
riskiness of the long term bond, which is modeled using the in-mean term . To test this proposition, they compare
the coe5cients on the spread from an equation regressing the excess return on a constant and the spread to that
from the ARCH-M model. They 4nd that the spread remains signi4cant but at a lower level of signi4cance and that
its coe5cient is drastically reduced. Thus, they conclude that the spread’s explanatory power is merely a re=ection
of the information captured by .

= ( ) + ( 1)( ) (10)

Equation (10) shows that the term premium can be decomposed into two components: the spread

between the long and the short term yields and a multiple of the expected change in the long term

yield. Therefore, the spread is likely to be an important predictor of the term premium and may

contain information about the term premium which is not captured in the conditional variance

term (the in-mean term), . Since is the standard deviation of the forecast error of the holding

period return which is the same as the forecast error of the future long-term yield, , the

in-mean term in equation (7) re?ects the second term in (10), while the spread re?ects the 
rst

term .

In the empirical results below, we include the spread as a regressor in equation (7) and test

whether the results are consistent with the relationship described in (10). We also consider the

inclusion of the spread as an explanatory variable in the conditional variance equation. The spread

could a2ect the term premium indirectly through the variance equation if the spread is correlated

with uncertainty about the long term yield. For example, the spread may increase when uncertainty

(or risk) about the long-term yield increases if investors require a higher yield on the long-term

bond to compensate for the increased uncertainty.

Our approach to selecting a 
nal speci
cation of the model in (7)-(8) for each of the excess re-

turns series is as follows. We begin by estimating the ARCH(4)-M model which has been previously

used in the literature for each series and conducting a number of diagnostic tests on the model’s

residuals. We test for serial correlation in the standardized residuals and squared residuals for up

to 24 lags, and conduct F-tests for the presence of remaining ARCH e2ects up to 24 lags. Ensuring

that the squared residuals are properly modeled is particularly important since the in-mean term

cannot be consistently estimated if the conditional variance is misspeci
ed. We also test for nor-

mality and for the presence of sign bias in the standardized residuals. We use the GARCH(1,1)-M

model in cases where we detect the presence of high order ARCH in the residuals and we include

lagged excess returns in the mean equation in cases where we found serial correlation in the residu-

als. Where we reject normality, we employ the generalized error distribution, detailed in Appendix

5
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3 Description of the data

1997 CRSP Monthly US Government Bond File Guide

1997 CRSP US Government Bond File Guide

An alternative to using a non-normal distribution would be to employ the quasi-maximum likelihood estima-
tion (QMLE) method developed by Bollerslev and Wooldridge (1992). The authors provide computable formulas
for asymptotic standard errors that are valid when a normal log-likelihood function is maximized, even when the
assumption of normality is violated.

C, to obtain estimates of the model parameters . Therefore, we choose the 
nal speci
cation for

which the residuals and squared residuals are free from any serial correlation, remaining ARCH

e2ects and sign bias. After selecting the best univariate model for each excess returns series, we

reestimate the models by adding the spread as an explanatory variable in the mean equation and

checking the estimated residuals as previously described. In the empirical results presented in

Section 4, the 
nal speci
cation for each series includes the spread as an explanatory variable.

We use two di2erent data sets derived from U.S. Treasury securities’ quotations in our analysis.

The 
rst dataset, used to construct excess returns for 1-, 2-, 3-, 4-, and 5-year securities, makes

use of the Fama-Bliss Discount Bonds 
le and the CRSP Riskfree Rates 
le from CRSP’s monthly

dataset. The Fama-Bliss 
le contains monthly price and yield quotations on zero-coupon securities

for one- to 
ve-year tenors generated from fully taxable, non-callable, non-?ower Treasury securities.

Details of its construction are given in the

(p.22). The Riskfree Rates 
le contains nominal one- and three-month risk free rates, constructed

from Treasury bill quotations. Yields are expressed as continuously compounded 365-day rates.

Approximate holding period returns are calculated from these quotations, as described in Appendix

A.

The second dataset, used to construct excess returns for several tenors, makes use of the CRSP

daily dataset’s Fixed Term Indices 
les, combined with individual securities’ quotations from the

daily CRSP 
le and a measure of the daily Fed Funds rate from the Federal Reserve Board. The

Fixed Term Indices 
les contain price, yield and duration quotations for 1-, 2-, 5-, 7-, 10-, 20- and

30-year terms, constructed by CRSP from individual Treasury securities’ quotations as described in

the (pp.23-25). The identi
cation of the underlying

individual security allows us to calculate an approximate holding period return for 
ve-day (one-

week), one-month and three-month holding periods, as described in Appendix B. These measures,

available at a daily frequency, provide us with a much richer set of holding period returns in two

senses. First, they gauge the return from holding medium and long-term Treasuries, whereas most

research has been based on returns from Treasury bills, of no more than one year tenor. Second, they

are available at a daily frequency, facilitating the study of a sizable sample of weekly excess returns,

6
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4 Empirical Results

This data set also allows us to construct excess returns for a one-day holding period. Our preliminary analysis
indicates that the time series characteristics of these daily data are considerably di�erent from their weekly, monthly
and quarterly counterparts. Estimation of these models requires the use of highly nonlinear and computationally
intensive methods. Given that such analysis shifts the focus of the paper away from its purpose, we chose to defer
analysis of the daily data to future research.

The unit root test results are available from the authors upon request.

whereas much of the literature utilizes monthly series. Although computations with these data

must take into account the nature of the quotations (measures of yield on coupon securities, rather

than the more analytically tractable zero-coupon instruments) these two advantages outweigh the

diFculties.

Descriptive statistics for the excess returns series calculated for this study are given in Table

1. Panels A, B, and C present the descriptive statistics for quarterly, monthly, and 
ve-day excess

returns, respectively. Series denoted ‘Z’ are derived from the zero-coupon quotations, while series

labeled ‘C’ are constructed from the Fixed Term Indices quotations on coupon securities. Di2erences

in methodology of excess returns’ computation seem to be most apparent for the quarterly holding

period returns at the one-year tenor, in which the zero-based series have a considerably higher mean

and lower variance than the coupon-based series. For the other two overlapping tenors (two-year

and 
ve-year) there is much closer agreement between the series. The discrepancy between means

persists for the monthly excess returns, where the zero-based measures have a much higher mean

for each of the three overlapping tenors, but similar variances. The variances of excess returns

increase with tenor in almost every instance for both zero-based and coupon-based excess returns.

Returns are generally positively skewed, with greater skewness at shorter tenors. Excess kurtosis

is present in almost all series, and is most pronounced for shorter tenors for most of the series.

A signi
cant degree of autocorrelation is apparent in all but the quarterly series calculated from

zero-coupon securities.

Since estimation of models for excess returns depends on the stationarity of the series (
nite

unconditional second moments), we perform Augmented Dickey-Fuller and Phillips-Perron unit

root tests on each of the excess returns series . The null hypothesis of nonstationary behavior is

decisively rejected for all series.

We have estimated ARCH and GARCH models of excess returns, as described in the previous

section, for several maturities and data frequencies, making use of two distinct datasets. In this

section, we present and interpret our 
ndings from this set of estimates. Several common fea-

tures emerge. First, it appears that low-order ARCH and GARCH models adequately describe the

7
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Holding Period

Tenor Quarterly Monthly

1 year
2 year

5 year

4.1 Results for the Zero-Coupon Dataset

A description of the generalized error distribution and its properties is presented in Appendix C.

ARCH(2)-M AR1-GARCH(1,1)-M, GED

ARCH(2)-M AR1-ARCH(4)-M, GED

ARCH(2)-M, GED AR1-ARCH(4)-M, GED

stochastic properties of excess returns series. Second, the term spread is signi
cant in the condi-

tional mean equation for excess returns, for all maturities and data frequencies, in both datasets.

Third, an ARCH-in-mean term is an important component of some models of excess returns, over

and above the role of the term spread, but fails to be universally signi
cant. Fourth, the error

processes in these models are generally non-normal; a generalized error distribution with ‘fat tails’

is a more appropriate representation of their kurtosis. We turn now to a detailed investigation of

these 
ndings.

The zero-coupon dataset, described in Section 3, contains monthly quotations on one- to 
ve-year

zero coupon securities constructed from Treasury quotations. We have selected the one-, two-, and


ve-year tenors for our modeling, all of which overlap with the available tenors from the Fixed

Term Indices dataset. We 
t models to these three tenors for two holding periods: monthly and

quarterly. A summary of the speci
cations used appears as Table 2.

Table 2. Excess Returns Model Speci
cations for the Zero-Coupon Dataset

In this summary, all models include an in-mean term (-M) which is the conditional standard

error of excess returns. Models including ‘GED’ are 
t with a generalized error distribution, and

include an additional estimated parameter (the tail-thickness parameter). The quarterly series’

conditional mean equations contain only a constant, term spread, and in-mean term; the monthly

series also include a lagged value of the conditional mean. The empirical results from these models

are presented in Table 3.

As indicated above, the term spread is universally signi
cant in these models, with a positive

estimated coeFcient increasing in tenor. The spread coeFcients are of similar magnitude across

quarterly and monthly holding periods. The in-mean term is signi
cant in the one- and two-year

models for quarterly holding periods, and for the two-year model at the monthly frequency. When

these models are estimated without the term spread, the in-mean term is always signi
cant; thus,

there seems to be some substitutability between including the term spread or the volatility term in

8
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4.2 Results for the Coupon Dataset

Appendix Tables A.1 and A.2 present the results of estimating each of the excess returns models with OLS,
allowing for AR(1) errors.

Note that we should interpret the comparison between our results and other studies with caution. Since we use
a di�erent speci4cation for the mean equation for excess returns, changes in the coe5cients for the yield spread may
occur due to a change in the amount of small sample bias. We thank an anonymous reviewer for bringing this point
to our attention.

the conditional mean equation.

We may also compare the term spread coeFcients with their corresponding estimates from OLS-

based models of excess returns . Modeling the excess returns series’ conditional heteroskedasticity

always diminishes the magnitude of the coeFcient on the term spread, but it remains signi
cantly

positive in all cases. In contrast, Engle et al. (1987) and Brunner and Simon (1996) found that

when conditional heteroskedasticity was accounted for with an ARCH structure, the term spread

became much less signi
cant. Our 
ndings suggest that the term spread has played an important

role in the excess returns process, even in the presence of conditional heteroskedasticity and an

explicit ARCH-in-mean term. Since excess returns may be decomposed into two components, the

term spread and a multiple of the change in yield on the longer-term bond over the holding period,

our 
ndings suggest that both components have been responsible for ?uctuations in excess returns

over our sample period. In contrast, a study focusing on recent term structure behavior might

attribute a much larger role to yield volatility (as do Brunner and Simon (1996) when studying the

1982-1993 period) .

In applying the GED as an alternative to normality for the error process, the tail thickness

parameter for all monthly holding periods may be distinguished from 2.0, the value corresponding

to normally distributed errors, and signals excess kurtosis. All models’ errors are free of residual

ARCH, and Ljung-Box tests for autocorrelation in their squares are insigni
cant.

Thus, for the zero-coupon dataset, it appears that an appropriate model of excess returns may

be constructed with the (G)ARCH-M methodology. The term spread plays a qualitatively similar

role in each of the resulting models, irrespective of choice of tenor or the distinction between

monthly and quarterly holding periods. They appear to capture the dynamics of excess returns

over this period, including the sharp spike in volatility in the 1979-1982 period, as Figure 1 (for

the quarterly volatility series) and Figure 2 (for the monthly volatility series) indicates.

The coupon dataset, described in Section 3, contains quotations on several tenors of Treasury

securities generated from the CRSP Fixed Term Indices. The data are originally available at the

daily frequency. For this analysis, we have examined weekly, monthly and quarterly holding periods

9
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Holding Period

Tenor Quarterly Monthly Weekly
1 year

2 year
5 year

30 year

ARCH(4)-M, GED AR1-GARCH(1,1)-M, GED AR4-GARCH(1,1)-M, GED

ARCH(4)-M, GED AR1-GARCH(1,1)-M, GED AR4-GARCH(1,1)-M, GED

ARCH(4)-M, GED AR1-ARCH(4)-M, GED AR4-GARCH(1,1)-M, GED

ARCH(4)-M, GED ARCH(4)-M, GED AR4-GARCH(1,1)-M, GED

We also 4t models including the term spread as a potential component of the conditional variance equation, as
suggested by Engle et al. (1987, p.403). The term spread was signi4cant in only one of the many models estimated.
It does not appear that the level of the term spread has any explanatory power over and above past values of the
conditional variance.

for four tenors: the one-, two-, and 
ve-year tenors considered above, and the 30-year tenor. A

summary of the speci
cations chosen for these models appears as Table 4.

Table 4. Excess Returns Model Speci
cations for the Coupon Dataset

Abbreviations used in this summary are those used in Table 2 above. The empirical results

from these models are presented in Tables 5, 6, and 7 for quarterly, monthly and weekly holding

periods, respectively. The term spread is universally signi
cant at better than the 5% level in

these speci
cations. In contrast to the zero-coupon estimates, the magnitude of the term spread

coeFcients is not always reduced by taking account of conditional heteroskedasticity. For the

quarterly holding period, the (G)ARCH coeFcients on the term spread are uniformly larger than

their OLS counterparts. In the monthly and weekly holding periods, all but the 30-year monthly

returns have smaller coeFcients on the term spread when conditional heteroskedasticity is taken

into account.

All models contain in-mean terms, so that the e2ects of the term spread are estimated controlling

for the possible confounding of volatility and term spreads’ impact on excess returns. The in-mean

term is not signi
cant in the quarterly estimates, and only appears as an important determinant of

one-year excess returns for the monthly holding period. For the weekly estimates, the in-mean term

is signi
cant for one- and two-year tenors, and marginally signi
cant for the 
ve-year tenor. The

GED tail-thickness parameter may be distinguished from 2.0 (denoting normality) for each of the

estimated models, indicating a considerable degree of excess kurtosis for many of the series. With

the exception of the weekly two-year returns series, all models’ errors are free of residual ARCH,

with insigni
cant autocorrelation in their squares.

The models of excess returns 
tted from coupon bonds’ quotations appear to be largely sim-

ilar in their qualitative characteristics. The term spread plays an important role in explaining

excess returns’ behavior, even when conditional heteroskedasticity and in-mean terms are included.

10



4.3 Summary of Findings

5 Suggestions for Further Research

Although the results for a weekly holding period are more volatile than those for longer holding

periods, there are qualitative similarities among the results for all three holding periods for each

tenor studied. The models appear to capture the dynamics of excess returns over this period, and

their conditional heteroskedasticity component accounts for the sizable changes in bond markets’

volatility experienced in the 1979-1982 monetary control episode (see Figures 3, 4, and 5a-5b for

the estimated volatility series for quarterly, monthly and weekly holding periods, respectively).

In summary, the model of excess returns presented here, incorporating the term spread, conditional

heteroskedasticity, and a more ?exible error distribution, appears to be quite robust to variations

in tenor, holding period, and the form of the underlying data. This robust behavior holds up over

a lengthy sample period encompassing structural changes in the behavior of the Federal Reserve

as a dominant force in the Treasury markets, with concomitant ?uctuations in the volatility of

interest rates and returns from holding 
xed-income securities. Alternative sampling intervals and

holding periods, ranging from a 
ve-day to a 90-day period, do not appear to have a qualitative

impact on these 
ndings. To put it another way, one should not draw di2erent conclusions about

the importance of the current slope of the yield curve to the performance of 
xed-income portfolios

whether one studies 5-, 30-, or 90-day holding period returns. These qualitative 
ndings appear to

hold for both short-term (one- and two-year) tenors as well as much longer-term instruments such

as the 30-year long bond.

These results also highlight the importance of modeling the conditional heteroskedasticity of

excess returns series as an essential component of any characterization of their stochastic properties.

Although this message is not new, it plays an important role in the robustness of our 
ndings

over holding periods and tenors. However, inclusion of an in-mean term in the conditional mean

equation, taken by Engle et al. (1987) as a clear indication of the interaction of risk and return, is

not consistently supported by our 
ndings. In-mean terms play an important role in some of our

estimated models, but one cannot generalize over tenor, holding period, or dataset on their relation

to the model.

In this study, we have evaluated the robustness of the relationship between the term spread and

excess returns on holding Treasury securities of short, medium and long tenors. Our 
ndings that

11



the term spread is an important contributor to the explanatory power of ARCH-based models of

excess returns appear to generalize across holding periods, from one week to a calendar quarter,

suggesting that systematic sampling in this range does not have a qualitative impact on an appro-

priate speci
cation. These conclusions also suggest that the form of the underlying data, whether

the more tractable zero-coupon quotations or returns derived from coupon securities’ quotations,

is not responsible for the main features of the models presented.

Our further work with these data will focus on extending these results by making use of the Fixed

Term Indices-based data at their original daily frequency, and in exploring a variety of advanced

GARCH speci
cations to investigate the importance of asymmetries and non-normal behavior in

their error processes. Use of the daily data will also permit us to conduct subsample analysis

with more sizable samples than have been commonly analyzed in the empirical literature. Our

preliminary 
ndings from weekly through quarterly holding periods should be strengthened by the

consideration of daily holding periods.
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In Campbell (1995, p.132), this formula incorrectly refers to and rather than their counterparts
dated ( + 1)

A Excess Returns series from zero-coupon quotations

B Excess Returns series from Fixed Term Indices quotations

The monthly excess returns series make use of the Fama-Bliss price quotations on 1- to 5-year zero-

coupon securities for 1964:3 through 1996:12. Since only these 
ve tenors are available, one-month

(three-month) holding period returns cannot be constructed directly from these data, since that

would require, for example, the price of 11-month (9-month) zero-coupon securities. To construct

estimates of holding period returns for one-month and three-month holding periods, the approxi-

mation de
ned by Campbell (1995, p.132) in terms of yields is expressed in terms of zero-coupon

bond prices. He assumes that the yield on the security does not change over the holding period in

order that its price at the end of the holding period may be inferred (cf. Campbell, fn.7). De
ne

as the logarithm of the bond price for a $1 par bond with periods to maturity. Then the

one-year log holding period return for an period bond is = Since the

price and continuously compounded (log) yield, are linked by the relation = the

log holding period return may be expressed in terms of yields as ( 1)( )

In the absence of measures of a performance of an ( 1) period security, we apply the approxi-

mation In price terms, this implies that = which

makes it possible to calculate the (log) holding period return from available data. For instance, the

one-month log holding period return on a one-year security will be of next month’s (log) price of

the zero-coupon security minus this month’s (log) price of that security. For a three month holding

period, we calculate = where again is measured in months. Excess

returns are computed from these series (expressed in per cent per annum by = 1200

and = 400 ) by subtracting the CRSP Riskfree Rates for one- and three-month tenors,

respectively. The average of bid and ask yields provided in the Riskfree Rates 
le are used.

We generate excess returns series from the CRSP Fixed Term Indices quotations from 14 June

1961 through 30 September 1996, for a total of 8,804 business days. Each quotation is identi
ed

with the speci
c Treasury security from which it is derived in the Fixed Term Index 
le; that

identi
er is used on the Daily Government Bond 
le to recover the yield of that speci
c security

13
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Ideally, term Federal funds rates for one week, one month, or one quarter would be used to calculate excess
returns for those holding periods, but these data are not publicly available.

at the end of the holding period, be it one day, 
ve days, one month, or three months hence.

Although the holding period return for that speci
c security could be computed exactly for that

interval, we want to remove the ‘coupon e2ect’ from the calculation. We do so by employing the

approximation developed by Shiller (1990, p. 640), originally presented in Shiller et al. (1983), and

widely employed in the term structure literature. He expresses the ‘holding period rate’ or return

from to on a bond maturing at time as

=
( ) ( ) [ ( ) ( )] ( )

( )

where ( ) is the holding period return, ( ) is the yield on a security held from to

( ) is the yield on a security held from to ( ) is the Macaulay duration of the security,

and ( ) is the duration of a hypothetical security held from to which is approximated

as ( ) = (Shiller, 1990, Table 13.1, p.640). Our application of Shiller’s approximation

requires three pieces of information: the yield to maturity of the security underlying the index on

the quotation date, ( ) the yield to maturity of that security at the end of the holding period,

( ) and Macaulay’s duration for the security as of the quotation date, ( ) From these

elements, we calculate daily holding period returns series for each tenor. The daily Fed Funds rate

from the Federal Reserve Board’s H.15 databank is used to generate excess returns series.

In estimating an ARCH or GARCH model, an assumption must be made regarding the distribution

of the conditional mean equation’s error process. We consider three alternatives in estimating the

models reported in this study: normally distributed errors, Student distributed errors, and errors

following a Generalized Error Distribution (henceforth GED). This distribution, 
rst used in an

ARCH modeling context by Nelson (1991), is also known as the exponential power distribution

(Box and Tiao, 1973). As Nelson points out, the GED includes the normal as a special case, with

alternatives exhibiting greater or lesser degrees of kurtosis than the normal. This makes the GED

particularly attractive, as it allows for both positive and negative excess kurtosis in the error process

(as opposed to the Student ) with a single ‘tail-thickness’ parameter. The density of a normalized

(zero mean, unit variance) GED random variate is given by (Nelson, 1991, p.352):

( ) =
exp

2( )O (1 )
0

14
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where O ( ) is the gamma function and

= 2
O (1 )

O (3 )

The tail-thickness parameter takes on the value 2 for a standard normal distribution, with

values less than 2 denoting thicker tails than the normal, and vice versa. In the limit, as

the GED converges on a uniform distribution. Nelson 
nds this distribution particularly useful

in the context of his Exponential GARCH (E-GARCH) model, but it may be used to advantage

in any ARCH modeling context. The GED has recently been applied to the modeling of excess

returns from Treasuries by Brunner and Simon (1996).
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Table 1:  Descriptive Statistics for Excess Return Series

(A) Quarterly Excess Returns

SERIES Type NOBS AVE. VAR SKEW KURT MIN MAX
Q-STAT   
(20 LAGS)

SIGNIF   
LEVEL

1964:3 - 1996:4
1 Year Z 130 0.45 12.78 1.03 7.36 -12.15 19.48 16.42 0.69
2 Year Z 130 0.59 52.77 0.80 4.57 -23.32 35.27 17.72 0.61
3 Year Z 130 0.67 105.66 0.45 2.42 -30.83 41.40 14.39 0.81
4 Year Z 130 0.72 168.90 0.34 1.34 -35.43 43.68 19.59 0.48
5 Year Z 130 0.72 231.77 0.27 1.42 -45.25 50.70 14.93 0.78
1961 - 1996
1 Year C 135 0.25 17.48 2.09 18.13 -14.18 29.40 28.72 0.09
2 Year C 135 0.41 51.81 1.17 10.42 -24.51 43.66 29.76 0.07
5 Year C 135 0.79 190.54 0.53 4.64 -42.53 68.22 24.71 0.21
7 Year C 135 0.81 263.48 0.47 3.13 -45.22 72.01 19.89 0.46
10 Year C 135 -0.20 392.94 0.25 1.78 -56.86 67.66 25.38 0.19
20 Year C 135 -0.56 615.74 0.06 2.05 -83.25 92.43 30.86 0.06
30 Year C 135 -1.43 682.19 -0.19 1.82 -87.46 85.63 24.97 0.20

(B) Monthly Excess Returns

SERIES TYPE NOBS AVE. VAR SKEW KURT MIN MAX
Q-STAT   
(20 LAGS)

SIGNIF   
LEVEL

1964:3 - 1996:4
1 Year Z 393 0.81 43.35 0.94 10.39 -30.17 49.39 69.45 0.00
2 Year Z 393 0.96 138.56 0.64 7.70 -53.02 78.72 54.10 0.00
3 Year Z 393 1.05 271.61 0.05 5.44 -87.05 97.52 36.60 0.01
4 Year Z 393 1.11 458.82 0.13 3.67 -94.19 103.32 39.71 0.01
5 Year Z 393 1.10 615.22 0.25 3.49 -95.69 125.44 32.08 0.04
1961 - 1996
1 Year C 400 0.14 49.84 1.55 18.65 -31.56 64.02 109.73 0.00
2 Year C 400 0.27 152.39 1.16 14.30 -62.32 103.15 87.61 0.00
5 Year C 400 0.56 469.92 0.57 6.68 -92.58 148.67 59.80 0.00
7 Year C 400 0.65 675.03 0.13 4.29 -111.53 141.72 66.25 0.00
10 Year C 400 -0.31 926.43 0.06 2.38 -122.61 135.96 34.82 0.02
20 Year C 400 0.25 1526.93 0.25 2.73 -130.85 196.83 41.77 0.00
30 Year C 400 -0.73 1611.32 0.18 2.24 -141.89 189.59 47.81 0.00

(C) Five-Day Excess Returns

SERIES Type NOBS AVE. VAR SKEW KURT MIN MAX
Q-STAT   
(20 LAGS)

SIGNIF   
LEVEL

1961 - 1996
1 Year C 1760 0.32 276.67 1.00 16.50 -114.28 183.50 204.16 0.00
2 Year C 1760 0.56 953.01 0.67 16.28 -281.21 279.61 137.88 0.00
5 Year C 1760 0.99 3441.53 0.53 9.63 -468.85 448.28 62.82 0.00
7 Year C 1760 0.41 4915.44 0.62 9.80 -543.34 546.41 45.24 0.00
10 Year C 1760 -0.57 7982.80 0.69 14.57 -795.62 790.86 35.44 0.02
20 Year C 1760 -1.02 12563.79 0.54 6.41 -668.42 870.71 31.30 0.05
30 Year C 1760 -1.85 14080.76 0.35 7.98 -898.51 981.33 26.08 0.16



Table 3
Parameter Estimates for Zero Coupon models with Spreada

Quarterly: 1965:1-1996:4 

p-val p-val p-val
a0 -2.253 0.000 -5.038 0.001 -4.538 0.590
b 1.578 0.008 1.582 0.023 2.998 0.003
c 2.857 0.006 13.096 0.003 155.668 0.000
q1 0.327 0.008 0.381 0.004 0.352 0.122
q2 0.509 0.004 0.385 0.029 0.000 0.999
ht 0.801 0.000 0.866 0.000 0.161 0.787

1.771 0.000
(0.306)

Skew 0.211 0.167 0.502
Kurtosis 3.451 2.892 4.331
LB(24) 17.800 0.813 14.990 0.921 22.324 0.559
LBsq(24) 14.606 0.932 15.213 0.914 17.862 0.809
F-test for Arch(24) 0.507 0.968 0.445 0.985 0.599 0.921
JB 1.988 0.370 0.639 0.726 14.145 0.000

LogLik -307.905 -400.843 -497.500

5 year2 year1 year 
ARCH(2)-M ARCH(2)-M ARCH(2)-M/GED
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Table 3 (cont.)
Parameter Estimates for Zero Coupon models with Spreada

Monthly: 1964:8-1996:12 

p-val p-val p-val
a0 -0.984 0.137 -5.593 0.000 -8.019 0.040
a1 0.181 0.000 0.154 0.003 0.080 0.123
b 1.336 0.000 1.647 0.001 2.704 0.001
c 0.930 0.180 41.637 0.000 233.446 0.000
q1 0.188 0.000 0.137 0.075 0.172 0.086
q2 0.220 0.006 0.148 0.074
q3 0.137 0.058 0.234 0.053
q4 0.168 0.050 0.106 0.198
p1 0.801 0.000
ht 0.123 0.361 0.480 0.003 0.238 0.201

1.307 1.375 1.286
(0.148) (0.159) (0.125)

Skew -0.131 -0.170 -0.269
Kurtosis 4.359 4.004 4.624
LB(24) 19.596 0.666 15.793 0.863 22.122 0.512
LBsq(24) 21.133 0.572 24.872 0.357 24.252 0.389
F-test for Arch(24) 0.815 0.717 0.859 0.658 0.817 0.715
JB 30.424 0.000 18.172 0.000 47.339 0.000

LogLik -1153.791 -1427.294 -1749.364

AR1-ARCH(4)-M/GED AR1-ARCH(4)-M/GEDAR1-GARCH(1,1)-M/GED
1 year 2 year 5 year

ν t

Model XRt
k
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t
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Table 5

Parameter Estimates for coupon models with Spreada

Quarterly: 1961-1996

p-val p-val p-val p-val
a0 0.102 0.544 -0.149 0.879 -1.506 0.516 0.070 0.987
b 0.935 0.000 0.750 0.000 1.072 0.036 2.632 0.000
c 0.206 0.302 10.345 0.011 37.492 0.040 187.217 0.031
q1 0.413 0.089 0.324 0.107 0.300 0.068 0.203 0.169
q2 0.410 0.173 0.490 0.101 0.529 0.056 0.684 0.037
q3 0.307 0.270 0.174 0.398 0.215 0.313 0.008 0.952
q4 0.659 0.041 -0.037 0.789 0.122 0.392
ht 0.090 0.272 0.035 0.852 0.120 0.557 -0.094 0.662

0.996 1.166 1.322 1.098
(0.216) (0.210) (0.237) (0.204)

Skew 0.027 0.088 -0.418 -0.620
Kurtosis 4.524 4.590 4.816 4.618
LB(24) 22.357 0.577 15.478 0.906 13.383 0.959 25.064 0.402
LBsq(24) 18.296 0.788 36.014 0.055 17.867 0.809 20.690 0.656
F-test for Arch(24) 0.646 0.887 0.806 0.719 0.539 0.955 0.780 0.749
JB 12.694 0.001 14.078 0.000 21.816 0.000 22.684 0.000

LogLik -301.887 -412.024 -509.812 -594.722

ARCH(4)-M/GEDARCH(4)-M/GEDARCH(3)-M/GEDARCH(4)-M/GED

1 year 2 year 5 year 30 year

a Standard errors are in parentheses.

ν t

Model XR a bSpread mh h k year

h c q

t
k

t t t t t

t i t i
i

: , ~ ( , ), , , ,= + + + =

= + −
=
∑

0
2

2 2

1

4

0 1 2 5 30ε ε

ε



Table 6

Parameter Estimates for coupon models with Spreada

Monthly: 1961-1996 

AR1-GARCH(1,1)-M/GED AR1-GARCH(1,1)-M/GED
p-val p-val p-val p-val

a0 -0.396 0.064 -0.808 0.241 -1.651 0.195 -6.742 0.170
a1 0.106 0.018 0.094 0.063 0.097 0.026
b 0.788 0.000 0.717 0.000 1.157 0.001 2.579 0.000
c 0.156 0.302 1.367 0.183 58.782 0.001 525.214 0.000
q1 0.282 0.000 0.225 0.000 0.274 0.027 0.134 0.082
q2 0.258 0.046 0.047 0.378
q3 0.413 0.010 0.547 0.165
q4 0.322 0.031 0.082 0.280
p1 0.780 0.000 0.802 0.000
ht 0.122 0.079 0.095 0.302 0.076 0.340 0.143 0.311

1.059 1.182 1.037 1.325
(0.118) (0.120) (0.095) (0.122)

Skew -0.135 -0.342 -0.559 -0.414
Kurtosis 4.246 4.903 6.608 5.518
LB(24) 18.797 0.712 15.561 0.873 20.523 0.610 24.166 0.452
LBsq(24) 16.065 0.852 17.785 0.769 17.643 0.776 18.062 0.799
F-test for Arch(24) 0.642 0.903 0.775 0.769 0.877 0.634 0.724 0.826
JB 0.642 0.000 67.803 0.000 234.838 0.000 115.944 0.000

LogLik -1136.383 -1435.383 -1697.855 -1981.427

ARCH(4)-M/GEDAR1-ARCH(4)-M/GED

1 year 2 year 5 year 30 year

a Standard errors are in parentheses.
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Table 7

Parameter Estimates for coupon models with Spreada

Weekly: 1961-1996 

AR4-GARCH(1,1)-M/GED AR4-GARCH(1,1)-M/GED AR4-GARCH(1,1)-M/GED
p-val p-val p-val p-val

a0 -0.648 0.038 -1.338 0.047 -1.665 0.081 -3.274 0.123
a1 0.139 0.000 0.094 0.000 0.074 0.002 0.073 0.002
a2 0.032 0.125 0.063 0.004 0.085 0.000 0.034 0.149
a3 0.054 0.008 0.048 0.027 0.001 0.976 0.014 0.541
a4 0.047 0.020 -0.002 0.942 -0.027 0.267 -0.014 0.537
b 0.804 0.000 0.570 0.023 1.114 0.029 2.658 0.002
C 1.191 0.001 1.366 0.132 2.588 0.213 15.047 0.109
q1 0.154 0.000 0.096 0.000 0.153 0.000 0.145 0.000
p1 0.865 0.000 0.913 0.000 0.870 0.000 0.877 0.000
ht 0.129 0.000 0.099 0.012 0.058 0.073 0.011 0.742

1.019 1.156 1.314 1.240
(0.000) (0.042) (0.049) (0.035)

Skew -2.441 0.036 0.023 0.620
Kurtosis 42.850 7.801 6.073 10.478
LB(24) 15.608 0.741 17.471 0.622 21.000 0.397 23.624 0.259
LBsq(24) 1.605 1.000 34.634 0.022 26.261 0.157 13.415 0.858
F-test for Arch(24) 0.074 1.000 1.390 0.098 1.092 0.344 0.545 0.964
JB 117869.000 0.000 1685.825 0.000 690.547 0.000 4201.834 0.000

LogLik -6688.231 -7862.873 -9089.360 -10414.678

AR4-GARCH(1,1)-M/GED

1 year 2 year 5 year 30 year

a Standard errors are in parentheses.
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Figure 1. Estimated Volatility for Quarterly Holding Period
Zero-Coupon dataset
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Figure 2. Estimated Volatility for Monthly Holding Period
Zero-Coupon dataset
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Figure 3. Estimated Volatility for Quarterly Holding Period

Coupon dataset
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Coupon dataset
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Table A.1 
 Parameter Estimates for zero coupon models with spreada 

(A) Quarterly:  64:3 - 96:3

Dependent Variable 1 Year 2 Year 5 Year
-0.475 -1.035 -2.630
(0.351) (0.688) (1.487)

2.034** 2.428** 3.283**
(0.571) (0.704) (0.971)

-0.257** -0.223* -0.170
(0.086) (0.087) (0.088)

S.E.E. 3.374 6.967 14.753

QSTATb 20.051 20.136 20.048
(0.455) (0.449) (0.455)

QSTATSQb 28.178 33.422 39.221
(0.105) (0.030) (0.006)

D. W. 2.054 2.046 2.027

CENTERED R2 0.130 0.102 0.083

(B) Monthly: 64:4 - 96:11

Dependent Variable 1 Year 2 Year 5 Year
-0.594 -1.446 -3.289
(0.591) (1.049) (1.993)

1.641** 2.257** 3.107**
(0.538) (0.740) (1.047)

0.124* 0.165** 0.074
(0.051) (0.050) (0.051)

S.E.E. 6.477 11.497 24.517

QSTATb 78.145 51.232 31.789
(0.000) (0.000) (0.046)

QSTATSQb 144.059 144.384 139.995
(0.000) (0.000) (0.000)

D. W. 1.969 1.953 1.983

CENTERED R2 0.039 0.053 0.030
a Standard errors are in parentheses.
b P-values are in parentheses.

* Significant at the 5 percent level.  

** Significant at the 1 percent level.  

Model: ER (R r ) u

u u , ~N(0, )

t t t t

t t 1 t t
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Table A.2 

 Parameter Estimates for coupon models with spreada 

1961-1996

(A)  Weekly

Dependent Variable 1 Year 2 Year 5 Year 30 Year
0.510 0.580 0.402 -3.021
(0.511) (0.859) (1.544) (2.846)

0.989** 1.124** 1.924** 3.354*
(0.226) (0.403) (0.745) (2.566)

0.221** 0.129** 0.066** -0.025
(0.024) (0.024) (0.024) (1.307)

S.E.E. 16.365 30.859

QSTATb 73.219 97.614 49.269 22.553
(0.000) (0.000) (0.000) (0.311)

QSTATSQb 554.060 601.827 665.387 296.241
(0.000) (0.000) (0.000) (0.000)

D. W. 2.041 2.029 2.014 1.998

CENTERED R2 0.057 0.020 0.008 0.005

(B)  Monthly 

Dependent Variable 1 Year 2 Year 5 Year 30 Year
0.453 0.381 0.144 -1.345
(0.394) (0.671) (1.218) (2.194)

1.056** 1.143** 1.613** 1.912
(0.175) (0.317) (0.585) (0.998)

0.137** 0.093 0.111* 0.075
(0.053) (0.052) (0.051) (0.051)

S.E.E. 6.721 12.160 21.448 39.990

QSTATb 104.764 82.962 51.540 44.569
(0.000) (0.000) (0.000) (0.001)

QSTATSQb 118.405 121.550 99.057 123.429
(0.000) (0.000) (0.000) (0.000)

D. W. 1.966 1.974 1.967 1.982

CENTERED R2 0.100 0.037 0.028 0.014

Model: ER (R r ) u

u u , ~N(0, )

t t t t

t t 1 t t
2

= + − +

= +−

α β

ρ ε ε σ
ε

a Standard errors are in parentheses.
b P-values are in parentheses.
* Significant at the 5 percent level.  
** Significant at the 1 percent level.  
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Table A.2 (cont.)

 Parameter Estimates for coupon models with spreada 

1961-1996

(C)  Quarterly

Dependent Variable 1 Year 2 Year 5 Year 30 Year
0.416 0.389 0.430 -2.316
(0.242) (0.459) (0.946) (1.888)

0.856** 0.743** 0.970* 1.874*
(0.118) (0.232) (0.473) (0.870)

-0.249** -0.265** -0.236** -0.189*
(0.088) (0.087) (0.087) (0.087)

S.E.E. 3.487 6.716 13.293 25.456

QSTATb 18.055 13.841 15.629 23.393
(0.584) (0.838) (0.739) (0.270)

QSTATSQb 35.550 40.773 37.467 29.292
(0.017) (0.004) (0.010) (0.082)

D. W. 2.038 2.005 1.976 1.952

CENTERED R2 0.320 0.149 0.093 0.071
a Standard errors are in parentheses.
b P-values are in parentheses.
* Significant at the 5 percent level.  
** Significant at the 1 percent level.  

Model: ER (R r ) u

u u , ~N(0, )

t t t t

t t 1 t t
2

= + − +

= +−

α β

ρ ε ε σ
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