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Abstract

The assumption of conditional symmetry is often invoked to validate adaptive
estimation and consistent estimation of ARCH/GARCH models by quasi maximum
likelihood. Imposing conditional symmetry can increase the efficiency of bootstraps
if the symmetry assumption is valid. This paper proposes a procedure for testing
conditional symmetry. The proposed test does not require the data to be stationary
or i.t.d., and the dimension of the conditional variables could be infinite. The size
and power of the test are satisfactory even for small samples. In addition, the
proposed test is shown to have non-trivial power against root-T local alternatives.
Applying the test to various time series, we reject conditional symmetry in inflation,
exchange rate and stock returns. Among the non-financial time series considered, we
find that investment, the consumption of durables, and manufacturing employment
also reject conditional symmetry. Interestingly, these are series whose dynamics are
believed to be affected by fixed costs of adjustments.
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1 Introduction

The objective of this paper is to construct a consistent test for conditional symmetry using
time series data. Given a sequence of stochastic variables {Y;, X;}, conditional symmetry
is said to hold if the conditional distribution of Y;, conditional on X;, is symmetric with
respect to the conditional mean FE(Y;|X;). More formally, consider the following nonlinear

time series regression model:
}/t = h(Xtv/@) +0(Xt7)‘)€t (1)

where h(X;, 3) is the conditional mean, o%(Xy, \) is the conditional variance, and e; are
disturbances with zero mean and unit variance and are independent of current and past
X/s. Under (1), conditional symmetry is equivalent to the symmetry of e; about zero.
That is, f(e) = f(—e) or 1 — F(e) — F(—e) = 0 for all e, where f and F' are the density
and cdf of e;, respectively.

The above framework encompasses linear and finite order autoregressive models with
and without exogenous variables, as well as non-linear models such as the self-exciting
threshold autoregressive (SETAR) model. However, for many time series models, the con-
ditioning information set could consist of an infinite number of variables. To incorporate
this situation, we denote by €, = {Y; 1,Y; o,...; X3, X; 1, ...} the information set at time

t, and test conditional symmetry using the following model:
}/;5 = h(Qt,ﬂ) +G(Qt7)\)€t~ (2)

This framework is very general. For example, an MA(1) process Y; = e; + 0e;_; can be

written as
[oe]

Y=Y (—0)Y_; +e.

=1
This corresponds to h(Q,0) = 37°,(—0)Y,—; with Q, = {Y;_1,Y;—2,...}. A regression
model with GARCH disturbances

Y, = X, + o

with 07 = a+602 |+yo? je7 | can berewritten as (2) with Q, = {V; 1,Y; o,..., Xt 1, X; o, ..

and

- 1/2
o(f, A) = (a/(l =6+ &Y, — Xt/jﬁ)2>

J=1

-}



where A = («, 6,7). The test statistic to be developed in this article can still be applied
even though the dimension of the conditioning variables in these cases is infinite.

The rest of this paper is organized as follows. A review of applications and some
macroeconomic motivations for interest in conditional symmetry are given in Section 2.
In Section 3, we propose a test statistic for conditional symmetry, analyze its asymptotic
properties, and highlight its generality vis-a-vis alternative tests in the literature. Sim-
ulation experiments and empirical applications are provided in Section 5, and Section 6

concludes.

2 The Use of Conditional Symmetry in Estimation and Inference

From a statistical point of view, the primary interest in whether or not f(e) is symmetric
arises because when the symmetry assumption fails, the mean is no longer the only natural
measure of the location of a distribution. This has important implications in a number
of contexts. In this section, we discuss the importance of conditional symmetry for i) use
of the QMLE in estimating models with time varying volatility, ii) adaptive estimation,
and iii) efficient bootstrapping. Relevance of the symmetry assumption to macroeconomic
applications, as well as the distinction between conditional and unconditional symmetry,
are also discussed.

A widely popular approach to modeling time varying conditional variances is the
family of ARCH and GARCH models developed in Engle (1982) and Bollerslev (1986).
While these models are usually estimated by quasi-maximum likelihood (QMLE), the
asymptotic properties of the QMLE estimator is known only for the special case of a
Gaussian likelihood. In particular, Lee and Hansen (1991) and Lumsdaine (1996) showed
that when the model correctly specifies both the conditional mean and the conditional
variance, the QMLE estimator is consistent for the parameters of the GARCH(1,1) model
with a Gaussian likelihood even when the assumption of normality is false.

An increasing number of applications has, however, assumed a non-Gaussian likeli-
hood. Bollerslev (1987), for example, used a ¢ distribution to model exchange rates and
stock returns, while Nelson (1991) used the exponential power distribution to model stock
prices. These studies were motivated by the fact that the innovations in financial time se-
ries usually have fat tails and are sometimes asymmetric. See, for example, Diebold (1988)
in the context of exchange rates. In a recent paper, Newey and Steigerwald (1997) studied
the conditions under which a non-Gaussian QMLE is consistent. The key for consistency

is what the authors referred to as an identification condition which requires that the
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quasi-log likelihood has a unique maximum at the true conditional mean and the relative
scale parameter. The identification issue arises because non-Gaussian densities are not
necessarily best summarized by the natural location (the mean) and scale (the standard
deviation), and in such cases, side conditions are necessary for consistent estimation and
identification of the ARCH/GARCH parameters.

Newey and Steigerwald showed formally that when the likelihood is non-Gaussian, the
identification condition can still be satisfied if both the true and the assumed innovation
density is symmetric around zero and is unimodal.! Intuitively, conditional symmetry
facilitates identification because under symmetry, the mean, median, and mode (assuming
unimodality) of the innovations coincide. In consequence, the conditional mean is restored
as the natural location parameter. Newey and Steigerwald also showed that consistency of
the QMLE estimates can still be obtained if conditional symmetry fails, but that it would
require an additional parameter which identifies the location of the innovation distribution
to be specified and estimated. Of course, the QMLE estimates will be less efficient when
symmetry holds but the additional location parameter is estimated. A direct use of
our proposed test for conditional symmetry is to determine whether estimation of this
additional location parameter is necessary.

The assumption of conditional symmetry is also important for adaptive estimations.
Suppose we are interested in estimating a set of parameters, 6, associated with a model
with innovations e whose shape is unknown. The estimation of 6 is said to be adaptive
when the information bound on 6 is the same whether or not the density of e is known.
That is to say, an adaptive estimator shares the same asymptotic optimality proper-
ties as a maximum likelihood estimator. Thus, an adaptive estimator can be seen as a
MLE estimator when the shape of the likelihood is unknown. Bickel (1982) considered
the conditions for adaptation in the context of a semi-parametric model P character-
ized by a set of finite dimensional parameters, 6, and a shape nuisance parameters, G.
Bickel established that the necessary condition for adaptation is the orthogonality be-
tween the scores for # and the scores for the scalar parameter 7, where 7 parameterizes
G(-). In a linear regression setting, Bickel showed that, if conditional symmetry holds,
the slope parameters can achieve the same information bound whether or not the error
density is known. Bickel’s analysis was extended to a number of time series models. For
(conditionally) homoskedastic ARMA models, Kriess (1987) showed that the parameters

can be estimated adaptively if e is conditionally symmetric. Linton (1993) discussed a

IThe exception is the special case when the true conditional mean is centered around zero.



reparameterization of an ARCH process to achieve adaptation. Adaptive estimation of
error correction models was discussed in Hodgson (1998), and Newey (1988) showed that
the parameters of a linear regression model can be estimated adaptively by generalized
methods of moments. In each of these applications, adaptation is achieved under the
maintained assumption of conditional symmetry. The usefulness of this assumption arises
because when e is symmetric, the scores are antisymmetric around zero?, thus satisfying
the Bickel orthogonality condition.?

Knowledge about the properties of e; also has efficiency implications for bootstrap-
ping. The general bootstrap procedure for nonparametric and semiparametric estimators
is based on resampling from the (unrestricted) empirical distribution. As discussed in
Brown and Newey (1998), a more efficient procedure is to bootstrap from the restricted
(parametric) distribution. The intuition is simply that imposing a restriction (when it is
true) increases statistical efficiency. One such restriction is the symmetry of é;.

To be precise, suppose the interest is in the critical values of the t-statistic associated
with the model y; = X3+ e;. The typical bootstrap procedure is to obtain the j-th draw
(yi,2]) from [(y1,21), (y2,22), ..., (yr, 27)] with equal probability 1/T', calculate the t
statistic each time and resample J times. With this method, the empirical critical values
for the t-statistic are obtained without assumptions made about the distributional prop-
erties of ;. But, suppose it is known that e; is symmetrically distributed. Then one can ex-
ploit this structure by drawing 27T points, [(é1, X1), ..., (ér, X7), (—é1, X1), ..., (—ér, X71)]
for each resampled set of data. This is analogous to assuming that y; comes from a two-
point conditional distribution. If this parametric assumption is correctly imposed, the
bootstrapped standard errors will be more efficient because more information is used
to bootstrap the critical values. Evidently, efficiency gains are possible if we know the

distribution of e; is symmetric.

2.1 Conditional Asymmetry versus Business Cycle Asymmetries

Apart from the statistical implications, whether or not conditional symmetry holds is an
issue that is of macroeconomic interest in its own right. Symmetry of e, implies that
positive shocks to the conditional mean are as likely as negative shocks. If this is not

the case, our forecasts should adjust to the possibility that the sign of the forecast errors

2Let ¢ : R — 7. v is antisymmetric if ¥(y) = —¢(—y).
3The assumption of symmetry is sufficient but not necessary for adaptation, see, e.g., Gonzalez-Rivera
(1997). However, she shows that adaptation holds only for a narrow class of nonsymmetric densities.



are not equally likely. As well, the distributional properties of e; could be useful to our
understanding of the impulse and propagating mechanism of macroeconomic dynamics.

Several other notions of asymmetry have also been used in macroeconomics. Beaudry
and Koop (1993), for example, were interested in asymmetry in persistence. That is,
whether the dynamic response of output to positive and negative shocks is the same.
In our notation, asymmetry in persistence arises when (3 in the conditional mean model
depends on the sign of e;. Clearly, asymmetry in persistence can occur in the presence of
conditional symmetry. Others such as Neftci (1994) and Hamilton (1989) asked whether
the behavior of GDP during expansions is similar to that during recessions. Since these
studies are mainly concerned with symmetry of the series itself rather than its innovations,
unconditional symmetry is arguably the object of interest. Except in special cases such
as one which will be discussed below, conditional symmetry does not, in general, imply
unconditional symmetry. A test for unconditional symmetry will be developed in our
companion paper.

There are, however, instances when economic behavior and/or structure naturally
gives rise to conditional asymmetry. A specific example is given by the “No news is
good news” model of Campbell and Hentschel (1992). The authors’ objective was to
provide a formal explanation for the correlation between volatility and returns. Their
basic motivation was that a large piece of good news about future dividends will increase
future expected volatility, lowers the stock price, and dampens the positive impact of the
dividend news. In contrast, a large piece of negative news will also increase volatility and
lower the stock price, but now it exaggerates the negative impact of the dividend news. In
consequence, “volatility feedback” will generate stock price movements that are correlated
with future volatility, giving rise to the phenomenon of “predictive asymmetry”. Campbell
and Hentschel formally showed, using a quadratic ARCH specification for volatility, that
the residuals of returns, conditional on volatility, should be skewed. In other words, the
residuals in a model of log returns on volatility should be asymmetrically distributed.

This is precisely our notion of conditional asymmetry.

3 The Test Statistic

Skewness, or the third moment, is perhaps the statistic that naturally comes to mind
when the object of interest is symmetry of a distribution. Hsieh (1988), for example,
performed diagnostics on the standardized estimated residuals using the coefficient of

skewness. However, tests based on the skewness coefficient will not be consistent since
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there are many distributions that are asymmetric and yet their skewness coefficients are
zero. Recently, some consistent tests have been developed to test the null hypothesis of
conditional symmetry. Most of these tests are based on the estimated residuals of a linear
model. Fan and Gencay (1995) proposed a test based on the idea that under symmetry,
2 [ f(x)f(—z)dz = [ f*(z)dz + [ f*(—x)dx. Ahmad and Li (1996)’s test is based on
[ f () — f(—x)]*dF = 0. Zheng (1998), on the other hand, constructed a test on the
basis that under symmetry, 1 — F(—z) — F(x) = 0. All these tests (as does ours) only
require consistent estimates of the parameters 5. As well, the unknown density function
f(z) in these tests is estimated by the kernel smoothing method. Regression quantile
estimators also contain information about conditional symmetry. If 3(7) is the quantile
regression estimator for 7 € (0,1), B(7) + (1 — 7) = 26(1/2) under symmetry. Newey
and Powell (1988) considered a test with this as a starting point, but used a somewhat
different criterion function than quantile regressions to obtain “asymmetric least squares
estimates”, from which the test for conditional symmetry is based.

There are several important aspects that distinguish the test proposed in this paper
from the aforementioned tests. First, previous authors consider only i.i.d. data and the
results for time series observations are not available in the literature. Our test is more
general and can be used even when X; and/or Y; are weakly dependent, and the data may
even be non-stationary. Second, the conditioning variables permitted in our framework
can be infinite dimensional, allowing the use of ARMA as well as GARCH models as the
specification for the conditional mean and the conditional variance. Third, most of the
existing tests are based on comparisons of nonparametrically estimated density functions.
Due to nonparametric smoothing, these tests do not have root-7T" local power. Our test
is based on empirical distribution functions and has nontrivial power against root-T local
alternatives.

Suppose {e;,t = 1,...,T} is i.i.d. with density f(e), distribution F'(e), and o, = 1.
Let I(A) be an indicator which equals 1 when event A is true and 0 otherwise. Note that
under symmetry, e, and —e; have the same distribution. The idea of our test is to compare
the empirical distribution function of e; (t = 1, ...,T) and that of —e; (¢ = 1, ....,T"). Define

the empirical process, U7 (z), based on e, as

Ui () = 7 e < 2) = Fla).

It is well known that U; () converges to a Brownian bridge process, B(z), with E[B(z)] =

0 and F[B(z)B(y)] = F(z)(1 — F(y)) for = < y. Likewise, an empirical process based
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upon —e;, defined by

Us (x) = % SlI(-er < )~ F(o)

also converges to a Brownian bridge provided that e; has a symmetric distribution. Al-
though U and Uy both depend on (the unobserved) F, their difference
1 T
Wy(z) = Uf(x) — Uy (1) = —= Ie; <zx)—I(—e; <z 3

) = Uf(0) = V() = 7= 3 [1er S 2) = (=0 < o) 3)
does not depend on F'. For each point z, Wr(z) is the difference between the number of
e; and the number of —e; less than or equal to z, then divided by the square root of T
Thus, Wr(0) gives the scaled difference between the number of negative values of e, and
the number of positive values of ¢;. Under symmetry, Wr(z) should be small at all values
of x.

In view of the mathematical identity
Wr(z) = Wr(—z), (as.)

one can consider either positive or negative values of x in the construction of Wy. We

have the following:

Lemma 1 Suppose {e;,t =1,...,T} isi.i.d.. Let B(z) be a standard Brownian motion
on [0,1]. Then under the null hypothesis that e; has a symmetric density function about

zero, we have
o [fx <0, Wr(z) = B(2F(x)), and max,<¢ |Wr(x)| = maxo<s<1 |B(s)].
o [fx >0, Wr(z) = B(2[1 — F(z)]), and max,~o |Wr(z)| = maxo<s<1 |B(s)].

Note that although U} and U; each converges to a Brownian bridge, their difference
converges to a Brownian motion. Furthermore, because 2[1— F'(c0)] = 0 and 2[1—F(0)] =
1 under symmetry, B(2[1 — F(z)]) (z > 0) is a time-reversed Brownian motion on [0, 1].

If e, were observed, the max |Wr(z)| statistic could be used as a test for symmetry.
Furthermore, critical values are readily available since the distribution of the maximum of
a Brownian motion is well known. But {e;} is the sequence of innovations of a nonlinear
time series model, which we do not observe. Therefore, we consider a feasible statistic

based upon the estimated residuals, é;, and use martingale transformation methods to



obtain a test that is asymptotically distribution free. The transformation method was
first studied by Khmaladze (1981) and was recently extended in several directions by Bai
(1997).

Let Q; = {Yie1, .., Y1, Xy, Xioq, ..., Xq} denote the feasible information set at time ¢.

Then o
6, — Y;ﬁ _h(Qtvﬁ)

U(Qta 5‘)
and define WT(x) by replacing e; with é;. That is,

Wile) = Uf (0) = U (@) = = 3 [ < ) = T < )]

t=1

~

The consequence of replacing e; by the estimated residuals is that the process WT(x)

no longer converges to a Brownian motion. In fact, as shown in the appendix,
Wi(2) = W) + 2f ()17 + 0,(1)

where f(x) is the density of e; and &7, given in (11) in the Appendix, is a stochastically
bounded random variable (that does not depend on z). Since the limiting distribution of
Wr(z) depends on f as well as the estimated parameters, the limiting distribution (and
hence critical values) will not be asymptotically distribution free.

To circumvent this problem, we use the martingale transformation method (see, Bai
(1997)) to obtain an asymptotically distribution free test. Let g = f/f, where f is
the density of e, and f is the derivative of f. Let fr and gr be estimates of f and g,
respectively such that

| (=i =o,1), and [ (gr—g)*dF = oy(1). (4)

We use kernel method to construct fr and g from the residuals é;. For x < 0, define

Sr(e) = Wr(e) ~ Wie(0) + [ h(y)dy )
where , ,
he () = grfrw) [ _or (2 fr()dz] " [ gr(x)an(z).

For z > 0, define i
St(w) = Wala) = Wl0) = [ hir(y)dy (6)



where

hiw) =9 )| [ oGP rr)az] [T gr@ava).

y
The process Sy is a martingale transformation of Wi (z). Note that two separate trans-

formations are performed: one for z < 0 and the other for x > 0. Define
+ _
CSr = max|Sr(2)],
CSr = max |Sr(z)].

Theorem 1 Under assumptions A1-A6 in Appendiz A and conditional symmetry, we

have
Sr(z) = B(1-2F(z)), <0
Sr(z) = B(R2F(z)-1), x>0
CSp % max |B(s)],
cst 4 max |B(s)].

where B(r) is a standard Brownian motion on [0, 1].

The proof of the theorem assumes a very general specification of the conditional mean
of the form h(€2, 5) and a GARCH(1,1) error process. Extension to general GARCH(p,q)
is straightforward. The asymptotic critical values of the test can be obtained from its
analytical density function of the random variable maxo<s<1 |B(s)|. Alternatively, they
can be easily obtained by simulation. The critical values corresponding to 1%, 5%, and
10% levels of significance are 2.78, 2.21, and 1.91, respectively. Although the terms
involved in the tests seem complicated, they can be easily computed as discussed in the
Appendix B.

The theorem suggests that one can use either CS; or CS; to test for conditional
symmetry. This result arises because f is an even function and ¢ is an odd function
under the null hypothesis. It can easily be shown that if f and g were used in the
transformations and f is even and g is odd, then we would have Sp(z) = Sy(—z) for all
z and thus the exact relationship C'S} = CS;. Because fr and gy are consistent for
f and g, it can be shown that the transformation based on fr and gr is asymptotically
equivalent to that based on f and g (see Lemma 6 in the Appendix). This implies that
Sr(x) = Sr(—z) + 0,(1), where 0,(1) is uniform over z. Therefore, C'S; = CS} + 0,(1).
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This means that not only CS; and C'S} have the same asymptotic distribution, but also
they are asymptotically equivalent. These results also suggest a third alternative test,

defined as the maximum of C'Sy and CS7:
CSp = max{CSy,CS;} = max |Sr(z)]
since it has the same distribution as C'S} and C'Sy.. We state this result as a corollary.

Corollary 1 Under the null hypothesis of conditional symmetry and the conditions of
Theorem 1, we have
CSy % sup |B(s)].

0<s<1

The CSr statistic has two advantages and is our preferred statistic. First, it has better
power since under the alternative, the equivalence of C'S;. and C'S;: breaks down. Second,
even if the null is true, for finite samples, fr may not be exactly even and gy may not
be exactly odd, and thus we do not expect that C'S; and C'S} to be exactly the same.
By using the statistic C'Sy, the user is free from having to decide which test to use.
Simulations show that the C'Sy test has substantial power advantages over C'S; and
CSt.

It is instructive to examine graphically how the untransformed empirical process WT(x)
and the transformed process Sy (z), both based on estimated residuals, differ from Wy (z)
based on the true residuals. To this end, we use two samples of normal and two samples of
Xé) observations to evaluate the three processes. Each sample consists of 100 observations
of a standardized random variable. That is, ¥; ~ N(0,1) or Y; ~ (x3y) — 2)/ v2). The
residual is defined as é; = (Y; —Y')/sy, where Y is the sample mean and sy is the sample
standard deviation. Figures 1 and 2 plot the three processes evaluated at 200 points, xx
(k =1,2,...,200) of which half are positive and half are negative. In addition, these
points are located symmetrically around zero. The dashed line and the light-solid line
represent, respectively, Wy and Wy. The solid line is the transformed process Sy, upon
which the test statistics are based. Recall that Wi (z) and Wi(z) are symmetric about
zero, therefore their graph should be symmetric about the middle point z for £ = 100. If
the null hypothesis is true, the process S should almost be symmetric about the middle
point, and under the alternative hypothesis, S will not be symmetric. These features
are all confirmed by the two figures.

The 95% confidence interval is given by [-2.2, 2.2] and is also shown in the graphs.

The departure of Wy (z) from Wiy (z) in all cases is apparent and indicates the effects of
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parameter estimation. Under the null hypothesis of symmetry, the theory says that Sy (z)
and Wr(z) are both brownian motion processes whereas Wy (z) is not. We see that in
the normal case, Sy(x) and Wy (x) are quite close to each other, showing the effectiveness
of the martingale transformations. In particular, the test statistic C'Sp = max |Sr(z)| is
close to max |Wr(z)|. In the normal case, symmetry cannot be rejected.

For the case of x? observations, the Wz (z) process indicates strong evidence of asym-
metry in the first sample but weaker, albeit significant, evidence of asymmetry in the
second. Note that Wy (z) is not observable for general models in practice. If one uses
max | Wy (z)| as a test statistics, one would falsely reject symmetry for the first sample be-
cause WT(x) evidently lies within the standard error bands for all values of x. However,
CSy = max |Syp(x)| clearly lies outside the confidence band and the statistic correctly
rejects symmetry. In the second sample, the transformed process Sr(x) shows stronger
evidence of asymmetry than implied by Wr(x). These results show that the proposed
test has power. An analysis of local asymptotic power will formally be given in Theorem
2 below.

3.1 Local Power Analysis

As discussed earlier, existing tests of symmetry based entirely on estimated densities do
not have root-T' local power. This is because root-T local departure from a symmetric
density will be smoothed away by kernel smoothing and the resulting density estimator
will converge to the underlying symmetric density (with a slower rate than \/T) Although
we use kernel smoothing to estimate f and g in the martingale transformations, our tests
do not depend entirely on estimated densities and hence still has local power. To show
that the proposed test has non-trivial power against root-T local alternatives, we con-
sider alternatives for which the disturbances e, form a triangular array. The distribution

function of this array is described by, for t = 1,2, ..., T,
ers ~ (1—6/VT)F(z) + §/NTH(x) (7)

where F' is the distribution function of a symmetric random variable and H is that of
a non-symmetric random variable and hence 1 — H(z) — H(—xz) # 0. Define v(z) =
H(z) 4+ H(—x) — 2H(0). Then it is easy to show that v(x) = 0 if and only if H(z) is
a distribution function of a symmetric random variable. By the assumption on H(z), it

follows that v(x) # 0. In addition, we assume H satisfies assumption Al imposed on F.
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Theorem 2 Assume A1-A6 hold. Under the local alternative of (7), we have
Sr(x) = B(1 —2F(x)) + 6v(z) + 6¢ (z), x<0

Sr(z) = B2F(z) — 1) + év(z) — 6¢T(z), x>0

where
o @) = [ f([" 9= [ gz)du(z)dy
6" (@)= [ Fo)([ 92 @dn) " [~ g()dv()dy

Since the limiting distribution is different under the local alternatives, this implies that

the test statistic has non-trivial local power.

4 Simulations

In this section, we first present simulations to assess the size and power of the tests when
the conditional model includes just a constant. In addition to some well-known distribu-
tions such as the normal and ¢, we also consider distributions from the generalized lambda
family. This family encompasses a range of symmetric and asymmetric distributions that
can be easily generated since they are defined in terms of the inverse of the cumulative
distribution F~1(u) = A; + [u?® — (1 — u)*]/A2, 0 < u < 1. The X\ parameters are taken
from Table 1 of Randles, Fligner, Policello and Wolfe (1980). We then conduct simulations

for time series regression models commonly encountered in economic analysis.
4.1 Testing for Symmetry in the Demeaned Series
The symmetric distributions we consider are:
1. S1: N(0,1);
2. S2: t5;
3. S3: e1l,<5+ eal,~ 5, where z ~ U(0,1), e; ~ N(—1,1), and es ~ N(1,1);
4. S4: A =0, \y=.19754, \3=.134915, \,=.134915;
5. SH: Ap =0, Aog=-1, A\3=-.08, \y=-.08;

6. S6: A1 = 0, A\o=-.397912, \3=-.16, \y=-.16;
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7. ST )\1 = O, )\2:—17 )\3:—.24, )\4:—24,

The size of the test is assessed by considering the number of rejections using the asymptotic
critical values of 2.78, 2.20, and 1.91 at the 1, 5, and 10 percent levels respectively. To
conserve space, we only report the results for the 5% test in Table 1. Let a3 denote the
coefficient of skewness and «, of kurtosis. These parameters are also reported in Table
1 for convenience. In all cases, we use only a constant as the conditioning variable. The
estimated residuals are centered around the mean and standardized before applying the
tests. Thus, we use the mean as the location parameter to test for conditional symmetry
of the demeaned series around zero. For notational simplicity, we shall drop the subscript
T associated with the test statistics in the following discussion.

The results in Table 1 indicate that the C'S test generally has good size. The exceptions
are in the S6 and S7 distributions when the sample size is small. These two distributions
have large kurtosis, and the results suggest that a larger sample size might be required
for the C'S test to be accurate when a symmetric distribution has heavy tails. It is also
clear from the results that both C'S™ and C'S™ tend to be undersized.

The power of the tests is assessed by considering the following asymmetric series:
1. Al: lognormal: exp(e), e ~ N(0,1);

2. A2: x2;

3. A3: exponential: —In(e), e ~ N(0,1),

4. Ad: A\ =0, \o=1.0, \3=1.4,\, = .25;

5. Ab: A\ =0, Ay=-1, A\3=-.0075, \y=-.03;

6. A6: A =0, Ao=-1, A\3=-.1, \y=-.18;

7. AT: A =0, Ag=-1, \3=-.001, \y=-.13;

8. A8: A\ =0, \y=-1, A\3=-.0001, \y=-.17;

The simulation results are given in Table 2. The result that stands out is that the C'S
statistic has substantially more power than the C'S™ or the C'S* tests. This is to be
expected since the C'S test rejects conditional symmetry if C'S™ or C'ST rejects, or both.
This gain in power is non-trivial. For example, in the x3 case, the C'S rejects over 90%

while the C'ST rejects only 54% of the time in small samples.
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The tests generally have good power even when the sample size is small. For example,
the distributions A7 and A8 were also considered in Zheng (1998), but while Zheng’s test
records power of about 20% for a sample size of 100 in both cases, our test has power
over 90%. Compared with the results of Fan and Gencay (1995), who also examined
distributions A1-A3, our CS test has comparable power, rejecting the null hypothesis
over 90% of the time even when the sample size is small. All the tests considered have
low power for cases A4, A5 and A6 unless the sample size is large (say, more than 200
observations). These two distributions are only mildly asymmetric. Note that it is not
so much mild asymmetry per se that causes the tests to have low power, but rather that
power is low when the kurtosis to skewness ratio is large. Interestingly, the test developed
by Zheng (1998) also has power problems in this parameter space. As well, the results
of Randles et al. (1980) for testing unconditional symmetry in i.i.d. data also exhibit the
same phenomenon. In all, our test stacks up well with tests in the literature that are

applicable to i.i.d. data only.

4.2 Testing for Conditional Symmetry in Time-Series Regressions

To consider the size and power of the test in a more general setting, we consider the

following data generating processes:
Ly=a+>F zpte, vy~iid,i=1,... k
2. AR(1): ye = pys1+ e, p=.5,.8;
3. MA(1): vy = et + per_1, p=.5,.8;

4. GARCH(Ll)i ye =14+ w, up = \/h_ten hi = ¢o + ¢1hi—1 + (/52%%71; o =2, 1 = .9,
$o=.3 and .45,

where ¢e; is drawn from one of the following six distributions:
1. e, ~ N(0,1);
2. e ~ ts;
3.ee~N(=1, )5+ N(—1,1),~_5, 2~ U(0,1);
4. e ~ X3;
5. AT: A\ =0, Aa=-1, A\3=-.001, \y=-.13;
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6. AS: )\1 = 0, )\2:—1, )\3:—.0001, )\4:—17,

These are, respectively, normal, t-distribution, mixture normal, chi-square, and two lambda
distributions. The first three are symmetric and are used to assess size, while distribu-
tions four through six are asymmetric and are used to assess power. After e, is drawn,
the population mean and standard deviation of e; are used to standardize the series.

The results for the CS test are reported in Tables 3 through 6, noting that the (un-
reported) C'ST and C'S™ have similar properties. The results in Table 3 are based on
a non-dynamic regression model that has a constant and k i.i.d. variables as regressors.
Compared to the results in Table 2 which did not include the random regressors, power is
lower when T' = 50. Furthermore, power decreases as the number of regressors increases.
The test developed in Fan and Gencay (1995) exhibit the same property. However, this
is a small sample phenomenon because power is comparable to those in Table 2 at larger
sample sizes. Thus, for sample sizes that we are likely to encounter in economic analysis,
increasing the number of regressors should not have implications for power.

Models two, three and four are dynamic models and these results are reported in Tables
4 through 6. The test generally has good size. The probability of rejecting symmetry is
close to 100 percent when 7" > 100. Even when 7' is small, the power is usually well over
70 percent. Furthermore, the results are robust even when the AR or the MA root is

near unit circle. The results are also robust when the error process is close to being an

IGARCH.

4.3 Empirical Applications

The tests are applied to seventeen macroeconomic time series. Data for GDP, the GDP
deflator, the consumption of durables, final sales, the consumption of non-durables, resi-
dential investment, and non-residential investment are taken from the national accounts
and are therefore quarterly data. The various exchange rates, the unemployment rate,
employment, M2, CPI are monthly series. The 30 day interest rate, and M2 are weekly
data.* With the exception of the interest rate and the unemployment rate, we take log-
arithms of the data. All data are then first differenced, and in each case, the conditional
mean is estimated using an AR(2) model. The residuals are then used to test for condi-
tional symmetry. We also considered the CRSP (equal weight) daily stock returns (not
differenced) to which we fit an AR(2) model.

4All data are taken from the Economic Time Series Page, and URL is:
vos.business.uab.edu/data.data/htm.
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The results in Table 7 find evidence of conditional asymmetry at the 1% level in the
Japan-US exchange rate and stock returns, and at the 5% level for the consumption of
durables and manufacturing employment. We reject conditional symmetry in the CPI
inflation series and non-residential investment at the 10% level. The evidence for the
Japan-US exchange rate, stock returns, and durables is particularly convincing because
both the C'ST and C'S™ reject the null hypothesis. Hsieh (1988) has presented evidence
for skewness in daily exchange rates, and French, Schwert and Stambaugh (1987) find
skewness in stock returns. While these authors suggested evidence for unconditional
symmetry, we find evidence for asymmetry even after the data is conditioned on their
lags. Among the non-financial time series considered, investment, the consumption of
durables, and manufacturing employment reject conditional symmetry. This finding is
interesting because the dynamics of these series are often believed to be affected by fixed
costs of adjustments.

It is useful to put into perspective these results for conditional symmetry vis-d-via the
evidence for cyclical asymmetry in the macroeconomic literature. Using the coefficient of
skewness as the test statistic, Delong and Summers (1985) find little evidence for asym-
metry in postwar U.S. output growth and industrial production, but find some evidence
of asymmetry in the unemployment rate series. Because of data dependence, Delong and
Summers calculate the critical value for their skewness coefficient by Monte Carlo sim-
ulations for AR(2) models. Since we accept conditional symmetry for the growth rate
of GDP and industrial production, for the specified conditional mean, this also implies
unconditional symmetry. The reason is that a linear ARMA model for X; can also be
written as: X; = > o2, a;e; ;. It follows that if the e; are symmetric, X; will also be sym-
metric (if e, and —e; have the same distribution then X; and —X; also have the same
distribution). Hence our evidence of conditional symmetry is in fact consistent with De-
long and Summers’ evidence for unconditional symmetry in the two series. We note that,

however, if each e; is asymmetric, it does not necessarily imply X, is asymmetric.

5 Conclusion

In this paper, we propose a test for conditional symmetry in dynamic models. Unlike other
tests that exist in the literature, our test is valid whether or not the data are i.i.d. and
is suited for time series applications. We highlight a number of econometric applications
where the assumption of conditional symmetry is invoked. The proposed test is asymp-

totically distribution free and simulations show that it has good finite size and power
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properties. Applying the test to macroeconomic data, we reject conditional symmetry in
some financial time series which have previously rejected unconditional symmetry. We
find evidence of conditional asymmetry in macroeconomic variables whose dynamics are

thought to be affected by fixed cost of adjustments.
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Table 1: Size of the Tests: (Hy: Symmetry Around the Mean)

(asymptotic nominal size=0.05)

T=50 T=100 T=200 as | oy
cs cCcs- cst|cs oS- cst|cs ¢St CSt
Normal | .037 .011 .031 | .051 .023 .039 |.049 .026 .040 | O | 3.0
ts 067 .015 .057 | .081 .023 .069 | .071 .025 .056 | O | 9.0
S3 042 013 .035 | .042 .024 .031 | .045 .024 .041 | O
S4 044 028 .025 | .047 .024 .035 | .044 .022 .038 | O 3.0
S5 078 .021 .065 | .087 .028 .069 | .075 .022 .066 | O 6.0
S6 106 .028 .088 | .110 .034 .085 | .091 .033 .050 | O | 11.6
ST 134 .036 110 | .140 .029 .124 | .117 .045 .092 | O | 126.0
Table 2: Power of the Tests (based on 5% asymptotic critical values)
T=50 T=100 T=200 o3 oy
cs cs- cst| cocs Cs- cost| s cCst Cst
Lognormal | .977 942 832 | 1.000 1.000 .996 | 1.000 1.000 1.000
X3 882 .803 542 | 995 991 775 | 1.000 1.000 .981
Exponential | .878 795 541 | 997 993 .759 | 1.000 1.000 .982
A4 D66 487 314 | 850 815 .669 | .9982 938 998 | 5 | 2.2
Ab 418 315 205 | .697  .647 262 | 972 961 631 | 1.5 | 7.5
A6 S07 177 180 | 416 .350  .146 | .647  .626  .140 | 2.0 | 21.2
AT 932 870 .664 | 999 998 .870 | 1.000 1.000 .997 | 3.16 | 23.8
A8 961 915 729 | 1.000 1.000 .929 | 1.000 1.000 .999 | 3.8 | 40.7
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Table 3: Size and Power of the Test: Regression Model with i.i.d. Regressors

DGP 1: 4 =14+ X5, X, + ¢
Regression: y; = o+ Y8 | X8, + e
k=1

T/es 1 2 3 4 5 6
50 | 0.0530 0.0740 0.0420 0.9370 0.8800 0.9800
100 | 0.0460 0.0670 0.0380 0.9990 0.9980 1.0000
200 | 0.0420 0.0610 0.0440 1.0000 1.0000 1.0000
k=4

50 1 0.0520 0.0510 0.0300 0.8130 0.7160 0.7830
100 | 0.0460 0.0620 0.0420 0.9990 0.9840 0.9940
200 | 0.0420 0.0810 0.0370 1.0000 1.0000 1.0000

Table 4: Size and Power of the Test: AR(1)

DGP 2: y; = pyi—1 + &
Regression: y; = o+ Byi_1 + €

p=275
Tle, | 1 2 3 4 5 6

50 | 0.0440 0.0610 0.0320 0.9380 0.8620 0.9080
100 | 0.0460 0.0870 0.0460 1.0000 0.9980 1.0000
200 | 0.0470 0.0710 0.0370 1.0000 1.0000 1.0000

p=.8

50 | 0.0470 0.0730 0.0350 0.9410 0.8500 0.8990
100 | 0.0470 0.0750 0.0470 1.0000 0.9960 0.9960
200 | 0.0530 0.0660 0.0420 1.0000 1.0000 1.0000
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Table 5: Size and Power of the Test: M A(1) Regressor

DGP 3: y; = e; + pe; 1

Regression: y; = a+ e; + pes_1

p=.5
Tle,| 1 2 3 4 5 6

50 | 0.0450 0.0600 0.0470 0.8330 0.7800 0.8160
100 | 0.0500 0.0840 0.0430 0.9910 0.9870 0.9950
200 | 0.0410 0.0650 0.0420 1.0000 1.0000 1.0000

p=.8

50 | 0.0510 0.0620 0.0370 0.7930 0.7400 0.7580
100 | 0.0390 0.0900 0.0490 0.9950 0.9800 0.9910
200 | 0.0450 0.0630 0.0360 1.0000 1.0000 1.0000

Table 6: Size and Power of the Test: GARCH (1, 1) Regressor

DGP 4: y, = 1 4 uy, uy = ep/hyy, e = o + drhe_1 + dou |
Regression: GARCH(1,1) with Gaussian Likelihood

¢ =(2.0,.5,.3)

T/e 1 2 3 4 5 6
50 | 0.0350 0.0720 0.0360 0.9370 0.8840 0.9050
100 | 0.0470 0.0800 0.0440 0.9950 0.9890 0.9940
200 | 0.0460 0.0690 0.0480 1.0000 1.0000 1.0000

6 = (2.0,.5, .45)

50 ] 0.0530 0.0710 0.0370 0.9230 0.8650 0.8880

100 | 0.0510 0.0640 0.0450 0.9920 0.9940 0.9840

200 | 0.0400 0.0810 0.0410 1.0000 1.0000 1.0000
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Table 7: Application to Macroeconomic Data

Sample Series CS CcS— | CST
1971:1-1997:12 Canada-U.S. Ex. Rate | .8846 | .8836 | .7765
1971:1-1997:12 German-U.S. Ex. Rate | .7578 | .7578 | .6380
1971:1-1997-12 Japan-U.S. Ex. Rate | 2.9671 | 2.5556 | 2.9671
1948:1-1997:12 Unemployment Rate 9462 | 7781 | .9462
1946:1-1997:12 Ind. Prod. 1.4432 | 19341 | 1.4432
1959:1-1997:4 Inflation (GDP) 1.0002 | 1.0002 | .7386
1959:1-1997:4 GDP 7561 | 7561 | .6710
1947:1-1997:12 Inflation (CPI) 2.2834 | 2.2834 | 1.6068

1981:10:30-1996:05:10: 30 day Int. Rate 1.3312 | 1.1996 | 1.3312
1980:11:03-1998:01:19 M2 1.1083 | 1.0005 | 1.1083
1959:3-1996:4 Con. Durables 2.6407 | 2.1146 | 2.6407
1959:3-1996:4 Con. Non-Durables | 1.1172 | .8062 | 1.1172
1946:1-1996:11 Employment 1.5040 | 1.0002 | 1.5040
1946:1-1997:12 Manu. Employment | 2.2560 | 1.0001 | 2.2560
1959;3-1997:4 Final Sales 9885 | 9536 | .9985
1959:3-1997:4 Non-Resid. Invest 2.1900 | 1.4794 | 2.1900
1959:3-1997:4 Resid. Invest 9056 | 9056 | .6873
1990:01:02-1996:12:31 Stock Returns 3.9237 | 3.9237 | 3.4939
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The critical values are 2.78, 2.20 and 1.91 at the 1, 5, and 10 percent levels respectively.




Appendix A: Proofs

Proof of Lemma 1: First we derive the variance and covariance function for the process
Wr(x). For z,y < 0, it is straightforward to show that EWr(z)Wr(y) = E{[I(e; <
z) —I(—e; < 2)|[{(ey < y) — I(—er < y)]} =2F(x Ay), where x A y = min{z,y}. The
finite dimensional convergence of Wy (z) to normal random variables and tightness follow
from standard empirical process theorems. Thus Wr(z) converges weakly to a Gaussian
process. Because a time-scaled Brownian motion B(2F(z)) has the same variance and
covariance function as Wy (x), it follows that Wy (z) = B(2F(x)). Similarly, for z > 0,y >
0, EWr(z)Wa(y) = E{[I(e; < 2)=I(=e; < 2)][[[(e; < y)—I(=e; < y)]} = 21 =F(zVy)],
where = V y = max{z,y}. A time-scaled Brownian motion B(2[1 — F(z)]) has the same
variance and covariance function as Wr(z), we have Wr(x) = B(2[1 — F(z)]) (for = > 0).
|

To prove Theorem 1, we need a number of lemmas.
Lemma 2 Let B(r) be a standard Brownian motion on [0,1] and let g be a function on

[0,1] such that [} g*(v)dv >0 for every s € [0,1). Then

70 =B6) ~ [} [ gtwpan) ™ [ gte)ids

S S

is also a standard Brownian motion on [0,1].

Proof: J(r) is Gaussian because it is a linear transformation of B(r). Elementary
calculation (although tedious) shows that EJ(r)J(s) =rAs.  O.

Lemma 3 Let B(r) be a standard Brownian motion on [0,1] and let g be a function on
[0,1] such that [§ g(v)*dv > 0 for every s € (0,1]. Then
1 s s
J(r) = B(r) = BU) + [ lg(s)( | g()*dv) ™ [ g(w)dB()]ds
is a time-reversed Brownian motion on [0,1]. That is, EJ(r)J(s) =1— (r V s).
Proof: Again this follows from a direct calculation showing that EJ(s)J(r) =sAr. O

Lemma 4 Let B(r) be a standard Brownian motion on [0,1] and let H(x) be a distribution
function with density function h and H(0) = 1/2.
(i). Let g(z) be a function defined on (—oo, 0] such that (Y g(v)?h(v)dv > 0 for every
y < 0. Define W(z) = B(2H(x)) (for x < 0). Then the process J~ defined as
0 Y Y
T (@) = W) = W) + [ lg@he)([_g@)h@)do) " [ gw)dwW(w)ldy
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is a zero-mean Gaussian process on (—oo,0] with EJ™(z)J (y) = 1 —2H(z Vy). So
J~(x) is time-scaled and time-reversed Brownian motion on (—oo,0].

(it). Let g(x) be a function defined on [0,00) such that [;° g(v)*h(v)dv > 0 for every
y > 0. Define W(x) = B(2[1 — H(z)]) (for x > 0). Then the process J* defined as

T (x) = W) = W) = ["la@h)([ gy [ o)t (w)ldy

is a zero mean Gaussian process on [0, 0o) with variance-covariance function EJ(z)J " (y) =
2H(xVy) —1 (for z,y >0). Thus J"(x) is a time-rescaled Brownian motion on [0, c0).

Remark: We can write J=(z) £ B(1 — 2H(x)), because they have the same variance-
covariance function. Note that the argument of B is 1 —2H () not 2[1 — H(z)]. Similarly,
we can write J*(z) £ B(2H (z) — 1).

Proof: Part (i) follows from a change in variable (r = H(x)) and Lemma 3. Part (ii)

follows from a change in variable and Lemma 2. O

Lemma 5 Let B(r) and H(z) be the same as in the above lemma. Suppose that Wy (x)
is a sequence of stochastic process such that Wr(z) = B(2H(z)) for x <0 and Wy(x) =
B(2[1 — 2H(z)]) for = > 0. Define J; as in Lemma 4 part (i) but with W(-) replaced
by Wr(-) in the transformation. Define Jj: as in Lemma 4 part (i), but again replacing
W(-) by Wy(-). Then

Jp = J- £ B(1-2H("))
and

Jt = Jt L B(2H(-) - 1)

Proof: This follows from the continuous mapping theorem and Lemma 4. Also see the
Remark above. O

Note that the sequence Wy with the said property occurs in Lemma 1.

Lemma 6 Let Wr satisfy the conditions of Lemma 5. Suppose that gr and hr are esti-
mates of g and h, respectively, such that

/O:o(hT ~ h)%dz = oy(1) and /_O:o(gT — g)2dH = o,(1)

Define

T () = We@) = W) + [ grlr)([*_or@Phetan) [* gr()amr()dy
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Tf (@) = Wila) = Wr(0) = [“gr@he(@)(| " grlohe(v)do) ™ [ gr(e)iWi(v)dy.

Then
Jr () = Jp (@) + 0p(1), and Jf(z) = Jf (2) + 0p(1) (8)

where o,(1) is uniform over x, and J; and Jf are defined in Lemma 5. Therefore,
Jp(z) = B(1—2H(z)), and Jj(z)= B(2H(z)—1) (9)

Proof: Equation (8) is implied by the result of Bai (1997, Theorem 2). Equation (9)
follows from equation (8) and Lemma 5. O

This lemma says when g and h are consistently estimated, the limiting distribution
will not be affected.

We now state the assumptions under which Theorem 1 will be proved.
Assumption Al: e, are iid with cdf F'(x) and density f(z). The cdf f(z) is continuously
differentiable and |xf( )| < M < oo for some M > 0.
Assumption A2: L3/ ||2 71l = Op(1).
Assumption A3: max1<t<TT l/zHaht | = o,(1).

Assumption A4: For every € > 0, there exists 6 > 0 such that

P( sup T~ I/QZHht Bo + T7Vu) — ht(ﬂo—FT_l/Qv)H >e) <€

[[lu—v]|<6

Assumption A5: The estimators satisfy vT'(6 — fo) = O,(1), and VT (A — Xg) = O,(1).

Assumption A6: The effect of information truncation is small:

T
T2 0§, B) = h(Su, B)] = 0p(1).
t=1
Proof of Theorem 1. Note that Wy (z) = U;f (2)—Uy (z) where Uf () = T~/ SF | [I(é, <
z) — F(z)] and Uy (z) = T2 SF | [I(—é, < x) — F(x)]. Under A1-A6, from Bai (1997,
Theorems 4 and 5, also see Bai 1996, Theorem A.2), we have

Uf (¢) = Uf (2) + f(@)éur + 2 f (@)éar + 0p(1) (10)
where .
Sir = l 21 68]; (ﬂo) \/T(B - ﬁo)/Ut (11)
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and

From I(—é; < z)—F(z) = I(é, > —z)— F(x), we have 1 = I(é; < —x)— F(z) = —{I(¢& <
—x) — F(—x)} since 1 — F(z) = F(—z) under symmetry. Therefore Uy (z) = —U; (—x)
a.s. under symmetry. Similarly, Uy (z) = —Ujf (—z). It follows from (10) that

Up (2) = Uy (2) = f(=2)éir — (=) f(=2)éar + 0p(1). (12)
Take the difference of (10), (12), and use f(z) = f(—=z) and Wy = U} — Uy, we obtain
Wr(z) = Wr(w) + 2 (2)éir + 05(1) (13)

The above says that estimating parameters in the conditional variance does not affect the
process Wy. But estimating the parameters in the conditional mean does affect WT(:B)
Next we consider transforming Wi (z) — Wy (0) for # < 0. Assumption (4) implies that

fr(x) = f(z) = 0,(1) uniformly in z. Thus we can rewrite (13) as
Wr(x) = Wr(z) + 2fr(2)éir + 0p(1), (14)
from which we have (subtracting W (0) = Wy (0) + 2f7(0)&17 + 0,(1) from above)
Wr(a) = Wi (0) = Wr(z) = Wr(0) + 2[fr(2) — fr(0)Jérr + 0p(1). (15)

Define the mapping ¢ : n € D|0, 1] — C0,1],

sr)@) = [ e fr)([ g pr@in) 1 gr@yin)ay  (16)

Then ¢ is a linear mapping with ¢ (c) = 0 for any constant ¢ (or random variable not
depending on ). In addition, ¢p(fr)(z) = [° fr(y)dy = fr(0) — fr(z). Note that Sp(x)
in equation (5) can be equivalently rewritten as Syp(x) = Wi(z) — Wr(0) 4+ ¢p(Wr)(z).
By the linearity property of ¢ and (14), we have

or(Wr) = ¢r(Wr) + ¢r(fr)26ir + 0,(1) = ¢r(Wr) + [fr(0) — fr(z)]26ir + 0,(1). (17)
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Thus, for x < 0,

Sr(z) = Wrlz) = Wr(0) + ¢r (W) (2)
= Wr(z) = Wi (0) + 2[fr(2) = fr(0)]6r +0p(1) by (15)
+or(Wr) (@) + [fr(0) = fr(2)]26r + 0p(1) by (17)
= Wr(z) = Wr(0) = ¢r(Wr)(z) + 0p(1)
— Jr(z)+0,(1) replacing hy by fr in Lemma 6
= B(1—-2F(z)) by Lemma 6

The proof of weak convergence of Sp(x) (for z > 0) to B(2F(x) —1) is the same. The con-
vergence of C'S; and C'S; follows from the continuous mapping theorem. This completes
the proof of Theorem 1. O

Proof of Theorem 2. Let Kp(z) = (1 — 6//T)F(x) + 6/vVTH(x). By (7), ery ~
Kr(z). It is easy to show that —e; ~ Gr(x), where Gr(z) = Kr(z) + %[1 — H(z) —
H(—z)]. Define:

Zi(x) = T2 Y [(er < @) = Kp(w)],  Zf(x) = T Y [[(en < 2) — K(a)],

and
Zy () =T"* 2[1(—6% <) —Gr(x)l, Zp(x)=T"? Z;[I(—én < z) — Gr(z)].

Again, using the results of Bai (1997), or Bai (1996), we have
ZH (@) = Zf () + f(2)érr + 2 f(2)€ar + 0p(1), (18)

where &7 and &yp are defined earlier. Equation (18) is similar to (12). Note that al-
though Z; () involves Ky (z) rather than F(z), we have Kp(z) = F(x) + O(T~'/?) and
dKr(z)/dx = f(x) + O(T~/?). This explains the presence of f(z) in (18). We next
consider the asymptotic representation for Zz (z). Notice that I(—ép, < z) — Gp(z) =
1 —I(éry < —z) — Gr(z) = —=[I(éy < —x) — Kyp(—x)] because 1 — Gp(z) = Kr(—z).
Thus Z; (x) = —Z#(—z) (a.s.), and hence from (18) (replacing z by —z),

Zr () = Zp () = f(=2)ir — (—2) f(—2)&ar + 0,(1). (19)

Adding and subtracting Kr(z) and Gr(z), we have

A

Wr(z) = Z[I(éTt <z)—I(—ép < x)

L
VT =

~

[y
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= Zf(2) = Zy(2) + T*[Kr(x) — G (2)]
x) — Z5(x) + 2f ()7 from (18) and (19)
+O[H (x) + H(—x) — 1] 4+ 0,(1).

The last expression follows from TV2[Kp(z) — Gp(x)] = §[H(x) + H(—z) — 1]. Let
Wr(z) = Zf (x) — Z7 (z), then Wy (z) = B(2F(x)) for z < 0 and Wy = B(2[1 — F(z)])
for z > 0. This is true because the finite dimensional convergence and tightness for Z}
and Z; are guaranteed by the standard empirical process theory. Moreover, for z,y < 0,
EWr(2)Wr(y) = Kr(z Ay) — Kr(2)Kr(y) + Gr(z Ay) — Gr(z)Gr(y) + Gr(z)Kr(y) +
Kr(z)Gr(y) — 2F(z A y) because Kr(x) — F(z) and Gr(x) — F(z). This yields the
weak convergence of Wr(z) for < 0. Similarly, for z > 0, Wr(z) = B(2[1 — F(z)]. In

summary,
Wir(z) = Wi(x) + 2f (2)&p + 6[H (x) + H(—z) — 1] + 0,(1), (20)

with Wy converging weakly to a (time-rescaled) Brownian motion process for both z < 0

and z > 0. Subtracting Wy(0) from above we obtain
Wi(z) — Wp(0) = Wa(z) — Wp(0) +2[f () — f(0)érr + bv(z) + 0,(1)

where v(z) = H(z) + H(—xz) — 2H(0). Under the local alternative hypothesis, we can
still construct consistent estimates for f(z) and g(z) = f/f. The reason is that we can
write ér; = € + O,(T~Y/?), where ¢, ~ F(x). To see this, from er; ~ (1 — 6T Y?)F(z) +
(§T-Y%)H(x), we can write eqy = € + Ny, where 1y = 0 with probability 1 — % and
Ny = a; — € with probability %, here ¢ and a; are independent such that ¢, ~ F(z)
and a; ~ H(z). Hence, nr, = O,(T~Y/?). In addition, the estimated residuals satisfy
éry = ey + Op(%) and thus é;; = € + Op(%). Let f7 and g7 are estimates of f and
g. Define the mapping ¢ as in (16). Then using the same argument as in the proof of

Theorem 1, we have for x < 0,
Wr(x) = Wr(0) + ¢r(Wr)(z) = Wr(z) = Wr(0) + ¢r(Wr) (2) + 6 v(x) + 6 dr(v)(x) +0,(1)

By Lemma 5, Wr(z) — Wr(0) + ¢r(Wr)(z) = B(1 — 2F(z)). In addition, ¢r(v)(z) —
¢~ (), which is defined in Theorem 2. Thus,

Sr(x) = B(1 —2F(x)) + év(z) + 69~ (z),

obtaining the result for x < 0. The case of x > 0 is similar. The proof of Theorem 2 is

complete. O
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Appendix B: Computation of the Statistic

From the definition of the test statistics, the feasible C'Sy tests require estimation of the
components of hi [see equations (5) and (6)]. Consider first the terms [Y_ g7 (z)dWr(z)
and [ gr(2)dWr(z). Note that these can equivalently be represented as:

[ e = S lgre)1en < u) — gr(~e)1(~ <)}

T
wd [T gy = %z[gﬂa)(étzy)—gﬂ—ét)f(—étzw]-

The remaining components of h% can be obtained as follows. First, consistent esti-
mates of the density and its derivative are obtained non-parametrically. We use the Gaus-
sian kernel with a plug-in bandwidth as discussed in Silverman (1986). For the Gaussian
kernel, the bandwidth which minimizes the approximate mean integrated squared error
in estimating the density is given by 1.0607~/%, where T is the sample size, and o is
the standard error of the variable whose density is to be estimated. All the simulation
and empirical results are obtained using this systematic choice of bandwidth. Second,
the integration (over z) of g7(2)?fr(z) is approximated by summations. This makes the
computation straightforward. Simulations show that the size and power of the tests are
not affected by these approximations. Gauss and Splus programs are available from the

authors on request.

29



References

Ahmad, I.A., and Qi Li (1996) Testing Symmetry of an Unknown Density Function by

Kernel Method, manuscript, Department of Economics, University of Guelph.

Beaudry, P. and Koop.,G. (1993). Can Recessions Permanently Change Output? Journal
of Monetary Economics, 31, 149-163.

Bai, J. (1996). Testing for Parametric Constancy in Linear Regressions: An Empirical

Distribution Function Approach. Econometrica 64, 597-622.

Bai, J. (1997) Testing Parametric Conditional Distributions of Dynamic Models.

Manuscript, Department of Economics, MIT.
Bickel, P. J. (1982), On Adaptive Estimation, Annals of Statistics 10, 647-671.

Bollerslev, T. (1986), Generalized Autoregressive Conditional Heteroskedasticity, Journal
of Econometrics 31, 307-27.

Bollerslev, T. (1987), A Conditionally Heteroskedastic Time Series Model for Speculative
Prices and Rates of Return, Review of Economics and Statistics 69, 542-547.

Brown, B. W. and Newey, W. K. (1998), Efficient Bootstraps for Semiparametric Models,

mimeo, M.LI.T.

Campbell, J. Y. and Hentschel, L. (1992), No News is Good News, Journal of Financial
Economics 31, 281-318.

Delong, J. B. and Summers, L. H. (1982), Are Business Cycle Symmetrical, in American
Business Cycle: Continuity and Change, Gordon, R. J. eds., University of Chicago
Press, Chicago.

Diebold, F. X. (1988), Empirical Modeling of Exchange Rate Dynamics, Springer, New
York.

Engle, R. (1982), Autoregressive Conditional Heteroskedasticity with Estimates of Vari-
ance of U.K. Inflation, Econometrica 50, 987-1007.

Fan, Y. and Gencay, R. (1995), A Consistent Nonparametric Test of Symmetry in Linear
Regression Models, Journal of the American Statistical Association 90, 551-557.

30



French, K., Schwert, G. and Stambaugh, R. (1987), Expected Stock Returns and Volatil-

ity, Journal of Financial Economics 19, 3-29.

Gonzalez-Rivera, G. (1997), A note on adaptation in GARCH models, Econometric Re-
views 16, 55-68.

Granger, C. W. and Newbold, P. (1974), Spurious Regressions in Econometrics, Journal
of Econometrics 2, 111-120.

Hamilton, J. D. (1989), A New Approach to the Econometric Analysis of Non-stationary
Time Series and the Business Cycle. Econometrica 57, 357-384.

Hodgson, D. J. (1998), Adaptive Estimation of Error Correction Models, Econometric
Theory 14, 44-69.

Hsieh, D. A. (1988), The Statistical Properties of Daily Foreign Exchange Rates: 1974-
1983, Journal of International Economics 24, 129-145.

Khmaladze, E.V. (1981), Martingale approach in the theory of goodness-of-tests. Theory
of Probability and its Applications, XX VI, 240-257.

Kriess, J. P. (1987), On Adaptive Estimation in Stationary ARMA Processes, Annals of
Statistics 15, 112-133.

Lee, S. and Hansen, B. E. (1991), Asymptotic Theory for the GARCH(1,1,) Quasi-
Maximum Likelihood Estimator, Econometric Theory 10, 29-52.

Linton, O. (1993), Adaptive Estimation in ARCH Models, Econometric Theory 9, 539—
569.

Lumsdaine, R. L. (1996), Consistency and Asymptotic Normality of the Quasi-Maximum
Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1)
Models, Econometrica 64, 575-596.

Nelson, D. (1991), Conditional Heteroskedasticity in Asset Returns: A New Approach,
Econometrica 59, 347-370.

Neftci, S. N. (1986), Are Economic Time Series Asymmetric over the Business Cycle?
Journal of Political Economy, 92, 307-328.

31



Newey, W. K. (1988), Adaptive Estimation of Regression Models via Moment Restrictions,
Journal of Economics 38, 301-339.

Newey, W. K. and Powell, J. L. (1988), Asymmetric Least Squares Estimation and Testing,
Econometrica 55, 819-847.

Newey, W. K. and Steigerwald, D. G. (1997), Asymptotic Bias for Quasi-Maximum Likeli-
hood Estimators in Conditional Heteroskedastic Models, Econometrica 65, 587-599.

Randles, R. H., Fligner, M. A., Policello, G. E. and Wolfe, D. A. (1980), An Asymp-
totically Distribution-Free Test for Symmetry Versus Asymmetry, Journal of the
American Statistical Association 75, 168-172.

Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, Chapman
and Hall, London.

Stoker, T. M. (1986), Consistent Estimation of Scaled Coefficients, FEconometrica
54:6, 1461-1482.

Zheng, J. X. (1998), Consistent Specification Testing for Conditional Symmetry, Econo-
metric Theory 14, 139-149.

32



Figure 1: Test of Symmetry for Simulated Normal Observations. Dashed line: WT(:L') Solid
line: Sp(x). Light-solid line: Wy (x). Two horizontal lines: the 95% confidence band.
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Figure 2: Test of Symmetry for Simulated Chi-Square Observations. Dashed line: WT(:L')
Solid line: Sy(x). Light-solid line: Wy (). Two horizontal lines: the 95% confidence band.
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