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1 Introduction

The idea that variations in a large number of economic variables can be modeled by a
small number of reference variables is appealing and is used in many economic analysis.

For example, asset returns are often modeled as a function of a small number of factors.
Stock and Watson (1989) used one reference variable to model the comovements of four
main macroeconomic aggregates. Cross-country variations are also found to have common

components, see Gregory and Head (1999) and Forni, Hallin, Lippi and Reichlin (2000).
More recently, Stock and Watson (1999) showed that the forecast mean squared error of a
large number of macroeconomic variables can be reduced by including diffusion indexes, or
factors, in structural as well as non-structural forecasting models. In demand analysis, engel
curves can be expressed in terms of a finite number of factors. Lewbel (1991) showed that if
a demand system has one common factor, budget shares should be independent of the level
of income. In such a case, the number of factors is an object of economic interest since if

more than one factor is found, homothetic preferences can be rejected. Factor analysis also
provides a convenient way to study the aggregate implications of microeconomic behavior,

as shown in Forni and Lippi (1997).

Central to both the theoretical and the empirical validity of factor models is the correct
specification of the number of factors. To date, this crucial parameter is often assumed rather

than determined by the data.1 This paper develops a formal statistical procedure that can
consistently estimate the number of factors from observed data. We demonstrate that the
penalty for overfitting must be a function of both N and T (the cross-section dimension and
the time dimension, respectively) in order to consistently estimate the number of factors.

Consequently the usual AIC and BIC which are functions of N or T alone do not work when
the both dimensions of the panel are large. Our theory is developed under the assumption
that both N and T converge to infinity. This flexibility is of empirical relevance because the

time dimension of datasets relevant to factor analysis, although small relative to the cross

section dimension, is too large to justify the assumption of a fixed T .
A small number of papers in the literature have also considered the problem of deter-

mining the number of factors, but the present analysis differs from these works in important

ways. Lewbel (1991) and Donald (1997) used the rank of a matrix to test for the num-

ber of factors, but these theories assume either N or T is fixed. Cragg and Donald (1997)
1Lehmann and Modest (1988), for example, tested the APT for 5, 10 and 15 factors. Stock and Watson

(1989) assumed there is one factor underlying the coincident index. Ghysels and Ng (1998) tested the affine
term structure model assuming two factors.
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considered the use of information criterion when the factors are functions of a set of observ-
able explanatory variables, but the data still have a fixed dimension. For large dimensional
panels, Connor and Korajczyk (1993) developed a test for the number of factors in asset
returns, but their test is derived under sequential limit asymptotics, i.e., N converges to
infinity with a fixed T and then T converges to infinity. Furthermore, because their test is
based on a comparison of variances over different time periods, covariance stationarity and
homoskedasticity are not only technical assumptions, but are crucial for the validity of their
test. Under the assumption that N →∞ for fixed T , Forni and Reichlin (1998) suggested a
graphical approach to identify the number of factors, but no theory is available. Assuming
N, T → ∞ with

√
N/T → ∞, Stock and Watson (1998) showed that a modification to

the BIC can be used to select the number of factors optimal for forecasting a single series.

Their criterion is restrictive not only because it requires N >> T , but also because there
can be factors that are pervasive for a set of data and yet have no predictive ability for an
individual data series. Thus, their rule may not be appropriate outside of the forecasting

framework. Forni, Hallin, Lippi and Reichlin (1999) suggested a multivariate variant of the
AIC but neither the theoretical nor the empirical properties of the criterion are known.

We set up the determination of factors as a model selection problem. In consequence, the

proposed criteria depend on the usual trade-off between good fit and parsimony. However,
the problem is non-standard not only because account needs to be taken of the sample size
in both the cross section and the time series dimensions, but also because the factors are

not observed. The theory we developed does not rely on sequential limit, nor does it impose
any restrictions between N and T . The results hold under heteroskedasticity in both the

time and the cross-section dimensions. The results also hold under weak serial dependence
and cross-section dependence. Simulations show that the criteria have good finite sample

properties.
The rest of the paper is organized as follows. Section 2 sets up the preliminaries and

introduces notation and assumptions. Estimation of the factors is considered in Section 3
and the estimation of the number of factors is studied in Section 4. Specific criteria are

considered in Section 5 and their finite sample properties are considered in Section 6, along

with an empirical application to asset returns. Concluding remarks are provided in Section
7. All the proofs are given in the Appendix.
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2 Factor Models

Let Xit be the observed data for the ith cross section unit at time t, for i = 1, . . . N , and

t = 1, . . . T . Consider the following model

Xit = λ′iFt + eit, (1)

where Ft is a vector of common factors, λi is a vector of factor loadings associated with
Ft, and eit is the idiosyncratic component of Xit. The product λ′iFt is called the common
component of Xit. Equation (1) is then the factor representation of the data. Note that the

factors, their loadings, as well as the idiosyncratic errors are not observable.

Factor analysis allows for dimension reduction and is a useful statistical tool. Many
economic analyses fit naturally into the framework given by (1).

1. Arbitrage pricing theory. In the finance literature, the arbitrage pricing theory (APT)
of Ross (1976) assumes that a small number of factors can be used to explain a large number
of asset returns. In this case, Xit represents the return of asset i at time t, Ft represents
the vector of factor returns and eit is the idiosyncratic component of returns. Although
analytical convenience makes it appealing to assume one factor, there is growing evidence
against the adequacy of a single factor in explaining asset returns.2 The shifting interest

towards use of multifactor models inevitably calls for a formal procedure to determine the
number of factors. The analysis to follow allows the number of factors to be determined

even when N and T are both large. This is especially suited for financial applications when

data are widely available for a large number of assets over an increasingly long span. Once

the number of factors is determined, the factor returns Ft can also be consistently estimated
(up to a invertible transformation).

2. The rank of a demand system. Let p be a price vector for J goods and services, eh be
total spending on the J goods by household h. Consumer theory postulates that Marshallian

demand for good j by consumer h is Xjh = gj(p, eh). Let wjh = Xjh/eh be the budget share

for household h on the jth good. The rank of a demand system holding prices fixed is the

smallest integer r such that wj(e) = λj1G1(e) + . . . λjrGr(e). Demand systems are of the

form (1) where the r factors, common across goods, are Fh = [G1(eh) . . . Gr(eh)]′. When

the number of households, H, converges to infinity with a fixed J , G1(e) . . . Gr(e) can be

estimated simultaneously, such as by non-parametric methods developed in Donald (1997).
2Cochrane (1999) stressed that financial economists now recognize that there are multiple sources of risk,

or factors, that give rise to high returns. Backus, Forsei, Mozumdar and Wu (1997) made similar conclusions
in the context of the market for foreign assets.
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Their approach will not work when the number of goods, J , also converges to infinity. How-

ever, when J is large, the theory developed in this paper still provides a consistent estimation
of the rank of the demand system and without the need for nonparametric estimation of the

G(·) functions. This flexibility can be useful since some datasets have detailed information
on a large number of consumption goods. Once the rank of the demand system is deter-
mined, the nonparametric functions evaluated at eh allows Fh to be consistently estimable

(up to a transformation). Then functions G1(e) . . . Gr(e) may then be recovered (also up to
a matrix transformation) from ̂Fh (h = 1, .., H) via nonparametric estimation.

3. Forecasting with diffusion indices. Stock and Watson (1999) considered forecasting
inflation with diffusion indices (“factors”) constructed from a large number of macroeconomic

series. The underlying premise is that the movement of a large number of macroeconomic
series may be driven by a small number of unobservable factors. Consider the forecasting

equation for a scalar series
yt+1 = α′Ft + β′Wt + εt.

The variables Wt are observable. Although we do not observe Ft, we observe Xit, i = 1, . . . N .
Suppose Xit bears relation with Ft as in (1). In the present context, we interpret (1) as

the reduced-form representation of Xit in terms of the unobservable factors. We can first

estimate Ft from (1). Denote it by ̂Ft. We can then regress yt on ̂Ft−1 and Wt−1 to obtain
the coefficients α̂ and ̂β, from which a forecast

ŷT+1|T = α̂′ ̂FT + ̂βWT

can be formed. Stock and Watson (1998, 1999) showed that this approach of forecasting
outperforms many competing forecasting methods. But as pointed out earlier, the dimension
of F in Stock and Watson (1998) was determined using a criterion that minimizes the mean
squared forecast errors of y. This may not be the same as the number of factors underlying
Xit, which is the focus of this paper.

2.1 Notation and Preliminaries

Let F 0
t , λ0

i and r denote the true common factors, the factor loadings, and the true number

of factors, respectively. Note that F 0
t is r dimensional. We assume that r does not depend

on N . At a given t, we have

Xt = Λ0 F 0
t + et.

(N × 1) (N × r) (r × 1) (N × 1) (2)
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where Xt = (X1t, X2t, ..., XNt)′, Λ0 = (λ0
1, λ

0
2, ..., λ

0
N)′, and et = (e1t, e2t, ..., eNt)′. Our

objective is to determine the true number of factors, r. In classical factor analysis (e.g.,

Anderson (1984)), N is assumed fixed, the factors are independent of the errors et, and the
covariance of et is diagonal. Normalizing the covariance matrix of Ft to be an identity matrix,

we have Σ = Λ0Λ0′+Ω, where Σ and Ω are the covariance matrices of Xt and et, respectively.
Under these assumptions, classical factor analysis obtains a root-T consistent and asymptoti-
cally normal estimator of Σ, say, the sample covariance matrix ̂Σ = 1

T

∑T
t=1(Xt−X̄)(Xt−X̄)′.

The essentials of the classical factor analysis carry over to the case of large N but fixed T

since the N × N problem can be turned into a T × T problem, as noted by Connor and
Korajczyk (1993) and others.

Inference on r can, in theory, be based on the eigenvalues of ̂Σ since a characteristic
of a panel of data that has a r factor representation is that the first r largest population
eigenvalues of the N×N covariance of Xt diverge as N increases to infinity, but the (r+1)th

eigenvalue is bounded, see Chamberlain and Rothschild (1983). But it can be shown that

all non-zero sample eigenvalues (not just the first r) of the matrix ̂Σ increase with N , and
a test based on the sample eigenvalues is thus not feasible. A likelihood ratio test can also,
in theory, be used to select the number of factors if, in addition, normality of et is assumed.
But as found by Dhrymes, Friend and Glutekin (1984), the number of statistically significant
factors determined by the likelihood ratio test increases with N even if the true number of

factors is fixed. Other methods have also been developed to estimate the number of factors
assuming the size of one dimension is fixed. But monte Carlo simulations in Cragg and
Donald (1997) show that these methods tend to perform poorly for moderately large N and
T . The fundamental problem is that the theory developed for classical factor models does

not apply when both N and T → ∞. This is because consistent estimation of Σ (whether
it is a N ×N or a T × T matrix) is not a well defined problem. For example, when N > T ,

the rank of ̂Σ is no more than T , whereas the rank of Σ can always be N .

It is now recognized that new theories are required to analyze large dimensional factor
models. Forni and Lippi (2000) and Forni et al. (1999) provide general results for dynamic

factor models, while Stock and Watson (1998) provide some asymptotic results in the context
of forecasting. In this paper, we develop asymptotic results for the purpose establishing

consistent estimation of the number of factors. Our results thus complement the sparse but

growing literature on large dimensional factor analysis. As in the papers cited above, we
allow for cross-section and serial dependence. Moreover, we allow for heteroskedasticity in et

as well as some weak dependence between the factors and the errors. These assumptions are
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also more general than those used in previous studies that assume the sample size is fixed
in one dimension and error-covariance matrix is diagonal.

Let X i be a T × 1 vector of time series observations for the ith cross section unit. For a
given i, we have

X i = F 0 λ0
i + ei,

(T × 1) (T × r) (r × 1) (T × 1) (3)

where X i = (Xi1, Xi2, ..., XiT )′, F 0 = (F 0
1 , F 0

2 , ..., F 0
T )′ and ei = (ei1, ei2, ..., eiT )′. For the

panel of data X = (X1, . . . , XN), we have

X = F 0 Λ0′ + e,
(T ×N) (T × r) (r ×N) (T ×N) (4)

with e = (e1, ..., eN).
Let tr(A) denote the trace of A. The norm of the matrix A is then ||A|| = [tr(A′A)]1/2.

The following assumptions are made:

Assumption A: Factors

E‖F 0
t ‖4 < ∞ and T−1 ∑T

t=1 F 0
t F 0′

t → ΣF as T →∞ for some positive definite matrix ΣF .

Assumption B: Factor Loadings

‖λi‖ ≤ λ̄ < ∞, and ||Λ0′Λ0/N−D|| → 0 as N →∞ for some r×r positive definite matrix D.

Assumption C: Time and Cross-Section Dependence and heteroskedasticity

There exists a positive constant M < ∞, such that for all N and T ,

1. E(eit) = 0, E|eit|8 ≤ M ;

2. E(e′set/N) = E(N−1 ∑N
i=1 eiseit) = γN(s, t), |γN(s, s)| ≤ M for all s, and

T−1
T

∑

s=1

T
∑

t=1
|γN(s, t)| ≤ M ;

3. E(eitejt) = τij,t with |τij,t| ≤ |τij| for some τij and for all t. In addition,

N−1
N

∑

i=1

N
∑

j=1
|τij| ≤ M ;
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4. E(eitejs) = τij,ts and (NT )−1 ∑N
i=1

∑N
j=1

∑T
t=1

∑T
s=1 |τij,ts| ≤ M ;

5. For every (t, s), E|N−1/2 ∑N
i=1

[

eiseit − E(eiseit)
]

|4 ≤ M .

Assumption D: Weak dependence between factors and idiosyncratic errors

E
( 1
N

N
∑

i=1
‖ 1√

T

T
∑

t=1
F 0

t eit‖2
)

≤ M.

Assumption A is standard for factor models. Assumption B ensures that each factor has a
non-trivial contribution to the variance of Xt. We only consider non-random factor loadings

for simplicity. Our results still hold when λi is random, provided they are independent of the
factors and idiosyncratic errors, and E||λi||4 ≤ M . Assumption C allows for limited time
series and cross section dependence in the idiosyncratic component. Heteroskedasticity in
both the time and cross section dimensions is also allowed. Under stationarity in the time

dimension, γN(s, t) = γN(s − t), though the condition is not necessary. Given Assumption
C1, the remaining assumptions in C are easily satisfied if the eit are independent for all i and

t. The allowance for some correlation in the idiosyncratic components sets up a model to have

an approximate factor structure. It is more general than a strict factor model which assumes

eit is uncorrelated across i, the framework in which the APT theory of Ross (1976) was based.
Thus, the results to be developed will also apply to strict factor models. When the factors

and idiosyncratic errors are independent (a standard assumption for conventional factor

models), Assumption D is implied by Assumptions A and C. Independence is not required
for D to be true. For example, suppose that eit = εit‖Ft‖ with εit being independent of Ft

and εit satisfies Assumption C, then Assumption D holds. Finally, the developments proceed
assuming that the panel is balanced. We also note that the model being analyzed is static,
in the sense that Xit has a contemporaneous relationship with the factors. The analysis of
dynamic models is beyond the scope of this paper.

For a factor model to be an approximate factor model in the sense of Chamberlain and

Rothchild (1983), the largest eigenvalue (and hence all of the eigenvalues) of the N × N
covariance matrix Ω = E(ete′t) must be bounded. Note that Chamberlain and Rothchild
focused on the cross-section behavior of the model and did not make any explicit assumption

about the time series behavior of the model. Our framework allows for serial correlation and

heteroskedasticity and is more general than their setup. But if we assume et is stationary
with E(eitejt) = τij, then from the matrix theory, the largest eigenvalue of Ω is bounded

by maxi
∑N

j=1 |τij|. Thus if we assume
∑N

j=1 |τij| ≤ M for all i and all N , which implies
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Assumption C3, then (2) will be an approximate factor model in the sense of Chamberlain
and Rothchild.

3 Estimation of the Common Factors

To determine the number of factors, it is necessary to establish the consistency property

of the estimated common factors. When N is small, the factor model is often expressed in

its state space form, normality is assumed, and the parameters are estimated by maximum
likelihood. For example, Stock and Watson (1989) used N = 4 variables to estimate one
factor, the coincident index. The drawback of the approach is that, because the number

of parameters increases with N ,3 computational difficulties make it necessary to abandon

information on many series even though they are available. We estimate the common factors
(non-parametrically) by the method of asymptotic principal components.4 We begin by
studying consistency property of the estimated common factors when both N and T .

The true number of factors r is unknown albeit fixed. We start with an arbitrary number

k (k < min{N, T}). The superscript in λk
i and F k

t signifies the allowance of k factors in the
estimation. Estimates of λk and F k are obtained by solving the optimization problem

V (k) = min
Λ,F k

(NT )−1
N

∑

i=1

T
∑

t=1
(Xit − λk

i F
k
t )2

subject to the normalization of either Λk′Λk/N = Ik or F k′F k/T = Ik. If we concentrate out
Λk and use the normalization that F k′F k/T = Ik, the optimization problem is identical to
maximizing tr(F k′(XX ′)F k). The estimated factor matrix, denoted by ˜F k, is

√
T times the

eigenvectors corresponding to the k largest eigenvalues of the T ×T matrix XX ′. Given ˜F k,
˜Λk′ = ( ˜F k′ ˜F k)−1 ˜F k′X = ˜F k′X/T is the corresponding matrix of factor loadings.

The solution to the above minimization problem is not unique, even though the sum
of squared residuals V (k) is unique. Another solution is given by (F̄ k, Λ̄k), where Λ̄k is
constructed as

√
N times the eigenvectors corresponding to the k largest eigenvalues of the

N × N matrix X ′X. The normalization that Λ̄k′Λ̄k/N = Ik implies F̄ k = XΛ̄k/N . The
second set of calculations is computationally less costly when T > N , while the first is less

3Gregory, Head and Raynauld (1997) backed out a world factor and seven country specific factors from
output, consumption, and investment for each of the G7 countries. The exercise involves estimation of 92
parameters and has perhaps stretched the state-space model to its limit.

4The method of asymptotic principal components of Connor and Korajzcyk (1986) and Connor and
Korajzcyk (1988) assumed a fixed T . Forni et al. (1999) and Stock and Watson (1998) considered the
method for large T .
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intensive when T < N .5

Define
̂F k = F̄ k(F̄ k′F̄ k/T )1/2,

a rescaled estimator of the factors. The following Theorem summarizes the asymptotic

properties of the estimated factors.

Theorem 1 For any fixed k ≥ 1, there exists a (r × k) matrix Hk with rank(Hk) =

min{k, r}, and CNT = min{
√

N,
√

T}, such that

C2
NT

(

1
T

T
∑

t=1
|| ̂F k

t −Hk′F 0
t ||2

)

= Op(1). (5)

Because the true factors (F 0) can only be identified up to scale, what is being considered
is a rotation of F 0. The theorem establishes that the time average of the squared deviations
between the estimated factors and those that lie in the true factor space vanish as N, T →∞.
The rate of convergence is determined by the smaller of N or T , and thus depends on the

panel structure.
Under the additional assumption that

∑T
s=1 γN(s, t)2 ≤ M for all t and T , the result:6

C2
NT‖ ̂Ft −Hk′F 0

t ‖2 = Op(1), for each t (6)

can be obtained. Neither Theorem 1 nor (6) implies uniform convergence in t. Uniform
convergence is considered by Stock and Watson (1998). These authors obtained a much
slower convergence rate than C2

NT , and their result requires
√

N >> T . An important
insight of this paper is that, to consistently estimate the number of factors, neither (6) nor

uniform convergence is required. It is the average convergence rate of Theorem 1 that is
essential. However, (6) could be useful for statistical analysis on the estimated factors and
is thus a result of independent interest.

4 Estimating the number of factors

Suppose for the moment that we observe all potentially informative factors but not the factor
loadings. Then the problem is simply to choose k factors that best capture the variations in
X and estimate the corresponding factor loadings. Since the model is linear and the factors

5A more detailed account of computation issues, including how to deal with unbalanced panels, is given
in Stock and Watson (1998).

6The proof is actually simpler than that of Theorem 1 and is thus omitted to avoid repetition.
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are observed, λi can be estimated by applying ordinary least squares to each equation. This
is then a classical model selection problem. A model with k +1 factors can fit no worse than
a model with k factors, but efficiency is lost as more factor loadings have to be estimated.
Let F k be a matrix of k factors, and

V (k, F k) = min
Λ

1
NT

N
∑

i=1

T
∑

t=1
(Xit − λk′

i F k
t )2

be the sum of squared residuals (divided by NT ) from time-series regressions of X i on the
k factors for all i. Then a loss function V (k, F k) + kg(N, T ), where g(N, T ) is the penalty
for overfitting, can be used to determine k. Because the estimation of λi is classical, it can
be shown that the BIC with g(N, T ) = ln(T )/T can consistently estimate r. On the other
hand, the AIC with g(N, T ) = 2/T may choose k > r even in large samples. The result is
the same as in Geweke and Meese (1981) derived for N = 1 because when the factors are
observed, the penalty factor does not need to take into account of the sample size in the
cross-section dimension. Our main result is to show that this will no longer be true when
the factors have to be estimated, and even the BIC will not always consistently estimate r.

Without loss of generality, we let

V (k, ̂F k) = min
Λ

1
NT

N
∑

i=1

T
∑

t=1
(Xit − λk′

i
̂F k
t )2 (7)

denote the sum of squared residuals (divided by NT ) when k factors are estimated. This
sum of squared residuals does not depend on which estimate of F to use because they span

the same column space. That is, V (k, ˜F k) = V (k, F̄ k) = V (k, ̂F k). We want to find penalty
functions, g(N, T ), such that criteria of the form

PC(k) = V (k, ̂F k) + kg(N, T )

can consistently estimate r. Let kmax be a bounded integer such that r < kmax.

Theorem 2 Suppose that Assumptions A–D hold and that the k factors are estimated by

principal components. Let ̂k = argmin0≤k≤kmaxPC(k). Then limN,T→∞ Prob[̂k = r] = 1 if
(i) g(N, T ) → 0 and (ii) C2

NT · g(N, T ) →∞ as N, T →∞, where CNT = min{
√

N,
√

T}.

Conditions (i) and (ii) are necessary in the sense that if one of the conditions is violated,

then there will exist a factor model satisfying Assumptions A-D, and yet the number of

factors cannot be consistently estimated. However, conditions (i) and (ii) are not always
required to obtain a consistent estimate of r.
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A formal proof of Theorem 2 is provided in the Appendix. The crucial element in
consistent estimation of r is a penalty factor that vanishes but still dominates the difference

in the sum of squared residuals between the true and the overparameterized model. An
implication of Theorem 2 is the following:

Corollary 1 Under the Assumptions of Theorem 2, the class of criteria defined by

IC(k) = ln(V (k, ̂F k)) + kg(N, T )

will also consistently estimate r.

Note that V (k, ̂F k) is simply the average residual variance when k factors are assumed for

each cross-section unit. The IC criteria thus resemble information criteria frequently used
in time series analysis, with the important difference that the penalty here depends on both

N and T .
Thus far, it has been assumed that the common factors are estimated by the method of

principle components. However the proof of Theorem 2 mainly uses the fact that ̂Ft satisfies
Theorem 1, and does not rely on the principle components per se. We have the following

corollary:

Corollary 2 Let ̂Gk be an arbitrary estimator of F 0. Suppose there exists a matrix ˜Hk such

that rank(˜Hk) = min{k, r}, and for some ˜C2
NT ≤ C2

NT ,

˜C2
NT

1
T

T
∑

t=1
‖ ̂Gk

t − ˜Hk′F 0
t ‖2 = Op(1). (8)

Then Theorem 2 still holds with ̂F k replaced by ̂Gk and CNT replaced by ˜CNT .

The sequence of constants ˜C2
NT does not have to equal C2

NT = min{N, T}. Corollary 2 states
that Theorem 2 holds for any estimation method that yields estimators ̂Gt satisfying (8).7

Naturally, the penalty would then depend on the ˜C2
NT , the convergence rate for ̂Gt. Forni

and Reichlin (1998) and Forni et al (2000) study alternative estimation methods.

5 The PCp and the ICp

In this section, we assume that the method of principal components is used to estimate the
factors and propose specific formulations of g(N, T ) to be used in practice. Simulations are

used to assess the properties of the proposed criteria.
7We are grateful for a referee whose question leads to the results reported here.
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Let σ̂2 be a consistent estimate of (NT )−1 ∑N
i=1

∑T
t=1 E(eit)2. Consider the following

criteria:

PCp1(k) = V (k, ̂F k) + k σ̂2
(N + T

NT

)

ln
( NT

N + T

)

;

PCp2(k) = V (k, ̂F k) + k σ̂2
(N + T

NT

)

ln C2
NT ;

PCp3(k) = V (k, ̂F k) + k σ̂2

(

ln C2
NT

C2
NT

)

.

Since V (k, ̂F k) = N−1 ∑N
i=1 σ̂2

i , where σ̂2
i = ê′iêi/T , the criteria generalize the Cp criterion

of Mallows (1973) developed for selection of models in strict time series or cross section

contexts to a panel data setting. For this reason, we refer to these statistics as Panel Cp

(PCp) criteria. Like the Cp criterion, σ̂2 provides the proper scaling to the penalty term.
In applications, it can be replaced by V (kmax, ̂F kmax). The proposed penalty functions are

based on the sample size in the smaller of the two dimensions. All three criteria satisfy
conditions (i) and (ii) of Theorem 2 since C−2

NT ≈ N+T
NT → 0 as N, T →∞. However, in finite

samples, C−2
NT ≤ N+T

NT . Hence, the three criteria, although asymptotically equivalent, will

have different properties in finite samples.8

Corollary 1 leads to consideration of the following three criteria:

ICp1(k) = ln(V (k, ̂F k)) + k
(N + T

NT

)

ln
( NT

N + T

)

;

ICp2(k) = ln(V (k, ̂F k)) + k
(N + T

NT

)

ln C2
NT ; (9)

ICp3(k) = ln(V (k, ̂F k)) + k
(

ln C2
NT

C2
NT

)

.

The main advantage of these three panel information criteria (ICp) is that they do not
depend on the choice of kmax through σ̂2, which could be desirable in practice.

The proposed criteria differ from the conventional Cp and information criteria used in

time series analysis in that g(N, T ) is a function of both N and T . To understand why the

penalty must be specified as a function of the sample size in both dimensions, consider the
following:

AIC1(k) = V (k, ̂F k) + k σ̂2
( 2

T

)

;
8Note that PCp1 and PCp2, and likewise, ICp1 and ICp2 apply specifically to principal components

estimator because C2
NT = min{N,T} is used in deriving them. For alternative estimators satisfying Corollary

2, criteria PCp3 and ICp3 are still applicable with CNT replaced by ˜CNT .
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BIC1(k) = V (k, ̂F k) + k σ̂2

(

ln T
T

)

;

AIC2(k) = V (k, ̂F k) + k σ̂2
( 2

N

)

;

BIC2(k) = V (k, ̂F k) + k σ̂2

(

ln N
N

)

;

AIC3(k) = V (k, ̂F k) + k σ̂2

(

2
(N + T − k)

NT

)

;

BIC3(k) = V (k, ̂F k) + k σ̂2

(

(N + T − k) ln(NT )
NT

)

.

The penalty factors in AIC1 and BIC1 are standard in time series applications. Although

g(N, T ) → 0 as T → ∞, AIC1 fails the second condition of Theorem 2 for all N and T .
When N << T and N log(T )/T 6→∞, the BIC1 also fails condition (ii) of Theorem 2. Thus
we expect the AIC1 will not work for all N and T , while the BIC1 will not work for small N
relative to T . By analogy, AIC2 also fails the conditions of Theorem 2, while BIC2 will work

only if N << T . The next two criteria, AIC3 and BIC3, take into account the panel nature

of the problem. The two specifications of g(N, T ) reflect first, that the effective number of
observations is N · T , and second, that the total number of parameters being estimated is

k(N +T −k). It is easy to see that AIC3 fails the second condition of Theorem 2. While the

BIC3 satisfies this condition, g(N, T ) does not always vanish. For example, if N = exp(T ),

then g(N, T ) → 1, the first condition of Theorem 2 will not be satisfied. Similarly, g(N, T )

does not vanish when T = exp(N). Therefore BIC3 may perform well for some but not all
configurations of the parameters.

6 Simulations and an Empirical Application

We first simulate data from the following model:

Xit =
r

∑

j=1
λijFtj +

√
θeit

= cit +
√

θeit,

where the factors are T × r matrices of N(0, 1) variables, and the factor loadings are N(0, 1)
variates. Hence, the common component of Xit, denoted by cit, has variance r. Results with
λij uniformly distributed are similar and will not be reported. Our base case assumes that
the idiosyncratic component has the same variance as the common component (i.e. θ = r).

13



We consider thirty configurations of the data. The first five simulates plausible asset pricing
applications with five years of monthly data (T = 60) on 100 to 2000 asset returns. We then

increase T to 100. Configurations with N=60, T=100 and 200 are plausible size of datasets

for sectors, states, regions, and countries. Other configurations are considered to assess the
general properties of the proposed criteria. All computations were performed using Matlab

Version 5.3.
Reported in Tables 1 to 3 are the average ̂k over 1000 replications, for r = 1, 3, and

5 respectively, assuming that eit is homoskedastic N(0, 1). For all cases, the maximum
number of factors, kmax, is set to 8.9 Prior to compuation of the eigenvectors, each series is
demeaned and standardized to have unit variance. Of the three criteria that satisfy Theorem

2, PCp3 is less robust than PCp1 and PCp2 when N or T is small. The ICp criteria generally

have properties very similar to the PCp criteria. The term NT
N+T provides a small sample

correction to the asymptotic convergence rate of C2
NT and has the effect of adjusting the

penalty upwards. The simulations show this adjustment to be desirable. When min{N, T}
is 40 or larger, the proposed tests give precise estimates of the number of factors. Since
our theory is based on large N and T , it is not surprising that for very small N or T , the

proposed criteria are inadequate. Results for small N or small T are reported in the last

five rows of each table. In such cases, the ICp criteria seem to under-pararmeterize, while
the PCp tend to over-parameterize, but the problem is still less severe than the AIC and the

BIC, which we now consider.

The AIC and BICs that are functions of only N or T have the tendency to choose too

many factors. The AIC3 performs somewhat better than AIC1 and AIC2, but still tends
to overparameterize. At first glance, the BIC3 appears to perform well. Although BIC3

resembles PCp2, the former penalizes an extra factor more heavily since ln(NT ) > ln C2
NT .

As can be seen from Tables 2 and 3, the BIC3 tends to underestimate r, and the problem
becomes more severe as r increases.

Table 4 relaxes the assumption of homoskedasticity. Instead, we let eit = e1
it for t odd,

and eit = e1
it + e2

it for t even, where e1
it and e2

it are independent N(0, 1). Thus, the variance
in the even periods is twice as large as the odd periods. Without loss of generality, we only
report results for r = 5. PCp1 and PCp2 continue to select the true number of factors very
accurately and dominate the remaining criteria considered. Heteroskedasticity apparently

9In time series analysis, a rule such 8int[(T/100)1/4] considered in Schwert (1989) is sometimes used to
set kmax, but no such guide is available for panel analysis. Until further results are available, a rule that
replaces T in Schwert’s rule by min{N, T} could be considered.
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aggravates the problem of under-parameterization by BIC2.
Table 5 considers the case θ = 2r. When θ > r, the variance of the idiosyncratic

component is larger than the common component. It is conceivable that the common factors
are estimated with less precision. The precision of the three IC criteria appears to be more
sensitive to min{N, T}, but PCp1 and PCp2 still give the correct estimate of r. When θ < r,
the common component has larger variance. In such a case, the proposed criteria give precise

estimates of r. The results will not be reported without loss of generality.
The models considered thus far have idiosyncratic errors that are uncorrelated across

units and across time. For these strict factor models, the preferred criteria are PCp1, PCp2,
IC1, and IC2. It should be emphasized that the results reported are the average of ̂k over
1000 simulations. We do not report the standard deviations of these averages because they
are identically zero except for a few cases for which the average itself is not an integer.

Even for these latter cases, the standard deviations do not exceed 0.6. These simulation
results demonstrate that with idiosyncratic errors, high precision can be obtained when
min{N, T} > 40.

We next modify the assumption on the idiosyncratic errors to allow for serial and cross-
section correlation. These errors are generated from the process

eit = ρei,t−1 + vi,t +
J

∑

j 6=0,j=−J

βvi−j,t.

The case of pure serial correlation obtains when the cross-section correlation parameter β is
zero. Table 6 reports results with ρ = .5 and β = 0. The estimates provided by the proposed
criteria are still very precise. However, since for each i, the unconditional variance of eit is
1/(1 − ρ2), the more persistent are the idiosyncratic errors, the larger are their variances

relative to the common factors, and the precision of the estimates can be expected to fall.

Table 7 further allows for cross section dependence. As in Chamberlain and Rothschild
(1983), our theory permits some degree of cross section correlation. In practice, this depends
on the number of units that are cross-correlated (J), as well as the magnitude of the pairwise
correlation (β). We present simulations fixing β to .1. The number of units that are cross-

correlated is 2J . We set J to max{N/10, 10}. Effectively, when N <= 200, 20 percent
of the units are cross correlated. Table 7 shows that in such cases, PCp1 and PCp2 can
estimate too many factors while ICp1 and ICp2 seem more robust. When N > 200, 20/N
of the sample is cross-correlated since J is set to 10. Table 7 then shows that provided N

is sufficiently large, the proposed criteria, especially ICp1 and ICp2, can be as precise as in
cases of i.i.d. errors. The results thus confirm that a small degree of cross-correlation will
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not affect the properties of the estimates as theory suggests. It would nonetheless be very
useful to develop techiques to ascertain whether the degree of cross-section correlation in
the idiosyncratic errors satisfies the assumptions of the analysis. This is to be left for future
research.

6.1 Application to Asset Returns

Factor models for asset returns are extensively studied in the finance literature. An excellent

summary on multifactor asset pricing models can be found in Campbell, Lo and Mackinlay

(1997). Two basic approaches are employed. One is statistical factor analysis of unobservable
factors, and the other is regression analysis on observable factors. For the first approach,
most studies use grouped data (portfolios) in order to satisfy the small N restriction imposed

by classical factor analysis, with exceptions such as Connor and Korajczyk (1993). The
second approach uses macroeconomic and financial market variables that are thought to
capture systematic risks as observable factors. With the method developed in this paper,

we can estimate the number of factors for the broad U.S. stock market, without the need to
group the data, or without being specific about which observed series are good proxies for

systematic risks.
Monthly data between 1994.1-1998.12 are available for the returns of 8436 stocks traded

on the New York Stock Exchange, AMEX, and NASDAQ. The data include all lived stocks

on the last trading day of 1998 and are obtained from the CRSP data base. Of these,
returns for 4883 firms are available for each of the 60 months. We use the proposed criteria
to determine the number of factors. We transform the data so that each series is mean zero
with unit variance. For this balanced panel with T=60, N = 4883 with kmax = 15, the
recommended criteria, namely, PCp1, PCp2, ICp1, and ICp2, all suggest the presence of two
factors.

7 Concluding Remarks

In this paper, we propose criteria for the selection of factors in large dimensional panels. The
main appeal of our results is that they are developed under the assumption that N, T →∞
and are thus appropriate for many datasets typically used in macroeconomic analysis. Some

degree of correlation in the errors is also allowed. The critera should be useful in applications

in which the number of factors has traditionally been assumed rather than determined by
the data.
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Our discussion has focused on balanced panels. However, as discussed in Rubin and
Thayer (1982) and Stock and Watson (1998), an iterative EM algorithm can be used to
handle missing data. The idea is to replace Xit by its value as predicted by the parameters
obtained from the last iteration when Xit is not observed. Thus, if λi(j) and Ft(j) are

estimated values of λi and Ft from the jth iteration, let X∗
it(j − 1) = Xit if Xit is observed,

and X∗
it(j − 1) = λ′i(j − 1)Ft(j − 1) otherwise. We then minimize V ∗(k) with respect to

F (j) and Λ(j), where V ∗(k) = (NT )−1 ∑T
i=1

∑T
t=1(X

∗
it(j − 1) − λk

i (j)F
k
t (j))2. Essentially,

eigenvalues are computed for the T ×T matrix X∗(j− 1)X∗(j− 1)′. This process is iterated
until convergence is achieved.

Many issues in factor analysis await further research. To date little is known about the

limiting distribution of the estimated common factors and common components (i.e., ̂λ′i ̂Ft),
except for some results derived for classical factor models. But using Theorem 1, it maybe

possible to obtain these limiting distributions. For example, the rate of convergence of ̂Ft

derived in this paper could be used to examine the statistical property of the forecast ŷT+1|T

in Stock and Watson’s framework. It can be shown that ŷT+1|T is not only a consistent but a√
T consistent estimator of yT+1, conditional on the information up to time T (provided that

N is of no smaller order of magnitude than T ). Additional asymptotic results are currently
being investigated by the authors.

The foregoing analysis has assumed a static relationship between the observed data and
the factors. Our model allows Ft to be a dependent process, e.g, A(L)Ft = εt. where A(L) is

a polynomial matrix of the lag operator. However, we do not consider the case in which the

dynamics enter into Xt directly. If the method developed in this paper is applied to such a
dynamic model, the estimated number of factors gives an upper bound of the true number
of factors. Consider the data generating process Xit = aiFt + biFt−1 + eit. From the dynamic
point of view, there is only one factor. The static approach treats the model as having two
factors.

The literature on dynamic factor models is growing. Assuming N is fixed, Sargent and
Sims (1977) and Geweke (1977) extended the static strict factor model to allow for dynamics.
Stock and Watson (1998) suggest how dynamics can be introduced into factor models when
both N and T are large, although their empirical applications assume a static factor struc-
ture. Forni et al. (1999) further allowed Xit to also depend on the leads of the factors and
proposed a graphic approach for estimating the number of factors. However, determining

the number of factors in a dynamic setting is a complex issue. We hope that the ideas and
methodology introduced in this paper will shed light on a formal treatment of this problem.
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Appendix
To prove the main results we need the following lemma.

Lemma 1 Under assumptions A-C, we have for some M1 < ∞, and for all N and T ,

(i) T−1
T

∑

s=1

T
∑

t=1
γN(s, t)2 ≤ M1,

(ii) E
(

T−1
T

∑

t=1
‖N−1/2e′tΛ

0‖2
)

= E
(

T−1
T

∑

t=1
‖N−1/2

N
∑

i=1
eitλ0

i ‖2
)

≤ M1

(iii) E
(

T−2
T

∑

t=1

T
∑

s=1
(N−1

N
∑

i=1
XitXis)2

)

≤ M1,

(iv) E
∥

∥

∥(NT )−1/2
N

∑

i=1

T
∑

t=1
eitλ0

i

∥

∥

∥ ≤ M1.

Proof: Consider (i). Let ρ(s, t) = γN(s, t)/[γN(s, s)γN(t, t)]1/2. Then |ρ(s, t)| ≤ 1. From

γN(s, s) ≤ M ,

T−1
T

∑

s=1

T
∑

t=1
γN(s, t)2 = T−1

T
∑

s=1

T
∑

t=1
γN(s, s)γN(t, t)ρ(s, t)2

≤ MT−1
T

∑

s=1

T
∑

t=1
|γN(s, s)γN(t, t)|1/2|ρ(s, t)|

= MT−1
T

∑

s=1

T
∑

t=1
|γN(s, t)| ≤ M2

by Assumption C2. Consider (ii).

E‖N−1/2
N

∑

i=1
eitλ0

i ‖2 =
1
N

N
∑

i=1

N
∑

j=1
E(eitejt)λ0′

i λ0
j ≤ λ̄2 1

N

N
∑

i=1

N
∑

j=1
|τij| ≤ λ̄2M

by Assumptions B and C3. For (iii), it is sufficient to prove E|Xit|4 ≤ M1 for all (i, t). Now
E|Xit|4 ≤ 8E(λ0

i
′F 0

t )4 +8E|eit|4 ≤ 8λ̄4E‖F 0
t ‖4 +8E|eit|4 ≤ M1 for some M1 by Assumptions

A, B and C1. Finally for (iv),

E‖(NT )−1/2
N

∑

i=1

T
∑

t=1
eitλ0

i ‖2 =
1

NT

N
∑

i=1

N
∑

j=1

T
∑

t=1

T
∑

s=1
E(eitejs)λ0

i
′λ0

j

≤ λ̄2 1
NT

N
∑

i=1

N
∑

j=1

T
∑

t=1

T
∑

s=1
|τij,ts| ≤ λ̄2M

by Assumption C4.
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Proof of Theorem 1. We use the mathematical identity ̂F k = N−1X ˜Λk, and ˜Λk =
T−1X ′ ˜F k. From the normalization ˜F k′ ˜F k/T = Ik, we also have T−1 ∑T

t=1 || ˜F k
t ||2 = Op(1).

For Hk′ = ( ˜F k′F 0/T )(Λ0′Λ0/N), we have:

̂F k
t −Hk′F 0

t = T−1
T

∑

s=1

˜F k
s γN(s, t) + T−1

T
∑

s=1

˜F k
s ζst + T−1

T
∑

s=1

˜F k
s ηst + T−1

T
∑

s=1

˜F k
s ξst

where ζst =
e′set

N
− γN(s, t),

ηst = F 0′
s Λ0′et/N,

ξst = F 0′
t Λ0′es/N = ηts

Note that Hk depends on N and T . Throughout, we will suppress this dependence to simplify

the notation. We also note that ‖Hk‖ = Op(1) because ‖Hk‖ ≤ ‖ ˜F k′ ˜F k/T‖1/2‖F 0′F 0/T‖1/2‖Λ0′Λ/N‖
and each of the matrix norms is stochastically bounded by assumptions A and B. Because
(x + y + z + u)2 ≤ 4(x2 + y2 + z2 + u2), || ̂F k

t −Hk′F 0
t ||2 ≤ 4(at + bt + ct + dt), where

at = T−2||
T

∑

s=1

˜F k
s γN(s, t)||2,

bt = T−2||
T

∑

s=1

˜F k
s ζst||2,

ct = T−2||
T

∑

s=1

˜F k
s ηst||2,

dt = T−2||
T

∑

s=1

˜F k
s ξst||2.

It follows that 1
T

∑T
t=1 ‖ ̂F k

t −Hk′F 0
t ‖2 ≤ 1

T

∑T
t=1(at + bt + ct + dt).

Now ||∑T
s=1

˜F k
s γN(s, t)||2 ≤ (

∑T
s=1 || ˜F k

s ||2) · (
∑T

s=1 γ2
N(s, t)). Thus,

T−1
T

∑

t=1
at ≤ T−1

(

T−1
T

∑

s=1
|| ˜F k

s ||2
)

· T−1
(

T
∑

t=1

T
∑

s=1
γN(s, t)2

)

= Op(T−1)

by Lemma 1(i).
For bt, we have that

T
∑

t=1
bt = T−2

T
∑

t=1
||

T
∑

s=1

˜F k
s ζst||2

= T−2
T

∑

t=1

T
∑

s=1

T
∑

u=1

˜F k′
s

˜F k
u ζstζut
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≤
(

T−2
T

∑

s=1

T
∑

u=1
( ˜F k′

s
˜F k
u )2

)1/2 [

T−2
T

∑

s=1

T
∑

u=1
(

T
∑

t=1
ζstζut)2

]1/2

≤ (T−1
T

∑

s=1
|| ˜F k

s ||2) ·
[

T−2
T

∑

s=1

T
∑

u=1
(

T
∑

t=1
ζstζut)2

]1/2

.

Since E(
∑T

t=1 ζstζut)2 = E(
∑T

t=1
∑T

v=1 ζstζutζsvζuv) ≤ T 2 maxs,t E|ζst|4. But

E|ζst|4 =
1

N2E|N−1/2
N

∑

i=1
(eiteis − E(eiteis)|4 ≤ N−2M

by Assumption C5. We have

T
∑

t=1
bt ≤ Op(1) ·

√

T 2

N2 = Op(
T
N

),

T−1 ∑T
t=1 bt = Op(N−1). For ct, we have

ct = T−2||
T

∑

s=1

˜F k
s ηst||2 = T−2||

T
∑

s=1

˜F k
s F 0′

s Λ0′et/N ||2

≤ N−2‖e′tΛ0‖2(T−1
T

∑

s=1
‖ ˜F k

s ‖2)(T−1
T

∑

s=1
‖F 0

s ‖2)

= N−2||e′tΛ0||2OP (1).

It follows that

T−1
T

∑

t=1
ct = Op(1)N−1T−1

T
∑

t=1
||e

′
tΛ

0
√

N
||2 = Op(N−1).

by Lemma 1 (ii). The term dt = Op(N−1) can be proved similarly. Combining these results,
we have T−1 ∑T

t=1(at + bt + ct + dt) = Op(N−1) + Op(T−1).

To prove Theorem 2, we need additional results.

Lemma 2 For any k, 1 ≤ k ≤ r, and Hk be the matrix defined in Theorem 1,

V (k, ̂F k)− V (k, F 0Hk) = Op(C−1
NT ).

Proof For the true factor matrix with r factors and Hk defined in Theorem 1, let M0
FH =

I − P 0
FH denote the idempotent matrix spanned by null space of F 0Hk. Correspondingly,

let Mk
̂F

= IT − ̂F k( ̂F k′ ̂F k)−1 ̂F k′ = I − P k
̂F
. Then

V (k, ̂F k) = N−1T−1
N

∑

i=1
X ′

iM
k
̂F
X i,
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V (k, F 0Hk) = N−1T−1
N

∑

t=1
X ′

iM
0
FHX i,

V (k, ̂F k)− V (k, F 0Hk) = N−1T−1
N

∑

i=1
X ′

i(P
0
FH − P k

̂F
)X i.

Let Dk = ̂F k′ ̂F k/T and D0 = HkF 0′F 0Hk′/T . Then

P k
̂F
− P 0

FH = T−1
̂F k

(

̂F k′ ̂F k

T

)−1

̂F k′ − T−1F 0Hk

(

HkF 0′F 0Hk′

T

)−1

Hk′F 0′

= T−1
[

̂F k′D−1
k

̂F k − F 0HkD−1
0 Hk′F 0′

]

= T−1
[

( ̂F k − F 0Hk + F 0Hk)D−1
k ( ̂F k − F 0Hk + F 0Hk)′ − F 0HkD−1

0 Hk′F 0′
]

= T−1
[

( ̂F k − F 0Hk)D−1
k ( ̂F k − F 0Hk)′ + ( ̂F k − F 0Hk)D−1

k Hk′F 0′

+F 0HkD−1
k ( ̂F k − F 0Hk)′ + F 0Hk(D−1

k −D−1
0 )Hk′F 0′

]

.

Thus, N−1T−1 ∑N
i=1 X ′

i(P
k
̂F
− P 0

FH)X i = I + II + III + IV . We consider each term in turn.

I = N−1T−2
N

∑

i=1

T
∑

t=1

T
∑

s=1
( ̂F k

t −Hk′F 0
t )′D−1

k ( ̂F k
s −Hk′F 0

s )XitXis

≤
(

T−2
T

∑

t=1

T
∑

s=1

[

( ̂F k
t −Hk′F 0

t )′D−1
k ( ̂F k

s −Hk′F 0
s )

]2
)1/2

·
[

T−2
T

∑

t=1

T
∑

s=1
(N−1

N
∑

i=1
XitXis)2

]1/2

≤
(

T−1
T

∑

t=1
||F k

t −Hk′F 0
t ||2

)

· ||D−1
k || ·Op(1) = Op(C−2

NT ).

by Theorem 1 and Lemma 1(iii). We used the fact that ‖D−1
k ‖ = Op(1), which is proved

below.

II = N−1T−2
N

∑

i=1

T
∑

t=1

T
∑

s=1
( ̂F k

t −Hk′F 0
t )′D−1

k Hk′F 0
s XitXis

≤
(

T−2
T

∑

t=1

T
∑

s=1
|| ̂F k

t −Hk′F 0
t ||2 · ||Hk′F 0

s ||2 · ||D−1
k ||2

)1/2

·
[

T−2
T

∑

t=1

T
∑

s=1
(N−1

N
∑

i=1
XitXis)2

]1/2

≤
(

T−1
T

∑

t=1
|| ̂F k

t −Hk′F 0
t ||2

)1/2

· ||D−1
k || ·

(

T−1
T

∑

s=1
||Hk′F 0

s ||2
)1/2

·Op(1)

=
(

T−1
T

∑

t=1
|| ̂F k

t −Hk′F 0
t ||2

)1/2

·Op(1) = Op(C−1
NT ).

It can be verified that III is also Op(C−1
NT ).

IV = N−1T−2
N

∑

i=1

T
∑

t=1

T
∑

s=1
F 0′

t Hk(D−1
k −D−1

0 )Hk′F 0
s XitXis
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≤ ||D−1
k −D−1

0 ||N−1
N

∑

i=1

(

T−1
T

∑

t=1
||Hk′F 0

t || · |Xit|
)2

= ||D−1
k −D−1

0 || ·Op(1),

where Op(1) is obtained because the term is bounded by ‖Hk‖2 1
T

∑T
t=1 ‖F 0

t ‖2 1
NT

∑N
i=1

∑T
t=1 |Xit|2,

which is Op(1) by Assumption A and E|Xit|2 ≤ M . Next, we prove that ‖Dk − D0‖ =
Op(C−1

NT ). From

Dk −D0 =
̂F k′ ̂F k

T
− Hk′F 0′F 0Hk

T

= T−1
T

∑

t=1

[

̂F k
t

̂F k′
t −Hk′F 0

t F 0
t Hk

]

= T−1
T

∑

t=1
( ̂F k

t −Hk′F 0
t )( ̂F k

t −Hk′F 0
t )′

+T−1
T

∑

t=1
( ̂F k

t −Hk′F 0
t )F 0

t Hk + T−1
T

∑

t=1
HkF 0

t ( ̂F k
t −Hk′F 0

t )′,

||Dk −D0|| ≤ T−1
T

∑

t=1
|| ̂F k

t −Hk′F 0
t ||2 +

2
(

T−1
T

∑

t=1
|| ̂F k

t −Hk′F 0
t ||2

)1/2

·
(

T−1
T

∑

t=1
||Hk′F 0

t ||2
)1/2

= Op(C−2
NT ) + Op(C−1

NT ) = Op(C−1
NT ).

Because F 0′F 0/T converges to a positive definite matrix, and because rank(Hk) = k ≤ r,

D0 (k × k) converges to a positive definite matrix. From ‖Dk − D0‖ = Op(C−1
NT ), Dk also

converges to a positive definite matrix. This implies that ‖D−1
k ‖ = Op(1). Moreover, from

D−1
k − D−1

0 = D−1
k (D0 − Dk)D−1

0 we have ‖D−1
k − D−1

0 ‖ = ‖Dk − D0‖Op(1) = Op(C−1
NT ).

Thus IV = Op(C−1
NT ).

Lemma 3 For the matrix Hk defined in Theorem 1, and for each k with k < r, there exists
a τk > 0 such that

plim infN,T→∞ V (k, F 0Hk)− V (r, F 0) = τk.

Proof

V (k, F 0Hk)− V (r, F 0) = N−1T−1
N

∑

i
X ′

i(P
0
F − P 0

FH)X i

= N−1T−1
N

∑

i−1
(F 0λ0

i + ei)
′(P 0

F − P 0
FH)(F 0λ0

i + ei)
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= N−1T−1
N

∑

i=1
λ0′

i F 0′(P 0
F − P 0

FH)F 0λ0
i

+2N−1T−1
N

∑

i=1
e′i(P

0
F − P 0

FH)F 0λ0
i

+N−1T−1
N

∑

i=1
e′i(P

0
F − P 0

FH)ei

= I + II + III.

First, note that P 0
F − P 0

FH ≥ 0. Hence, III ≥ 0. For the first two terms,

I = tr
[

T−1F 0′(P 0
F − P 0

FH)F 0N−1
N

∑

i=1
λ0

i λ
0′
i

]

= tr









F 0′F 0

T
− F 0′F 0Hk

T

(

Hk′F 0′F 0Hk

T

)−1 Hk′F 0′F 0

T



 ·N−1
N

∑

i=1
λ0

i λ
0′
i





→ tr
([

ΣF − ΣF Hk
0 (Hk′

0 ΣF Hk
0 )−1Hk′

0 ΣF

]

·D
)

= tr(A ·D),

where A = ΣF−ΣF Hk
0 (Hk′

0 ΣF Hk
0 )−1Hk′

0 ΣF and Hk
0 is the limit of Hk with rank(Hk

0 ) = k < r.

Now A 6= 0 because rank(ΣF ) = r (Assumption A). Also, A is positive semidefinite and
D > 0 (Assumption B). This implies that tr(A ·D) > 0.

Remark: Stock and Watson (1998) study the limit of Hk. The convergence of Hk to
Hk

0 holds jointly in T and N and does not require any restriction between T and N .
Now II = 2N−1T−1 ∑N

i=1 e′iP
0
F F 0λ0

i −2N−1T−1 ∑N
i=1 e′iP

0
FHF 0λ0

i . Consider the first term.

|N−1T−1
N

∑

i=1
e′iP

0
F F 0λ0

i | = |N−1T−1
N

∑

i=1

T
∑

t=1
eitF 0′

t λ0
i |

≤ (T−1
T

∑

t=1
||F 0

t ||2)1/2 · 1√
N

(T−1
T

∑

t=1
|| 1√

N

N
∑

i=1
eitλ0

i ||2)1/2

= Op(
1√
N

).

The last equality follows from Lemma 1 (ii). The second term is also Op( 1√
N

), and hence
II = Op( 1√

N
) → 0.

Lemma 4 For any fixed k with k ≥ r, V (k, ̂F k)− V (r, ̂F r) = Op(C−2
NT ).

Proof:

|V (k, ̂F k)− V (r, ̂F r)| ≤ |V (k, ̂F k)− V (r, F 0)|+ |V (r, F 0)− V (r, ̂F r)|

≤ 2 max
r≤k≤kmax

|V (k, ̂F k)− V (r, F 0)|.

23



Thus, it is sufficient to prove for each k with k ≥ r,

V (k, ̂F k)− V (r, F 0) = Op(C−2
NT ). (10)

Let Hk be as defined in Theorem 1, now with rank r because k ≥ r. Let Hk+ be the
generalized inverse of Hk such that HkHk+ = Ir. From X i = F 0λ0

i + ei, we have X i =
F 0HkHk+λ0

i + ei. This implies

X i = ̂F kHk+λ0
i + ei − ( ̂F k − F 0Hk)Hk+λ0

i

= ̂F kHk+λ0
i + ui,

where ui = ei − ( ̂F k − F 0Hk)Hk+λ0
i .

Note that

V (k, ̂F k) = N−1T−1
N

∑

i=1
u′iM

k
̂F
ui,

V (r, F 0) = N−1T−1
N

∑

i=1
e′iM

0
F ei.

V (k, ̂F k) = N−1T−1
N

∑

i=1

(

ei − ( ̂F k − F 0Hk)Hk+λ0
i

)′
Mk

̂F

(

ei − ( ̂F k − F 0Hk)Hk+λ0
i

)

= N−1T−1
N

∑

i=1
e′iM

k
̂F
ei − 2N−1T−1

N
∑

i=1
λ0′

i Hk+′( ̂F k − F 0Hk)′Mk
̂F
ei

+N−1T−1
N

∑

i=1
λ0′

i Hk+′( ̂F k − F 0Hk)′Mk
̂F
( ̂F k − F 0Hk)Hk+λ0

i

= a + b + c.

Because I −Mk
̂F

is positive semidefinite, x′Mk
̂F
x ≤ x′x. Thus,

c ≤ N−1T−1
N

∑

i=1
λ0′

i Hk+′( ̂F k − F 0Hk)′( ̂F k − F 0Hk)Hk+λ0
i

≤ T−1
T

∑

t=1
|| ̂F k

t −Hk′F 0
t ||2 ·

(

N−1
N

∑

i=1
||λ0

i ||2||Hk+||2
)

= Op(C−2
NT ) ·Op(1)

by Theorem 1. For the term b, we use the fact that |tr(A)| ≤ r‖A‖ for any r × r matrix A.

Thus

b = 2T−1tr
(

Hk+( ̂F k − F 0Hk)′Mk
̂F
(N−1

N
∑

i=1
eiλ

0
i )

)
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≤ 2r||Hk+|| · ||
̂F k − F 0Hk

√
T

|| · || 1√
TN

N
∑

i=1
eiλ

0
i ||

≤ 2r||Hk+|| ·
(

T−1
T

∑

t=1
|| ̂F k

t −Hk′F 0
t ||2

)1/2

· 1√
N
|| 1√

NT

N
∑

i=1

T
∑

t=1
eitλ0

i ||

= Op(C−1
NT ) · 1√

N
= Op(C−2

NT )

by Theorem 1 and Lemma 1(iv). Therefore,

V (k, ̂F k) = N−1T−1
N

∑

i=1
e′iM

k
̂F
ei + Op(C−2

NT )

Using the fact that V (k, ̂F k)− V (r, F 0) ≤ 0 for k ≥ r,

0 ≥ V (k, ̂F k)− V (r, F 0) =

=
1

NT

N
∑

i=1
e′iP

k
̂F
ei −

1
NT

N
∑

i=1
e′iP

0
F ei + Op(C−2

NT ). (11)

Note that

1
NT

N
∑

i=1
e′iP

0
F ei ≤ ‖(F 0′F 0/T )−1‖ ·N−1T−2

N
∑

i=1
e′iF

0F 0′ei

= Op(1)T−1N−1
N

∑

i=1
‖T−1/2

T
∑

t=1
F 0

t eit‖2 = Op(T−1) ≤ Op(C−2
NT )

by Assumption D. Thus

0 ≥ N−1T−1
N

∑

i=1
e′iP

k
̂F
ei + Op(C−2

NT ).

This implies that 0 ≤ N−1T−1 ∑N
i=1 e′iP

k
̂F
ei = Op(C−2

NT ). In summary

V (k, ̂F k)− V (r, F 0) = Op(C−2
NT ).

Proof of Theorem 2. We shall prove that limN,T→∞ P (PC(k) < PC(r)) = 0 for all k 6= r
and k ≤ kmax. Since

PC(k)− PC(r) = V (k, ̂F k)− V (r, ̂F r)− (r − k)g(N, T ),

it is sufficient to prove P [V (k, ̂F k)−V (r, ̂F r) < (r−k)g(N, T )] → 0 as N, T →∞. Consider
k < r. We have the identity:

V (k, ̂F k)− V (r, ̂F r) = [V (k, ̂F k)− V (k, F 0Hk)] +

[V (k, F 0Hk)− V (r, F 0Hr)] + [V (r, F 0Hr)− V (r, ̂F r)].
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Lemma 2 implies that the first and the third terms are both Op(C−1
NT ). Next, consider the

second term. Because F 0Hr and F 0 span the same column space, V (r, F 0Hr) = V (r, F 0).

Thus the second term can be rewritten as V (k, F 0Hk)−V (r, F 0), which has a positive limit
by Lemma 3. Hence, P [PC(k) < PC(r)] → 0 if g(N, T ) → 0 as N, T →∞. Next, for k ≥ r,

P [PC(k)− PC(r) < 0] = P [V (r, ̂F r)− V (k, ̂F k) > (k − r)g(N, T )].

By Lemma 4, V (r, ̂F r)− V (k, ̂F k) = Op(C−2
NT ). For k > r, (k − r)g(N, T ) ≥ g(N, T ), which

converges to zero at a slower rate than C−2
NT . Thus for k > r, P [PC(k) < PC(r)] → 0 as

N, T →∞.
Proof of Corollary 1. Denote V (k, ̂F k) by V (k) for all k. Then

IC(k)− IC(r) = ln[V (k)/V (r)] + (k − r)g(N, T ).

For k < r, Lemmas 2 and 3 imply that V (k)/V (r) > 1 + ε0 for some ε0 > 0 with large
probability for all large N and T . Thus ln[V (k)/V (r)] ≥ ε0/2 for large N and T . Because
g(N, T ) → 0, we have IC(k)− IC(r) ≥ ε0/2− (r−k)g(N, T ) ≥ ε0/3 for large N and T with
large probability. Thus, P [IC(k)− IC(r) < 0] → 0. Next, consider k > r. Lemma 4 implies
that V (k)/V (r) = 1+Op(C−2

NT ). Thus ln[V (k)/V (r)] = Op(C−2
NT ). Because (k− r)g(N, T ) ≥

g(N, T ), which converges to zero at a slower rate than C−2
NT , it follows that

P [IC(k)− IC(r) < 0] ≤ P [Op(C−2
NT ) + g(N, T ) < 0] → 0.

Proof of Corollary 2. Theorem 2 is based on Lemmas 2, 3, and 4. Lemmas 2 and 3 are still

valid with ̂F k replaced by ̂Gk and CNT replaced by ˜CNT . This is because their proof only uses

the convergence rate of ̂Ft given in (5), which is replaced by (8). But the proof of Lemma 4
does make use of the principle component property of ̂F k such that V (k, ̂F k)−V (r, F 0) ≤ 0
for k ≥ r, which is not necessarily true for ̂Gk. We shall prove that Lemma 4 still holds

when ̂F k is replaced by ̂Gk and CNT is replaced by ˜CNT . That is, for k ≥ r,

V (k, ̂Gk)− V (r, ̂Gr) = Op( ˜C−2
NT ). (12)

Using arguments similar to those leading to (10), it is sufficient to show that

V (k, ̂Gk)− V (r, F 0) = Op( ˜C−2
NT ). (13)

Note that for k ≥ r,
V (k, ̂F k) ≤ V (k, ̂Gk) ≤ V (r, ̂Gr). (14)

26



The first inequality follows from the definition that the principle component estimator gives
the smallest sum of squared residuals, and the second inequality follows from the least
squares property that adding more regressors does not increase the sum of squared residuals.
Because ˜C2

NT ≤ C2
NT , we can rewrite (10) as

V (k, ̂F k)− V (r, F 0) = Op( ˜C−2
NT ). (15)

It follows that if we can prove

V (r, ̂Gr)− V (r, F 0) = Op( ˜C−2
NT ) (16)

then (14), (15), and (16) imply (13). To prove (16), we follow the same arguments as in the
proof of Lemma 4 to obtain

V (r, ̂Gr)− V (r, F 0) =
1

NT

N
∑

i=1
e′iP

r
̂G
ei −

1
NT

N
∑

i=1
e′iP

0
F ei + Op( ˜C−2

NT ),

where P r
̂G

= ̂Gr( ̂Gr′ ̂Gr)−1 ̂Gr′, see (11). Because the second term on the right hand side is

shown in Lemma 4 to be Op(T−1), it suffices to prove the first term is Op( ˜C−2
NT ). Now,

1
NT

N
∑

i=1
e′iP

r
̂G
ei ≤ ‖( ̂Gr′

̂Gr/T )−1‖ 1
N

N
∑

i=1
‖e′i ̂Gr/T‖2.

Because ˜Hr is of full rank, we have ‖( ̂Gr′ ̂Gr/T )−1‖ = Op(1) [follows from the same arguments

in proving ‖D−1
k ‖ = Op(1)]. Next,

1
N

N
∑

i=1
‖e′i ̂Gr/T‖2 ≤

( 1
NT

N
∑

i=1
‖ 1√

T

T
∑

t=1
F 0

t eit‖2
)

‖˜Hr‖2 +
( 1
NT

N
∑

i=1

T
∑

t=1
e2

it

) 1
T

T
∑

t=1
‖ ̂Gr

t − ˜Hr′F 0
t ‖2

= Op(T−1)Op(1) + Op(1)Op( ˜C−2
NT ) = Op( ˜C−2

NT )

by Assumption D and (8). This completes the proof of (16) and hence Corollary 2.
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Table 1: DGP: Xit =
∑r

j=1 λijFtj +
√

θeit
r = 1; θ = 1.

N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 1.02 1.00 2.97 1.00 1.00 1.00 8.00 2.97 8.00 8.00 7.57 1.00
100 60 1.00 1.00 2.41 1.00 1.00 1.00 8.00 2.41 8.00 8.00 7.11 1.00
200 60 1.00 1.00 1.00 1.00 1.00 1.00 8.00 1.00 8.00 8.00 5.51 1.00
500 60 1.00 1.00 1.00 1.00 1.00 1.00 5.21 1.00 8.00 8.00 1.57 1.00
1000 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 1.00 1.00
2000 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 1.00 1.00
100 100 1.00 1.00 3.24 1.00 1.00 1.00 8.00 3.24 8.00 3.24 6.68 1.00
200 100 1.00 1.00 1.00 1.00 1.00 1.00 8.00 1.00 8.00 8.00 5.43 1.00
500 100 1.00 1.00 1.00 1.00 1.00 1.00 8.00 1.00 8.00 8.00 1.55 1.00
1000 100 1.00 1.00 1.00 1.00 1.00 1.00 1.08 1.00 8.00 8.00 1.00 1.00
2000 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 1.00 1.00
40 100 1.01 1.00 2.69 1.00 1.00 1.00 8.00 8.00 8.00 2.69 7.33 1.00
60 100 1.00 1.00 2.25 1.00 1.00 1.00 8.00 8.00 8.00 2.25 6.99 1.00
60 200 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 8.00 1.00 5.14 1.00
60 500 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 4.67 1.00 1.32 1.00
60 1000 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 1.00 1.00 1.00 1.00
60 2000 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 1.00 1.00 1.00 1.00

4000 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 1.00 1.00
4000 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 1.00 1.00
8000 60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 1.00 1.00
8000 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 1.00 1.00
60 4000 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 1.00 1.00 1.00 1.00
100 4000 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 1.00 1.00 1.00 1.00
60 8000 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 1.00 1.00 1.00 1.00
100 8000 1.00 1.00 1.00 1.00 1.00 1.00 8.00 8.00 1.00 1.00 1.00 1.00
10 50 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 7.18
10 100 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 5.88
20 100 4.73 3.94 6.29 1.00 1.00 1.00 8.00 8.00 8.00 6.29 8.00 1.00
100 10 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
100 20 5.62 4.81 7.16 1.00 1.00 1.00 8.00 7.16 8.00 8.00 8.00 1.00

Table 1–Table 5 report the estimated number of factors (̂k) averaged over 1000 simulations. The
true number of factors is r and kmax = 8. When the average of ̂k is an integer, the corresponding
standard error is zero. In the few cases when the averaged ̂k over replications is not an integer, the
standard errors are no larger than .6. In view of the precision of the estimates in the majority of
cases, the standard errors in the simulations are not reported. The last five rows of each table are
for models of small dimensions (either N or T is small).
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Table 2: DGP: Xit =
∑r

j=1 λijFtj +
√

θeit
r = 3; θ = 3.

N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 3.00 3.00 3.90 3.00 3.00 3.00 8.00 3.90 8.00 8.00 7.82 2.90
100 60 3.00 3.00 3.54 3.00 3.00 3.00 8.00 3.54 8.00 8.00 7.53 2.98
200 60 3.00 3.00 3.00 3.00 3.00 3.00 8.00 3.00 8.00 8.00 6.14 3.00
500 60 3.00 3.00 3.00 3.00 3.00 3.00 5.95 3.00 8.00 8.00 3.13 3.00
1000 60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 3.00 3.00
2000 60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 3.00 3.00
100 100 3.00 3.00 4.23 3.00 3.00 3.00 8.00 4.23 8.00 4.23 7.20 3.00
200 100 3.00 3.00 3.00 3.00 3.00 3.00 8.00 3.00 8.00 8.00 6.21 3.00
500 100 3.00 3.00 3.00 3.00 3.00 3.00 8.00 3.00 8.00 8.00 3.15 3.00
1000 100 3.00 3.00 3.00 3.00 3.00 3.00 3.01 3.00 8.00 8.00 3.00 3.00
2000 100 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 3.00 3.00
40 100 3.00 3.00 3.70 3.00 3.00 3.00 8.00 8.00 8.00 3.70 7.63 2.92
60 100 3.00 3.00 3.42 3.00 3.00 3.00 8.00 8.00 8.00 3.42 7.39 2.99
60 200 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 8.00 3.00 5.83 3.00
60 500 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 5.44 3.00 3.03 3.00
60 1000 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 3.00 3.00 3.00 3.00
60 2000 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 3.00 3.00 3.00 3.00

4000 60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 3.00 2.98
4000 100 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 3.00 3.00
8000 60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 3.00 2.97
8000 100 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 3.00 3.00
60 4000 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 3.00 3.00 3.00 2.99
100 4000 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 3.00 3.00 3.00 3.00
60 8000 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 3.00 3.00 3.00 2.98
100 8000 3.00 3.00 3.00 3.00 3.00 3.00 8.00 8.00 3.00 3.00 3.00 3.00
10 50 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 7.21
10 100 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 6.01
20 100 5.22 4.57 6.62 2.95 2.92 2.98 8.00 8.00 8.00 6.62 8.00 2.68
100 10 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
100 20 6.00 5.29 7.39 2.95 2.91 2.99 8.00 7.39 8.00 8.00 8.00 2.72
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Table 3: DGP: Xit =
∑r

j=1 λijFtj +
√

θeit
r = 5; θ = 5.

N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 4.99 4.98 5.17 4.88 4.68 4.99 8.00 5.17 8.00 8.00 7.94 3.05
100 60 5.00 5.00 5.07 4.99 4.94 5.00 8.00 5.07 8.00 8.00 7.87 3.50
200 60 5.00 5.00 5.00 5.00 5.00 5.00 8.00 5.00 8.00 8.00 6.91 3.80
500 60 5.00 5.00 5.00 5.00 5.00 5.00 6.88 5.00 8.00 8.00 5.01 3.88
1000 60 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 3.82
2000 60 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 3.59
100 100 5.00 5.00 5.42 5.00 5.00 5.01 8.00 5.42 8.00 5.42 7.75 4.16
200 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 5.00 8.00 8.00 7.06 4.80
500 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 5.00 8.00 8.00 5.02 4.97
1000 100 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 4.98
2000 100 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 4.98
40 100 5.00 4.99 5.09 4.86 4.69 5.00 8.00 8.00 8.00 5.09 7.86 2.96
60 100 5.00 5.00 5.05 4.99 4.94 5.00 8.00 8.00 8.00 5.05 7.81 3.46
60 200 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 8.00 5.00 6.71 3.83
60 500 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 6.44 5.00 5.00 3.91
60 1000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 3.79
60 2000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 3.58

4000 60 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 3.37
4000 100 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 4.96
8000 60 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 3.10
8000 100 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 4.93
60 4000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 3.35
100 4000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 4.96
60 8000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 3.12
100 8000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 4.93
10 50 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 7.28
10 100 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 6.30
20 100 5.88 5.41 6.99 4.17 3.79 4.68 8.00 8.00 8.00 6.99 8.00 2.79
100 10 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
100 20 6.49 5.94 7.62 4.24 3.87 4.81 8.00 7.62 8.00 8.00 8.00 2.93
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Table 4: DGP: Xit =
∑r

j=1 λijFtj +
√

θeit
eit = e1

it + δte2
it (δt = 1 for t even, δt = 0 for t odd)

r = 5; θ = 5.
N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 4.96 4.86 6.09 4.09 3.37 4.93 8.00 6.09 8.00 8.00 8.00 1.81
100 60 4.99 4.90 5.85 4.69 4.18 5.01 8.00 5.85 8.00 8.00 8.00 2.08
200 60 5.00 4.99 5.00 4.93 4.87 5.00 8.00 5.00 8.00 8.00 8.00 2.22
500 60 5.00 5.00 5.00 4.99 4.98 5.00 8.00 5.00 8.00 8.00 7.91 2.23
1000 60 5.00 5.00 5.00 5.00 5.00 5.00 7.97 5.00 8.00 8.00 6.47 2.02
2000 60 5.00 5.00 5.00 5.00 5.00 5.00 5.51 5.00 8.00 8.00 5.03 1.72
100 100 5.00 4.98 6.60 4.98 4.79 5.24 8.00 6.60 8.00 6.60 8.00 2.56
200 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 5.00 8.00 8.00 8.00 3.33
500 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 5.00 8.00 8.00 7.94 3.93
1000 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 5.00 8.00 8.00 6.13 3.98
2000 100 5.00 5.00 5.00 5.00 5.00 5.00 5.36 5.00 8.00 8.00 5.00 3.85
40 100 4.94 4.80 5.39 4.04 3.30 4.90 8.00 8.00 8.00 5.39 7.99 1.68
60 100 4.98 4.88 5.41 4.66 4.14 5.00 8.00 8.00 8.00 5.41 7.99 2.04
60 200 5.00 4.99 5.00 4.95 4.87 5.00 8.00 8.00 8.00 5.00 7.56 2.14
60 500 5.00 5.00 5.00 4.99 4.98 5.00 8.00 8.00 7.29 5.00 5.07 2.13
60 1000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 1.90
60 2000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 1.59

4000 60 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 1.46
4000 100 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 3.67
8000 60 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 1.16
8000 100 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 3.37
60 4000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 1.30
100 4000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 3.62
60 8000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 1.08
100 8000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 3.29
10 50 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 7.27
10 100 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 6.34
20 100 6.13 5.62 7.23 2.85 2.23 3.93 8.00 8.00 8.00 7.23 8.00 1.86
100 10 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
100 20 7.52 6.99 7.99 3.31 2.64 6.17 8.00 7.99 8.00 8.00 8.00 2.30
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Table 5: DGP: Xit =
∑r

j=1 λijFtj +
√

θeit
r = 5; θ = r × 2.

N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 4.63 4.29 5.14 2.79 1.91 4.47 8.00 8.00 8.00 5.14 7.93 0.82
100 60 4.78 4.41 5.06 3.73 2.61 4.96 8.00 8.00 8.00 5.06 7.86 0.92
200 60 4.90 4.80 5.00 4.42 4.03 4.94 8.00 8.00 8.00 5.00 6.92 0.93
500 60 4.96 4.94 4.99 4.77 4.68 4.92 8.00 8.00 6.88 4.99 5.01 0.77
1000 60 4.97 4.97 4.98 4.88 4.86 4.93 8.00 8.00 5.00 4.98 5.00 0.56
2000 60 4.98 4.98 4.99 4.91 4.89 4.92 8.00 8.00 5.00 4.99 5.00 0.34
100 100 4.96 4.67 5.42 4.64 3.61 5.01 8.00 5.42 8.00 5.42 7.74 1.23
200 100 5.00 4.99 5.00 4.98 4.90 5.00 8.00 8.00 8.00 5.00 7.05 1.80
500 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 8.00 5.00 5.02 2.19
1000 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 2.17
2000 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 2.06
40 100 4.61 4.25 5.07 2.65 1.84 4.48 8.00 5.07 8.00 8.00 7.83 0.74
60 100 4.76 4.38 5.05 3.66 2.60 4.97 8.00 5.05 8.00 8.00 7.81 0.92
60 200 4.90 4.78 5.00 4.43 4.07 4.95 8.00 5.00 8.00 8.00 6.70 0.88
60 500 4.97 4.95 4.99 4.78 4.71 4.93 6.44 4.99 8.00 8.00 5.00 0.74
60 1000 4.98 4.97 4.99 4.87 4.84 4.92 5.00 4.99 8.00 8.00 5.00 0.51
60 2000 4.99 4.98 4.99 4.89 4.88 4.92 5.00 4.99 8.00 8.00 5.00 0.32

4000 60 4.99 4.99 4.99 4.92 4.92 4.93 8.00 8.00 5.00 4.99 5.00 0.18
4000 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 1.72
8000 60 4.99 4.99 4.99 4.92 4.92 4.93 8.00 8.00 5.00 4.99 5.00 0.08
8000 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 1.40
60 4000 4.99 4.99 4.99 4.93 4.92 4.95 5.00 4.99 8.00 8.00 5.00 0.15
100 4000 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 1.70
60 8000 4.99 4.99 4.99 4.92 4.92 4.93 5.00 4.99 8.00 8.00 5.00 0.08
100 8000 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 1.40
100 10 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 7.24
100 20 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 6.18
10 50 5.73 5.22 6.90 1.67 1.33 2.79 8.00 6.90 8.00 8.00 8.00 1.12
10 100 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
20 100 6.39 5.79 7.57 1.85 1.44 3.04 8.00 8.00 8.00 7.57 8.00 1.31
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Table 6: DGP: Xit =
∑r

j=1 λijFtj +
√

θeit,
ei,t = ρei,t−1 + (1 + β2)vi,t +

∑J
j=−J βvi−j,t,

r = 5; θ = 5, ρ = .5, β = 0, J = 0.
N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 7.31 6.59 8.00 5.52 4.53 8.00 8.00 8.00 8.00 8.00 8.00 2.97
100 60 6.11 5.27 8.00 5.00 4.76 8.00 8.00 8.00 8.00 8.00 8.00 3.09
200 60 5.94 5.38 7.88 5.01 4.99 7.39 8.00 7.88 8.00 8.00 8.00 3.31
500 60 5.68 5.39 6.79 5.00 5.00 5.11 8.00 6.79 8.00 8.00 8.00 3.41
1000 60 5.41 5.27 6.02 5.00 5.00 5.00 8.00 6.02 8.00 8.00 8.00 3.27
2000 60 5.21 5.14 5.50 5.00 5.00 5.00 8.00 5.50 8.00 8.00 8.00 3.06
100 100 5.04 5.00 8.00 5.00 4.97 8.00 8.00 8.00 8.00 8.00 8.00 3.45
200 100 5.00 5.00 7.75 5.00 5.00 7.12 8.00 7.75 8.00 8.00 8.00 4.26
500 100 5.00 5.00 5.21 5.00 5.00 5.00 8.00 5.21 8.00 8.00 8.00 4.68
1000 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 5.00 8.00 8.00 8.00 4.73
2000 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 5.00 8.00 8.00 8.00 4.69
40 100 5.37 5.05 7.30 4.58 4.08 5.82 8.00 8.00 8.00 7.30 8.00 2.45
60 100 5.13 4.99 7.88 4.93 4.67 7.40 8.00 8.00 8.00 7.88 8.00 2.80
60 200 5.00 5.00 5.02 4.99 4.96 5.00 8.00 8.00 8.00 5.02 8.00 2.84
60 500 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 8.00 5.00 7.53 2.72
60 1000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.72 5.00 5.04 2.54
60 2000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 2.28

4000 60 5.11 5.08 5.22 5.00 5.00 5.00 8.00 5.22 8.00 8.00 8.00 2.81
4000 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 5.00 8.00 8.00 8.00 4.62
8000 60 5.05 5.05 5.08 5.00 5.00 5.00 8.00 5.08 8.00 8.00 8.00 2.55
8000 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 5.00 8.00 8.00 8.00 4.37
60 4000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 1.92
100 4000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 4.21
60 8000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 1.64
100 8000 5.00 5.00 5.00 5.00 5.00 5.00 8.00 8.00 5.00 5.00 5.00 3.97
100 10 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 7.47
100 20 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 6.69
10 50 7.16 6.68 7.89 3.57 2.92 5.70 8.00 8.00 8.00 7.89 8.00 2.42
10 100 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
20 100 8.00 7.99 8.00 7.93 7.58 8.00 8.00 8.00 8.00 8.00 8.00 3.92
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Table 7: DGP: Xit =
∑r

j=1 λijFtj +
√

θeit,
ei,t = ρei,t−1 + (1 + β2)vi,t +

∑J
j=−J βvi−j,t,

r = 5; θ = 5, ρ = .5, β = .10, J = max{N/10, 10}.
N T PCp1 PCp2 PCp3 ICp1 ICp2 ICp3 AIC1 BIC1 AIC2 BIC2 AIC3 BIC3

100 40 7.67 7.09 8.00 6.93 6.06 8.00 8.00 8.00 8.00 8.00 8.00 4.14
100 60 6.76 6.16 8.00 6.12 5.95 8.00 8.00 8.00 8.00 8.00 8.00 4.45
200 60 6.51 6.14 7.97 5.97 5.86 7.83 8.00 7.97 8.00 8.00 8.00 4.46
500 60 6.14 5.94 7.10 5.32 5.23 5.83 8.00 7.10 8.00 8.00 8.00 4.55
1000 60 5.67 5.51 6.18 5.01 5.00 5.05 8.00 6.18 8.00 8.00 8.00 4.53
2000 60 5.31 5.24 5.59 5.00 5.00 5.00 8.00 5.59 8.00 8.00 8.00 4.43
100 100 6.06 6.00 8.00 6.00 6.00 8.00 8.00 8.00 8.00 8.00 8.00 4.98
200 100 6.00 6.00 7.95 6.00 5.98 7.77 8.00 7.95 8.00 8.00 8.00 4.98
500 100 5.82 5.70 6.05 5.47 5.33 5.90 8.00 6.05 8.00 8.00 8.00 5.00
1000 100 5.08 5.04 5.29 5.01 5.00 5.04 8.00 5.29 8.00 8.00 8.00 5.00
2000 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 5.00 8.00 8.00 8.00 5.00
40 100 6.15 5.96 7.70 5.67 5.31 7.04 8.00 8.00 8.00 7.70 8.00 3.54
60 100 6.06 5.98 7.98 5.96 5.85 7.88 8.00 8.00 8.00 7.98 8.00 4.07
60 200 6.00 6.00 6.04 6.00 5.99 6.00 8.00 8.00 8.00 6.04 8.00 4.25
60 500 6.00 6.00 6.00 6.00 6.00 6.00 8.00 8.00 8.00 6.00 7.99 4.25
60 1000 6.00 6.00 6.00 6.00 6.00 6.00 8.00 8.00 7.67 6.00 7.07 4.18
60 2000 6.00 6.00 6.00 6.00 6.00 6.00 8.00 8.00 6.99 6.00 6.98 4.01

4000 60 5.12 5.09 5.24 5.00 5.00 5.00 8.00 5.24 8.00 8.00 8.00 4.27
4000 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 5.00 8.00 8.00 8.00 5.00
8000 60 5.05 5.05 5.08 5.00 5.00 5.00 8.00 5.08 8.00 8.00 8.00 4.09
8000 100 5.00 5.00 5.00 5.00 5.00 5.00 8.00 5.00 8.00 8.00 8.00 4.99
60 4000 6.00 6.00 6.00 6.00 6.00 6.00 8.00 8.00 6.98 6.00 6.96 3.74
100 4000 6.00 6.00 6.00 6.00 6.00 6.00 8.00 8.00 7.07 6.00 7.01 5.90
60 8000 6.00 6.00 6.00 6.00 6.00 6.00 8.00 8.00 6.98 6.00 6.97 3.55
100 8000 6.00 6.00 6.00 6.00 6.00 6.00 8.00 8.00 7.00 6.00 7.00 5.84
100 10 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 7.54
100 20 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 6.84
10 50 7.42 6.99 7.95 5.11 4.40 7.07 8.00 8.00 8.00 7.95 8.00 3.24
10 100 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00
20 100 8.00 8.00 8.00 7.97 7.87 8.00 8.00 8.00 8.00 8.00 8.00 4.59
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