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Abstract

Relative prices are nonstationary and standard root-T inference is invalid for de-
mand systems. But demand systems are nonlinear functions of relative prices, and
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system, the NTLOG, and an associated estimator that can be applied in the presence
of nonstationary prices with possibly nonstationary errors. The errors in the NTLOG
can be interpreted as random utility parameters. The estimates have classical root-T
limiting distributions. We also propose an explanation for the observed nonstationar-
ity of aggregate demand errors, based on aggregation of consumers with heterogeneous
preferences in a slowly changing population. Estimates using US data are provided.
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1 Introduction

In most industrialized economies real per capita income trends upward and inflation rates

are positive. More precisely, the tendency for prices and standards of living to rise makes

the time series of prices and real income nonstationary. Less obviously, relative prices are

also nonstationary (see, e.g., Ng 1995 and Lewbel 1996b). This is recognized informally

in the observation that the prices of some goods, such as higher education and medical

care, have been rising significantly faster than the average rate of inflation for many years.

More broadly, debates over which price measure to use to index social security or to assess

monetary policy are based on the fact that different measures diverge over time, which could

only occur if there are differences in growth rates of the prices of different goods.

Almost every empirical demand system study suffers from a severe econometric flaw,

namely, failure to cope with this nonstationarity of prices1. The usual techniques for han-

dling nonstationary regressors, such as cointegration or linear error correction models, cannot

be applied to demand system estimation because any nontrivial demand system that is con-

sistent with utility maximization must be nonlinear in relative prices (see section 4 below).

But very few estimators exist for nonlinear structural models of any form containing non-

stationary data. The problem is further exacerbated by the facts that demands are multiple

equation systems with nonlinear cross equation restrictions mandated by utility maximiza-

tion, and that demand systems with dimensions large enough to be empirically interesting

involve a large number of parameters relative to the number of available time periods T .

These problems affect demand systems estimated using individual, household, panel, cohort,

or aggregate level data, since all depend upon utility maximizing agents facing nonstationary

relative prices2.

Because of these many difficulties, existing demand system studies either ignore the

problem entirely, or deal with nonstationarity using linear model cointegration methods3.

Even if one could overcome the problems of nonlinearity and high dimension, cointegration

methods may still not be appropriate because the errors in demand systems (particularly

1See, e.g., Stock (1994) and Watson (1994) for a review of econometric issues relating to nonstationary
variables.

2Other issues, including the lack of variation in prices, arise with estimation using cross-section data.
3For example, Attfield (1997), applies linear cointegration techniques to Deaton and Muellbauer’s (1980)

Almost Ideal model, replacing the true nonlinear (quadratic) price deflator terms with an approximate linear
index. Ogaki (1992) employs a two good demand systems along with a functional form that restricts cross
price effects to obtain a linear model for cointegration. Adda and Robin (1996) provide conditions for
unbiased multiple cross section demand system estimates with nonstationary prices, but they also assume a
linear model.

1



those estimated with aggregate data) tend to be highly autocorrelated4. As is well known,

standard asymptotic theory provides a poor guide to finite sample inference when the errors

are highly persistent. In cases when a unit root in the residuals cannot be rejected, the

regressions are spurious and the parameter estimates are inconsistent.

In this paper, we provide a novel solution to the problem of estimating utility derived

demand systems with nonstationary prices. The methodology is also robust to the possibility

of nonstationary model errors. The key is a new functional form that, by interacting budget

shares with prices, produces a model that is both consistent with utility maximization and

when differenced, enables non-linear estimation of the demand parameters by instrumental

variables. Classical root-T consistency and asymptotic normality of the estimates then fol-

lows from Hansen’s (1992) theory for GMM (the Generalized Method of Moments). The

model, which we call NTLOG (nonstationary Translog), is a variant of Jorgenson, Lau, and

Stoker’s (1983) Translog demand system. Unlike the Translog system in which the errors are

appended to budget shares, the error term in the aggregate NTLOG model takes the form

of an average random utility parameter. As such, persistence in the error of the aggregate

model can be attributed to preferences in a slowly changing heterogeneous population.

Our NTLOG model and the associated estimator provides a solution to the generic em-

pirical problem of demand system estimation with nonstationary relative prices, regardless

of the source (or even existence) of persistence in the errors. We apply it to aggregate data,

but it could also be applied using data at the level of cohorts or individual households, which

also suffer from the same nonstationarity of relative prices.

The plan of this paper is as follows. In the next section, we use United States demand

data to provide additional evidence of nonstationarity of demand system regressors. We

also show that nonstationarity in the residuals is not due simply to missing variables. In

section 3 we propose a possible explanation for these nonstationary errors, by showing that

error persistence could arise as the result of aggregation across utility maximizing individuals

with heterogeneous preferences in a slowly changing population. We later provide empirical

evidence that this explanation is at least plausible using household level data on food demand

from the Michigan PSID surveys. Sections 4 and 5 of the paper give the derivation of the

NTLOG functional form. Section 6 provides our estimator of this NTLOG model and the

associated empirical results, and section 7 is conclusions.

4See, e.g., Berndt and Savin (1975), Stoker (1986), Lewbel (1991,1996a), and Pollak and Wales (1992).

2



2 Nonstationary Demands, Prices, and Incomes

We begin in this section with an exploratory empirical analysis of United States demand

data, documenting nonstationarity of regressors and a high degree of persistence in demand

model residuals. We also provide evidence that residual nonstationarity is not due to omitted

variables.

Let pit be the price of good or service (or group of goods and services) i in time t,

i = 1, . . . N , and t = 1, . . . T . Let Mt be per capita expenditures on goods and services

in time t, Wit be the fraction of Mt spent on group i in time t, and let rit = ln(pit/Mt).

By homogeneity (the absence of money illusion), demands are functions of rt, the vector

of elements rit. Figures 1 and 2 present graphs of log prices and rit for four groups of non-

durable goods and services:- food (Good 1), energy (Good 2), clothing (Good 3), and all

other non-durable goods and services (Good 4). Even after taking logarithms, the graphs

clearly show the drifts and trends of nonstationary behavior. Similar results are obtained

when deflating by an overall price index like the CPI instead of Mt. Figure 3 shows the

corresponding graph for aggregate budget shares Wit, indicating that at least some of these

shares may also appear nonstationary. Budget shares must by construction lie between

zero and one, and so cannot remain nonstationary forever, but as long as the magnitude of

changes from year to year are small (relative to the range zero to one), shares can closely

approximate a nonstationary process for decades, as may be the case for some shares in this

US data.

Results of formal tests of nonstationarity using the DFGLS test of Elliot, Rothenberg and

Stock (1996) and the MZGLS test of Ng and Perron (2001) are summarized in Table 1.5 For a

system of four goods, we consider log prices, log normalized prices, total expenditure, budget

shares, and some cross terms for a total of 39 variables over the period 1954-1998. Both tests

cannot reject the null hypothesis of a unit root around a linear trend.6 However, when the

first difference of each series is tested for a unit root, the tests reject nonstationarity in 38

of the 39 series being tested. Prices rt are faced by all consumers, so estimates of demand

equations at any level of aggregation or disaggregation will need to deal with nonstationarity

of prices.

5The DFGLS and the MZGLS estimate the trend parameters more efficiently and are more powerful
than the Dickey-Fuller (DF) test and the modified Phillips-Perron MZ tests of Perron and Ng (1996). The
MZ tests have better size properties than the Phillips-Perron Z tests. Results are reported for MZα and
MZGLSα, which are improved versions of Zα.

6The lag lengths of the augmented autoregressions are selected by the MAIC developed in Ng and Perron
(2001). The BIC (not reported) leads to the same conclusion that the level of the series are not stationary.
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While our later estimates will permit budget shares to be stationary, assume for now that

budget shares and logged scale prices are I(1), as indicated by the tests in Table 1. In that

case, linear in r demand equations

Wit = a0i + a1it + b′irt + eit (1)

could be consistently estimated by standard least squares methods if the errors eit in equation

(1) are stationary. Stationary errors for these equations would require that Wit and rt be

cointegrated for each commodity group i. To test for cointegration, we include a deterministic

time trend in (1) as linear trends are found to be significant in e.g., Banks, Blundell, and

Lewbel (1997). Tests for the null hypothesis of no cointegration in Table 2 indicate that these

errors are not stationary (and remain nonstationary even when a quadratic trend is included

as a regressor). We use two variants of the residuals based cointegration test developed in

Phillips and Ouliaris (1991). The 5% critical value with four regressors and a linear trend is

-4.49 for the Dickey-Fuller DF test, and -37.7 for the modified Phillips-Perron test (MZα).

For three of the four consumption groups, the evidence of no cointegration is overwhelming.

In the case of clothing, the DF test is -4.885 and rejects a unit root in eit but the MZα test

is -31.804 and does not reject the null hypothesis of no-cointegration.

We might not expect cointegration in (1), because utility maximization, and in particu-

lar, Slutsky symmetry, would impose implausibly strong cross equation restrictions on the

coefficients (see section 4 below). A much more reasonable class of demand equations is

Wit = a0i + a1it + b′irt + cig(xt) + eit (2)

where g(xt) is some function that is common to all of the demand equations and xt is a vector

of observed or unobserved variables (which could include t and rt) that affect demand. In

particular, one of the most frequently employed demand systems in empirical work, Deaton

and Muellbauer’s (1980) Almost Ideal Demand System (AIDS), is a special case of (2) in

which g is a constrained quadratic in t and rt. We tested for cointegration in the approximate

AIDS model, which uses Stone’s price index (P ∗) to deflate total expenditure, as is common

practice in this literature (see, e.g., Deaton and Muellbauer 1980). This amounts to using

g(xt) = −∑N
j=1 wjtrjt in (2). The results are given in the second panel of Table 2. The

critical values for the two tests with five regressors are -4.74 and -42.5 respectively. Once

again, there is strong evidence for non-cointegration in three of the four cases, with clothing

being the possible exception.7

7Formally, if both wjt and rjt are I(1) then
∑N

j=1 wjtrjt would generally be I(2), however, this sum

4



Having equation (2) hold for every group i implies that

Wit = ãi + ã1it + b̃′irt + c̃iW1t + ẽit (3)

where ẽit = eit − e1t/c1. Therefore, if the errors eit in equation (2) were stationary, then

the errors ẽit in (3) would also be stationary. This means that a necessary condition for the

AIDS model, or for any other demand equation in the form of equation (2), to have well

behaved (i.e., stationary) errors is that Wit, rt, and Wjt must be cointegrated for each group

i 6= j. However, the test statistics in Table 3 indicate that Wit, rt, and Wjt (for any j 6= i)

are not cointegrated, and hence any model in the form of equation (2), including the exact

AIDS model, will yield inconsistent parameter estimates.

More generally, the test results based on equation (3) show that failure of cointegration

is not due to any single missing variable or regressor. This is because utility maximization

would require that any omitted variable appear in the demand equations for all goods i.

Cointegration of (2) with any variable or function g(xt) would imply cointegration of equation

(3), which is rejected.

An even more general class of demand systems is

Wit = a0i + a1it + b′irt + c1ig(xt) + c2ig2(xt) + eit (4)

for arbitrary functions g(xt) and g2(xt). Examples are the approximate QUAIDS (quadratic

AIDS) model of Blundell, Pashardes, and Weber (1995) and the exact, integrable QUAIDS

model of Banks, Blundell, and Lewbel (1997). Panel 3 of Table 2 reports cointegration tests

for (4), taking g to be log deflated income, and g2 = g2, corresponding to the approximate

QUAIDS model.8 In all cases, MZα is less than the approximate critical value of -47.5. The

approximate critical value for the DF is -5.05. Again, clothing is the only good for which

there is some support for cointegration.

Similar to (3), having equation (4) hold for every group i implies that

Wit = ãi + ã1it + b̃′irt + c̃1iW1t + c̃2iW2t + ẽit (5)

where ẽit is linear in eit, e1t, and e2t. Therefore, if the errors eit in equation (4) were stationary,

then the errors ẽit in (5) would also be stationary, so a necessary condition for any demand

appears to be I(1) in this data. This could be due to the fact that the trends in wjt are far less pronounced
than those in rjt, and it is possible that wjtrjt for j = 1, ..., N are close to cointegrated, resulting in a sum
that is I(1) instead of I(2).

8Exact critical values have not been tabulated for systems of such high dimensions. Ng (1993) finds that
an approximate guide is to raise the critical value of the DF by 0.35, and the MZα by 5, for each added
regressor.
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equation in the form of equation (5) to have stationary errors is that Wit, rt, Wjt and Wkt be

cointegrated for each group i 6= j, k. As with all the other models tested, the test statistics

in the second panel of Table 3 indicate that Wit, rt, Wjt and Wkt (for any ordering of the

goods) are not cointegrated.

Analogous to the discussion regarding equation (3), failure of cointegration of equation (5)

implies that nonstationarity of the demand system errors could not be due to any two missing

regressors. Other evidence of nonstationarity is provided by Ng (1995), Lewbel (1996), and

Attfield (1997). We will later give one more example of demands that are linear in variables,

based on the Translog system, and show that it too appears to have nonstationary errors.

The test statistics used in this section are based on asymptotic theory assuming T is

extremely large, and also that T is large relative to the number of regressors, which is

not the case here. The small sample distortions in some of these tests could therefore be

substantial. Nevertheless, the evidence of trends or drifts in relative prices, aggregate total

expenditures, and aggregate demand system errors seems strong, even if exact p values for

many of these tests might be in doubt.

3 Aggregation and Nonstationary Errors

In this section, we propose one possible explanation for the empirically observed high auto-

correlation and possible nonstationarity of aggregate demand system errors. We show that

this persistence could be caused by aggregation across a slowly changing population of con-

sumers with heterogeneous preferences. Our NTLOG model does not depend on the validity

of this explanation, and in fact can be applied to deal with nonstationary prices even if the

demand system errors are stationary, but it is useful to understand why demand errors could

be persistent.

Blundell, Pashardes, and Weber (1993) suggest that aggregation over consumers with

time varying individual specific effects can lead to omitted variations in the aggregate demand

system. Here, we show that even if the individuals have specific effects that are time invariant,

aggregating over an evolving population with heterogeneous preferences will induce omitted

variations (i.e., aggregate errors). Moreover, since the population evolves slowly over time,

these omitted effects are likely to be highly persistent.

To see how aggregation across consumers could cause persistence in aggregate demand

system errors, let ahi be a fixed effect of consumer h for good i. This fixed effect can be

interpreted as a taste parameter, that is, a parameter in consumer h’s utility function. LetHt

be the set of all consumers in the economy in time t, and Ht =
∑

h∈Ht
1 be the enumeration
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of Ht. Note that Ht = Ht−1 +H+
t −H−

t−1, where H+
t is the set of consumers who enter the

economy in period t, and H−
t−1 is the set of consumers that leave the economy in period t−1.

Then ait = 1
Ht

∑
h∈Ht

ahi is the simple average of ahi across the consumers. We can write

ait =
Ht−1

Ht

ait−1 +

∑
h∈H+

t
ahi −

∑
h∈H−t−1

ahi

Ht

,

= νtait−1 + ηit,

where νt is the relative size of the population between the two periods, and ηit is the average

difference between the preferences of the consumers that dropped out and those that were

added in time t. The dynamic properties of ait thus depend on νt and ηit. Consider first

the latter. Taste parameters ahi depend in part on age, family size, and other demographic

characteristics. All these variables change slowly over time. Also, to the extent that taste

parameters vary across households and cohorts, the average taste parameter of those who

drop out will generally differ from the average taste parameter of those who enter the sample

in any given period. Both considerations suggest that ηit should exhibit random variations.

Now νt depends on the number of consumers in two consecutive periods and does not

depend on i. Since the set of consumers in an economy changes slowly over time, the large

majority of consumers comprising Ht are also in Ht−1. If ηit is uncorrelated with ait−1, then

this implies that ait is a highly persistent, near unit root process. More generally, ηit can

be correlated with ait−1, which could increase or decrease the persistence in ait. In postwar

quarterly data, νt ranged from a low of 0.9921 to a high of 0.9982 with a standard deviation

of 0.0009, so empirically νt is very close (but not exactly equal) to one.

Whether ait is a near unit root process or not depends on both on the evolution of the

population Ht−1 and the distribution of the demand system errors ahi in each time period.

These are not directly observed, but we will later provide empirical evidence that substantial

persistence in ait is at least plausible, based on an analysis of food demand at the household

level using PSID data.

The above argument for persistence in the average fixed effect assumes that each house-

hold receives the same weight of 1/Ht, but the argument also holds when ait is defined as an

unequally weighted average. Let ωht be the weight applied to household h at time t. Then

for ait =
∑

h∈Ht
ωihtaiht, it can be shown that

ait = νtait−1 + ηit +

[∑

h∈Ht

(ωht − 1

Ht

)ahi

]
− νt


 ∑

h∈Ht−1

(ωht−1 − 1

Ht−1

)ahi


 .
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In addition to heterogeneous preferences, time variations in weights (the last two terms) will

also introduce randomness into ait. If the weights ωht are budget shares, then the changes

in the income distribution between periods will be the additional source of randomness. In

consequence, one would still expect ait to be an autoregressive process with a root very close

to unity.

More generally, a fixed effect can be the sum of an aggregate component which is un-

affected by aggregation over households (e.g., common trends in tastes), and a household

specific component. Then the aggregate fixed effect, αit, is

αit = ai0 + ai1t + ait. (6)

The implications of a slowly increasing but heterogeneous population for the aggregate fixed

effect are threefold. First, a model which approximates αit by a deterministic trend function

ai0 + ai1t will have omitted the random variations ait. Second, given the size of νt in the

data, the aggregate fixed effect is likely to be well approximated by a random walk with

drift. The magnitude of νt also implies that even if we were to observe αit, unit root tests

will have very low power in rejecting the null hypothesis of nonstationarity. Third, when

demand system errors have autoregressive roots so close to the unit circle, the distribution

of the estimated parameters will not be well approximated by the normal distribution even

asymptotically, and hence standard inference will be inaccurate (this is in addition to the

problems stemming from nonstationary prices). Persistence arising from time aggregation of

fixed effects is consistent with the empirical evidence of nonstationarity and non-cointegration

documented in the previous section, and with the high degree of serial correlation found in

the errors of estimated demand systems cited in the introduction.

4 A Linear Form for Translog Demands

In the time series literature, nonstationarity is readily handled in the context of linear models.

The difficulty for demand systems is that in linear models the Slutsky symmetry implied

by utility maximization results in extremely restrictive and implausible constraints on cross

price elasticities. Linear models are also resoundingly rejected empirically.

To illustrate the problem, suppose the demands of an individual household were given by

the general linear model wit = ai +
∑N

j=1 bij ln pjt + ci ln mt, for goods i = 1, ..., N , where mt

is the consumer’s total expenditures on goods and services in time t, and wit is the fraction of

mt spent on good i in time t. To be consistent with utility maximization, this demand model

must satisfy homogeneity and Slutsky symmetry. Homogeneity requires ci = −∑N
j=1 bij for
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i = 1, ..., N , which is not overly restrictive. However, it can be directly verified that Slutsky

symmetry requires either ci = 0 for all goods i, implying homothetic demands (budget shares

independent of the total expenditure level), or it requires that ai = 0 and bij = βiβj for some

scalars β1, ..., βN , so that all cross price elasticities are forced to be proportional to own price

elasticities. Virtually all empirical demand studies very strongly reject these restrictions.

Similar restrictions arise in linear models expressed in terms of quantities rather than

budget shares, as observed by Deaton (1975), who raised these objections in the context of

the Stone-Geary Linear Expenditure System. This is why the Linear Expenditure System is

now rarely used for empirical applications. For the same reason, the Rotterdam model (see

Barten 1967 and Theil 1971), which is a linear demand system based on time differencing of

quantities and prices, has been abandoned for empirical work.

To see how we construct a model that is linear in variables while overcoming these

constraints, consider the Translog indirect utility function of Christensen, Jorgenson, and

Lau (1975),

U(pt,mt) =
N∑

i=1

(
αi +

1

2

N∑
j=1

bij ln
pjt

mt

)
ln

pit

mt

. (7)

The function U here denotes the indirect utility function for the household. Without loss of

generality, assume
∑N

i=1 αi = 1 and bij = bji. Define ci =
∑N

j=1 bij with
∑N

i=1 ci = 0 to make

the translog exactly aggregable, see Muellbauer (1975), Jorgenson, Lau, and Stoker (1983)

and Lewbel (1987). By Roy’s identity, the resulting Translog budget shares are

wit =
αi +

∑N
j=1 bij ln pjt − ci ln mt

1 +
∑N

j=1 cj ln pjt

. (8)

Unlike the severe restrictions on elasticities implied by linear models, equation (8) satisfies

Slutsky symmetry and homogeneity without constraints on own price, cross price, or total

expenditure elasticities at a point. This feature of unrestricted elasticities at a point is known

as Diewert (1974) flexibility, and was one of the motivations for the derivation of both the

popular Translog and Almost Ideal Demand model. Diewert and Wales (1987) show that

imposing negative definiteness on the Translog does limit its flexibility at some points (see

also Moschini 1999), but the resulting constraints on elasticities are minimal compared to

the above described constraints required of linear models.

Now observe that equation (8) can be rewritten as

wit = αi +
N∑

j=1

bij ln(pjt/mt)−
N∑

j=1

cjwit ln pjt. (9)
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Equation (9) is a model for a single household, but can be readily extended to a panel of

households by adding appropriate household h subscripts. The relevant point for estimation

is that equation (9) is linear in variables ln(pjt/mt) and wit ln pjt for j = 1, ..., N. Hence if

some or all of these variables (in particular, log prices) are nonstationary, the model is at

least in principle amenable to estimation using time series methods. Furthermore, αi could

be random, implying that if we were to estimate (9) in the cross-section, the errors could be

interpreted as random utility function parameters. The next section provides details for our

particular estimation method in the context of an aggregate version of this model.

5 The Nonstationary Translog Demand System

A convenient implication of the linearity of equation (9) is that it facilitates aggregation

across households (for estimation with household level data, the aggregation step below can

be ignored). Let mht be consumer (or household) h’s total expenditures on goods and services

in time t, whit is the fraction of mht spent on goods i in time t, and rhit = ln(pit/mht). Also,

for each good i let αhi denote the value of the parameter αi for household h, so the vector

of utility function parameters (αh1, ...αhN) embody preference heterogeneity. The household

level Translog budget shares from equation (8) are

whit =
αhi +

∑N
j=1 bij ln pjt − ci ln mht

1 +
∑N

j=1 cj ln pjt

. (10)

Let Mt = 1
Ht

∑
h∈Ht

mht, Wit =
P

h∈Ht
whitmhtP

h∈Ht
mht

, and δt =
P

h∈Ht
mht ln mhtP

h∈Ht
mht

− ln Mt. Then

ãit =

∑
h∈Ht

αhimht∑
h∈Ht

mht

− ciδt, (11)

≡ αit − ciδt.

Notice that αit is the average fixed effect for good i using expenditure shares as weights. It

then follows that aggregate budget shares are given by

Wit =
ãit +

∑N
j=1 bij ln pjt − ci ln Mt

1 +
∑N

j=1 cj ln pjt

,

≡ ãit +
∑N

j=1 bijrjt

1 +
∑N

j=1 cj ln pjt

, (12)

since rit = ln(pit/Mt). Models like this aggregate translog would usually be estimated as

in Jorgenson, Lau, and Stoker (1983), that is, by replacing ãit with a linear combination of

trend or demographic variables, and appending an additive error to (12).
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We propose to estimate the aggregate analog of equation (9) instead. Define

zijt = Wit ln pjt. (13)

and let eit = ait − ciδt. Substituting (6) and (13) into (12) then gives

Wit = ai0 + ai1t +
N∑

j=1

bijrjt −
N∑

j=1

cjzijt + eit. (14)

Separate from any considerations of nonstationarity or aggregation, one advantage of

defining the model this way is that the errors eit are by definition equal to ait−ciδt and so can

be directly interpreted as preference heterogeneity (taste) parameters, as in McElroy (1987)

and Brown and Walker (1989). More importantly, (14) is linear in rt and zit. Nonstationarity

in the variables and the errors can now be dealt with, as described in the next section.

We call the system of equations (14) for all goods i, the ”Nonstationary Translog Demand

System” (NTLOG) since it is based on demands derived from Translog utility functions, and

some or all of its component variables may be nonstationary. If (14) were cointegrated for

every good i, then the demand equations could be estimated using an error correction model.

This would require that eit be stationary. Lewbel (1991) found, using both UK and US data,

that δt varies very little over time, with little or no trend or drift. Thus eit is stationary if ait

is stationary. However, the analysis in Section 3 suggests that eit is likely to be nonstationary

(or nearly so), because the autoregressive root of ait is (by theory) very close to unity, and

there are likely random variations in preferences and in the income distribution over time.

Therefore, tests of equation (14) should find no cointegration. In addition, even in our small

system with few goods, there are now 10 regressors in each of the equations to be tested for

cointegration, and the power of cointegration tests are known to reduce with the number of

regressors. Based on approximate critical values of -6.5 and -67.5, the fourth panel of Table

2 shows that the variables in (14) do not appear to be cointegrated.

Thus, both theory and empirical tests are consistent with eit being an integrated or nearly

integrated process. In the time series literature, it is recognized that imposing a unit root on

nearly integrated processes can be desirable when the limiting distribution of estimators and

test statistics are not well approximated by the normal distribution. In the present context,

the unit root restriction can be justified given both the test results and the magnitude of νt.

Consistent with unit roots, the first differences of Wit, rjt, and zijt for all goods i and j all

appear to be I(0), and thus standard tools for inference can be applied.

The above NTLOG model is designed for estimation with aggregate data, but it or

some similar variant of equation (9) could be applied to cohort or household level data. At
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disaggregate levels, errors and income may well be stationary. But relative prices, which

are faced by all households, will still be nonstationary, so the NTLOG will be useful with

disaggregate data also.

A key feature of (13) is that it is linear in variables. Although those variables include

cross terms in zijt, when differenced these variables all appear stationary. In contrast, Deaton

and Muellbauer’s (1980) Almost Ideal Demand model was designed to be nearly linear, but

misses that ”ideal” because of the presence of a quadratic price deflator, which includes

terms like r2
jt. First differences of r2

jt terms are not close to stationary. Thus, even in first

differenced form, the correct limiting distribution for the AIDS model may still be nonstan-

dard. Recognizing problems of high autocorrelation in levels, Deaton and Muellbauer report

estimates from differencing the AIDS model, but assumed a standard limiting distribution

for the result.

It is also of some interest to compare the nonstationary translog with the once popular but

now rarely used Rotterdam model (see, e.g., Barten 1967 and Theil 1971). The Rotterdam

model consisted of regressing differenced quantities on differenced prices and income. In

retrospect, the Rotterdam model had the virtue of making the regressors stationary. Its

shortcoming is that it is not consistent with utility maximization without imposing extreme

restrictions on its coefficients, as described in the previous section. Unlike the Rotterdam

model, the NTLOG is derived from a utility function that has flexible demands. Furthermore,

the error terms of the Rotterdam, like the errors in the ordinary aggregate Translog and

AIDS models, are appended to demands with no economic interpretation. In contrast, the

error terms of the NTLOG are directly derived from heterogeneity in taste parameters and

variations in the income distribution.

The NTLOG is designed to be both flexible, in the sense of Diewert (1974), and com-

pletely linear in nonstationary observables to permit differencing to stationarity. However,

the Translog is a rank two demand system, with budget shares linear in log income, while

empirical evidence on household level data suggests demands are quadratic and rank three.

See Howe, Pollak and Wales (1979), Gorman (1981), Lewbel (1991), Blundell, Pashardes,

and Weber (1995), and Banks, Blundell, and Lewbel (1997).

While demands for individual households appear to be rank three, there is evidence that

aggregate demands may be adequately modeled as rank two. Lewbel (1991) shows that rank

three curvature arises primarily from households at the extremes of the income distribution,

and that excluding a small percentage of households in these tails results in demands that

are empirically rank two. If the contribution of these small number of extreme households
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to the aggregate is small, then the aggregate will appear rank two. Also, the range of

observed aggregate (per capita) income is small relative to the range of incomes that exists

across households. The impact of these rank three households in the aggregate is therefore

small. In our empirical application later we find that the rank two NTLOG is satisfactory

for aggregate data. Nonetheless, rank three extensions of the NTLOG could be constructed,

and might be desirable for future applications using disaggregate data.

6 Estimation and Results

Equation (13) manages full linearity, but at the cost of having some of the regressors (the

zijt variables) depend on Wit, and hence those regressors could be correlated with the errors

eit. This issue must be dealt with upon estimation. Assume we have a vector of stationary

instrumental variables st that are uncorrelated with the stationary difference 4eit = eit −
eit−1. Then

E[st(4Wit − ai1 −
N∑

j=1

bij4rjt +
N∑

j=1

cj4zijt)] = 0 (15)

The set of equations (15) for all goods i can be stacked to yield a collection of moment con-

ditions for the parameters, which can be estimated using standard GMM. The instruments

and the differenced variables in (15) are all stationary, so the coefficients in this GMM will

have the standard root-T normal limiting distribution. Since these are demand equations,

and the errors arise from preference heterogeneity, suitable instruments will be variables that

affect the supply side of the economy.

To check sensitivity to the choice of instruments, we consider two sets of instruments. The

first simply uses differences in the lags of the variables in the system: 4Wit−2, i = 1, . . . N −
1, 4 ln pit−2, i = 1, . . . N , 4 ln Mt−2, 4z1jt, j = 1, 2, the differenced log of population, a

constant, and a time trend. These instruments deal with the dependence of z on endogenous

budget shares, but fail to control for classical simultaneity of demand with supply

The second set of instruments, which should be suitable for both these problems, consist

of supply variables, like those used in, e.g., Jorgenson, Lau, and Stoker (1983). These

instruments are the deflator for civilian compensation of government employees, government

purchases and its deflator, imports of goods and services, wages and salaries, unit labor costs

and participation rate, government transfers to individuals, unemployment, and population.

These are also differenced to stationarity. Also included are a constant and a time trend.

The first set of instruments has 13 variables and the second has 14, yielding a total of 39
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and 42 moment conditions respectively. It is not feasible to use both sets of instruments

simultaneously, because doing so will result in too many moment conditions relative to the

sample size.

A non-standard feature of our application of GMM is the following. The adding up

constraint means that the condition
∑N

i=1 eit = 0 must be satisfied. Therefore, if ∆eit were

serially correlated, the dynamic structure would need to be the same for every equation, as in

Berndt and Savin (1975). We first estimate the parameters with the White-Huber correction

for heteroskedasticity, and then test for serial correlation in the residuals. First differencing

appears to be sufficient to render êit approximately white noise, and the Box-Ljung statistic

with six lags cannot reject the null hypothesis of no serial correlation at the 5% level for

equations 1 and 2, and at the 10% level for equation 3. We also tried quasi-differencing the

first differenced data to estimate a common AR(1) parameter for the residuals. Its estimate

is numerically small and insignificant, so those results will not be reported.

For a system of N consumption groups, only N − 1 equations need to be estimated given

the adding up constraint. After imposing the symmetry condition bij = bji, the homogeneity

condition ci =
∑N

j=1 bij, and the exact aggregation condition
∑N

i=1 ci = 0, we still have

12 parameters in a model with four goods. We first obtain unrestricted estimates of all

parameters, and then restrict those bij, i 6= j that are statistically insignificant to zero to

improve precision of the estimates. These results are reported in Table 4. Overall, the χ2

test for overidentifying restrictions cannot reject the orthogonality conditions.

6.1 Testing the Model

We consider two additional tests of the empirical adequacy of the NTLOG model. The first

is a test for stability of the coefficients (that are not statistically different from zero in the

full sample). For both sets of instruments, the sup LM test of Andrews (1993) is maximized

at π = .2, where πT is the breakpoint for a sample of size T . The test statistic is 16.38

and 11.43 for the two sets of instruments respectively, and the 5% critical value for seven

parameters is 21.07. Thus, we cannot reject the null hypothesis of parameter constancy.

The second is a general test for any omitted factors, analogous to our earlier use of equa-

tion (3) to test for the existence of any function g in equation (2). Suppose the nonstationary

Translog omits some variable, or some function of variables, gt, which could be price related

because of flexible regularity issues, income related due to rank considerations, or some other
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source of misspecification such as omitted dynamic or demographic effects. Then

Wit ≡ digt + ai0 + ai1t +
N∑

j=1

bijrjt −
N∑

j=1

cjzijt + eit. (16)

For example, digt could be a component of αit, or (16) could arise from the aggregation of

demands of a potentially rank three utility function.

Analogous to how equation (2) implies equation (3), we have that if equation (16) holds

for any gt then

Wit ≡ diWkt + ãi0 + ãi1t +
N∑

j=1

b̃ijrjt −
N∑

j=1

cj(zijt − dizkjt) + ẽit. (17)

Each equation (17) for i = 2, ..., N−1 is linear in the observables, and so can be estimated by

differencing and GMM, again using our instruments st. We may thereby indirectly test for

the existence of any omitted factor gt by testing whether the coefficients di are statistically

significant. We may similarly test for two omitted variables by including two different budget

shares as regressors in place just Wkt in (17), analogous to using equation (5) to test for the

structure of (4). A total of 27 variations of the model exist, depending on which budget shares

are modeled and which are used as regressors. To conserve space, Table 5 only report results

for 12 configurations. When good 4 (others) is added to the food equation, the t statistic is

sometimes significant at the 2-tailed 5% level, suggesting some (though not overwhelming)

evidence of omitted variables. But for both sets of instruments, the t− statistic on other di

are generally insignificant.

6.2 Elasticities

Aggregate quantities are given by Qit = MtWit/pit. One can verify from (12) that the corre-

sponding aggregate price and income elasticities are given by

∂ ln Qit

∂ ln pjt

=
(bij/Wit)− cj

1 +
∑N

k=1 ck ln pkt

− 1ij, (18)

∂ ln Qit

∂ ln Mt

=
ci/Wit

1 +
∑N

k=1 ck ln pkt

+ 1 (19)

where 1ij is the kronecker delta, which equals one if i = j, and zero otherwise. The constants

a0i are not identified when differencing as in equation (15). The elasticity formulas given in

equations (18) and (19) do not make use of a0i, and so are identified. We present estimates
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of price and income elasticities (evaluated at the mean) in Table 5. The standard errors are

calculated using the delta method.

We find that spending on energy and other goods is not price sensitive. The income

elasticities for energy and for clothing are above one, while food and other goods are income

inelastic. Also, according to the NTLOG estimates, a one percent increase in the price of

food reduces expenditure on food by 0.68 percent, while a one percent increase in the price

of clothing reduces expenditure on clothing by around two percent. These elasticities are

statistically significant and are larger than most others based on time series data in the

literature, which are generally estimated over a shorter sample. See e.g., Denton, Mountain

and Spencer (1999) for a survey of estimates. Using the standard translog model, Jorgenson,

Lau, and Stoker (1983) found a very large price elasticity for a combined food and clothing

group. In results not reported, we find that estimation of the standard translog model with

our data set over the same time period yields a positive own price elasticity for food, and

income elasticities for food and clothing that are about double those based on the NTLOG.

One cannot make inference about the statistical significance of the standard translog esti-

mates, because the standard translog model is expressed in terms of nonstationary variables.

The asymptotic normality of the NTLOG estimates, on the other hand, allows for standard

inference.

The elasticities evaluated at the sample means reported in Table 6 have reasonable mag-

nitudes and signs. An interesting implication of nonstationarity of prices is that elasticities

may drift over time. This is illustrated in Figure 4, with estimates taken from INST2. The

price elasticity for energy appears to change little over time and has historically been quite

small. The price elasticity for food has fallen somewhat during the course of the past forty

years, but the variations around the mean elasticity of -.6 are rather small. The price elas-

ticity for clothing evaluated at the mean is -2.68, but has increased in magnitude from about

-2.2 in the beginning of the sample to -3.3 in recent years. The price elasticity for other

goods seems to have increased since the mid-sixties, when these goods became a much larger

share of total spending (see Figure 1). The time series of income elasticities are presented

in Figure 5. A notable feature is that, not only has clothing become more price sensitive

over time, but its the income elasticity has also gone up. These time variations in price and

income elasticities may reflect substantial changes in the composition of these categories over

time.
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6.3 Aggregate Fixed Effect Estimates

Our empirical analyses provide evidence that aggregate demand system errors are nonsta-

tionary. We have suggested that nonstationarity of errors could be due to aggregation of

consumer’s fixed effects across a slowly evolving population of consumers with heterogeneous

preferences. We now provide some empirical evidence to suggest that this explanation is at

least plausible. The ideal data for this exercise would be consumer level information over

a long span, but detailed information on consumption of households (such as the CEX) is

generally available in the form of short panels or rotating panels that do not track the same

households, neither of which are suited for the estimation of individual specific effects. The

best available data for our purpose appears to be the PSID, which tracks households’ food

consumption and income since 1968.

We begin by estimating the food demand equation

wht = ah + γzht + δt + βt log mht + εht, (20)

where zht is age and family size to control for observed sources of heterogeneity, and ah is

the fixed effect for each household h. The regression includes year dummies both additively

and interacted with log income to obtain the time varying coefficients δt and βt. This is

equivalent to estimating a separate Engel curve for each time period, so this analysis does

not require measuring prices or specifying how prices affect food demands at the household

level.

We only consider male headed households with at least 10 observations over our estima-

tion sample of 1974 to 1992, and who are between age 25 and 55.9 By performing fixed effect

estimation, we can obtain âh for 1308 households.

Given a sample, we cannot observe households entering or leaving the true population of

households Ht, so we proxy changes in the population by changes in subpopulations, defined

by age. As a first check, we aggregate the estimated fixed effect corresponding to the 147

households that are in the sample all 17 years. In this first example there is, by construction,

no change over time in the composition of this subpopulation of households, so the aggregate

is constant over time (see Table 7). This first example corresponds to the extreme case of

νt = 1 and ηit = 0 in section 3. We then construct three estimated aggregate fixed effects,

based on different subpopulations. The first averages the fixed effect across those households

9Food is the sum of food consumed at home plus food consumed outside of home. Food data were not
collected in 1973, 1987 and 1988. The SEO sample was excluded from the analysis. Households who reported
zero income and/or consumption are dropped.
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that are between ages 30 and 50 in each time period, the second between ages 30 and 40,

and the third between ages 40 and 50. In all three cases, the sample size changes over time

both as the size of the subpopulation changes and as households drop in and out of the

interviews. The average number of observations used in the aggregations are 803, 505 and

337 respectively, with standard deviations of 147, 243, and 146, respectively.

The estimates reported in Table 7 suggest strong trends in the resulting aggregate fixed

effects, consistent with our conjecture that these series can be highly persistent. The first

order autoregressive parameter is estimated to be near unity in every case.10

This simple exercise is subject to many caveats due to data limitations. For example,

there is likely to be more period to period change in the survey respondents than the popu-

lation at large. Nonetheless, the results suggest that aggregation of demand equation fixed

effects over a slowly evolving heterogeneous population could be a plausible cause of apparent

nonstationarity of errors in aggregate demand systems.

7 Conclusions

Price and income elasticities are important statistics which characterize consumers behav-

ior and are fundamental to the evaluation of tax policies and welfare programs. Demand

systems provide a conceptually coherent framework for estimating these elasticities. Utility

maximization requires any reasonable specification of demand systems to be nonlinear in

relative prices, and relative prices themselves are nonstationary.

Very few techniques exist for estimation of structural nonlinear models with nonstationary

data. The vast majority of existing empirical demand system studies, with either household

or more aggregate level data, simply ignore this problem, treating the data as if it were

stationary. The few empirical studies that do consider price nonstationarity assume linearity

by, for example, estimating an Almost Ideal model while ignoring its nonlinear component,

which is a quadratic price index.

To deal with price nonstationarity, we propose a reformulation of the utility derived

Translog model that can be written in a linear form (albeit with endogeneity in the regressors

caused by interacting prices with budget shares), thereby avoiding the severe constraints of

ordinary utility derived linear demand models, while preserving sufficient linear structure to

deal with nonstationarity. Our NTLOG model provides a solution to the empirical problem,

10Formal tests of nonstationarity or unit roots in the data in Table 7 are not practical, because the number
of time periods is very short, no data are available in some years, and ordinary tests would fail to account
for estimation errors in the generation of this data.
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which exists at both the household and aggregate level, of demand system estimation with

nonstationary relative prices.

In addition to handling nonstationarity of relative prices, our NTLOG model can also

cope with possible nonstationarity of demand systems errors, a feature commonly found in

models using aggregate data. We show theoretically that nonstationarity of demand system

errors could arise from aggregation across heterogeneous consumers in a slowly changing

population, and we provide some empirical evidence for this effect based on a panel of

household demands for food. Other possible sources of nonstationarity could be omitted

variables, omitted dynamics, or aggregation across goods as in Lewbel (1996). We provide

some empirical evidence against the omitted variables explanation.

We estimate this NTLOG model using aggregate U.S. data over the sample 1954-1998.

The model is subjected to and passes a variety of specification tests. Estimates of the model

parameters and elasticities are also reported, and are found to be economically plausible.

Unlike other demand system estimates in the literature, given nonstationary data and non-

stationary errors, these NTLOG estimates have root-T asymptotically normal distributions

and so allow for standard inference.
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Table 1: Tests for Nonstationarity of Prices and Total Expenditure
Series DFGLSτ MZGLS

ατ Lags DFGLSµ MZGLS
αµ Lags

Levels First Differences
log(p1) -1.541 -5.506 3 -3.153 -17.191 2
log(p2) -1.268 -4.901 3 -3.813 -25.618 2
log(p3) -1.107 -5.574 4 -2.613 -11.675 4
log(p4) -1.442 -4.650 3 -2.044 -8.031 2

log(r1) -2.384 -11.371 1 -2.509 -11.856 3
lor(r2) -1.842 -9.818 4 -4.525 -32.102 2
log(r3) -0.975 -2.408 2 -1.568 -5.173 4
log(r4) -0.924 -2.141 2 -4.580 -33.948 2

log(p1/p2) -1.624 -7.065 4 -5.813 -56.045 2
log(p1/p3) -1.370 -4.183 2 -4.620 -36.045 3
log(p1/p4) -1.200 -3.713 3 -3.944 -25.392 3
log(p2/p3) -1.182 -2.903 1 -3.757 -24.921 4
log(p2/p4) -0.732 -2.091 1 -6.030 -62.858 4
log(p3/4) -0.773 -2.028 4 -3.594 -17.646 4

log(M) -1.284 -3.937 3 -1.958 -7.532 4
W1 -1.707 -5.887 1 -4.321 -30.873 4
W2 -0.953 -2.237 0 -6.644 -68.654 2
W3 -1.701 -6.441 0 -5.944 -58.423 3
W4 0.058 0.2149 0 -2.551 -8.446 4

w1log(p1) -.756 -5.204 3 -2.060 -8.524 2
w1log(p2) -.664 -3.189 3 -3.647 -26.940 4
w1log(p3) .179 -.085 2 -2.339 -10.237 4
w1log(p4) -.878 -5.478 3 -3.726 -21.141 2
w2log(p1) -.858 -1.662 1 -4.522 -33.241 3
w2log(p2) -1.168 -4.446 3 -2.804 -12.830 3
w2log(p3) -.994 -4.832 4 -3.158 -12.997 4
w2log(p4) -.739 -1.057 1 -2.258 -7.651 4
w3log(p1) -.458 -1.236 1 -4.564 -28.905 3
w3log(p2) -.7751 -2.652 2 -4.172 -29.847 2
w3log(p3) -.169 -.813 2 -4.752 -35.906 3
w3log(p4) -.880 -2968 2 -4.012 -19.959 3
w4log(p1) -.946 -2.344 3 -2.441 -9.365 3
w4log(p2) -1.042 -2.278 3 -2.927 -15.130 4
w4log(p3) -1.046 -3.110 3 -2.743 -10.189 4
w4log(p4) -1.175 -3.110 4 -.947 -1.518 4

The 5% critical values for the DFGLSτ and the MZGLS
ατ (which include a constant and a linear time

trend) are -2.9 and -19.1 respectively. The critical values for DFGLSµ MZGLS
αµ (which include a constant)

are -1.9 and -8.1 respectively.
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Table 2: Tests for the Null Hypothesis of No-Cointegration

Equation 1: Wit = a0i + a1it +
∑N

j=1 bijrjt + eit

Good DF MZα Lags
1 -2.835 -11.512 0
2 -2.446 -13.545 1
3 -4.885 -31.804 0
4 -2.665 -10.673 0

CV -4.49 -37.7

Equation 2: Wit = a0i + a1it + b′irt + cilog(Mt/P
∗
t ) + eit

Good DF MZα Lags
1 -3.139 -18.098 0
2 -3.226 -20.042 1
3 -5.210 -30.300 0
4 -3.732 -14.835 0

CV -4.74 -42.5

Equation 4: Wit = a0i + a1it + b′irt + c1ilog(Mt/P
∗
t ) + c2i[log(Mt/P

∗
t )]2 + eit

Good DF MZα Lags
1 -3.568 -22.125 0
2 -2.608 -13.831 1
3 -5.426 -43.275 0
4 -2.242 -9.785 0

CV -5.04 -47.5

Equation 18 Wit = a0i + a1it +
∑N

j=1 bijrjt +
∑N

j=1 cjzijt + eit

Good DF MZα Lags
1 -4.356 -28.923 0
2 -4.430 -35.425 1
3 -6.029 -50.875 0
4 -4.344 -32.421 0

CV -6.5 -67.5
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Table 3: Tests for the Null Hypothesis of No-Cointegration:

Equation 3:

Wit = ã0i + ã1i + b̃′irt + c̃iWjt + ẽit, j 6= i.
Good i Good j DF MZα Lags

2 1 -2.450 -13.525 1
3 1 -4.883 -32.419 0
4 1 -2.317 -9.802 0
1 2 -2.881 -11.895 0
3 2 -5.456 -37.449 0
4 2 -4.180 -20.909 0
1 3 -2.825 -12.175 0
2 3 -3.012 -17.663 1
4 3 -3.524 -23.658 0
1 4 -2.487 -10.667 0
2 4 -3.724 -21.577 1
3 4 -5.479 -42.895 0

CV -4.74 -42.5

Equation 5:

Wit = ã0i + ã1i + b̃′irt + c̃ijWjt + c̃ikWktẽit, j, k 6= i.
Good i Goods j, k DF-GLS MZGLS Lags

1 2,3 -2.851 -12.200 0
1 2,4 -2.411 -10.487 0
1 3,4 -2.127 -7.509 1
2 1,3 -2.997 -17.252 1
2 1,4 -3.722 -22.032 1
2 3,4 -3.558 -22.159 1
3 1,4 -5.404 -41.440 0
3 1,2 -5.438 -37.798 0
3 2,4 -5.050 -38.951 0
4 1,2 -3.825 -19.744 0
4 1,3 -2.889 -18.44 1
4 2,3 -3.660 -21.983 0

CV -5.04 -47.5
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Table 4: Restricted and Unrestricted Estimates of the Parameters by GMM
INST1 INST2

Unrestricted Restricted Unestricted Restricted
b11 0.1186 0.0838 0.1665 0.0988
se 0.1077 0.0886 0.1086 0.0883
b12 0.0020 0.0000 -0.0062 0.0000
se 0.0563 0.0000 0.0482 0.0000
b13 -0.0484 0.0000 -0.0602 0.0000
se 0.0403 0.0000 0.0483 0.0000
b22 0.1661 0.1206 0.1408 0.1048
se 0.0487 0.0410 0.0509 0.0390
b23 -0.0373 0.0000 -0.0438 0.0000
se 0.0287 0.0000 0.0310 0.0000
b24 -0.1672 -0.1835 -0.1474 -0.1768
se 0.0623 0.0532 0.0621 0.0466
b33 -0.0617 -0.0715 -0.1121 -0.1387
se 0.0361 0.0392 0.0407 0.0415
b34 -0.0191 0.0000 -0.0181 0.0000
se 0.0427 0.0000 0.0533 0.0000
b44 0.4851 0.3153 0.5064 0.4075
se 0.1214 0.1230 0.1475 0.1350
a11 -0.0009 -0.0008 -0.0008 -0.0007
se 0.0003 0.0002 0.0003 0.0002
a12 0.0001 0.0000 -0.0001 0.0000
se 0.0002 0.0000 0.0002 0.0000
a13 -0.0007 -0.0005 -0.0010 -0.0008
se 0.0002 0.0002 0.0002 0.0002
χ2 25.095 32.360 25.924 30.323
d.f. 27 32 30 35
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Table 5a: Specification Tests with INST1:
(i,j,k) ti tj tk
(2,1,1) -0.6336 -0.3359 -0.3005
(3,1,1) -0.7389 -0.1753 -0.2321
(4,1,1) -2.2732 -0.4706 0.3154
(2,3,4) -0.3955 -1.9064 -0.3559
(3,1,4) -0.6823 -0.1775 -0.5276
(4,1,4) -2.1087 -0.4602 -0.0459
(3,4,1) -0.6355 -0.7701 -0.0733
(3,4,2) -0.6164 -0.7175 -0.1656
(3,4,4) -0.5854 -0.6251 -0.3532
(4,3,1) -2.2817 -1.7406 0.3635
(4,3,2) -2.2068 -1.7463 0.2535
(4,3,4) -2.1489 -1.8058 0.0476

The first column denotes the variables being added to the equation for Good 1, 2, and 3 respectively.
The next three columns are the t statistic on the variable being added.

Table 5b: Specification Tests with INST2:
(i,j,k) ti tj tk
(2,1,1) -0.9181 0.5734 0.8393
(3,1,1) -1.4878 0.6800 0.9548
(4,1,1) -1.9244 0.1801 0.9574
(2,3,4) -1.2099 0.2463 0.3557
(3,1,4) -1.4857 0.6412 0.6393
(4,1,4) -1.8274 0.1964 0.6944
(3,4,1) -1.0192 -2.2839 0.6290
(3,4,2) -1.0342 -2.1522 0.4570
(3,4,4) -0.9126 -2.2949 0.3867
(4,3,1) -2.0192 -0.1576 0.7604
(4,3,2) -2.0149 -0.1076 0.7502
(4,3,4) -1.9207 -0.1403 0.5289

The first column denotes the variables being added to the equation for Good 1, 2, and 3 respectively.
The next three columns are the t statistic on the variable being added.
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Table 6a: Estimates of Price and Income Elasticities for the NTLOG using INST1
Price Income

Good 1 2 3 4
1 (food) -0.6808 0.0638 0.0724 -0.2682 0.8128

se 0.3847 0.0734 0.0722 0.2995 0.6090
2 (energy) -0.0438 -0.1661 0.0724 -1.2644 1.4019

se 0.1424 0.9802 0.0722 1.2932 0.4626
3 (clothing) -0.0438 0.0638 -1.8580 -0.0924 1.9305

se 0.1424 0.0734 0.8553 0.0901 0.9275
4 (others) -0.1326 -0.3379 0.0724 -0.4024 0.8004

se 0.1361 0.3798 0.0722 0.3885 0.1946

Table 6b: Estimates of Price and Income Elasticities for the NTLOG using INST2
Price Income

Good 1 2 3 4
1(food) -0.6068 0.0739 0.1423 -0.4368 0.8274

0.3803 0.0646 0.0987 0.2507 0.4359
2(energy) -0.0404 -0.2482 0.1423 -1.3193 1.4655

0.1019 0.6554 0.0987 0.9694 0.4069
3(clothing) -0.0404 0.0739 -2.6858 -0.1759 2.8282

0.1019 0.0646 1.1687 0.1211 1.2674
4(others) -0.1722 -0.3180 0.1423 -0.2724 0.6202

0.1486 0.2576 0.0987 0.3949 0.2615
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Table 7: Estimated Aggregate Fixed Effect
Year Balanced Age Age Age

Panel 30-50 30-40 40-50
74 .0757 .1915 .1176 .3239
75 .0757 .1755 .1019 .2938
76 .0757 .1510 .0731 .2775
77 .0757 .1286 .0505 .2566
78 .0757 .1083 .0265 .2487
79 .0757 .0806 .0010 .2243
80 .0757 .0555 -.0189 .2029
81 .0757 .0364 -.0301 .1729
82 .0757 .0171 -.0444 .1489
83 .0757 -.0082 -.0690 .1312
84 .0757 -.0301 -.0874 .1003
85 .0757 -.0478 -.1092 .0892
86 .0757 -.0607 -.1270 .0699
87 .0757 -.0699 -.1427 .0473
90 .0757 -.0914 -.1894 -.0192
91 .0757 -.0955 -.1999 -.0335
92 .0757 -.1011 -.2180 -.0526

AR(1) .9545 .9945 1.015

The first column is the fixed effect aggregated over a fixed set of households. The remaining columns
are based on aggregation over household heads in each year that are between age 30 and 50, 30 and 40, 40
and 50 respectively. The estimated individual fixed effects are from estimates of the household level food
demand equation (20) using the fixed effect estimator as implemented in Stata.
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Data Sources

The data are from the US National Income and Product Accounts, obtained via Citibase.
The sample period is 1954Q1-1998Q4. In citibase mnemonics, M=GC-GCD. Nominal ex-
penditure on the four groups are:

1. GCFO (food),

2. GCNF+GCNG+GCST+GCSHO (energy),

3. GCNC (clothing),

4. others=M-food-energy-clothing.

Price indices are obtained by dividing nominal by real expenditures in these groups.
Following many other authors (e.g., Campbell and Mankiw 1990), data from before the mid
1950s are excluded to avoid the effects of both the Korean war and of measurement errors
in the first few years of data collection.

In Citibase, the second set of instruments are GGE, GDGE, GGCGE, GIMQ, GW,
GMPT, GPOP, LBLCPU, LHUR, and LHP16. We take logs of the first six of these variables
before first differencing them.

For Table 7, household level data from 1974-1992 are taken from the Panel Study of
Income Dynamics, excluding the SEO sample. We use observations with male household
heads that are between age 25 and 55, and have no missing data on age, sex, marital status,
number of children, and income. Income is defined as the sum of earned and transfer income
by the husband, wife, and other family members. Food is defined as food consumed at home
and outside the home. Consumption data are not available for 1973, 1987, and 1988. A total
of 17,568 observations over 17 years were used in the fixed effect estimation.
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