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Abstract

Geographical concentration of stores that sell similar commodities is pervasive. To
analyze this phenomenon, this paper provides a simple two dimensional spatial compe-
tition model with consumer taste uncertainty. Given taste uncertainty, concentration
of stores attracts more consumers since more variety means that a consumer has a
higher chance of finding her favorite commodity (a market size effect). On the other
hand, concentration of stores leads to fiercer price competition (a price cutting effect).
The trade-off between these two effects is the focus of this paper. We provide a few
sufficient conditions for the nonemptiness of equilibrium store location choices in pure
strategies. We illustrate, by an example, that the market size effect is much stronger
for small scale concentrations, but as the number of stores at the same location be-
comes larger, the price cutting effect eventually dominates. We also discuss consumers’
incentives to visit a concentration of stores instead of using mail orders.
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1 Introduction

Concentration of car dealers is commonly observed in American suburbs. Similarly, one finds
several fashionable apparel stores in a single shopping mall. In both cases, competitors’
commodities are substitutes for each other, and a consumer typically buys only one unit.
Thus, by concentrating at one location, competitive forces would drive down the prices of
commodities. The questions we ask in this paper are: Why do stores concentrate at the same
location? Why don’t they keep some distance from others and monopolize the customers
nearby?

The main idea of this paper can be roughly described in the following example: Consider
a consumer who gets up on Sunday morning wondering if she should to get a new fancy car
to replace her old Honda. She has some vague idea about those fancy cars, but she does not
know how much she likes each of them (relative to their high prices) before she actually visits
the dealers and tries them. Suppose that she expects that if she visits any one car dealer
(BMW, Mercedes, Volvo, and so on), then the probability that she likes the cars sold by the
dealer well enough to buy is 1

4
(25%), and these probabilities are independently distributed.

Then, if she visits a shopping center with BMW only, the probability of getting a buyable
car is 1

4
(25%), which is a little bit costly for wasting her precious Sunday. On the other

hand, if a shopping center has Mercedes and Volvo together, then the probability of finding a
buyable car is 7

16
(43.7%), since the probability of not finding a buyable car at each dealer is

3
4

(75%) and if she visits two dealers then the probability that she cannot find a buyable car
at either dealer decreases to 3

4
× 3

4
= 9

16
. Given the increased chance of finding a car she likes,

she may visit the two car dealer shopping center even though the location is a bit far away. If
there are five car dealers together at a shopping center, the probability of finding a buyable

car increases to 1−
(

3
4

)5
(76.3%), so that it is very likely that she will not waste her Sunday

by visiting the shopping center. In such a case, she may not mind going to the shopping
center although it may be far away from her house. Thus, concentration of car dealers can
increase the size of the pie (the market size effect due to taste uncertainty) although close
proximity may imply that they then compete with each other more vigorously (the price
cutting effect). Therefore, if the former effect exceeds the latter effect, then car dealers can
actually make higher profits under concentration than by staying alone to extract monopoly
rents from the nearby customers.

We formalize this idea in a spatial oligopoly model with price competition in order to
describe the trade-off between the market size effect and the price cutting effect. In order
to determine the number of consumers who visit a given shopping center (the market size),
it is necessary to determine the geographical area from which residents visit this shopping
center (the market area). To pin down the market size via the market area, we need to
introduce an explicit spatial structure into our model. The key assumption we use in this
paper is that consumers do not know their exact tastes over commodities (consumer taste
uncertainty). The structure of the model is as follows: Consumers are distributed over the
plane and each consumer can buy at most one unit of a commodity at a shopping center by
paying the commuting costs in addition to the price of the commodity. There are a finite
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number of stores that decide their locations from the set of potential shopping centers (stage
I). Consumers can observe the locations of stores, yet they know neither their willingnesses-
to-pay for commodities nor the prices before they actually visit the stores.1 Thus, when
a consumer decides which shopping center to visit, she calculates the expected utility of
searching commodities at each shopping center by taking commuting costs into account.
For simplicity, we assume that each consumer chooses to visit at most one shopping center
(stage II). Once she arrives at a shopping center, the commuting costs are sunk, and at no
cost she can try every commodity sold at the same shopping center. Thus, she chooses to
buy a commodity which gives her the highest (positive) surplus (her realized willingness-to-
pay minus the price of a commodity) among the commodities sold at the shopping center.
If no commodity gives her a positive surplus, she does not buy any commodity. Taking
consumers’ commodity choice behavior into account, stores compete with prices (stage III).
If a consumer’s willingness-to-pay distributions over different commodities are not perfectly
correlated (statistical independence is assumed in this paper), the concentration of stores
at a shopping center increases the expected utility from visiting there. This implies that
consumers living far away may visit the shopping center, and its market area expands.
However, since each consumer can choose the commodity which gives her the highest surplus
among commodities available at the shopping center, stores may be forced to compete for
customers by cutting prices. Thus, our model captures the trade-off between the two effects
by featuring both an explicit geographical structure of the economy and price competition
among stores.

Looking more closely at the mechanics of concentration of stores, we find that there are
two distinct but interconnected incentives for stores to concentrate. First, as we noted in
the example, there is the market size effect due to taste uncertainty : Concentration of stores
increases the probability of a consumer finding a buyable commodity at the shopping center.
Thus, a consumer’s expected utility from shopping there increases, resulting in a larger
market size at that shopping center. The second effect also operates through the increase in
a consumer’s expected utility: Concentration of stores sends to consumers a signal of lower
prices at the shopping center. This increases a consumer’s expected utility of choosing the
shopping center, and the market size expands. This may be called the market size effect
due to the lower price expectation. Thus, the consumer taste uncertainty and the imperfect
information regarding prices give stores incentives to concentrate.2

1The market structure is similar to Perloff and Salop (1985), Wolinsky (1986), and Fischer and Harrington
(1996). Anderson and Renault (1997) synthesize the literature of product diversity and consumer search
nicely.

2There is an additional incentive for stores to concentrate that is not through the expansion of market
size: Suppose that there are two stores each of which has a mutually exclusive customer group. If each of
them sells its commodity to its own customer group, then many consumers cannot find a buyable commodity,
since each consumer has an access to only one type of commodity. However, if these two stores pool their
customers, then the consumers’ probability of finding a buyable commodity increases as long as consumers’
willingnesses-to-pay are not perfectly correlated between two commodities. This implies that these two
stores’ per store sales and profits will be raised by pooling their consumers, if their prices are kept constant.
This effect may be called the consumer pooling effect. I thank Parikshit Ghosh for helpful conversations on
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In this paper, we first establish the existence of the third stage equilibrium and an inverse
relationship between the number of stores at a shopping center and the equilibrium prices
(the price cutting effect: Proposition 1). Then, we proceed to show that the radius of the
market of a shopping center increases with the number of stores (the market size effect:
Proposition 2). These two propositions show that our model captures the trade-off between
these two effects. Moreover, we can show that the market size effect can be decomposed into
the one due to taste uncertainty and the one due to the lower price expectation (Proposition
2). However, to establish the existence of subgame perfect equilibrium is more tricky. The
main difficulty comes from store’s location choice problem (stage I). By the very market
size effect, if a shopping center has other stores then it is not profitable to open a store near
the shopping center: All potential customers will visit the shopping center, and the new
store cannot make any profit (the “urban shadow”). On the other hand, a store can make
a positive profit, if it is opened right at the shopping center, or if it is opened far from any
shopping centers. Thus, each store’s profit function is not quasi-concave with respect to its
location, and we cannot apply the standard fixed point argument to stores’ location choice
problem. We provide three existence theorems for a subgame perfect equilibrium in pure
strategies, although the conditions are somewhat strong (Propositions 3, 4, and 5).

Then, we illustrate the relationship among the number of stores at a shopping center,
equilibrium prices, market sizes, consumer’s probability of finding a buyable commodity,
and each store’s profit by two numerical examples with the following simple structure: (i)
consumers are uniformly distributed over the plane, and (ii) consumers’ willingnesses-to-pay
are uniformly distributed. The first example assumes that potential shopping centers are far
from each other so that their markets would not be overlapped with each other. The most
striking observation is that a marginal increase in the number of stores dramatically expands
market size and each store’s profit when there are a small number of stores at a shopping
center (Table 1). Thus, the market size effect dominates the price cutting effect, and there is
a strong incentive for stores to concentrate at the same shopping center. In this example, we
can also fully characterize the set of subgame perfect equilibria. The result suggests that (a)
there will be multiple (quasi-) homogenous shopping centers, and (b) there could be multiple
(Pareto-ranked) subgame perfect equilibria due to the coordination problem (Proposition 6).
The second example assumes that there are only two potential shopping centers, but their
markets can be overlapped with each other. We observe that a symmetric equilibrium (the
same number of stores at each shopping center) and/or clustering equilibria (all stores at the
same shopping center) exist depending on the number of stores and the distance between
two shopping centers. If the number of stores is relatively small and two shopping centers
are very close to each other, then a symmetric equilibrium may vanish. On the other hand,
if the number of stores is relatively large and if two shopping centers are not too close to
each other, then clustering equilibria may vanish. When two types of equilibria coexist, a
symmetric equilibrium tends to attain a higher profit for each store.

At the end of the paper, we extend the model and discuss how the presence of mail order
companies may enhance the concentration of stores. At a shopping center, consumers can

this effect.
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try commodities before the purchase. We modify our model in order to allow the possibility
of mail order shopping with return policies. This modified model suggests that consumer
taste uncertainty can be the main reason why consumers actually visit stores instead of using
mail order shopping. In a different extension, we discuss that owners of shopping malls can
increase their rent revenues by restricting the number of stores that belong to the same
category.

The rest of the paper is organized as follows: Section 2 provides a brief summary of
the literature. Section 3 presents the formal model. Section 4 analyzes each subgame, and
provides three existence theorems for a pure strategy subgame perfect Nash equilibrium.
Section 5 provides simple examples which illustrate the relationship among the number of
stores at a shopping center, equilibrium prices, market sizes, and each store’s profits. Section
6 is devoted for the discussions on related issues: We note how our model can be extended
to discuss a few related issues including the possibility of mail order shopping and shopping
malls. Appendix collects the proofs of propositions and lemmas.

2 Summary of the Literature

Since past literature related to this paper is large, we concentrate on several most related
papers.3 These include Stahl (1982), Wolinsky (1983), Dudey (1990), and Fischer and Har-
rington (1996).4 Stahl (1982) and Wolinsky (1983) assume that each type of consumers have
different tastes over commodities, but they do not know which store sells their most pre-
ferred commodity. Consumers pick a shopping center to visit only by observing the number
of stores at each shopping center. Both papers analyze clustering equilibria. However, these
models cannot analyze the profit reducing force due to increased price competition since they
either assume that there is no price (Stahl, 1982) or that each store charges the same price
(Wolinsky, 1983). Thus, these models contain the market size effect due to taste uncertainty
(and the consumer pooling effect), but they do not have any price related effects: neither
the price cutting effect nor the market size effect due to the lower price expectation (see also
Economides and Siow, 1988, for a related mechanism). Dudey (1990) considers a (homoge-
neous commodity) Cournot oligopoly model with finite numbers of consumers and stores.
Each consumer has the same demand curve so that two consumers at the same shopping
center means the demand curve is doubled in its scale. Consumers are uninformed about
prices, but they choose the shopping center by inferring which shopping center has the lowest
prices (the market size effect due to the lower price expectation). Thus, if a store chooses
to locate alone, then the store loses all the customers since transportation costs are zero by

3See Fujita and Thisse (1996) for a nice survey of the literature. There are interesting models that explain
concentration of retail stores using quite different mechanisms. Rob (1993) uses capacity constraint and
demand uncertainty to explain concentration of restaurants. Caplin and Leahy (1998) stress the importance
of information externality in explaining a rapid (re)vitalization of a specific part of a city.

4In all of those papers including the current paper, the consumer’s search behavior plays an essential role.
For search theory, see Stigler (1961), Kohn and Shavell (1974), Stuart (1979), and Wolinsky (1986). The
original idea without search behavior can be found in Eaton and Lipsey (1979).

5



assumption.5 As a result, all stores concentrate at one location (for the case of the standard
linear demand function). Note that Dudey’s model has both the price cutting effect and the
market size effect (although it is limited to the one due to the lower price expectation). The
model closest to ours can be found in Fischer and Harrington (1996), although their main
interest is different from the other papers including ours: They are interested in interindustry
variation in the concentration of stores. They assume that there are two abstract locations:
a “cluster” and a “periphery.” Consumers can visit one of the two locations or both. If
a consumer visits the cluster, then she can get information on all stores located there at a
fixed cost. If she visit the periphery, she can search stores there at the same marginal cost
per store. Using numerical examples, Fischer and Harrington (1996) illustrate that greater
store concentration is associated with industry characterized by greater product variety in
equilibrium. It turns out that we can relate our model to theirs by introducing outside
opportunities for consumers (mail order shopping) into our model. We further discuss their
theoretical contribution (nonemptiness of equilibrium) in Subsection 6.1.

Schulz and Stahl (1996) and Gehrig (1998) are also related to our model. Both papers
utilize the taste uncertainty assumption to generate concentration of stores. Schulz and
Stahl (1996) analyze how many stores enter the market in a model with one shopping center
in which the market price increases with the number of stores, but the market size shrinks
because of the price increase (see also Rosenthal, 1980). Gehrig (1998) analyzes competition
between two shopping centers by using a spatial model. He specifically shows the existence
of an equilibrium with two symmetric clusters for certain parameter values. In contrast to
others, both papers assume that consumers know prices of commodities before searching.
Thus, each stores chooses its price knowing that her price decision affects consumers’ search
decisions (and the market size).

The common feature that these papers and ours share is our assumption regarding infor-
mation available to consumers: all of the above papers assume that consumers have imperfect
information regarding the types (and the prices) of commodities sold by stores before they
arrive the stores, which is the very source of the concentration of stores in those models. Since
Hotelling (1929), there exists a huge literature on spatial and price competition with perfect
information. However, in those models, there may not be an equilibrium in pure strategies,
or even if it exists, there is no clustering equilibrium in most cases (see d’Aspremont et. al.,
1979, and Bester et. al., 1996, among others). Stores tend to choose different locations.6

A notable exception is de Palma et al. (1985): By employing a discrete choice model (see
McFadden, 1981, and Anderson, de Palma, and Thisse, 1992), they introduce heterogeneous-
taste consumers into the Hotelling model. De Palma et. al. show that there is a clustering
equilibrium at the center even under perfect information, if consumers’ tastes are sufficiently
dispersed.7 Bester (1989) analyzes a spatial model in which a consumer and a store play a

5In his original paper (Dudey, 1989), the model contained transportation costs, but the results are essen-
tially the same as no transportation cost case (Dudey, 1990, p 1095).

6See d’Aspremont, et. al. (1979), Economides (1989) and Kats (1995) for the existence of such equilibria.
Anderson, de Palma, and Thisse (1992) has a complete literature survey.

7Note that mechanism of generating concentration of stores in the de Palma et al. model is very different
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perfect information (noncooperative) bargaining game over the transaction price by taking
the consumer’s option to search into account. In his model, no pair of stores choose the same
location since they make zero profits otherwise.

The literature on monopolistic competition is also motivationally related. Employing
monopolistically competitive markets, Dixit and Stiglitz (1977) construct a model in which
the number of commodities is endogenously determined and the more commodities are avail-
able, the higher utility levels consumers can enjoy. Using this mechanism, Krugman (1991)
and others explain geographical concentration of economic activities (see Matsuyama, 1995,
for a survey of the literature).

3 The Model

Let N = {1, 2, ..., n} be the set of stores. There is a continuum of consumers, who are
distributed over the (two-dimensional) plane Z = <2 according to a density function g :
Z → <+.8 Each store can produce one type of indivisible good at the same marginal
cost. We normalize the marginal cost to zero without loss of generality. Different stores sell
different types of goods. Each consumer buys at most one unit of at most one indivisible
commodity. Each consumer has identical ex ante preferences over the types of indivisible
goods, but ex post willingnesses-to-pay can be different. Her willingness-to-pay for the
indivisible commodity sold by each store i ∈ N (type i commodity) is simply assumed to be
a random variable vi with probability density f(v) on the interval [0, b] where 0 < b <∞, and
v1,v2, ...,vn are identically and independently distributed (i.i.d.).9 A vector (v1, v2, ..., vn)
describes that the consumer’s ex post willingness-to-pay for each commodity.10 We assume
that each consumer chooses at most one location to shop for simplicity. Although this
assumption is not the most realistic one, it simplifies our analysis dramatically. A consumer
needs to pay the commuting cost, which is linear (with coefficient t) in the Euclidean distance
from her location to the chosen shopping location.11 Although a consumer does not have
information on commodities (her willingnesses-to-pay and the prices) ex ante, once she arrives

from the one described by the market size effect due to taste uncertainty. In de Palma et al. (1985), even
though consumers’ tastes are differentiated, each consumer knows each store’s commodity type and its price
before her search. As a result, there is no benefit for stores to be close to other stores. The reason that
a concentration of store at the center of the landscape occurs is that the central location is so attractive
for stores that they want to stay there as long as competition does not bring down prices too much. Price
competition force is weakened by sufficiently dispersed consumers’ tastes.

8We use a two-dimensional spatial model in order to avoid discontinuities of profit functions (see also
footnote 14).

9We assume that the law of large numbers applies to the case of a continuum of i.i.d. random variables
(see Judd, 1985).

10The preference structure here is similar to the one in Fischer and Harrington (1996), although we do not
assume that f is uniform. Kranton and Minehart (1998) also employ a similar setup in their auction/network
paper. Bester (1992) analyzes the Bertrand equilibrium in a duopoly model with heterogenous consumers
dispersed over characteristics. De Palma et. al. (1985) employ a discrete choice model and obtain an explicit
solution.

11Results in Section 4 are not affected by assuming an increasing and convex transportation cost function.
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at a shopping center she obtains this information on all the commodities sold at the shopping
center without any additional search cost. Thus, if a consumer at location a ∈ Z goes to
location d ∈ Z and buys a type i commodity with price pi, then her payoff is vi−pi−t ‖d− a‖.

Each store can choose its location from a finite set of locations (shopping centers) D
embedded in the same location space for consumers (D ⊂ Z).12 This assumption can be
justified if there are zoning policies by the local authorities. Once stores’ location decisions
are made, their locations are described as a partition over shopping centers: (Nd)d∈D, where
Nd is the set of stores at shopping center d. Consumers can observe stores’ locations (Nd)d∈D.
The game goes as follows:13

Stage I (store’s location choice decision): Each store i ∈ N chooses its location from the
set D simultaneously.

Stage II (Consumers’ shopping location decision): Knowing (Nd)d∈D, each consumer chooses
a shopping center from D∗ = D ∪ {∅} (she shops at a shopping center in D, or decides not
to shop (choose ∅)). In making their decision, she infers the prices of commodities at d ∈ D
and calculates the expected utility from shopping at d ∈ D. Denoting the expected price of
the type i commodity by pei , the expected payoff of a consumer at a ∈ Z who shops at d
with Nd 6= ∅ can be written as:

EUa(d; (Nd′)d′∈D) = E

(
max
i∈Nd

(vi − pei )
)
− t ‖d− a‖ .

If she shops at d with Nd = ∅, then her expected payoff is EUa(d; (Nd′)d′∈D) = −t ‖d− a‖,
since she finds no store to shop there. Of course, nobody chooses this option since it is
dominated by the option of not visiting any shopping center (∅ ∈ D∗). A consumer chooses
the location d∗(a; (Nd′)d′∈D) ∈ D∗ which attains the highest expected payoff:

(i) d∗(a; (Nd′)d′∈D) = arg maxd∈D EUa(d; (Nd′)d′∈D), 14

if arg maxd∈D EUa(d; (Nd′)d′∈D) ≥ 0, and

(ii) d∗(a; (Nd′)d′∈D) = ∅,

if arg maxd∈D EUa(d; (Nd′)d′∈D) < 0 (she does not visit any shopping center).

We assume that each consumer perfectly foresees the prices when she makes the decision:
pei = pi (subgame perfection).

12We assume finiteness of D for simplicity. As we discussed in Section 1, each store’s profit function is not
quasi-concave in its location even if D is convex.

13The order of moves by players would affect the equilibrium allocation (see for example, Anderson, de
Palma, and Thisse, 1992, Dudey, 1993, and Ma and Burgess, 1993). We use our setup since it seems
reasonable for the markets we are interested in and is tractable.

14We do not need to specify the tie breaking rule. It is not important since the measure of consumers who
are indifferent between two options is zero under two dimensional spatial structure. (If the spatial structure
is one dimensional then the d’Aspremont et al. problem occurs if the transportation cost function is linear.
See d’Aspremont et al., 1979.)
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Stage III (Price competition among stores at the same location): Given the population
of consumers who shop at d ∈ D, denoted G(d; (Nd′)d′∈D) ≡

∫
{a′∈Z: d∗(a′;(Nd′ )d′∈D)=d} g(a)da,

stores in Nd decide their prices of commodities (pi)i∈Nd , and each consumer decides whether
to buy a commodity as well as the type of commodity to buy after the realization of her
willingness-to-pay (vi)i∈Nd . She buys the type i commodity only if i ∈ arg maxi∈Nd (vi − pi)
and vi−pi ≥ 0. Note that the commuting costs are sunk when consumers make their shopping
decisions.

Our equilibrium notion utilized in this paper is subgame perfect Nash equilibrium (SPNE).
In the next section, we analyze equilibria of our game.

4 Equilibria of the Game

We proceed by backward induction.

4.1 Stage III

Consider a location d in D. Since consumers have already decided which locations to visit,
the measure of consumers who visit d (the size of market at d) is already determined, and the
size of the market at d is G(d; (Nd′)d′∈D). Since firms are symmetric, we focus our attention
on symmetric Nash equilibria in the price competition (Bertrand) game. To guarantee the
existence and the uniqueness of Nash equilibria having desirable property, we impose the
following two conditions on the probability density:

Assumption 1. The probability density f is log concave.

This condition is used to guarantee the existence of an equilibrium by utilizing the
Prékopa Theorem (see Bagnoli and Bergstrom, 1989, Caplin and Nalebuff, 1991, Dierker,
1991, and Anderson, de Palma, and Thisse, 1992). It is satisfied by a variety of commonly
used probabilistic distributions.

Assumption 2. The probability density f is continuously differentiable, and satisfies f(v) >

0 and −2 ≤ vf ′(v)
f(v)

≤ 1 for every v ∈ [0, b].

This condition is more restrictive but is the simplest sufficient condition that guarantees
the uniqueness of symmetric equilibrium (the lower bound) and an inverse relationship be-
tween the number of stores and the equilibrium prices (the upper bound). These require
that f(v) does not increase or decrease too fast. Of course, the uniform distribution satisfies
Assumptions 1 and 2. Assumptions 1 and 2 will be maintained throughout the paper. The
main result of this subsection is the following:
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Let k > 0 be the number of stores at location d. There is a unique symmetric price
equilibrium at which all stores charge p∗k. Moreover, p∗k is decreasing in k (p∗k > p∗k+1 for
k > 0 ).

For the existence of a symmetric price equilibrium in stage III, we need only that vi are
identically but interdependently distributed according to a symmetric log concave density
(see Theorem A.1 in the appendix). Propositions 3, 4, and 5 (below) can be proved under
the same assumption as well. However, in order to show the uniqueness of symmetric price
equilibrium and the inverse relationship between the number of stores and the equilibrium
prices, we need independence of vis and Assumption 2.

This proposition guarantees uniqueness of the symmetric price equilibrium in the third
stage game, and shows the monotonicity of p∗k in k (the price cutting effect). The reason why
price competition does not lead stores to a zero price equilibrium can be seen in a two firm
case. See Figure 1. Even if store j is charging a very low price, store i still can make profits
by charging a higher price due to consumers’ taste uncertainty. Store i can get customers
in the shaded area of Figure 1 (vi − pi ≥ vj − pj and vi ≥ pi). This is the reason that zero
price equilibrium does not occur.15 In the following, we select this unique symmetric price
equilibrium as the outcome of each stage III subgame.16

4.2 Stage II

In this subsection, we analyze consumers’ shopping location decision (stage II) which deter-
mines the market size of each location G(d; (Nd′)d′∈D) for any d ∈ D. First, we find which
consumer can get a positive expected payoff from visiting location d, and later we consider
consumers’ choice between two locations d, d′ ∈ D. The expected utility of a consumer who
commutes to d where there are k stores is:

EUa(d; (Nd′)d′∈D) = k

∫ b

p∗k

(v − p∗k)f(v)F (v)k−1dv − t ‖d− a‖ .

Let µ(k, p∗k) ≡ k
∫ b
p∗k

(v − p∗k)f(v)F (v)k−1dv be the expected utility from shopping at a shop-

ping center with k stores (no transportation costs). Let r∗k ≡
µ(k,p∗k)

t
. It is apparent that

EUa(d; (Nd′)d′∈D) = µ(k, p∗k) − t ‖d− a‖ ≥ 0 holds if and only if ‖d− a‖ ≤ r∗k. Thus, r∗k
denotes the radius of area within which consumers can get positive expected payoffs by
shopping at d when there are k stores at d (the potential market size). The significance of r∗k
is that consumers in the circle with its center at d and with radius r∗k would potentially visit
the shopping center d unless there is another shopping center d′ which gives higher payoffs.

15See de Palma et. al. (1985) and Bester (1992) as well for the relationship between dispersed tastes and
positive markups.

16The proposition does not say that there is no asymmetric price equilibrium. If k = 2 and f is uniform,
then we can easily show that the game is a supermodular game (see Milgrom and Roberts, 1990, Vives, 1990,
and Milgrom and Shannon, 1994), and the symmetric price equilibrium is the unique equilibrium. However,
in general, we cannot make such a statement. For example, with a general density function f , we can easily
construct a game which violates supermodularity even if k = 2.

10



Thus, if all possible locations for stores are far apart from each other, the population in the
circle determines the size of the market. We are interested in how r∗k changes as k increases.
To see this, we need to see how µ(k, p∗k) changes as k increases. Actually, we can conveniently
decompose the total change of µ(k, p∗k) into two effects: the market size effects due to taste
uncertainty and due to the lower price expectation:

µ(k + 1, p∗k+1)− µ(k, p∗k) = [µ(k + 1, p∗k)− µ(k, p∗k)] + [µ(k + 1, p∗k+1)− µ(k + 1, p∗k)].

The contents of the first bracket in the above equation denote a market size effect due
to taste uncertainty, which is purely based on the consumers’ benefits from having more
variety of commodities. This effect is positive since increasing the number of options for
a fixed price raises the expected utility. This effect is also described by Stahl (1982) and
Wolinsky (1983). On the other hand, the contents of the second bracket is a market size
effect due to the lower price expectation, which is described in Dudey (1990). This
effect is also positive, since we know p∗k > p∗k+1 from Proposition 1. Consumers are attracted
by the lower equilibrium prices at more concentrated shopping centers. Thus, the (total)
market size effect (the LHS) contains these two effects discussed separately in the previous
literature. Obviously, the (total) market size effect is positive as well, and we have the
following proposition.17

The radius of potential market r∗k is increasing in the number of stores k (r∗k < r∗k+1 for
k > 0).

Potential customers of shopping center d are in the area of a circle centered at d with
radius r∗#Nd . For each d ∈ D, we can draw circles. If a ∈ Z does not belong to any circle,
consumers at a do not visit any shopping center. If a belongs to only one circle, consumers
there definitely visit that shopping center. If a belongs to multiple circles, then among the
circles to which a belongs consumers visit the shopping center d that maximizes

EUa(d; (Nd′)d′∈D) = µ(#Nd, p
∗
#Nd

)− t ‖d− a‖ = t
(
r∗#Nd − ‖d− a‖

)
.

Thus, we can describe her choice by

d∗(a; (Nd′)d′∈D) ∈ arg max
d∈D∗

t
(
r∗#Nd − ‖d− a‖

)
,

if r∗#Nd∗ ≥ ‖d
∗(a; (Nd′)d′∈D)− a‖ .

4.3 Stage I

We denote the market area covered by stores at location d ∈ D by A(d; (Nd′)d′∈D) = {a ∈ Z :
d = d∗(a; (Nd′)d′∈D)}. We also let R∗k be the profit of a store when it shares the same location
with other k− 1 stores (at the location there are k stores) and the market size is one. There

17In the case of Schulz and Stahl (1996), the market size effect due to the lower price expectation is
negative. For large ks this effect dominates the market size effect due to taste uncertainty, and the total
market size effect becomes negative.
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certainly exists a mixed strategy equilibrium in this game (in the first stage mixed strategies
are used). However, in general, it is difficult to show the nonemptiness of equilibrium in pure
strategies. Nonetheless, we can show the nonemptiness of equilibrium in pure strategies in the
following three special cases: a non-overlapped market case (Proposition 3), a two shopping
center case (Proposition 4), and the case where potential shopping centers are in a small area
(Proposition 5). Note that we do not make any assumption on distribution of consumers
g(a).

First, we state Proposition 3. To guarantee non-overlapped market structure, we define
the minimum distance between any pair of shopping centers: r̄n ≡ maxk∈{1,...,n}

(
r∗k + r∗n−k

)
(see Figure 3).

Suppose that D is a finite set which satisfies ‖d− d′‖ ≥ r̄n for any d, d′ ∈ D (d 6= d′ ).
Then, there is an SPNE in pure strategies.

Although r̄n is not a primitive, it can be uniquely calculated by utilizing unique p∗k (and
unique r∗k). We can replace r̄n by 2b

t
(a condition on primitives). It is because the expected

payoff is bounded above by b, and the radius of a shopping center is bounded above by b
t
.

The proof is based on the potential function approach developed by Rosenthal (1973).18

Unfortunately, this method applies only for the case of non-overlapped market (no interaction
between firms at d and d′ (d 6= d′)). The following proposition gives an alternative assumption
which gives us an existence theorem:

If #D = 2 (i.e., D = {d, d′}), then there is an SPNE in pure strategies.
The proof of this proposition is based on d’Aspremont et. al. (1983). The following

proposition says that there is a clustering equilibrium if the area of D is small enough (see
Figure 4).

Suppose that there is d ∈ D such that ‖d− d′‖ ≤ r∗n−1 − r∗1 for any d′ ∈ D. Then, there
is an SPNE with a cluster of stores at d (Nd = N).

Note that Proposition 5 applies even if the area is really congested. Although the cluster
of stores forces stores to cut down their prices and earn small profits, they cannot move to a
nearby shopping center. No consumer would visit a deviated store, since the cluster of stores
gives consumers higher expected utilities despite location differences. Of course, there could
be more equilibria without clustering. However, this proposition says that if the populated
area is small enough then there will be a clustering equilibrium. This proposition also says
that if there are multiple potential shopping centers that satisfy the stated condition, then
there are at least as many clustering equilibria as the number of those potential shopping
centers. Since we assume a general population density over the plane, one of the shopping
centers could be better than others in the sense that the shopping center can cover a more
populated area. This is simply a coordination problem.19 Now consider the situation that

18See also Monderer and Shapley (1996) and Konishi, Le Breton, and Weber (1998). For an application in
the field of industrial organization, see Slade (1994). Note that this proof could be extended to more general
cases such as a multiple branch case by applying Rosenthal’s (1973) technique.

19There is a huge literature on coordination problems. See Farrell and Saloner (1985), Katz and Shapiro
(1985) and Arthur (1989) for network externalities, and Cooper and John (1988) for macroeconomic appli-
cation.

12



there is another location d′′ with small population size which is far away from d. Then,
depending on the level of congestion at d, a store may want to move to d′′ instead of staying
at d with other stores.20 Thus, we may say that there is a tendency for two close shopping
centers to merge with each other, but an isolated shopping center can stay in business.

Note that the r∗k’s and r̄n are decreasing in the transportation parameter t. Thus, if t goes
down, the condition in Proposition 3 becomes less likely to be satisfied, and the condition
in Proposition 5 becomes more likely. This observation suggests us that as transportation
costs decrease, concentration of stores may become more likely.

5 Examples: Double Uniform Distribution Assump-

tion

In this section, we provide explicit calculations for a class of examples by assuming that
g : Z → <+ is uniform distribution with g(a) = 1 for any a ∈ Z. The probability density
function f is specified as uniform distribution over the interval [0, 1] (b = 1). Transportation
cost parameter t is normalized to one (t has only proportional scale effects on r∗k and Π∗k).
We consider two special cases in which the SPNE is guaranteed to be nonempty: The first
one is the case with non-overlapped markets (Proposition 3), and the other is the case with
only two potential shopping centers (Proposition 4).

5.1 Non-Overlapped Markets

In this subsection, we assume that markets of different shopping centers d, d′ ∈ D do not
overlap. This condition is satisfied, for instance, if ‖d− d′‖ ≥ 2 for any d, d′ ∈ D. Given
the uniform distribution f , we can solve for p∗k numerically (Lemma 1 below), which in turn
determines r∗k (Proposition 2). Equilibrium prices in the third stage are calculated as follows:

Under the hypotheses of this section, the equilibrium price p∗k, the market size r∗k, and

each store’s profit Π∗k =
(∫

a′∈{a∈A:‖d−a‖≤r∗k}
1da′

)
×R∗k for each k = 1, 2, ... satisfy: (i) p∗k is a

solution of −(p∗k)
k − kp∗k + 1 = 0, (ii) r∗k = k

(k+1)
(1− p∗k − (p∗k)

2), and (iii) Π∗k = π(r∗k)
2(p∗k)

2.

Moreover, the probability of no purchase (a consumer does not find a buyable commodity)
is prob(No) = (p∗k)

k .
The following table describes the equilibrium prices, the radius of the market, the equi-

librium profits, and the probability of not finding a buyable commodity for each k:

20This tendancy is observed in our numerical examples in Subsection 5.2.
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k p∗k r∗k Π∗k (×100) prob(No)
1 .5 .125 1.2272 50%
2 .41421 .27615 4.1104 17.2%
3 .32219 .4305 6.0439 3.34%
4 .24904 .55115 5.9187 0.385%
5 .19994 .6334 5.0385 0.032%
6 .16666 .69048 4.1602 -
7 .14286 .73214 3.4368 -
8 .125 .76389 2.8644 -
9 .11111 .78889 2.4137 -
10 .1 .80909 2.0566 -
13 .076923 .85165 1.3483 -
14 .071429 .8619 1.1907 -

Table 1

This table shows the trade-off between the price cutting effect and market size effect, and
describes how the concentration of stores changes the stores’ profits. We also attach a
consumer’s probability of not finding a buyable commodity (“-” in Table 1 denotes negligibly
small numbers). Uniformity of g is needed to calculate Π∗k ’s. As we know from Propositions
1 and 2, price and market size move in different directions, but the market size expands
sharply when k is small. As a result, the equilibrium profit goes up very quickly for small k’s
and attains maximum at k = 3. After that the profit starts to decline slowly. Till k = 13, the
equilibrium profit is still more than in the monopoly case. This shows that the concentration
effect is strong since stores make location decision noncooperatively. The probability that a
consumer cannot find a buyable commodity goes down very quickly with k. This suggests
that the market size effect is quite significant relative to the price cutting effect for small
number of ks.

In the following, we characterize the equilibrium store distribution structure in our special
case in order to see the implication for concentration of stores. Since markets are not
overlapped and consumers are uniformly distributed, each store’s profit is solely determined
by how many competitors are at the same shopping center. Thus, without loss of generality,
a store distribution structure can be essentially described by a list of integers {n1, n2, ..., n`},
where (i) nj > 0, (ii)

∑`
j=1 nj = n, and (iii) ` is a positive integer. Actually, it is easy to

characterize every Nash equilibrium in this particular case.
Under the hypotheses of this section, a store distribution structure {n1, n2, ..., n`} is an

equilibrium store distribution structure if and only if (i) max{n, 3} ≤ nj ≤ 13 for any
j = 1, ..., `, and (ii) |nj − nk| ≤ 1 for any j, k = 1, 2, ..., `.

The first condition says that every shopping center has the profit maximizing number
of stores (k = 3) or more if n is not less than three. The second condition asserts that
equilibrium number of stores can differ at most by one among nonempty shopping centers
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(so at most two sizes can be observed). Thus, in this particular case, we can claim that
shopping centers will be more or less homogeneous and the number of stores at each shopping
center would be no less than three (if n ≥ 3). For example, if n = 13, there could be a few
equilibria. One is a grand coalition {13}, others are {6, 7}, {4, 4, 5} and {3, 3, 3, 4}.Obviously,
the average profit is highest under {3, 3, 3, 4} and lowest under {13}. These equilibria are
therefore Pareto ranked from the stores’ perspectives. On the other hand, if n = 14, the
grand coalition vanishes, and there are only two equilibria {7, 7}, {4, 5, 5} and {3, 3, 4, 4}.
The reason why {14} is not an equilibrium is that every store has an incentive to move out
the grand coalition. Then, can {1, 13} be an equilibrium? The answer is no. Since k = 2 is
much more profitable than k = 13, a store will move from the bigger shopping center to the
smaller.

5.2 Two Potential Shopping Centers

In this subsection, we assume that there are only two potential shopping centers d and d′ but
there could be market overlap between them. Let δ be the distance between d and d′. We
first set n = 10, and find equilibria for various δs. If δ ≤ r̄10 = 2r∗5 = 1.2668, then markets
may overlap with each other. Thus, we find equilibria in the cases of δ = 0.2, 0.4, ..., 1.2.
We find only two types of equilibria: a symmetric equilibrium (each shopping center has the
same number of stores) or a clustering equilibrium (one of the shopping centers has all the
stores). There is no asymmetric non-clustering equilibrium in this example. The numbers
in the column describe each store’s equilibrium profit times 100.

δ symmetric eq clustering eq
0.2 None 2.0566
0.4 3.5149 2.0566
0.6 3.9795 2.0566
0.8 4.4007 2.0566
1.0 4.7556 2.0566
1.2 5.0021 2.0566

1.2668∼ 5.0385 2.0566

Table 2-1(n = 10)

The bottom row corresponds to the non-overlapped market case. In Table 2-1, we can make
a few observations: First, each store’s profit is higher in a symmetric equilibrium (if it exists).
It is not surprising from the profit levels of the non-overlapped market case. Second, there is
always a clustering equilibrium. It is because the number of stores is small. From Table 1,
we know that even if there is no overlap, a ten store cluster gives each store a higher profit
than standing alone (for any n ≤ 13, Π∗n > Π∗1 holds). Thus, there is no incentive for stores
to deviate from the cluster unilaterally (with overlap, a deviator may get even less than Π∗1).
Third, there is no symmetric equilibrium for δ = 0.2. This is because the number of stores is
pretty small. In a symmetric allocation, there are five stores each. If a store moves from one
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shopping center to the other, then the allocation becomes six stores and four stores. Since
the two shopping centers are very close to each other, the six store shopping center can steal
a lot of customers from the four store shopping center (see Figure 5). This is the reason
why there is no symmetric equilibrium in this case. This observation says that if the two
shopping centers are very close and the number of stores is small, then incentive for stores
to concentrate is stronger due to competition between shopping centers.

In the next table, we assume that n = 20. We focus on the case where δ ≤ r̄20 = 2r∗10 =
1.61818. Again, we find only symmetric and clustering equilibria.

δ symmetric eq clustering eq
0.2 1.1897 0.6395
0.4 1.3486 0.6395
0.6 1.5024 0.6395
0.8 1.6481 None
1.0 1.7824 None
1.2 1.9008 None
1.4 1.9967 None
1.6 2.0551 None

1.61818∼ 2.0566 None

Table 2-2(n = 20)

In this case, the number of stores is relatively large in the sense that a clustering allocation
is less attractive for each store than standing alone, and there is no clustering equilibrium in
the non-overlapped market case. There are two main differences from Table 2-1. First, there
is a symmetric equilibrium in the case of δ = 0.2. It is because a concentration of 11 stores
is not much better than a concentration of 9 stores when competing for customers. Thus,
two ten store shopping centers can coexist even when two shopping centers are very close to
each other. Second, there is no clustering equilibrium for δ more than 0.8. It is because the
clustering allocation is less attractive than standing alone. So, if the two shopping centers
are far enough from each other, then a clustering allocation cannot be supported as an
equilibrium.

We list two other cases for interested readers. First, there can be an asymmetric equilib-
rium. When n = 14 and δ = 0.2, there are three types of equilibria: a symmetric equilibrium
{7, 7} (profit: 2.0162), clustering equilibria {14, 0} (profit: 1.1907), and asymmetric equi-
libria {5, 9} (profit: 2.3186 for 5 stores, 2.0265 for 9 stores). Interestingly, an asymmetric
equilibrium Pareto-dominates a symmetric equilibrium and a clustering equilibrium in this
particular case. Second, a clustering equilibrium may survive even without the sufficient
condition in Proposition 5. By the argument in the case of n = 10, we know that a cluster-
ing equilibrium always exists when n ≤ 13. However, if n > 13 and if the sufficient condition
is violated, we do not know if a clustering equilibrium exists. The following example says
that it may. When n = 14, the sufficient condition is δ ≤ r∗13 − r∗1 = 0.7266. We find that
even if δ = 0.8, there is a clustering equilibrium in this case. It is because a deviating store
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from the cluster may not be able to attract many customers due to competition between two
shopping centers (see Figure 6). 21

6 Discussion

6.1 Outside Opportunities

In this subsection, we introduce outside opportunities such as mail order companies into the
model. The presence of outside options raises the consumer’s reservation utility, and hence
affects the concentration of stores. We model a mail order market by adopting Wolinsky’s
(1986) framework. 22 Thus, a consumer can search commodities sequentially within the
mail order market by purchasing and returning them. There is an additional transaction
cost c > 0 for each purchasing and returning such as a waiting cost and/or a mailing cost.
Our interest is how the presence of mail order shopping affects the degree of concentration of
stores. The structure of mail order market turns out to be the same as the one of Fischer and
Harrington’s (1996) periphery market. Thus, we adopt their assumptions in this subsection.
There is only one shopping center (a cluster) in the economy (D = {d}), and each consumer
has mail order purchase as an outside option (a periphery). Her willingness-to-pay is an
i.i.d. random variable drawn from a uniform distribution on [0, 1] for any commodity sold
at any store (irrespective of a mail order company or a store at the shopping center), and
she cannot realize her willingness-to-pay for a commodity before visiting center or before the
purchase if it is a mail order commodity. In the second stage of the game, each consumer
chooses one of the following options: (i) choose a shopping center to visit first (and then
move to mail order shopping if the realizations of willingnesses-to-pay are not good), (ii)
choose mail order shopping (and stay in it: do a sequential search within the mail order
market), and (iii) choose not to shop at all. If she purchase a commodity from a mail order
company then she needs to pay the transaction cost c in addition to the equilibrium price in
the mail order market p̄(c). If she returns a commodity, then p̄(c) is refunded and she only
needs to pay c at this search. Kohn and Shavell (1974) and Wolinsky (1986) show that the
optimal strategy in this mail order market is a sequential search with a fixed stopping rule.
Let R(c) be the critical value for c > 0: i.e., if the realized willingness-to-pay of the first
commodity is more than R(c), she stops searching and keeps it; otherwise she returns the
commodity and continues to search with the same critical value R(c). We have the following

21This obsevation may not be robust for a larger number of stores case, since the cluster would have
a weaker competitive power against a deviating store. Actually, if n = 20, the sufficient condition in
Proposition 5 is δ ≤ r∗19 − r∗1 = 0.772368. However, we found that for δ = 0.772369, there is already no
clustering equilibrium. It is probably because a store’s deviation would pay even if the resulting market area
for the store after the deviation is very small (the profit level being at the cluster is too low).

22In this subsection, following Fischer and Harrington (1996), we assume that a consumer can try mail
order commodities infinite times sequentially. Wolinsky (1986) actually analyzes the case where the number
of stores is finite (Anderson and Renault, 1998, as well). The result in this subsection would not be affected
much by changing this simplifying assumption. If the number of stores is finite, then ũ(c) would be pushed
down more for each c.
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results in the mail order market.
(Wolinsky, 1986) For each commodity, the critical value is R(c) = 1−

√
2c, the equilibrium

price p̄ satisfies p̄(c) = c+
√

2c, and the expected utility of trying mail order shopping given
c is ũ(c) = 1− c− 2

√
2c.

Thus, each consumer is guaranteed to get an expected utility ũ(c) by using mail order
companies (the reservation utility level). This changes our analysis slightly: Let D∗∗ ≡
{d}∪{∅}∪{M}, where M denotes the mail order option. Note that Nd = N since D = {d}.
Thus, d∗(a; (Nd′)d′∈D) and arg maxd∈D EUa(d; (Nd′)d′∈D) can be written as d∗(a) and EUa(d),
respectively. We need to modify the definition of d∗(a) ∈ D∗∗ in the following way (originally
defined in the description of the game (in Stage II)):

(i’) d∗(a) = {d},
if EUa(d) ≥ max{ũ(c), 0} (if she visits the shopping center first),

(ii’) d∗(a) = {M},
if ũ(c) ≥ 0 and EUa(d) < ũ(c) (she uses mail order shopping), and

(iii’) d∗(a) = ∅,
if ũ(c) < 0 and EUa(d) < 0 (she does not shop at all).

Note that even if a consumer chooses to shop at the shopping center, it does not mean
that she does not use mail order shopping. If she does not find a commodity that gives her
more than ũ(c) she simply does not buy any commodity at d and tries mail order shopping.
Stores at the shopping center take this possibility into account, and compete for customers.
Thus, Lemma 1 needs to be modified as follows (the proof is similar to the one of Lemma 1,
so omitted):

Suppose that ũ(c) ≥ 0. Under the hypotheses of this subsection, p∗k, r
∗
k, and Π∗k for

each k = 1, 2, ... satisfy: (i) p∗k is a solution of −(p∗k + ũ(c))k − kp∗k + 1 = 0, (ii) r∗k =
max

{
0, 1

k+1

[
k − (k + 1)p∗k − (p∗k)

k+1
]
− ũ(c)

}
, and (iii) Π∗k = π(r∗k)

2(p∗k)
2.

This modification changes the optimal number of stores at a location, namely increases
the optimal number of stores. The profit maximizing number of stores given c, k̃(c), is
described in the following table:

c ũ(c) k̃(c)
0.0279 0.5 7
0.0393 0.4 6
0.0524 0.3 5
0.0671 0.2 4
0.0834 0.1 4
0.1010 0 3

Table 3

Notice that for a relatively small c, ũ(c) is already very small. If c is more than 0.1010,
then ũ(c) < 0 follows and no consumer use mail order companies (and so the previous result
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holds, see Table 1). As c goes to zero (transaction costs of mail order become less and less
costly), r∗k and p∗k decrease. As a result, stores have more incentive to concentrate at the
same shopping center to provide greater variety of commodities to attract consumers who
could have chosen mail orders. If c ≤ 0.0279, shopping centers with less than three stores
can attract no customers. Therefore, if c = 0.0279, at least three stores need to concentrate
to compete with mail order companies, and the optimal number of stores is seven. Table 3
tells us the general tendency that the higher expected utility mail order companies offer, the
more incentives for stores to agglomerate. The introduction of a mail order option makes
possible the following: If a consumer is living at a remote location that is far from a small
city with a limited variety of stores, then she is likely to use mail orders. On the other hand,
if a consumer lives at another remote location that is far from a big city with a huge variety
of stores, then she might rather visit the city to buy commodities.

Finally, we discuss Fischer and Harrington (1996). They analyze nonemptiness of free
entry equilibrium in the model discussed in this subsection with an entry cost for each store.
In a free entry equilibrium, no store at the shopping center wants to switch to a mail order
company, and no mail order company wants to switch to a store at the shopping center.
Moreover, every store in the market obtains nonnegative profit, and no other store wants
to enter the market. Fischer and Harrington (1996) prove the nonemptiness of free entry
equilibrium by using a model similar to d’Aspremont et al. (1983). It is possible to generalize
their result to cover more general (non-uniform) willingness-to-pay distributions by utilizing
our Propositions 1 and 2.

6.2 Sequential Search Over Shopping Centers

In this paper, we have assumed that consumers can search at most one shopping center. This
is obviously an unsatisfactory assumption. There are papers that allow consumers’ sequential
search in various context (Diamond, 1971, and Anderson and Renault, 1998, among others).
However, it turns out to be a difficult task to incorporate sequential search into a model
with an explicit geographical structure when consumers are uninformed about prices and
their willingnesses-to-pay. A consumer faces multiple options after she searches a shopping
center.23 Her decision is based not only on the vector of the realized willingnesses-to-pay in
the past search, but also the location of her residence. Taking such a search behavior into
account, stores need to decide their prices given other stores’ prices. This is a complicated
decision problem.

However, we can show that there is an incentive for stores to concentrate even in such
a setting by an example. Consider a double uniform distribution example with only two
stores and assume D = Z (stores can locate anywhere: they can be as close to each other as
they want, or they can choose the same location as before). Given the distance between two
stores δ, we can calculate a symmetric equilibrium profit. If equilibrium profit is maximized

23The options are as follows: (i) she buys one of the commodities sold at the shopping center, (ii) she goes
home without buying any commodity, (iii) she continues to search elsewhere, and (iv) she goes back to one
of (already visited) shopping centers in order to buy a commodity (and goes home).
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at δ = 0, then we can say that stores have an incentive to be together. If δ is more than
1
4
, markets are not overlapped and stores get the monopoly profits Π∗1 in Table 1 (recall
r∗1 = 1

8
). If δ is less than 1

4
yet more than 1

8
, then still no consumer searches sequentially

even if she cannot find a buyable commodity at the store that she visited first. If δ is less
than 1

8
, some consumers in the middle of two stores start to search both stores sequentially

(potentially: if they could not find a buyable commodity at the first store). The region where
such consumers reside expands gradually as δ becomes smaller. When δ reaches 1

10
, every

consumer starts a sequential search potentially, and the market becomes more competitive.
As δ falls even further, the number of consumers who quit searching after visiting the first
store becomes less and less, and a consumer gets a higher expected utility from searching.
This expands the market size. Moreover, the equilibrium price must go down due to fiercer
competition, and the market size expands even more. It turns out that the market size effect
is much bigger than the price cutting effect as before (Table 1), and the equilibrium profit
is maximized at δ = 0. The equilibrium price, market size, and profit at δ = 0 are p∗2, r

∗
2

and Π∗2 in Table 1, respectively. Therefore, store’s concentration can be expected even if
consumers can visit multiple shopping centers.

6.3 Shopping Malls As an Exclusion Device24

An example in the previous section (n = 13) says that there could be many equilibria in this
game. And if n = 5, there is a unique equilibrium ({5} ), but it is not an efficient allocation
for stores. For example, the allocation {3, 2} generates higher payoffs for all stores. However,
this allocation is not an equilibrium since any store in the two store location wants to move
to the other. The main problem here is free mobility of stores, which prevents stores from
coordinating. Stahl (1982) and Dudey (1993) discuss the possibilities and impossibilities
of coordination devices. In this subsection, we discuss through our model why shopping
malls usually restrict the number of stores in the same category by using land-developers’
entrepreneurship.25

Shopping malls are owned by entrepreneurs. Thus, it is for the owners’ interest to max-
imize total rent revenue. Suppose that each store has reservation profit level Π (outside
opportunity for stores: not specified here). Then, the owner of a shopping mall can ex-
tract Π∗k − Π from each store if she admits k stores in her mall. As a result, she can earn
k × (Π∗k − Π) as rent revenue. If Π = 0, then the maximum rent revenue will be attained
by setting k = 5. However, if Π = 2, then k = 4 is optimal for her. Note that restriction on
the number of stores effectively increase the profits of stores. This relaxes the coordination
failure problem. Since the optimal number of stores for the stores at a shopping center are
in general different from the one for the owner of the shopping center, it is not easy to see
the welfare consequence. In any case, shopping malls’ standard practice of restricting the
number of the same type of stores can be justified in our framework.

24I thank Michael Manove for suggesting me the argument in this subsection.
25See Henderson (1974) for the land-developers’ entrepreneurship in the context of local public goods

economy.
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7 Appendix

7.1 Proof of Proposition 1

First, we prove the existence of a symmetric price equilibrium price p∗k for each k = 1, 2, ...
We will show that no store has an incentive to deviate from p∗k given that every other store
chooses p∗k. Since we can prove the existence of equilibrium without assuming independence
of distribution, we define the joint probability density on the space Bk = [0, b]k (k = 1, ..., n).
Let hk : Bk → <+ be probability density. We say hk(vk) is symmetric iff hk(vk) = hk(ṽk) for
any vk ∈ Bk and any permutation ṽk of vk. The second condition represents the symmetry of
probability density. Let Rk

i (pi, p) be such that the profit that store i makes from market size 1
(Thus the profit of store i at shopping center d is G(d; (Nd′)d′∈D)×Rk

i (pi, p)) when other firms
at d is choosing p and store i chooses pi, given that there are k stores at d. Given pi ∈ [0, b]
and p ∈ [0, b], the set of consumers who buy commodity i is described by Bk

i (pi, p) ≡ {vk ∈
Bk : vi ≥ pi and vi − pi ≥ vj − p for any j 6= i}. Thus, Rk

i (pi, p) = pi ×
∫
Bki (pi,p)

hk(vk)dvk.

We prove the existence of a symmetric equilibrium by utilizing Prékopa’s theorem:

The Prékopa Theorem (Prékopa (1973)). Let ψ be a probability density function on <m
with convex support C. Take any measurable sets A0 and A1 in <m with A0 ∩ C 6= ∅ and
A1 ∩C 6= ∅. For any 0 ≤ λ ≤ 1, define Aλ = (1− λ)A0 + λA1, the Minkowski average of the
two sets.26 If ψ(α) is log concave, then

log

∫
Aλ

ψ(α)dα ≥ (1− λ) log

∫
A0

ψ(α)dα + λ log

∫
A1

ψ(α)dα.

We prove the following theorem by utilizing the Prékopa theorem:

Theorem A.1. There is a symmetric price equilibrium in the third stage if hk(vk) is log
concave and has convex support on Bk and symmetric for any k = 1, 2, ... .

It is easy to see that Bk
i ((1 − λ)pi + λp′i, p) ⊇ (1 − λ)Bk

i (pi, p) + λBk
i (p′i, p) for any

p, pi, p
′
i ∈ [0, b].27 By using the Prékopa Theorem, we obtain:

log

∫
Bki ((1−λ)pi+λp′i,p)

hk(vk)dv ≥ log

∫
(1−λ)Bki (pi,p)+λBki (p′i,p)

hk(vk)dv

≥ (1− λ) log

∫
Bki (pi,p)

hk(vk)dv + λ log

∫
Bki (p′i,p)

hk(vk)dv.

Thus, we conclude that
∫
Bki (pi,p)

f(vk)dvk is log concave in pi. Since logRk
i (pi, p) = log pi +

log
∫
Bki (pi,p)

hk(vk)dv, Rk
i (pi, p) is log concave in pi as well. This implies that Rk

i (pi, p) is quasi-

concave in pi. Since hk(vk) is a density function, Rk
i (pi, p) is continuous. By the Maximum

26The Minkowski average Aλ is defined as all points of the form xλ = (1 − λ)x0 + λx1, with x0 ∈ A0,
x1 ∈ A1, and 0 ≤ λ ≤ 1.

27The first inclusion could be strict if pi < p < p′i.
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Theorem, the best response correspondence βi : [0, b] → [0, b] is upper hemi-continuous.
Quasi-concavity of Rk

i implies convex-valuedness of βi. By the Kakutani Theorem, there is
a fixed point p∗k ∈ [0, b] such that p∗k ∈ βi(p∗k).

This result is a special case of a result in Dierker (1991). We provided a simple proof of
the result in this special case. Caplin and Nalebuff’s (1991) technique is also very closely
related. The easiest reference for this result is Theorem 6.3 (and the following discussion on
page 168) in Anderson, de Palma, and Thisse (1992).

Now, we turn to the uniqueness and the inverse relationship between the number of stores
and the equilibrium prices. From here on, we need statistical independence of v1,v2, ...,vn
and Assumption 2. We derive explicit formulas for Rk

i (pi, p) . Since there is some difference
between raising the price more than others and lowering the price less than others, we analyze
these two cases separately. Let Rk+

i (pi, p) be store i’s profit given that the market size is
equal to 1 when pi ≥ p. This can be written as follows (see Figure 1):

Rk+
i (pi, p) = pi

∫ b

pi

f(vi)F (vi − (pi − p))k−1dvi,

where F (u) =
∫ u

0
f(vi)dvi. Note that F (vi−(pi − p)) denotes the probability that a consumer

prefers type i commodity than type j(6= i) commodity given that her realization of vi is
vi. Thus, F (vi − (pi − p))k−1 denotes the probability that a consumer who prefers type i
commodity to any other type at location d given that her realization of vi is vi. Next, we
consider the other case. Let Rk−

i (pi, p) be store i’s profit given that the market size is equal
to 1 when other firms at d is choosing p and store i chooses pi ≤ p. This can be written as
follows (see Figure 2):

Rk−
i (pi, p) = pi

∫ b−(p−pi)

pi

f(vi)F (vi − (pi − p))k−1dvi +

∫ b

b−(p−pi)
f(vi)dvi.

The last term shows that if vi ∈ [b − (pi − p) , b], then with probability one consumers buy

type i goods (f(vi)
∫ b
b−(p−pi) 1k−1dvi). It is easy to see that Rk+

i (p, p) = Rk−
i (p, p). Moreover,

by letting ε = pi − p go to zero we have the following:

ϕk(p) =
∂Rk+

i (pi, p)

∂pi
|pi=p

=
∂Rk−

i (pi, p)

∂pi
|pi=p

=

∫ b

p

f(v)F (v)k−1dv − pf(p)F (p)k−1 − (k − 1)p

∫ b

p

f(v)2F (v)k−2dv.

This is a continuous function in the interval [0, b]. Note that every symmetric price equi-
librium must satisfy the first order condition ϕk(p

∗
k) = 0. Thus, if ϕk(p) is a monotonic

function, then we can conclude that there is at most one p∗k with ϕk(p
∗
k) = 0, which is the
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unique candidate for a symmetric equilibrium price. From Theorem A.1, there exists a sym-
metric equilibrium price, and p∗k must be the unique symmetric equilibrium price. It is easy

to see ϕk(0) =
∫ b

0
f(v)F (v)k−1dv > 0 and ϕk(b) = −bf(b) < 0. Thus, we only need to show

that ϕk is non-increasing. Differentiating ϕk we obtain:

ϕ′k(p) = −f(p)F (p)k−1 − f(p)F (p)k−1 − pf ′(p)F (p)k−1 − (k − 1)pf(p)2F (p)k−2

−(k − 1)

∫ b

p

f(v)2F (v)k−2dv + (k − 1)pf(p)2F (p)k−2

= −2f(p)F (p)k−1 − pf ′(p)F (p)k−1 − (k − 1)

∫ b

p

f(v)2F (v)k−2dv

= −f(p)F (p)k−1

(
2 +

pf ′(p)

f(p)

)
− (k − 1)

∫ b

p

f(v)2F (v)k−2dv.

Thus, ϕ′k(p) < 0 follows for any p ∈ [0, b), since −2 ≤ pf ′(p)
f(p)

is guaranteed by Assumption 2

(ϕ′k(p) = 0 would not happen because the last term of ϕ′k(p) is negative for any p ∈ [0, b)).
Therefore, there is unique symmetric equilibrium price p∗k ∈ (0, 1) which satisfies ϕk(p

∗
k) = 0.

Finally, we show p∗k > p∗k+1 for each k = 1, 2, ... . By integrating the last term of ϕk(p
∗
k)

by parts, we obtain:

ϕk(p
∗
k) =

∫ b

p∗k

f(v)F (v)k−1dv − p∗kf(p∗k)F (p∗k)
k−1

−p∗k

{[
f(v)F (v)k−1

]b
p∗k
−
∫ b

p∗k

f ′(v)F (v)k−1dv

}

=

∫ b

p∗k

f(v)F (v)k−1dv − p∗kf(p∗k)F (p∗k)
k−1

−p∗kf(b) + p∗kf(p∗k)F (p∗k)
k−1 + p∗k

∫ b

p∗k

f ′(v)F (v)k−1dv

=

∫ b

p∗k

f(v)F (v)k−1dv + p∗k

∫ b

p∗k

f ′(v)F (v)k−1dv − p∗kf(b)

=

∫ b

p∗k

f(v)F (v)k−1

(
1− p∗kf

′(v)

f(v)

)
dv − p∗kf(b).

If we can show ϕk+1(p∗k) < 0, then we can show p∗k+1 < p∗k since ϕk+1(p) is non-increasing in
p. However, since ϕk(p

∗
k) = 0, it suffices to show ϕk+1(p∗k) < ϕk(p

∗
k). We demonstrate that

in the following:

ϕk(p
∗
k)− ϕk+1(p∗k) =

∫ b

p∗k

f(v)F (v)k−1 (1− F (v))

(
1− p∗kf

′(v)

f(v)

)
dv.
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It is easy to see that ϕk(p
∗
k)−ϕk+1(p∗k) ≥ 0 follows if 1 ≥ p∗kf

′(v)

f(v)
for any v ≥ p∗k. Assumption

2 supposes that 1 ≥ vf ′(v)
f(v)

for any v ∈ [0, b]. Thus, for any v > p∗k, 1 ≥ vf ′(v)
f(v)

>
p∗kf
′(v)

f(v)

must follow if f ′(v) > 0. If f ′(v) ≤ 0, then 1 − p∗kf
′(v)

f(v)
> 0 anyway. Therefore, we conclude

p∗k > p∗k+1. This completes the proof of Proposition 1.�

7.2 Proof of Proposition 3

Since ‖d− d′‖ ≥ r̄n for any pair d, d′ ∈ D (d 6= d′), the assumption in the statement
guarantees no overlap among market areas for any strategy configuration. This implies
A(d; (Nd′)d′∈D) = {a ∈ A : ‖d− a‖ ≤ r∗#Nd}. Given that it is easy to see that for each d ∈ D,
for each k, we can determine the profits of each store at d : Πd(k) = R∗k

∫
a∈A(d;(Nd′ )d′∈D)

g(a)da.

Let Ψ((Nd)d∈D) =
∑

d∈D
∑#Nd

k=1 Πd(k). We claim that the strategy configuration which max-
imizes Ψ is an SPNE: (N∗d )d∈D ∈ arg max(Nd)d∈D Ψ((Nd)d∈D). Suppose not. Then, there are
d′, d′′ ∈ D with d′ 6= d′′ and Πd′(#Nd′) < Πd′′(#Nd′′ + 1). Now, consider a strategy configu-
ration (N ′d)d∈D which satisfies: (i) For any d 6= d′, d′′, N ′d = N∗d , (ii) N

′

d′ = N∗d′\{i}, and (iii)
N ′d′′ = N∗d′′ ∪ {i} for some i ∈ N∗d′ . Then,

Ψ((N
′

d)d∈D) =
∑
d∈D

#N ′d∑
k=1

Πd(k)

=
∑
d∈D

#N∗d∑
k=1

Πd(k)− Πd′(#N
∗
d′) + Πd′′(#N

∗
d′′ + 1)

= Ψ((N∗d )d∈D)− Πd′(#N
∗
d′) + Πd′′(#N

∗
d′′ + 1)

> Ψ((N∗d )d∈D).

This is a contradiction to the definition of (N∗d )d∈D. Therefore, (N∗d )d∈D is an SPNE.�

7.3 Proof of Proposition 4

In this special case, the number of firms at d, say k = #Nd, describe the pattern of strategy
configurations, and payoffs are determined solely by k. The payoffs of stores at d and d′ are
described by

Π̄d(k) = R∗kF (d; (Nd, Nd′)) = R∗k

∫
a∈A(d;(Nd,Nd′ ))

g(a)da,

Π̄d′(k) = R∗n−kF (d′; (Nd, Nd′)) = R∗n−k

∫
a∈A(d′;(Nd,Nd′ ))

g(a)da,

where A(d; (Nd, Nd′)) = {a′ ∈ Z : ‖d− a′‖ ≤ r∗k, r
∗
k − ‖d− a′‖ ≥ r∗n−k − ‖d′ − a′‖}, and

A(d′; (Nd, Nd′)) = {a′ ∈ Z : ‖d′ − a′‖ ≤ r∗n−k, r
∗
n−k − ‖d′ − a′‖ ≥ r∗k − ‖d− a′‖}. Let us

consider the case where k = 0 (all stores are at d′, and no store is at d). If Π̄d′(0) ≥ Π̄d(1),
then k = 0 is an equilibrium (of the first stage of the game). Thus, we assume Π̄d′(0) < Π̄d(1).
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Now, one store is moved to d (k = 1). If Π̄d′(1) ≥ Π̄d(2), then it is an equilibrium since a store
at d does not want to move back to d′ by the assumption. Thus, we assume Π̄d′(1) < Π̄d(2).
We move one additional store to d (k = 2). Again, if Π̄d′(2) ≥ Π̄d(3), then it is an equilibrium
by the same reason, and we assume Π̄d′(2) < Π̄d(3), and so on and so forth. If all of k = 0, 1, 2,
..., n− 1 violate Π̄d′(k) ≥ Π̄d(k+ 1), then we conclude Π̄d′(n− 1) ≤ Π̄d(n). This implies that
if all stores choose d, then no store wants to deviate from the allocation. Hence, there is an
SPNE in this game.�

7.4 Proof of Proposition 5

We only need to show that if all n stores are at d, no store wants to move to any d′ 6= d
unilaterally. Suppose that store i moves to d′ alone. Then, store i’s potential market is a
circle with its center at d′ and radius r∗1. However, the shopping center d’s potential market
area is a circle with its center at d and radius r∗n−1, and the latter circle contains the former
circle. This implies that store i cannot get any customer by this move, and it does not have
an incentive to leave the cluster. Thus, there is an SPNE with a cluster at d.�

7.5 Proof of Lemma 1

We utilize the first order condition for profit maximization defined in the proof of Proposition
1. Given that b = 1 and f(v) = 1 for any v ∈ [0, 1], we can write:

ϕk(p) =

∫ 1

p

vk−1dv − ppk−1 − (k − 1)p

∫ 1

p

vk−2dv

=

[
vk

k

]1

p

− pk − p
[
vk−1

]1
p

=
1

k

(
−pk − kp+ 1

)
.

Thus, p∗k is implicitly defined by ϕk(p
∗
k) = 0 for each k. We calculate µ(k, p∗k) by utilizing

this relationship.

µ(k, p∗k) = k

∫ 1

p∗k

vk−1(v − p∗k)dv

= k

[
vk+1

k + 1
− p∗kv

k

k

]1

p∗k

= k

[
1

k + 1
− p∗k

k
− (p∗k)

k+1

k + 1
+

(p∗k)
k+1

k

]
=

k

k + 1

[
1− p∗k − (p∗k)

2
]
.
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In the last transformation, used 1
k

(
−(p∗k)

k − kp∗k + 1
)

= 0. Finally, we turn to the equilib-

rium profit Π∗k. Note that Π∗k =
(∫

a′∈{a∈A:‖d−a‖≤r∗k}
1da′

)
× (R∗k). It is easy to see the value

in the parenthesis is π(r∗k)
2. Thus, what is left is to calculate R∗k. By using the expression

in the proof of Proposition 1, we obtain:

R∗k = Rk+
i (p∗k, p

∗
k) = p∗k

∫ 1

p∗k

(v)k−1dv = p∗k

(
1− (p∗k)

k

k

)
= (p∗k)

2 .

In the last transformation, we used 1
k

(
−(p∗k)

k − kp∗k + 1
)

= 0. We completed the proof.�

7.6 Proof of Proposition 6

The proof is a variation of the one in Conley and Konishi (1998). It is easy to see that a
store distribution structure which satisfies (i) and (ii) is an equilibrium store distribution
structure. Thus, we concentrate on the other direction. First, note that the relevant range
of k is 1 ≤ k ≤ 13, since if k ≥ 14 then a store tries to be independent since Z is assumed
to be large enough. Second, notice that Π∗k is single-peaked at k = 3 in the relevant range
(actually, it is globally single-peaked). Third, Π∗k increases in k very quickly till k ≤ 3 and
goes down slowly. By using these observations, we will characterize the set of equilibria.
Since it is trivial to see the statement is true for n < 3, we assume n ≥ 3 in the following.

We claim that there are at most two sizes of shopping centers in an equilibrium. Suppose
that there are three sizes k < k′ < k′′. If k ≥ 3, then a store in a size k′′ shopping center
joins a size k shopping center. Thus, it cannot happen in the equilibrium. Thus, k < 3
holds. First, let us assume that k = 2. Then, k′′ ≥ 4 must hold. As a result, a store in
a size k′′ shopping center joins a size k shopping center. This implies k = 1. However,
since a firm in a size k shopping center does not move to a size k′ shopping center, we have
Π∗1 ≥ Π∗k′+1 ≥ Π∗k′′ . Since we know Π∗2 > Π∗1, we conclude Π∗2 > Π∗k′′ , and a store in a size k′′

shopping center joins a size k shopping center. This is a contradiction. Hence, there are at
most two sizes of shopping centers.

Now, let these two sizes be k, k′ with k < k′. We only need to show (1) k ≥ 3 and (2)
k′ = k + 1 to show (i) and (ii). For (1), let us assume k < 3. Since stores have no incentive
to move, Π∗k ≥ Π∗k′+1 and Π∗k+1 ≤ Π∗k′ hold. However, since k < 3, we have Π∗k < Π∗k+1. Thus,
Π∗k′+1 ≤ Π∗k < Π∗k+1 ≤ Π∗k′ must hold. However, since profits increase very quickly until 3
and decrease slowly after that (see Table 1), we cannot find any k < 3 and k′ ≥ 3 which
satisfies these inequalities. Hence, (1) is proved. It is easy to see that (2) holds given (1):
Suppose that k < k + 1 < k′. By (1), we know Π∗k > Π∗k+1 > Π∗k′ . Thus, a store in a size k′

shopping center moves to a size k shopping center.�
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7.7 Proof of Lemma 2

For each commodity, the critical value is always R(c), implicitly defined in the following
equation (see Kohn and Shavell (1974) and Wolinsky (1986)):∫ 1

R(c)

(v −R(c)) dv = c.

By solving this equation, we obtain R(c) = 1−
√

2c. Given this, Wolinsky (1986) finds that
the equilibrium price p̄ is solved as follows (his Proposition):

p̄(c) = c+ (1−R(c)) = c+
√

2c.

The expected utility given c is:

ũ(c) = −p̄(c) +

(∫ 1

R(c)

vdv − c
)

+R(c)

(∫ 1

R(c)

vdv − c
)

+R(c)2

(∫ 1

R(c)

vdv − c
)

+ ...

= −p̄(c) +
1

1−R(c)

(∫ 1

R(c)

vdv − c
)

= −p̄(c) +
R(c)−R(c)2

1−R(c)

= −p̄(c) +R(c)

= 1− c− 2
√

2c.

We have completed the proof.�
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