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Many cities are located on rivers or coasts. This paper argues that such cities de-
veloped as transportation hubs or markets for interregional trade, since these locations
provide better access (lower marginal transportation costs) to other regions. Local
products are collected at such hubs, and interregional trade then takes place among
these transportation hubs. As the volume of trade between hubs increases, more work-
ers are needed in order to meet labor demand for shipping and handling commodities,
resulting in population agglomeration at such hubs. This paper constructs a simple
three location-identical consumer model, in which transportation hub and population
agglomeration emerge endogenously. In contrast with much of the literature on city
formation, we introduce no economies of scale into the model. Markets are assumed
to be perfectly competitive and complete. Since prices are determined in equilibrium,
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1 Introduction

transportation costs and routes are simultaneously determined in the system. Popu-
lation agglomeration occurs solely because of location-speci*c production technologies
(which generates gains from trade) and the differences in transportation technologies
among locations (which determines the transportation routes). It is shown that a hub
city emerges when transportation technologies are heterogeneous enough.

Jacobs (1969) and Glaeser et. al. (1992) among others assert that Marshallian externalities across
industries (urbanization economies) are important. On the other hand, Henderson (1974, 1988) stresses the
importance of Marshallian externalities within industries (localization economies).

Of course, there are many other cities developed as transshipment centers. For example, many Mediter-
ranean cities such as Venice, Barcelona, and Marseille prospered as interregional trade centers (between
Middle East and Europe) based on their harbors in the Medieval times. Osaka in Japan is another good
example.

Atack and Passell (1994) report the costs of different transportation media in 1860 (Table 6.3). Cost per
ton-mile for different media are as follows: road 15.00 or more, the Mississippi River 0.37, the Erie Canal
0.99, the Great Lakes 0.10, and the New York Central (railroad) 2.06.

Before the Erie Canal (that connects Lake Erie and the Hudson River) was in operation (1825), the main

Recently, the theory of endogenous city formation has attracted signi*cant attention. Fu-
jita and Ogawa (1982), Abdel-Rahman (1988), Krugman (1991a), Krugman (1991b), and
Fujita, Mori and Krugman (1995) stress the importance of scale economies (and/or demand
externalities) in explaining population agglomeration by using monopolistic competition
models. More generally, Fujita and Thisse (1996) provide a survey of the whole literature
on the agglomeration of economic activities generated by various kinds of positive external-
ities. In these models, homogeneity of locations are usually assumed, and the locations of
cities are determined by scale economies and transportation costs. Such models typically
lead to multiple equilibria, and the locations of cities are often determined by historical
accidents.

In real life, however, we often *nd that cities arise near rivers and coasts. It seems
that many of these cities developed as transportation hubs or markets for interregional
trade, since these locations provided better access to other regions. Thus, the geographical
features of locations (differences in transportation costs relative to other regions) play an
important role in determining the locations of cities (Atack and Passell (1994): Chapter 6).
Cronon (1991) discusses how advantages in transportation costs to the East made Chicago
a commercial and transshipment center in the 19th century Midwest region of the United
States (Cronon (1991): Chapter 2).

This paper tries to explain where and how a hub city emerges. In the mid-19th century,
many cities in the Midwest developed essentially as Jgateway citiesK: that is, these cities
imported manufacturing commodities from the East Coast, and exported the regional
agricultural products to the East Coast such as corn, wheat, and lumber. Chicago serves
as an excellent example (see Cronon (1991)). Chicago had cheap access to New York
through waterways because of the Great Lakes and the Erie Canal. Thus, for farmers in
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Illinois, it was bene*cial to send their harvest to Chicago, since they could get more cash
there. In the late 1840s, Chicago started to develop local railroad links and the Chicago-
La Salle Canal (between the Illinois and Lake Michigan), and by the end of 1850s Chicago
became the hub of railroad spokes in the Midwest. As a result, Chicago obtained great
advantages in transportation technologies locally as well as interregionally. In the large
area of the Midwest, it became much more attractive to send commodities via Chicago
instead of other cities such as St. Louis. Huge amount of crops and lumber in the Midwest
Lowed into Chicago by local railroads, and were transshipped into sailboats bound for
the East Coast (later, to the New York Central (railroad), especially in winters). As the
volume of commodity transportation through Chicago increased, the numbers of workers
and merchants increased as well, thus making Chicago an isolated giant in the Midwest.

The mechanism generating population agglomeration at hub cities such as Chicago may
be described in the following way: There are potentially two ways to send commodities
from one location to another. One way is to send commodities directly, and another way
is to send commodities indirectly through a third location. If the transportation costs
are homogeneous, it is not bene*cial to use an indirect route. On the other hand, if it is
cheaper to send commodities via a third location instead of sending them directly to the
destination, the volume of commodities transported through the third location increases.
As a result, more workers are needed at that location in order to meet labor demand for
transshipping and handling commodities, resulting in population agglomeration at such a
location. We call this location a in this paper.

This paper intends to explain the emergence of a hub city by using a general equilibrium
model with multiple locations in which transportation activities are explicitly modelled.

3

transportation route between the East Coast and the Midwest was through the ocean and the Mississippi
(via New Orleans), since the ground transportation was prohibitively expensive due to poor road conditions
(see Atack and Passell (1994)). The Erie Canal made the Midwest much closer to the East Coast than
before.

Cronon describes this as follows: -The farmers chose Chicago as their destination because they received
more cash for their crops there, and because they could buy more and better supplies at lower prices. River
towns in the interior M Peoria, Spring*eld, Vincennes, even St. Louis M did not have the cheap lake
transportation to the east that gave Chicago its price advantage. ... Lester Harding reported in October
1847 that Chicago prices were J70 for spring and 80 to 85 for winter wheat,K compared with *fty cents
back home in Paw Paw, Illinois. JFarmers,K he said Jcannot grumble at these prices. ... There can be no
better [market] any where in the Union.K 0 (Cronon (1991), page 60).

In 1820, Chicago had only one quarter of the population of St. Louis (before the Erie Canal was open).
However, in 1890, Chicago had over one million people, which was three times the population of St. Louis.

The term JhubK is used in various contexts in the literature. Hendricks, Piccione, and Tan (1995)
and Starr and Stinchcombe (1992) characterize the pro*t maximizing transportation network choice in a
monopolistic air carrierKs route choice problem. They show that a hub-spoke network is optimal under
some conditions. Krugman (1991c) analyzes the relationship between concentration of manufacturing and
transportation cost advantage in the context of international trade (no labor mobility). He *nds that if
a location has transportation cost advantage then the portion of workers who engage in manufacturing at
the location increases. He calls this concentration of the manufacturing sector, the JhubK effect. Mori and
Nishikimi (1998) analyze the evolution of a transportation hub location by assuming scale economies in
transportation. In all the above models, consumers are not allowed to move implicitly or explicitly.
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Formally, transportation activities can be regarded as production activities (see Schweizer, Varaiya, and
Hartwick (1976)). In an economy with multiple locations, physically the same commodities at different
locations must be regarded as different commodities (see Debreu (1954)). Sending wheat from Chicago to
New York by using Chicago transportation workers can be interpreted as producing Jwheat in New YorkK
from Jwheat in ChicagoK and Jlabor in ChicagoK by using transportation technologies. Thus, transportation
costs (the payments for workers) are endogenously determined by transportation technologies and the wage
rates.

Ideally speaking, transportation technologies should be determined endogenously within the model since
some transportation systems are provided by the governments as public infrastructure (such as the Erie Canal
and federally subsidized railroad links). In this paper, however, we assume that transportation technologies
are exogenously determined to focus on the transportation route selection in equilibrium. Berliant and
Konishi (1994) try to endogenize transportation system in an economy by using a collective choice mechanism
(the JcoreK allocation) given consumersK mobility.

Note that three is the minimum number which can generate a transportation hub.

We assume that transportation activities require labor input to capture the mechanism
described above. It is to use a general equilibrium approach for the following
reasons: To explain the emergence of a hub city, heterogeneous transportation costs are
necessary, since they determine the transportation routes, and so the population distrib-
utions. However, transportation costs are not exogenous parameters. Since transporta-
tion activities require labor input, transportation costs are determined by transportation
technologies as well as wage rates (input prices). But wage rates are in turn determined
endogenously. Therefore, the transportation route, the locations of hubs, population distri-
bution as well as the prices and transportation costs need to be determined simultaneously
within a general equilibrium model.

This paper develops the simplest possible model that can generate a hub city. Trans-
portation technologies are given as economic data, and we analyze which transportation
route is selected as the cheapest route and where and how a hub city emerges in equilib-
rium. The model does not introduce any kind of increasing returns to scale technologies in
production and transportation, and assumes perfectly competitive and complete markets
to focus only on the role of heterogeneity of transportation technologies in population ag-
glomeration. The structure of the model is as follows: There are three locations (called
location 1, 2, and 3) and identical atomless consumers in the economy. Consumers
provide labor and consume commodities, and they can choose their locations freely. To
transport one unit of a commodity from one location to another, a constant amount of

(at the originating location) is required as input. Because of this, a rise in the volume
of commodity transportation through a location results in an increase in the population
at that location. This assumption is crucial in generating a hub city. If we assume that
transportation costs are paid by the transported commodity itself (the commodity melts
away during the transportation: the so-called Samuelson JicebergK transportation costs),
then even if the amount of commodities transported through a hub location becomes large,
the population there does not increase since the demand for transportation workers at the
hub location does not go up. To introduce gains from trade, we assume that different
commodities are produced at different locations (location-speci*c production): that is, if
a consumer decides to live at a location, she can only produce the commodity which is
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It seems important to discuss the relationship with StarrettKs (1978) Jspatial impossibility theoremK.
Starrett asserted that if there are complete markets at every location, perfectly competitive markets,

no moving cost, no externalities, and locations are homogeneous, then there will not be agglom-
eration in economic activities. In our model, only condition is violated due to location-speci*c production
technologies. Externality models usually violate conditions and . Previous competitive model such
as Berliant and Wang (1993), Wang (1993), Ellickson and Zame (1991, 1994), and Berliant and Konishi
(1994) violate at least conditions and . Thus, this paper clari*es how far we can go by violating only
condition . Fujita (1990) provides a nice survey on the literature on this theorem.

If these symmetries are lost, it is obvious that efficiencies of production technologies and preferences
over commodities affect population agglomeration: i.e., if commodity speci*c to a location is produced by
an inefficient technology (the labor coefficient is large), and if consumers prefer the commodity to other
commodities, then population agglomeration occurs at that location.

speci*c to her location or can engage in the transportation of commodities departing from
that location. We assume that one unit of each commodity is produced by one unit
of labor, and consumers value these three commodities symmetrically. These symmetry
assumptions are made in order to focus only on the effect of heterogenous transportation
technologies.

We begin our analysis with the case where the transportation technologies between
any pair of locations are the same. Of course, in this case, the population distribution at
each location is completely symmetric, and commodities are traded directly between any
pair of two locations (the -no hub0 route: see Figure 1). We then reduce the labor input
coefficients for transportation between locations 1 and 2 and between locations 1 and 3
at the same rate, while keeping the labor input coefficient for the transportation between
locations 2 and 3 constant. Thus, we give location 1 an advantage in transportation
technologies. If these reductions in the coefficients are small, then the no-hub route is still
used. However, if the coefficients are reduced sufficiently, then the transportation route
switches from the no-hub to the hub route (see Figure 2). That is, at some point, there is a
switch in transportation route, resulting in a jump in the population at location 1. We call
this effect the Jhub effectK in population agglomeration. We can show that the switch from
the no-hub route to the hub route occurs once and only once in the process of improving the
transportation technology at location 1 (Proposition 5). This is the main analytical result
of the paper, and this property is useful for the computations of equilibria in numerical
examples. We can also show that the population at the hub location is actually higher
than that of other locations (a hub JcityK) if the utility function belongs to the class of
CES functions (Proposition 6). Changes in population distribution and the magnitude
of hub effects are presented by numerical examples of CES utility functions with various
elasticities of substitution. It is observed that as the elasticity of substitution goes up
the population at the hub location increases, and as handling cost for transshipment
service increases, the population at the hub location increases.

Although the structure of the model is simple, we need to develop several technical
innovations to prove our results. Since there are transportation costs in the economy,
the prices of goods differ across locations even if these goods are physically identical. As
a result, there are twelve goods (labor, commodities 1, 2, and 3, one for each location)

5



j

was

1 2 3

∈ { }

13

14

13

14

2 The Model

1 2 3 1 2 3

+ + = 1

1 2 3

, , , ,

N N N ,

N j
j , ,

j

j j
j

Kim (1996) stresses that the establishment of wholesale markets played an important role in the de-
velopment of big cities. Since the approach in this paper explicitly deals with commodity Lows, his idea
together with our model may be used to explain the development of cities.

For example, Albany and Buffalo were very big cities when the Erie Canal was the cheaper mode of
transportation. However, later as railroads and highways became dominant, these cities shrunk in size.

in the economy. Moreover, due to price differences, a consumerKs behavior is dependent
upon location although we assume identical consumers. Thus, in some senses, it is a
heterogeneous agent model. Finally, we have highly nonlinear restrictions due to free
mobility of consumers: at each location, consumers need to attain the same utility levels.
We overcome these obstacles by utilizing some special features of the model.

Scale economies and demand externalities à la Krugman may be the main factors be-
hind economic agglomeration especially in modern society. Due to technological progress,
heterogeneity of transportation costs among locations also seem much less signi*cant now.
What we claim here is that heterogeneity of transportation costs essential in determin-
ing the initial value of the dynamic system of population agglomeration. Thus, this paper
complements the city formation literature with scale economies (see also a recent textbook
by Bogart (1997)). Fujita and Mori (1996) analyze the Jlock-inK effects of Jport citiesK by
using a monopolistic competition model: i.e., port cities may remain to be big cities even
after harbors became less important due to an improvement in the transportation system.
The hub effect plants the Jseeds of citiesK, and the other factors (such as demand external-
ities) stressed by recent literature determine the (current) city structure in a country (or a
region). Some cities take off and become metropolises (as Chicago), while others decline
after they lose advantage in transportation technologies. For the possibility of combining
the model in this paper with those models, see the concluding remarks.

Section 2 describes the model. Section 3 studies properties of equilibria. Section 4 pro-
vides numerical examples by using the family of CES utility functions. Section 5 concludes
the paper. Section 6 collects all the proofs of the propositions stated in Section 3.

There are three locations in the economy { } and three commodities { }. There is
a unit mass of identical (atomless) consumers. Each consumer can move without cost, but
she has to choose one location as her residence. Population distribution needs to satisfy
the following equation:

(1)

where denotes population at location . A consumer is endowed with one unit of labor
irrelevant of her residence. However, if she chooses location , then she can work
only at location . Thus, formally, labor in different locations is labor of different types,
and each consumerKs endowment is dependent on her choice of location. In other words,
if a consumer chooses location , then her endowment is one unit of labor at location .
To describe location-speci*c production technology, we assume that commodity can be
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This assumption is made for the sake of simplicity. We can assume that labor at both and is used
in transporting commodities from and with any *xed coefficients.

We introduce transshipping (handling) costs to explain mercantile cities.
The formal de*nitions are as follows: : for any , for any

such that holds. : for any such that
, , where means for any . : for any
, for any , . : for any with for some
, the set has a unique support at any boundary point. In our context,

the differentiability of means that the underlying preference by is (see
Mas-Colell, Whinston, and Green (1995): page 94). This assumption simply says that the utility function
is second-order differentiable and the Hessian matrix is negative de*nite at any . Thus, actually,

implies that is strictly quasi-concave. The CES utility functions satisfy
these restrictions except for the linear ( ) and the Leontief ( ) utility functions.

produced only at location . Production at each location exhibits constant returns to scale:
One unit of commodity is produced by one unit of labor at location . Commodities
can be transported across locations by using labor. Transportation of one unit of (any)
commodity from location to location requires units of labor at location . For
simplicity, we assume that . Commodity transportation from location to via
location requires labor input at location for transaction purposes, in addition to labor
inputs at locations and for transportation purposes. In such a case, for each unit of
commodity, units of labor are also needed at location as transaction costs. Transaction
costs could be thought of as handling costs at railroad stations, harbors, or marketplaces.
Commodity and labor markets in the economy are complete. That is, at each location,
there are markets for labor and all commodities. However, since there are transportation
costs, the price of a commodity at location differs from the price at location . The
commodity price vector at location is denoted by , where represents the
price of commodity at location . Throughout the paper, superscripts denote locations
and subscripts denote commodities. Since one unit of commodity is produced by one
unit of labor at location , the wage rate at location , , satis*es . As a result,
consumers choose their locations and consumption bundles by observing .

A consumerKs utility function is , where denotes the amount of con-
sumption of commodity . A consumerKs utility function is not affected by her location
choice, we assume that her consumption takes place at her location only: i.e., even if she
is a transportation worker and travels, she buys and consumes her consumption bundle
only at her location. Since we want to treat every commodity symmetrically, we assume
that is symmetric (i.e., for any for any

with and ). To obtain clear-cut analytical results, we assume
that is strictly quasi-concave, monotonic, linearly homogeneous, differentiable in
a suitable sense, and satis*es (weak) boundary conditions. The boundary conditions
together with monotonicity require that a consumer consumes a positive amount of every
commodity to get positive utility, which guarantees gains from trade.

Our analysis below proceeds in the following way. For analytical simplicity, we will let
locations 2 and 3 be symmetric ( ), since our focus is primarily to show that a
transportation hub emerges and population agglomeration occurs if transportation tech-
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The symmetry between locations 2 and 3 simpli*es our analysis. If this assumption is dropped, the
uniqueness result in Proposition 5 could be lost in general even if the utility function satis*es the nice
properties listed above. As a result, we need to deal with multiple equilibrium problem, and we will not be
able to provide clear-cut analytical results even though quantitatively similar results may be obtained.

Note that an indirect route will not be used in transporting commodity 1 from location 1 to location 2
or 3. It is because holds: an indirect route is simply more costly.

nologies are heterogeneous enough. We start with the completely symmetric case where
, and reduce (denoted by ) simultaneously, yet is kept

constant at . Thus, locations 2 and 3 are always in a symmetric situation. Next, we
investigate how improvement in the transportation technology at location 1 affects the
equilibrium allocation (prices and population distribution). We show that at some point
in the process of the transportation technology improvement, the population at location
1 jumps up due to the change in the transportation route (from the no-hub route to the
hub route: a hub effect).

In this section, we study the properties of equilibrium. First of all, the strict quasi-
concavity of implies that consumersK consumption vectors are the same if they live at
the same location. This property is useful to de*ne an equilibrium. Let
and for any , and let , where ( ) is the
ratio of the amount of commodity sent from to ( , and ) via location 1
to the total amount of commodity sent from to . At each location , a consumer
maximizes her utility given the price vector at :

s.t. for any (2)

If a consumer chooses location , then she earns and she faces the commodity
price vector . Since in the equilibrium nobody wants to move to another
location, the utility levels at three locations are the same, and this is expressed by the
following condition:

(3)

The speci*cation of our production and transportation technologies require price arbitrage
conditions. Since commodity 1 is sent to locations 2 and 3 directly and commodities 2 and
3 are also sent to location 1 directly, we have the following conditions:

(4)

The *rst condition can be interpreted as follows: Recall that
due to the speci*cation of our production

technology. To provide one unit of commodity 2 at location 1, we need for production
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(1 unit of labor at location 2) and for transportation ( units of labor at location 2).
In total, we need to pay for commodity 2 at location 1. Other two conditions are
interpreted similarly. The following conditions are for the rest of the cases:

(5)

where and . These conditions simply say that the cheaper transportation
route determines the price of commodity 2 (3) at location 3 (2). The *rst element in the
brace of equation (5) represents the price of commodity at when the no-hub route is
used, while the second element represents the price of commodity at when the hub
route is used. For the latter case, the production cost is , the transportation cost from
location to 1 is , the handling cost at location 1 is , and the transportation
cost from location 1 to is . Summing them up, we obtain . The
following equations describe the restrictions on the choices of transportation routes due to
the relative costs of two routes:

if (6)

if (7)

if (8)

where and . There three conditions say that we have if the no-hub
route is strictly better than the hub route for commodity transportation, and if
the hub route is strictly better than the no-hub route for commodity transportation. We
can have an interior , only when both routes minimize transportation costs.
Finally, we describe labor market clearing condition at each location. The condition at
location 1 is:

(9)

The of equation (9) represents the labor supply at location 1: there are consumers
at location 1, and the labor supply at 1 is . The of equation (9) represents the
labor demand at location 1. There are two types of labor demand: labor demand for the
production of commodity 1 and that for the transportation of commodities. To satisfy the
former demand, we need units of labor. The latter demand again
consists of two types: the labor required to transport commodity 1 to locations 2 and
3, and the labor required to transport and handle commodities from locations 2 and 3
to locations 3 and 2, respectively. The second type of labor demand shows up only when
location 1 becomes a transportation hub ( ). To transport one unit of commodity
1 from location 1 to ( ), units of labor is needed. As a result,
units of labor are needed for the transportation of commodity 1 (type ). Similarly,

units of labor are needed for the handling and transportation
of commodities 2 and 3 (type ). By summing these terms up, we can get the
of equation (9). The following two equations (10) and (11 ) represent the labor market

9
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= 0 = (1 + �) (1 + ) + ( + )�
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We can prove the equivalence between the core and the equilibrium, which is a much stronger result
than the *rst welfare theorem. However, in this paper, we only need to utilize the *rst welfare theorem.

An equilibrium

There exists an equilibrium in the economy for any , and every
equilibrium is Pareto efficient.

symmetric in consumption and price vectors

symmetric

Locations 2 and 3 are symmetric in consumption and price vectors in
every equilibrium. Moreover, even if and in an equilibrium, there exists
an equilibrium in which locations 2 and 3 are symmetric.

A symmetric equilibrium

clearing conditions at locations 2 and 3, respectively. These equations can be interpreted
similarly:

(10)

(11)

is a list , which satis*es condi-
tions (2)-(11) together with condition (1): The following proposition gives us the founda-
tions of our analysis.

We say that locations 2 and 3 are in an
equilibrium, if and only if , , , , and
. We say that locations 2 and 3 are in an equilibrium, if and only if locations
2 and 3 are symmetric in consumption and price vectors, and moreover , and

. The following result simpli*es the analysis greatly:

This proposition asserts that in every equilibrium locations 2 and 3 are symmetric
in consumption and price vectors under symmetric transportation costs ( ), and
if either the no-hub route or the hub route is exclusively used (not mixed), then the
equilibrium is symmetric in locations 2 and 3. Moreover, even if there is an asymmetric
mixed equilibrium, there always exists a symmetric equilibrium. This gives us a strong
justi*cation to study only symmetric equilibria. We can de*ne a symmetric equilibrium
(in locations 2 and 3) by using the symmetry conditions: (at
locations 2 and 3) is a list , which satis*es the following conditions:

s.t. for any (12)

(13)

(14)

(15)

if (16)

if (17)
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Suppose that in an equilibrium ,
is satis*ed. Then, for any composes an

equilibrium for some .

For any , holds in the equilibrium.

essentially
unique

Actually there are equilibria in which locations 2 and 3 are not symmetric in population and . There
exists a continuum of equilibria with any combination of and (with the same consumption and price
vectors).

Note that we assume that there is no land in the model for simplicity, so consumers do not value land.
This is the reason that the wage rates in cities are lower than the ones in rural area. This result is common to
models with no land in utility (see Fujita and Mori (1996) and Fujita, Krugman, and Mori (1995)). In cities,
rents are much higher than in rural area, and the residents in cities need higher wages to be compensated.
If rent payments are subtracted, the city wage rates may be lower than the rural wage rates.

if (18)

(19)

(20)

where , and . The next proposition states that there will be a
continuum of equilibria with various population distributions, if the costs of the no hub
and the hub routes are the same. More precisely, the proposition states that if there is
a mixed equilibrium ( ) for some , then there are no-hub and hub
equilibria, and mixed equilibria with any combination of the two transportation routes
for the same price vectors and the same commodity consumption vectors. Note that the
equilibrium consumption vectors differ from location to location. Thus, it is not obvious
that the same consumption (and price) vectors still compose an equilibrium for a different
transportation route, since a switch in transportation routes changes labor demand at each
location, resulting in a different population distribution.

The following proposition asserts that the wage rate at location 1 is always lower than
the wage rates at other locations (Note that and are also the wage rates at location 1
and locations 2 and 3, respectively). Due to the advantage in transportation technologies,
location 1 is more attractive for consumers. However, the boundary conditions require that
each location has a positive population. Thus, the wage rate must be lower at location 1
than at other locations.

The following proposition is the main result of this paper, and gives us a full character-
ization of the equilibrium set of the economy. This result and the method of the proof are
crucial to the numerical analysis in the next section. We say that equilibrium is

if and only if every equilibrium in the economy has the same price and consumption
vectors (when is normalized).
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4 Numerical Examples
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Proposition 5

Proposition 6
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N > t , t x x
x x

� 1 (0 �)
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( ) =

[0 1]
( ) [0 )
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=
=

=

(0 )

( ) = ( + + ) 1 = 1

s t s t , t

i t t , t
ii t t

� ,
iii t , t

t t
t t t

t t

N
N

N N
t t

t , t N >

N
N

U x , x , x x x x � < �

Note that if , then holds. It is because holds at , and
Proposition 4 asserts .

It seems that the shape (curvatures) of an indifference curve matters in general for this result. However,
to get for , it is to have in the equilibrium (see Lemma 6 in the appendix).
Actually, a CES utility function guarantees .

Suppose that and hold. Then, there exists which
satis*es the following:

for any , the equilibrium is unique and uses the no-hub route exclusively,
for , there exists an equilibrium for any combination of the hub and the no-hub

routes (for any ) and the equilibrium is essentially unique, and
for any , the equilibrium is unique and uses the hub route exclusively.

once for all
unique

Suppose that the utility function belongs to the family of CES functions.
Then, for any , in the equilibrium.

This proposition has some interesting and somewhat surprising implications. First,
when we reduce from to zero, the equilibrium transportation routes jump from the
no-hub to the hub route at . Second, unless , the equilibrium is

and either the no-hub route or the hub route is used exclusively. Third, at
any kind of mix of the two transportation routes (including nonmixed routes) composes
an equilibrium for the same consumption and price vectors. In such cases, population at
location 1 can be anything between (the population at location 1 under the no-hub
route) and (the population at location 1 under the hub route). Since it is easy to
see that is smaller than (given the same consumption vectors), it follows that the
population at location 1 jumps up at . Thus, we can say that a switch from the
no-hub to the hub route generally increases the population at location 1. This effect can
be called a Jhub effectK. Next proposition shows that if the utility function belongs to
the family of CES functions, the hub location actually has more population than other
locations (a hub JcityK).

Since the total population in the economy is one, is more than means that location
1 has more population than other locations. Although it is in general unknown if is
more than even when the hub route is used, it seems that the same result applies for
a much wider class of utility functions. In the following section, we provide numerical
examples for cases in which the utility function is a CES function.

Even though we imposed nice properties on the utility function, it is still difficult to
obtain comparative static results analytically due to the complex structure of the model.
Thus, in this section, we provide several numerical examples using the family of CES
utility functions: i.e., , where ( means the

12
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At the economy goes back to the classical one by using the hub route since is set at , and
holds. At the three locations are completely symmetric, and holds.

utility function is linear and the (weak) boundary conditions are violated). We use the
expenditure functions and the compensated demand functions to calculate the equilibrium.
This approach is especially convenient since condition (13) requires that the utility level
must be the same at all locations. The equilibrium systems are described by equations (23)-
(25) for the no-hub case, and by equations (27)-(29) for the hub case. (See the appendix).
From Propositions 1 (the *rst welfare theorem) and 5, the resulting utility levels in these
two cases are equal at , and for the hub route is used while for the no-hub
route is used. Thus, by calculating the equilibria in the two economies with the routes
*xed, we can determine equilibrium allocations in our original economy. First, we analyze
how the equilibrium population at location 1 depends upon the value of and the elasticity
of substitutions by setting to give the least chance for population agglomeration
at the hub. We then provide an example with a positive , and check how population at
the hub is affected by *xing at zero (Cobb-Douglas utility function).

The exercises are described as follows: We set the parameter values at and
, and we investigate how equilibrium changes by changing from to . We

provide examples for (Leontief) (Cobb-Douglas), and (see Figures
3-7). In each *gure, the circled, the crossed, and the solid curves represent the no-hub
route, hub route, and the actual equilibria, respectively. Obviously, at or ,
the population at location 1, , is . In each case, and jumps up by
about (the hub effect). The population at when the hub route is used increases
monotonically with the value of . However, the sign of population change when we reduce
is different when the no-hub route is used ( ). If , then goes down, and
if increases by a reduction of . When , the population is constant
at location 1. This is because of the following reasons. Since the transportation costs go
down, the transportation sector does not demand as much labor at location 1 as before.
This reduces the population at location 1. We may call this due to
the reduction in transportation cost. On the other hand, there is at
work since commodity 1 becomes relatively cheap at all locations due to a reduction in
(see Proposition 4). The magnitude of this effect is related to the elasticity of substitution.
Thus, increases or decreases depending on the relative magnitudes of

and . When , the labor saving effect dominates,
resulting in a reduction in . In particular, if (Leontief), the substitution effect
vanishes, and only the labor saving effect is present. When , the opposite is true,
resulting in an increase in . As a result, at is increasing in . When ,

at , and location 1 has 33% more population than other locations.
Finally, we brieLy describe the effect of increasing the value of by an example ( :

see Figures 8) in the Cobb-Douglas utility case ( ). We observe that goes down as
increases. Also, when the hub route is used, at increases as increases. For

case, population when the hub route is used is given by 0.382 at . For ,
and at this point. From these observations, we can see that if handling
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5 Concluding Remarks

import sub-
stitution

Analytical results in the paper depend on some simplifying assumptions. We expect that we can obtain
similar results in a more general model by using numerical simulations (it would be very difficult to obtain
analytical results). With more than three locations in the economy, we expect that increased number of
locations probably increases the amount of commodities Low into hub locations, resulting in more population
agglomeration. It is also possible to allow imperfect specialization in production (in a Ricardian fashion),
but analysis would be far more complicated as well.

Alternatively, we can also introduce Marshallian externalities within industries (localization economies:
see Henderson (1988)) into our model. Henderson (1974) develops a general equilibrium model of system
of cities in which each city specializes to the production of one commodity. City sizes are limited by land
and commuting costs to the central district where production takes place in the fashion of monocentric city
model by Mills (1967). Since HendersonKs model does not have transportation costs between cities and our
model also has complete specialization (by location-speci*c technologies), it seems possible to combine these
two models.

cost goes up, it becomes necessary to have a strong transportation cost advantage for a
location to become a hub city, but the population of a hub city would be larger for the
high handling cost case. This sounds reasonable and intuitive.

This paper presents a simple general equilibrium model that explains the emergence of
a hub city solely in terms of differences in transportation technologies. The key point of
departure with respect to the past literature on city formation is the speci*cation of trans-
portation costs. In the previous literature, it is usually assumed that the transportation
cost function is of the JicebergK type: i.e., transportation costs are manifested in the extent
to which the commodity -melts away0 during transportation. In this paper, we assume
that the transportation of commodities incurs labor input at transportation nodes (the
departing locations). As a result, if large amount of commodities Low into a location that
are transshipped to other locations, labor demand at that location goes up, resulting in
population agglomeration. Clearly, if transportation costs are of the iceberg type, this
mechanism does not work as is discussed in the introduction. Although our model looks
simple, the characterization of equilibrium is still quite involved due to the fact that the
model is a general equilibrium model with nonconvex consumption sets.

In our model, we assumed that there are no demand externalities and scale economies,
in order to focus on the effects of differences in transportation costs on population agglom-
eration. However, it is possible that demand externalities and scale economies do indeed
play important roles in causing economic agglomerations. Thus, it is natural to introduce
demand externalities and/or scale economies into the model presented in this paper.
By introducing demand externalities à la Dixit and Stiglitz (1977) and Krugman (1991a),
it is possible to explain a well-known mechanism of the development of cities,

(see Mieszkowski (1979) and Mills and Hamilton (1994)). Import substitution
means the following: As a region becomes more populated the imported manufacturing
goods from other regions will be substituted gradually by the home production (of man-
ufacturing goods) since the market becomes large enough to support home production.

14
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6 Appendix

income under

6.1 Sketch of the Proof of Proposition 1

Holmes (1996) provides a model which describes the process of migration of an industry by introducing
variation in the quality of *nal commodities.

The Dixit-Stiglitz-Krugman model is not quite tractable without the iceberg type transportation tech-
nology. Ottaviano and Thisse (1998) propose an alternative demand externality model that can accomodate
non-iceberg type trasportation technologies.

More generally, we can utilize the methods in Berliant and Konishi (1994), Ellickson and Zame (1994),
Guo (1996) and Konishi (1996). However, none of the theorems are directly applicable to the present model.

This phenomenon has been observed in many port cities in the Midwest in the last cen-
tury. Suppose that there are two types of commodities: one is an agricultural good
traded in competitive markets, and the other is a group of manufacturing goods traded
in monopolistically competitive markets à la Krugman (demand externalities). Suppose
that initially New York is the only place which produces manufacturing goods, and the
Midwest locations are producing the agricultural product. Further suppose that a location
has an advantage in transportation to New York. Then, by the hub city mechanism the
population at that location increases (more transportation workers). The demand exter-
nalities of a larger market size attracts manufacturing *rms, and the location becomes a
large city.

Here we collect all the proofs in Section 3.

In this subsection, we sketch the proofs of nonemptiness and efficiency of equilibrium.
A general equilibrium model with transportation costs and mobility of consumers is *rst
analyzed by Schweizer, Varaiya, and Hartwick (1976), and we can easily interpret our
transportation technologies as production technologies by generalizing their approach. The
nonemptiness of equilibrium is shown by using their method in our simple setting with some
detailed arguments.

To prove the efficiency of an equilibrium, we need to utilize Jtrading setsK (McKenzie
(1959)) instead of standard consumption sets. First, recall that the *rst welfare theorem
is proved in the following way (see Mas-Colell, Whinston, and Green (1995)). Note all
values are evaluated by the equilibrium prices:

1. Suppose, to the contrary, that an equilibrium allocation is Pareto dominated by a
feasible allocation .

2. For each consumer, the value of her consumption plan under is not less than her
(the value of her endowment plus her pro*ts under ), and there

is at least one consumer who cannot afford her consumption plan under with her
income under .
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3. The value of the total consumption under is strictly more than the total income
under (the value of the total endowment plus the total pro*ts under ).

4. Since *rms are maximizing pro*ts under , the value of the total consumption under
is strictly more than the sum of the value of the total endowment and the total

pro*ts under given the equilibrium price.

5. However, it contradicts the feasibility of . Hence, any equilibrium allocation is
Pareto efficient.

It is easy to see that the proof relies on the property that the value of the total en-
dowment is the same under and . However, in our model, it is no longer true if we
use consumption sets. ConsumersK location assignment is a part of the description of the
feasible allocation. If a consumer moves from Chicago to New York, the value of her en-
dowment (wage income) changes since in general the wage rate in Chicago is different from
the wage rate in New York. Thus, the statement in step 2 is no longer true and the proof
breaks down. McKenzieKs trading set normalizes the consumerKs endowment at the origin,
so a consumerKs endowment income is always zero, and the statement in step 2 recovers.
Hence, the *rst welfare theorem is still valid in our economy. A core equivalence theorem
can be proved by applying a standard proof such as in Berliant and Konishi (1994).

The proof utilizes the *rst welfare theorem, which is stated in Proposition 1. We assume
that there is an equilibrium which is not symmetric in consumption vectors, and show that
there is a feasible allocation which Pareto dominates the equilibrium. Then, by the *rst
welfare theorem, we get a contradiction. Let be
an asymmetric equilibrium allocation. That is, one (or more) of the followings is violated:

, , , or . We will construct a new allocation, which is feasible
and Pareto-dominates . Let an allocation be such
that , , , , ,

, , and . By strict con-
vexity of preferences, it is obvious that allocation Pareto-dominates allocation as long
as the consumption vectors are asymmetric (note that applies from
the equilibrium conditions). Now, we will show that is a feasible allocation. By the de*-
nitions of s and s, ,

, and

. Then, from equation (9) it is easy to see that the labor market at
location 1 is cleared under allocation : i.e.,
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N x N N x
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t N
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t
N x N x
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� N x � N x N N

.

RHS LHS RHS LHS

x x x x x x x x U

U
p p p p p p p p

N N � � N ,N ,N x , x , x � , �

x , x , x x , x , x p , p , p
N ,N ,N p , p , p x , x , x � , �

N �

x t x � s t x dN s t N x d� ,

t x x t x � t t x dN t t N x d� .

t p t p t s p N �

Given for any , it is easy to see that any equilibrium population at location 1 is in
the open interval , and we can differentiate the equations with respect to and . This is guaranteed
by the weak boundary conditions.

Thus, it only remains to be shown that the labor market at location 2 clears under
allocation (if labor market at location 2 clears then the one at location 3 also clears
automatically by the symmetry relation in ): i.e.,

It is easy to see , , and

. Thus, we need to show that the following equality
holds:

However, the ( ) of this equation is the average of the ( ) of equa-
tions (10) and (11). Thus, allocation is feasible. This implies that unless consumption
vectors are the same, the allocation Pareto-dominates the equilibrium allocation , which
contradicts the *rst welfare theorem. This proves that all of the followings are satis*ed:

, , , or . Since we have differentiability of , the indifference
curves are smooth. As a result, the supporting prices of consumption bundles are uniquely
determined. This together with the symmetry of imply that the followings are also
satis*ed: , , , . This proves the *rst part of the proposition.

Given the symmetry of the consumption and price vectors, let an equilibrium satisfy
and . Again, we can construct a symmetric allocation ,

which is an feasible allocation by the same argument as before. Since the consumption
vectors are the same , the supporting price vectors are
the same. Thus, also has to be an equilibrium.

Totally differentiating equations (19) and (20) with respect to and , we obtain,

(21)

(22)

We will show that these two equations are linearly dependent given condition
. This implies that if we adjust and to satisfy equa-

tion (21) then equation (22) is also satis*ed. Thus, we can *nd a feasible allocation
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6.4 Proof of Proposition 4

6.5 Proof of Proposition 5
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2 1+ 1+	 2 1+ +

1+

1+	 + 1+ 1+	

1+ +

� , N p , p x , x �
N � p , p x , x � � , N � N �

d� N � N

p p

px t px � s t px p dN s t N px d� .

px t px p t px px t px p
t p t p t s p

t px px t px p � t t px dN t t N px d� .

p

p p
p, t p, t p p

p t p, p, t p p
t p, p, t p t s p �

r , t �, t �

r , , r , , t

� t � t � <

t � < t , t �, t � < , ,

, t �, t � < , , t t , t

� >

I II

I II

I II t ,

[0 1] ( ; ; ; )
( ( ); ; ; ) [0 1] ( ) = ( ) +

˜ ( ) =

�=

� (1 + )� ( + )� � + ( + )(1 )� = 0

� +2(1+ ) = � (1+ )� + +(1+�) =
(1 + �) = (1 + ) + ( + )�

2(1 + ) + + (1 + �) (� ) + (� )(1 ) = 0

� =
(� (1 + ) (1 + ) )

= ((1 + )� (1 + �) ) =
((1 + )� (1 + ) + ( + ) ) =

= (1 (1 + ) (1 + ) )

= ( 1 ) = ( 1 1 + + )

1 (1 + ) (1 + )

(1 + ) 1 + + (1 (1 + ) (1 + ) ) (1 )

(1 (1 + ) (1 + ) ) (1 1 + + ) (0 �)

1

( ) ( )

( ) ( )

( ) ( ) (0 1)

for any . Speci*cally, if is an equilibrium, we can *nd
an equilibrium for any , where

, where . Now, we show the linear dependence

of the two equations. Multiplying on both sides of equation (21) produces,

Note that consumers at locations 1 and 2 have the following budget constraints, respec-
tively: , and . Together with condition

, we obtain,

Dividing both sides by , we obtain equation (22).

At location 1, the wage rate is and the price vector that a consumer faces is
, while at location 2, the wage rate is , and the price vector that

a consumer faces is if the no-hub route is used, and
if the hub route is used. Let . Then, the normalized

price vectors for consumers at locations 1 and 2 are , and

if the no-hub route is used, if the
hub route is used, respectively. Suppose that . Then, ,

, and hold. Thus, and
hold for any . Symmetry of the utility

function implies that a consumerKs utility level at location 1 is higher than the one at
location 2. Thus, all consumers would move to location 1. However, this cannot happen
by the boundary conditions. Hence, .

The proof of Proposition 5 is involved and requires several steps. We utilize Propositions
1-4 to prove this proposition. We *rst consider two hypothetical economies in which the
transportation routes are ex ante determined and consumers cannot choose other routes:

the economy uses only the no-hub route, and the economy uses only the hub
route. We show the nonemptiness and the uniqueness of equilibrium in these two economies
(Lemmas 1, 2, and 3). These allocations may not be equilibrium allocations in the original
economy (condition (15) may be violated). Given the *rst welfare theorem, we can show
that the equilibrium of economies and which attains the higher utility level is the
equilibrium of the original economy. Finally, we show that the utility levels of economies

and coincide with each other only once at (Lemmas 4 and 5).
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We assume that is constant to avoid the indeterminacy of the price vectors. We use notation
only to keep symmetry with .

t t t t
t t , t

N t p t , p t x t , x t � t p t p t p t p t
e t N t p t , p t x t , x t e t N t p t , p t

x t , x t I II
p t p t p t p t p t p t p t p t

I II
p t t p t p t t p t t s p t

u t , u t , u t
I II

I II

I
u t , p t ,

N t nh p t

Nh p, t p, t p, u N t h t p, p, t p, u N

E p, t p, t p, u p,

E t p, p, t p, u p.

h p , u i E p , u
j u p

j t

� x h p h p, t p, t p
x h p h t p, p, t p

u p N t t

Nh N h t N h h N h t h
h t h

E t h
E h t h

du

dp
dN

= � (= =
) (0 �)
( ( ); ( ) ( ); ( ) ( ); ( )) �( ) ( ) ( ) ( )

( ) ( ( ); ( ) ( ); ( ) ( ); 0) ( ) ( ( ); ( ) ( );
( ) ( ); 1) ( ) ( )

� ( ) ( ) � ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) = (1+�) ( ) ( ) = (1+ ) ( )+( + )� ( )

( ) ( ) ( )
( ) ( )

( ) ( )

( )
( ) ( )

( ) �( )

(� (1 + ) (1 + ) ) + (1 ) (1 + ) ((1 + )� (1 + �) ) =

(� (1 + ) (1 + ) ) = �

((1 + )� (1 + �) ) =

( ) ( )

= 1 = ( ) = (� (1 + ) (1 + ) )
= ( ) = ((1 + )� (1 + �) )

�

+ (1 ) (1 + ) ( + ) + (1 ) (1 + ) 1
( + (1 + �) )
2(1 + ) 0
+ (1 + �) 1 0

Let us start the proof of Proposition 5. Since is *xed, the parameter
characterizes an economy completely. Let the equilibrium allocations for

be . We can de*ne and as
well. Let and

be the equilibrium allocations in economies and , respectively. We
also de*ne , , , and as well.
Equilibrium conditions in economies and are described by the conditions (19)-(18),
yet condition ( 15) is replaced by and ,
respectively. Let and be the equilibrium utility levels in the original
economy, economy , and economy , respectively.

In the following, we prove the uniqueness of equilibrium in economies and
(Lemmas 1-3). For this purpose, it is convenient to describe the equilibrium conditions in
these economies by using the expenditure function and the compensated demand functions.
It is because consumersK utility levels have to be the same in the equilibrium even if their
location choices are different due to free mobility of consumers. First, economy is
described by the following three equations with three endogenous variables and

(For simplicity, we drop subscript from all variables. Note also that is assumed
to be constant):

(23)

(24)

(25)

where is the compensated demand function of commodity , and is the
expenditure function of a consumer lives at location , where is the utility level and
is the price vector at location . For notational simplicity, we omitted the argument
from variables. Equation (23) is the equilibrium condition for the labor market at location
1 (set in equation (19)). Note that , and

. The equilibrium conditions for labor markets at 2
and 3 are eliminated by the symmetry of locations 2 and 3, and the Walras law. Equations
(24) and (25) are the budget constraints for the consumers living at locations 1 and 2,
respectively. The one for location 3 is eliminated by the symmetry of locations 2 and 3.
Totally differentiating the system with respect to , , , , and , we obtain the following:
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dt,
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LHS D

D

D

Nh N t h h t h

t h
t h

.

D D

D

D h t h
t

u

p

p
h ph .

E ph t ph t ph .

E p ph < p h <

II
II

h

Nh p, t p, t p, u N t h t p, p, t p s t p, u

N s t h t p, p, t p s t p, u N

E p, t p, t p, u p,

E t p, p, t p s t p, u p.

=

( + ) + (1 )
+(1 )(1 + )�

2
�

(1 )(1 + )

0
�

( ) =

=

( + (1 )(1 + ) ) (1 + ) 1

2(1 + ) 0
(1 + ) 0

( )

= (1 + ) 1
(1 + ) (�)

2

= � + (1 + ) + (1 + )

= � � � 1

( )
( )

(� (1 + ) (1 + ) ) + (1 ) (1 + ) ((1 + )� (1 + ) + ( + )� )

+ (1 ) ( + ) ((1 + )� (1 + ) + ( + )� ) =

(� (1 + ) (1 + ) ) = �

((1 + )� (1 + ) + ( + )� ) =

(26)

where , , , and . By using these

notations, we can omit the arguments of each function and derivative. Let the Jacobian
in the of equation (26) be . By using linear homogeneity of utility function, and
the zero homogeneity of compensated demand functions in prices, and equations (23), (24)
and ( 25), we can simplify :

We can show the following:

We calculate the determinant of :

The contents of the brace are obviously negative. Thus, all we have to show is that the
contents of the parenthesis are also negative. By the de*nition of the expenditure function,
we have the following:

From equation (24), we know . Thus, , and . We have proved the
contents of the parenthesis are negative.

Next, we describe economy by the expenditure function and compensated demand
functions. An equilibrium in economy is described by the following three equations
(Again, we drop subscript from all variables):

(27)

(28)

(29)

Again, equation (27) denotes the labor market clearing condition at location 1, and
equations (28) and (29) are the budget constraints of consumers living at locations 1 and
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The determinant of is positive.

In economies and , there exists a unique equilibrium for any .
The equilibrium allocations are differentiable with respect to .

u p N t
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t Nh N h t h h t h
N s t h t h s t h

t h
h t h

du

dp
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D
u
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I
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I II t , t
C t

I t t

U

t t t t t I t t

LHS

(1 + ) 2 + (1 )( + (1 + ) ) (1 + )
+(1 )( + )( + (1 + ) ) ( + ) 1

2(1 + ) 0
+ (1 + ) 1 0

=

2 + (1 )(1 + ) � + (�+ )
+(1 )( + ) � + (�+ ) + (1 )( + )

2
�+ ( + �)

(1 )(1 + ) � + � +

2
(�+ )

( )

=
1

(1 + ) ( + ) 1 � + (1 + ) 1 2(1 + )

=
1

�
2(1 + )� 2( + )� (1 + )

�
(1 + ) ( + )� 2(1 + )

( )
( )

( ) ( ) [0 �]

( ) = � = 0

= = �= ( ) �

2, respectively. Totally differentiating the system of equations with respect to , , , ,
and , we obtain the following:

(30)

Let us denote the matrix in the of equation (30) by .

We calculate the determinant of :

Thus, has a positive value.

Using Lemmas 1 and 2, we can prove the uniqueness of equilibrium in economies
and , respectively.

First, we prove the statement for economy . Let . Since it is a
classical economy without transportation cost, there exists an equilibrium in this economy.
Moreover, the symmetry and the strict quasiconcavity of implies that the equilibrium
consumption vectors are completely symmetric and unique. We now gradually increase

and . As we can see below, equilibria in economy for various and
are completely described by the system (26 ). Lemma 1 guarantees that the determinant
of the Jacobian matrix in the is always positive. This implies that there is no critical
point in our comparative static exercise. Thus, given the fact that a unique equilibrium
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exists for , it is easy to see that the equilibrium exists and unique for any and
(see, say, Mas-Colell, Whinston, and Green [28], pages 619-620). It is easy to see that the
equilibrium allocation is differentiable.

Second, we prove the existence and the uniqueness of equilibrium in economy . The
argument is exactly the same as the one for economy . Let . Then, again the
equilibrium is unique. Lemma 2 proves that the determinant of the Jacobian matrix in
equation (30) is again always positive.

Uniqueness of equilibria (Lemma 3) implies that and are functions (single-
valued correspondences). Let
and , where ( ), and

( ) are equilibrium prices of commodity 2 at location 2 and commodity 1 of
location 1 under the no hub (hub) route. By de*nition, ( ) is an equilibrium in
the original economy if and only if ( ), since condition (15 ) is satis*ed.

From Proposition 1, there exists an equilibrium in the original economy for any .
Suppose that . Then, for any , in every equilibrium

must hold. Proposition 3 says that it cannot be the case. A contradiction.
This proves . Since and are continuous, and are continuous as
well. This implies that and are closed (see the de*nitions). Thus, is closed
in . Now, we will show that and . This guarantees that
is nonempty and closed in (note ). By the *rst welfare theorem,

( ) implies ( ), which further implies
( ) since . It is easy to see that . Thus, . To
show , we utilize the logics in the proof of Proposition 4. Consider the following
two cases: (Case-I) : In this case, holds. This together with
imply . This implies . Similarly, we
can show . This implies . (Case-II) : In this
case, and trivially hold. Thus, . This
completes the proof.

Since is closed, it can be partitioned into several closed intervals. Pick up
one of the interval, (Note that can happen.) By de*nition, at , either

or holds. Since
the argument is the same, we simply assume that the *rst equality holds. By the argument

in the proof of Proposition 3, for , the
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allocation is an equilibrium in economy as well.
Since Lemma 3 guarantees the uniqueness of equilibrium in economy , we have

. This proves
. By the same argument, we can prove

. Thus, for any , where
is a topological boundary of . Now, we prove that the set is a singleton.

To do this, we prove at any . If this is shown, then continuity
properties of and guarantee that there is only one element in . We utilize the
property extensively. From equation (26), we can calculate

at :

From equation (30), we can calculate at :

Now, noting that the consumption vectors in these two economies are the same, we
subtract from :
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The *rst inequality (with equality) follows by the assumption . Hence, our claim
is proved.

Now, we can *nally prove Proposition 5. Let (Lemma 5). Lemma
4 implies . From the proof of Lemma 5, we know that holds only
at , and at . Thus, we can conclude that for
any , and for any . Proposition 3 says that there is a
continuum of equilibria at . Hence, , and by the *rst welfare
theorem. This completes the proof of Proposition 5.

We *rst prove the following lemma. We specify the argument for the equilibrium alloca-
tion for to avoid confusion.

We refer the labor market equilibrium condition at location 2 (equation (20)).
Since , follows from Proposition 5. Then, equation (20) becomes as follows
(the equilibrium allocation for is substituted):

We want to show is greater than . Let

. This is the excess demand function when the population at location
1 is and the consumption vectors are and . Since , , and
the equilibrium is unique for any , it is easy to see that is greater than if

. Substituting into , we obtain,

From the budget constraint at location 1, we know:

Substituting this into , we obtain:

24



�

�

� �

� )

�

�
�

�
�

Proof.

2

2

3

1

1

1 2

′ ′

′ ′

′

�

� �

�




�
� �

� �

�

∈ �
� → � ∈ �

∈ �

�

∈ �



	

	


 


∈ �

t
� t

t s
� t

t
� t

t s
� t

t s
� t

t
� t

t s
� t

t
� t

t
� t

t s
� t

t
� t

t s
� t

t s
� t

t
� t

∂h ,�,� � ,u
∂�

t
� t

t s
� t

t
� t

t s
� t

h
h

� � �

i
� � � �

i

ij
� � � �

i
�
j

�
�

2
3

1
2

2
2

1
1

1
3

2
3

1
2

1

2 1+
( )

+
( ) 2

3
1+
( )

+
( ) 2

+
( )

1+
( ) 2

2
+
( )

1+
( )

1+
( )

+
( )

1+
( )

+
( )

+
( )

1+
( ) ++

++ ++ ++

++

2

(1 ( ) )
22 23

2
2

1
1

2
1+
( )

+
( ) 1

1
1+
( )

+
( ) 1

1 ++

2 3 2 3

1 2 3 1 2 3

1 2 3 1 2 3
1

1 2 3 1 2 3
1 1

1

1
12

2

3
13

3

21

2

31

3

1 ++

1
1

2
2

1
1

2
2

1
1

2
2

1
3

<
t
x t x t .

x t x t � t >
t < x t x t r t , t � t , t � t
r t , , t h , t � t , t � t , u t

h , , t , u t h , t , , u t h ,

t � t , t � t , u t h , t , , u t

< t � t t > t � t E , t � t ,

t � t , u t E , , t , u t E , t , , u t %

& E , %, & % , u %
%

dh , %, & % , u

d%

& % < h h & % <

x t x t
h , , t , u t h , t � t , t � t , u t

h , , t , u t h , t � t , t � t , u t

h , %, & % % &
& E E & % h h & %

& % U
�

E p , p , p , u u p p p ,

h p , p , p , u u p p p p i , , ,

h p , p , p , u u p p p p p i, j , , , i j

'

dh , %, & % , u

d%
h

h

h
h

h

h

h

h

h
.

h , %, & % , u % �

r r x x x t x t
t

1 +

3
( ) ( )

( ) ( ) ( ) 1
�( ; ) 0 ( ) ( ) ( ) (1 (1 + ) ( ) (1 + ) ( ))

( ) ( 1 1 + + ) (1 (1 + ) ( ) (1 + ) ( ) ( ))

( 1 1 + + ( )) = (1 1 + + ( )) (1 (1 +

) ( ) (1+ ) ( ) ( )) (1 1+ + ( ))

(1 + ) ( ) 1 + + (1 + ) ( ) (1 (1 + ) ( ) (1 +

) ( ) ( )) = ( 1 1 + + ( )) = (1 1 + + ( )) = 1

: (1 ( ) ) = 1

(1 ( ) )
0

( ) 0 = + ( ) 0

( ) = ( )
( 1 1 + + ( )) = (1 (1 + ) ( ) (1 + ) ( ) ( ))

(1 1 + + ( )) = (1 (1 + ) ( ) (1 + ) ( ) ( ))

(1 ( ))
+ ( ) = + ( ) = 0

( ) =
= 0

( ) = ( + + )

( ) = ( + + ) = 1 2 3

( ) = ( + + ) = 1 2 3 =

=

(1 ( ) )
= =

1
= 0

(1 ( ) ) = 0

= = 1 ( ) = ( ) =

The above inequality holds, since and (Proposition 4). Thus, to show
, it is sufficient to prove . Since

and , it suffices to show
(symmetry). To prove

, we make the following argument. Since
, we have . Note that

. Let .
De*ne to satisfy for any . If we show the
following for any , then we are done:

.

Since , , which completes the proof.

Now, we can prove Proposition 6. It suffices to prove that holds under
a CES utility function: i.e.,
or (symmetry). Thus, we
only need to show that is constant for any (function is de*ned
in the proof of Lemma 6). By the de*nition of , .
Thus, . Since is a CES function, the expenditure function, the compensated
demand functions, and the derivative of the compensated demand functions for are:

for

for ,

where . Using them, it is easy to see the followings:

Hence, is constant for any . What if ? In this case, the
utility function is a Cobb-Douglas function. It is well-known that the expenditure share
for each commodity is constant for any prices under Cobb-Douglas preferences. Actually,
since , and are actually also expenditure shares, and
holds for any . The proof is completed.
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