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Abstract

We analyze the core of a class of coalition formation game in which every player’s
payoff depends only on the members of her coalition. We first consider anonymous
games and additively separable games. Neither of these strong properties guarantee
the existence of a core allocation, even if additional strong properties are imposed. We
then introduce two top-coalition properties each of which guarantee the existence. We
show that these properties are independent of the Scarf-balancedness condition. Finally
we give several economic applications.

1 Introduction

Non-emptiness of the core in coalition formation games has been analyzed by several authors

including Guesnerie & Oddou [1981], Greenberg & Weber [1986], Demange [1994] in local

public goods context and Greenberg & Weber [1993] in political economy context. In this

paper, we formulate a general class of coalition formation problems and study core existence

in this class. We assume away alternatives available to each coalition and focus on purely

hedonic aspect of coalition formation: A coalition formation game is a finite player game

in which each player’s payoff depends only on the members of her coalition (no spillovers:

outsiders’ behavior does not affect the coalition members’ payoffs).1 A feasible allocation

is a partition of the players. There is no transferrable money. Our model is closely related
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to matching problems where preferences are also hedonic but not all coalition structures are

feasible.2 We choose the core (the coalition structure core) as our solution concept. A core

partition is stable in the sense that there is no profitable coalitional deviation.

Our model can be regarded as a reduced two-stage game, where players first form coali-

tions and next negotiate their payoffs inside coalitions. Once the second step is solved, we

are left with the situation described by our hedonic model.

Unfortunately, without any restriction on preferences the core may be empty. Consider

the following example: There are three students in a college who are trying to choose their

roommates. There are only two-bedroom apartments available on campus and these apart-

ments are fairly expensive. So each student wants to share an apartment rather than to live

alone, but sharing with two others is the last choice since one of them would have to sleep

in the living room. Suppose that student 1 likes student 2 better than student 3, student 2

likes student 3 better than student 1, and student 3 likes student 1 better than student 2. Is

there a stable roommate structure (a core partition) in this situation? Suppose that there is

one. Since sharing with two others is the last choice for all of them, there should be at least

one student who lives alone at any core partition. Who can this student be? She cannot be

student 1 since she can easily convince student 3 to share an apartment. Similarly student

2 can easily convince student 1 and student 3 can easily convince student 2. Hence, there is

no core partition in this example.

Although this game is very simple, it does not have a core partition. The key problem

is cyclical coalitional deviations. A natural question is whether we can avoid these cycles by

imposing some natural properties such as anonymity and additive separability. Anonymity

requires agents not to care for identities of their partners and thus only care for the coali-

tion size. Additive separability requires the preferences to be representable by an additively

separable utility function. Note that our motivating example lacks both properties. We

investigate the existence of a core partition by imposing both properties separately. Unfor-

tunately neither of these conditions guarantee existence even if we impose additional strong

conditions such as single-peakedness and the intermediate preference property. In order to

prove non-emptiness of the core, the single-peakedness and the intermediate preference prop-

erty have been employed by Greenberg & Weber [1993] and in Greenberg & Weber [1986],

Demange [1994] respectively. Those properties are powerful tools in games without conges-

tion,3 but they turn out to be inessential in games with possible congestion. (See Games 1

and 3.)

We next introduce the top-coalition property which imposes a commonality of preferences

among the players. This condition requires that for any non-empty subset S of players, we can

find a coalition T ⊆ S such that all members of T prefer T to any other coalition that consists

of some (or all) members of S. This property is a relaxed version of the common ranking

property (Farrell & Scotchmer [1988]). The common ranking property requires that there is

2See Roth & Sotomayor [1990] for an excellent survey of matching problems.
3For example, Weber & Zamir [1985] construct a four player example with empty core when the interme-

diate preference property is violated in an economy analyzed by Guesnerie & Oddou [1981] and Greenberg
& Weber [1986].

2



a linear ordering over all coalitions which coincides with any player’s preference ordering over

coalitions to which she belongs. Although both properties guarantee the non-emptiness of

the core, the top-coalition property is weaker and hence it covers more games. Indeed, even

a weaker version of the top-coalition property guarantees the existence. While the weak top-

coalition property is still demanding, it is satisfied in many interesting economic applications.

Examples include coalition formation games induced by the average cost sharing rule (Moulin

& Shenker [1994]) in the context of cost sharing problems, coalition formation games induced

by the competitive mechanism in the context of housing markets (Shapley & Scarf [1974]),

and coalition formation games induced by the uniform reallocation rule (Benassy [1982]) in

the context of reallocation problems. We also show that these conditions do not imply the

Scarf-balancedness (Scarf [1967]) condition which is often used to prove the non-emptiness

of the core in NTU games.

Three papers are closely related to ours: Bogomolnaia & Jackson [1998] independently

introduce coalition formation games and they use core as well as individual stability (see

Greenberg [1977] and Dréze & Greenberg [1980]), Nash stability, and contractual individual

stability as their stability notions. A partition is individually stable if and only if no player

wants to move from her coalition to another one (including the empty coalition) that wel-

comes her unanimously. Thus, individual stability is a less demanding stability concept than

the core stability. This notion is particularly appealing if the cost of forming a new coalition

is high. Nash stability is a stronger version of individual stability where players do not need

any permission to join a new coalition. A partition is contractually individually stable if

and only if no player wants to move from her coalition to another one that welcomes her

unanimously, without hurting anyone in the old coalition. Bogomolnaia & Jackson study

an ordinal version of Scarf ’s balancedness condition as well as a weak consecutive property

and show that each ensure the non-emptiness of the core.4 They next show that there exists

an individually stable partition under anonymity and single-peakedness, and even a Nash

stable partition under additive separability and symmetry. Note that these conditions do

not guarantee non-emptiness of the core. (See Games 1 and 2.) They also show that Pareto

efficiency implies contractual individual stability and finally analyze the compatibility of

these stability notions with several normative criteria. Kaneko & Wooders [1986] show that

the core of a coalition formation game is non-empty, provided that (i) there is a continuum

of players with finite types and (ii) each coalition is finite in size. Their result dramatically

contrasts the core in large games with the core in our finite games. Milchtaich & Winter

[1997] introduce a model where (i) the number of coalitions is fixed, (ii) each agent is en-

dowed with a number, and (iii) each agent prefers to be in a group which is most similar to

herself on average. They show that a Nash stable partition exists that is segregating and

Pareto efficient.

4A coalition formation game is weakly consecutive if there exists an ordering of agents such that any
partition that is not in the core can be blocked by a set of “connected” agents. Our top-coalition property
implies the weak consecutiveness property. However there is no inclusion relation between the weak top-
coalition property, the weak consecutiveness property, and the ordinal balance property (see Proposition 1
in Bogomolnaia & Jackson [1998]).
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The organization of the rest of the paper is as follows: In Section 2 we formally introduce

the model. In Sections 3 and 4 we demonstrate that anonymity and additive separability are

inessential for the non-emptiness of the core. In Section 5 we present two top-coalition prop-

erties and provide an existence result. We also discuss the inclusion relationships between

the two top-coalition properties, the common ranking property and the Scarf-balancedness

condition. Finally we present several applications in Section 6.

2 The Model

The following model is independently introduced by Bogomolnaia & Jackson [1998]:

Definition 1. A coalition formation game G is a pair (N, (�i)i∈N), where N is a finite

player set with i being a representative element, and �i is a reflexive, complete, and transitive

binary relation on Si(N) = {S ∈ 2N : i ∈ S}. Strict preference relation and the indifference

relation are denoted by �i and ∼i respectively (S �i T ⇐⇒ [S �i T and T 6�i S] and

S ∼i T ⇐⇒ [S �i T and T �i S]).

Definition 2. A coalition structure π = {S1, S2, ..., SK} (K ≤ |N | is a positive integer)

is a partition of N . That is, Sk 6= ∅ for any k ∈ {1, 2, ..., K}, ∪Kk=1Sk = N, and Sk∩S` = ∅
for any k, ` ∈ {1, 2, ..., K} with k 6= `. For any coalition structure π and any player i let

π(i) = {S ∈ π : i ∈ S} be the set of her partners. The collection of all coalition structures

in N is denoted by Π(N). We similarly define Π(V ) for any V ⊂ N with V 6= ∅.

Definition 3. A coalition T ∈ 2N\{∅} is a (profitable) coalitional deviation from

π ∈ Π(N) iff T �i π(i) for any i ∈ T . A core partition is a partition π∗ that is immune

to any coalitional deviation.

In the following two sections, we present examples showing that anonymity and additive

separability are inessential to the non-emptiness of the core.

3 Anonymity

We first consider games in which players only care about the size of their coalitions.

Definition 4. A game G satisfies anonymity iff for any i ∈ N, for any S, T ∈ Si(N) with

|S| = |T | we have S ∼i T .

The core may be empty even under anonymity. Indeed, it can be empty even if additional

stringent conditions are imposed following Greenberg & Weber [1986, 1993] and Demange

[1994].5

5Greenberg & Weber [1986, 1993] and Demange [1994] assume that there is a set of alternatives A on
which preferences are defined, and they impose on A either single-peakedness or the intermediate preference
property:

Single-Peakedness (Greenberg & Weber [1993]): There is a linear order � on A with the following
property: For each i ∈ N, there exists an alternative a∗i ∈ A such that (i) for any a � b � a∗i , a �i b �i a∗i
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Definition 5. An anonymous game G satisfies single-peakedness on population if for

any i ∈ N , and any S, T, U ∈ Si(N) with |S| < |T | < |U | , we have (i) S �i T ⇒ T �i U
and (ii) U �i T ⇒ T �i S.

Definition 6. An anonymous game G satisfies the population intermediate preference

property if the players can be linearly ordered by a binary relation ≺ in such a way that

for any i ≺ j ≺ k, and any S, T ∈ ∩t∈{i,j,k}St(N), [S �i T and S �k T ]⇒ S �j T.

Although these restrictions are undoubtedly strong, they do not guarantee the non-

emptiness of the core.

Game 1. There are four type-a, one type-b, and two type-c players. Thus, the player set N

can be written as N = {a1, a2, a3, a4, b1, c1, c2}. Their preferences are as follows (for simplicity

we abuse notation and specify the preferences over cardinalities of coalitions):

Type a : 6 �a 5 �a 4 �a 3 �a 2 �a 1 �a 7,

Type b : 5 �b 4 �b 3 �b 6 �b 2 �b 1 �b 7,

Type c : 4 �c 3 �c 5 �c 6 �c 2 �c 1 �c 7.

Note that Game 1 satisfies anonymity, single-peakedness on population, and the popula-

tion intermediate preference property.6

Claim. The core of Game 1 is empty.

Proof of the Claim. Let k be the cardinality of the largest coalition in a coalition structure.

We show that there is no coalition structure which forms a core partition by exhausting all

cases. First consider all cases with k ≤ 4. Then coalition {a1, a2, a3, a4, b1} deviates from any

such coalition structure. Second, if k = 7 then every singleton coalition deviates. Third, if

k = 6 then coalition {b1, c1, c2} deviates. Thus, if there is a core partition then k = 5. There

are five representative cases (which are unique up to type composition):

1. {{a1, a2, a3, a4, b1}, {c1, c2}}: In this case {a1, a2, a3, a4, c1, c2} deviate.

2. {{a1, a2, a3, b1, c1}, {a4, c2}}: In this case {a4, c1, c2} deviate.

holds and (ii) for any a ≺ b ≺ a∗i , a �i b �i a∗i holds.
The Intermediate Preference Property (Greenberg & Weber [1986], Demange [1994]): There is a tree
G(N) defined on the set of players (see the next section) and if player m is on the path between i and j

(i 6= m, m 6= j), then for any a, b ∈ A with a 6= b, [a �i b and a �j b]⇒ [a �m b] .
In both papers the authors define a feasibility correspondence ϕ : 2N\{∅} → 2A, which means that a

coalition S can choose an alternative from ϕ(S). The correspondence ϕ is assumed to satisfy monotonicity:
For any S, T ∈ 2N\{∅} with S ⊂ T, ϕ(S) ⊆ ϕ(T ). Thus, in their games, there is no congestion effect besides
possible coordination failures.

6The population intermediate property is satisfied for the following linear ordering of agents:

a1 � a2 � a3 � a4 � b1 � c1 � c2
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3. {{a1, a2, a3, c1, c2}, {a4, b1}}: In this case {a4, b1, c1, c2} deviate.

4. {{a1, a2, a3, a4, c1}, {b1, c2}}: In this case {b1, c1, c2} deviate.

5. {{a1, a2, b1, c1, c2}, {a3, a4}}: In this case {a3, a4, c1, c2} deviate.

Hence, there is no core partition in this game.♦

4 Additive Separability

We next consider games where players have additively separable preferences.

Definition 7. A game G is separable iff for any i ∈ N, for any S ∈ Si(N) and for any

j /∈ S, we have [S ∪ {j} �i S ⇐⇒ {i, j} �i {i}] and [S ∪ {j} �i S ⇐⇒ {i, j} �i {i}].

Definition 8. A game G is additively separable iff for any i ∈ N, there exists a function

vi : N → IR such that for any S, T ∈ Si(N), S �i T ⇐⇒
∑
j∈S vi(j) ≥

∑
k∈T vi(k).

Additive separability is a very strong notion of separability on preferences. Despite this,

it does not guarantee the non-emptiness of the core even with additional strong conditions.

Definition 9. A game G satisfies mutuality iff for any i, j ∈ N , we have [{i, j} �i {i} ⇐⇒
{i, j} �j {j}] and [{i, j} �i {i} ⇐⇒ {i, j} �j {j}].

Mutuality requires that if player i likes j then player j likes i and if player i dislikes j then

player j dislikes i. We need additional notation in order to define the last two conditions in

this section.

A (nondirected) graph G on N is a set of unordered pairs of distinct elements of N.

A pair (i, j) ∈ G is called an edge between i and j. A path of G is a sequence i1, i2, ..., is
where the pairs (ik, ik+1) are edges for k = 1, 2, ..., s − 1 and are all distinct. A graph G is

connected if any two distinct elements of N are linked by a path. A graph G is a tree if

any two distinct elements are linked by a unique path. A tree G is star-shaped if every

edge contains the same element of N .

Definition 10. A game G satisfies single-peakedness on a tree iff for any i ∈ N, any

tree G on N , any path i1, i2, ..., is on G emanating from i (i1 = i), and any 1 < k < ` ≤ s,

we have {i, ik} �i {i, i`}.7

Definition 11. A game G satisfies the tree intermediate preference property iff for

any i ∈ N, any tree G on N , any path i1, i2, ..., is on G, any 1 ≤ k < ` < m ≤ s, and any

j ∈ N\{ik, i`, im}, we have [{ik, j} �ik {ik} and {im, j} �im {im}] ⇒ {i`, j} �i` {i`}.8
7Single-peakedness on a tree is considered in Demange [1982] in a voting (public goods) problem.
8Our tree intermediate preference property is one-sided in the sense that we do not restrict players’ prefer-

ences when they dislike another player. A game G satisfies the two-sided tree intermediate preference
property iff for any i ∈ N, for any tree G on N , for any path i1, i2, ..., is on G, for any 1 ≤ k < ` < m ≤ s, for
any j ∈ N\{ik, i`, im}, (i) [{ik, j} �ik {ik} and {im, j} �im {im}]⇒ {i`, j} �i` {i`} and (ii) [{ik, j} �ik {ik}
and {im, j} �im {im}] ⇒ {i`, j} �i` {i`}. Game 3 below does not satisfy the two-sided tree intermediate
preference property. It is an open question whether two-sidedness would help us obtain a positive result.
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The following game satisfies additive separability and mutuality:9

Game 2. N = {1, 2, 3, 4, 5, 6} and the additively separable preferences are summarized by

the following table (vi(j)):

1 2 3 4 5 6

v1 0 3 2 −10 2 2.5

v2 3 0 2.5 −6 −10 −6

v3 2 2.5 0 3 2 −10

v4 −10 −6 3 0 2.5 −6

v5 2 −10 2 2.5 0 3

v6 2.5 −6 −10 −6 3 0

Claim. The core of Game 2 is empty.

Proof of the Claim. Note that no pair of even players can be in the same coalition, since

otherwise their payoffs would be lower than standing alone. Note also that player i and

player mod6(i+ 3) (the opposite player on a circle) can not be in the same coalition by the

same reason. Thus, there are only a few candidates for a core partition:

1. {{1, 2, 3}, {4}, {5, 6}} and its finer refinements: In these cases {3, 4, 5} deviate.

2. {{1, 2, 3}, {4, 5}, {6}} and its finer refinements: In these cases {5, 6} deviate.

3. {{1, 2}, {3, 4, 5}, {6}} and its finer refinements: In these cases {5, 6, 1} deviate.

4. {{6, 1}, {2}, {3, 4, 5}} and its finer refinements: In these cases {1, 2} deviate.

5. {{5, 6, 1}, {2}, {3, 4}} and its finer refinements: In these cases {1, 2, 3} deviate.

6. {{5, 6, 1}, {2, 3}, {4}} and its finer refinements: In these cases {3, 4} deviate.

7. {{1, 3, 5}, {2}, {4}, {6}} and its finer refinements: In these cases {1, 2, 3} deviate.

Hence there is no core partition.♦

The following game, which builds on Game 2, not only satisfies mutuality and addi-

tive separability, but also single-peakedness on a tree and the tree intermediate preference

property.

9Indeed, Game 2 satisfies symmetry: For any i, j ∈ N, vi(j) = vj(i). Clearly symmetry is stronger than
mutuality.
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Game 3. N = {1, 2, 3, 4, 5, 6, 7, 8} and the additively separable preferences are summarized

by the following table:

1 2 3 4 5 6 7 8

v1 0 3 2 −10 2 2.5 5 −20

v2 3 0 2.5 −6 −10 −6 5 −20

v3 2 2.5 0 3 2 −10 5 −20

v4 −10 −6 3 0 2.5 −6 5 −20

v5 2 −10 2 2.5 0 3 5 −20

v6 2.5 −6 −10 −6 3 0 5 −20

v7 5 5 5 5 5 5 0 100

v8 −20 −20 −20 −20 −20 −20 100 0

The restriction of this game to {1, 2, 3, 4, 5, 6} is Game 2. We add two more players 7 and

8. We complete the preference specification as follows: Everyone likes player 7 the most but

player 8 is “hated” by anybody except player 7. Finally players 7 and 8 “love” each other.

Claim. Game 3 satisfies additive separability, mutuality, the tree single-peaked property,

and the tree intermediate preference property. Nonetheless its core is empty.

Proof of the Claim. It is easy to see that Game 3 satisfies all the conditions. The tree

intermediate preference property can be checked by using a star-shaped tree G = {(i, 7) :

i ∈ N\{7}}. We will show that any coalition structure in core must contain {7, 8} as a

component. It is easy to see that none of the first six players can be in the same coalition

with player 8. They would rather be alone than having player 8 as a partner. It is also easy

to see that players 7 and 8 should be partners since either player is more valuable for the

other than the sum of everyone else. Therefore the coalition {7, 8} is a component of any

core partition. But since (i) the restriction of Game 3 to remaining players is Game 2 and

(ii) Game 2 has an empty core, Game 3 has an empty core as well.♦

5 Two Top-Coalition Properties

Farrell & Scotchmer [1988] show that the following condition guarantees the non-emptiness

of the core:

Definition 12. (Farrell & Scotchmer [1988]) A game G satisfies the common ranking

property iff there exists an ordering � over 2N\{∅} such that for any i ∈ N and any

S, T ∈ Si(N) we have S �i T ⇐⇒ S � T .

Next consider the following relaxation of the common ranking property.

Definition 13. Given a non-empty set of players V ⊆ N, a non-empty subset S ⊆ V is

a top-coalition of V iff for any i ∈ S and any T ⊆ V with i ∈ T, we have S �i T . A

coalition formation game G satisfies the top-coalition property iff for any non-empty

set of players V ⊆ N , there exists a top-coalition of V .
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This condition requires that, for any group of players V there is a subgroup that is

mutually the best for all its members. The top-coalition property reduces to α-reducibility

(Alcalde [1995]) in roommate problems (Gale & Shapley [1962]).10 We finally have a positive

result with the top-coalition property. Indeed, even the following weaker version guarantees

the existence.

Definition 14. Given a non-empty set of players V ⊆ N, a non-empty subset S ⊆ V is a

weak top-coalition of V iff S has an ordered partition {S1, . . . , Sl} such that (i) for any

i ∈ S1 and any T ⊆ V with i ∈ T, we have S �i T and (ii) for any k > 1, any i ∈ Sk, and

any T ⊆ V with i ∈ T , we have T �i S ⇒ T ∩ (
⋃
m<k S

m) 6= ∅. A coalition formation game

G satisfies the weak top-coalition property iff for any non-empty set of players V ⊆ N ,

there exists a weak top-coalition of V .

A coalition S is a weak top coalition of V if it has a partition {S1, . . . , Sl} such that:

1. Any agent in S1 prefers S to any subset of V ,

2. any agent in S2 needs cooperation of at least one agent in S1 in order to form a better

coalition than S,

3. any agent in S3 needs cooperation of at least one agent in S1 ∪ S2 in order to form a

better coalition than S,

...
...

l. any agent in Sl needs cooperation of at least one agent in
⋃
m<l S

m in order to form a

better coalition than S.

Theorem 1. Suppose game G satisfies the weak top-coalition property. Then it has a

non-empty core.11

Proof. Let V0 = N , S1 ⊆ V0 be a weak top-coalition of V0, and {S1
1 , . . . , S

l(1)
1 } be its

partition as defined in Definition 14. Let V1 = V0 \ S1, S2 ⊆ V1 be a weak top-coalition

of V1, and {S1
2 , . . . , S

l(2)
2 } be its partition as defined in Definition 14. Similarly, define the

triple (Sk, {S1
k , . . . , S

l(k)
k }, Vk) for each k. Since the set of players N is finite, this procedure

terminates in finite steps (i.e., there is an integer K such that VK = ∅ and VK−1 6= ∅). Let

π∗ = {S1, . . . , SK}. We show that the coalition structure π∗ is a core partition. Consider

the following sequence of groups: S1
1 , . . . , S

l(1)
1 , S1

2 , . . . , S
l(2)
2 , . . . , S1

K , . . . , S
l(K)
K . Observe that

no agent in S1
1 could profit from joining a coalitional deviation. Without the help of agents

in S1
1 , no agent in S2

1 could profit from joining a coalitional deviation. In general, without

10Tan [1991] provides a necessary and sufficient condition for the non-emptiness of the core for roommate
problems.

11One does not need to use the full power of the weak top-coalition property to prove this result. As long
as there exists a partition {S1, . . . , SK} such that Sk is a weak top-coalition of N \ (∪m<kSm) for all k (i.e.,
S1 is a weak top-coalition of N , S2 is a weak top-coalition of N \ S1, and so on), the core is non-empty.
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the help of agents from earlier groups in the sequence, a profitable coalitional deviation is

not possible. Hence there is no profitable coalitional deviation and π∗ is in the core.♦

Moreover, the core is a singleton provided that the top-coalition property is satisfied and

the preferences are strict.

Theorem 2. Suppose game G satisfies the top-coalition property and the preferences are

strict. Then it has a unique core partition.

Proof. For any V ⊆ N define M(V ) = {S ∈ 2V \ ∅ : S is a top-coalition of V }. Under

strict preferences M(V ) is a collection of disjoint sets for any non-empty V ⊆ N. Define

V0 = N and let M(V0) = {S1
1 , . . . , S

m(1)
1 }. Next define V1 = N \ ⋃m(1)

j=1 Sj1 and let M(V1) =

{S1
2 , . . . , S

m(2)
2 }. Similarly define Vk = N \ ⋃m(k)

j=1 Sjk and let M(Vk) = {S1
k+1, . . . , S

m(2)
k+1 } for

each k. Since N is finite, this procedure terminates at some point (i.e., there is an integer

K such that VK = ∅ and VK−1 6= ∅). This procedure uniquely determines the coalition

structure π∗ = {S1
1 , . . . , S

m(1)
1 , S1

2 , . . . , S
m(2)
2 , . . . , S1

K , . . . , S
m(K)
K }. We next show that π∗ is

the only core partition. First note that a core partition should have Sj1 as a component for any

j ∈ {1, . . . ,m(1)} since otherwise Sj1 could profitably deviate. Given that, a core partition

should have Sj2 as a component for any j ∈ {1, . . . ,m(2)}, and so on. This completes the

proof.♦

It is easy to see that the common ranking property implies the top-coalition property.

However the converse relation does not hold. The following game makes this point:

Game 4. There are two type-b players and one type-a player. Thus, the player set N can

be written as N = {a1, b1, b2}. Suppose that their preferences satisfy anonymity and let their

preferences on cardinalities of coalitions be as follows:

Type a : 1 �a 2 �a 3,

Type b : 3 �b 2 �b 1.

Claim. Game 4 satisfies the top-coalition property but not the common ranking property.

Proof of the Claim. First observe that if a1 ∈ V then {a1} is a top coalition of V, and

otherwise V is a top-coalition of V. Thus, the top-coalition property is satisfied. On the

other hand, the common ranking property is not satisfied: We have {a1, b1} �a1 {a1, b1, b2}
and yet {a1, b1, b2} �b1 {a1, b1}.♦

It is also clear that the top coalition property implies the weak top-coalition property.

Example 3 in Section 6.6 shows that the converse relation does not hold.

The final issue that we investigate in this section is whether the top coalition properties

imply the Scarf-balancedness condition in NTU games. An NTU game is a correspondence

V : 2N\{∅} 7→ IRN such that: (i) for all u, v ∈ IRN , [∀i ∈ S : ui = vi] ⇒ [u ∈ V (S) ⇐⇒
v ∈ V (S)], (ii) V (S) is closed, (iii) V (S) + IRN

− ⊂ V (S) and (iv) there is an upper bound

on the projection of V (S) on S for each S ∈ 2N\{∅}. A balanced family of coalitions B
is a collection of non-empty subsets of N such that there is a (balanced weight) function

10



δ : B → [0, 1] with
∑
S∈B, i∈S δ(S) = 1 for any i ∈ N . An NTU game V is Scarf-balanced

(Scarf [1967]) if for every balanced family B of N we have
⋂
S∈B V (S) ⊆ ⋃

π∈Π(N) ∩T∈πV (T )

where
⋃
π∈Π(N) ∩T∈πV (T ) denotes the superadditive cover of V .

Game 5. N = {1, 2, 3}, and the preferences are as follows:

Player 1: {1, 2} �1 {1, 3} �1 {1, 2, 3} �1 {1},
Player 2: {1, 2} �2 {2, 3} �2 {1, 2, 3} �2 {2},
Player 3: {1, 3} �3 {2, 3} �3 {1, 2, 3} �3 {3}.

Claim. Game 5 satisfies the common ranking property (and thus, both top-coalition prop-

erties as well) but not the Scarf-balancedness condition.

Proof of the Claim. In this game we have the following common ranking:

{1, 2} � {1, 3} � {2, 3} � {1, 2, 3} � {1} � {2} � {3}.

Thus, the common ranking property is satisfied. Now, we construct an NTU game from our

game by appropriately assigning vector values to each coalition (see Shapley & Scarf [1973]

and Quint & Shubik [1998]):

V ({i}) = {x ∈ IR3 : xi ≤ 0} for each i ∈ N
V ({1, 2}) = {x ∈ IR3 : x1 ≤ 3, x2 ≤ 3},
V ({1, 3}) = {x ∈ IR3 : x1 ≤ 2, x3 ≤ 3},
V ({2, 3}) = {x ∈ IR3 : x2 ≤ 2, x3 ≤ 2}, and

V ({1, 2, 3}) = {x ∈ IR3 : x1 ≤ 1, x2 ≤ 1, x3 ≤ 1}.

Next we check whether this NTU game is balanced. Observe that B = {{1, 2}, {2, 3}, {1, 3}}
is a balanced family with a balanced weight 1/2 for each coalition. Moreover (2, 2, 2) ∈⋂
S∈B V (S). However, (2, 2, 2) /∈ ⋃

π∈Π(N) ∩S∈πV (S). In other words, there is no partition

that yields the payoff vector (2,2,2). Thus, the game V is not Scarf-balanced. ♦

Although the weak top-coalition property is demanding, it is satisfied in many interesting

applications. We present several such applications.

6 Applications

6.1 Anonymous and Separable Games

In Sections 2 and 3 we discussed anonymity and additive separability. Here, we impose these

two conditions together. (Note that separability together with anonymity implies additive

separability). In such games the top-coalition property is satisfied and hence the core is

non-empty.12
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Corollary 1. Suppose that the game G is anonymous and separable. Then it has a non-

empty core.

Proof. We classify players using anonymity: Let N+ = {i ∈ N : {i, j} �i {i} for any

j 6= i} and N− = {i ∈ N : {i, j} ≺i {i} for any j 6= i}. By definition N+ ∪ N− = N and

N+ ∩ N− = ∅. For any player i ∈ N−, the top choice is staying alone by separability. Let

V ⊆ N. If V ∩N− 6= ∅ then any singleton subset of V ∩N− is a top coalition in V. Otherwise

V ⊆ N+ and V itself is a top coalition in V . Thus, the top-coalition property is satisfied

and G has a core partition π = {N+, ({i})i∈N−}.♦

6.2 Residential Segregation with Snob Effects

There are K income classes {1, 2, ..., K} where each class k has nk > 0 agents. Class 1 is

the richest, class 2 is the second richest, and so on. Agents can form exclusive jurisdictions

(coalitions). Each jurisdiction can be described by a list (m1,m2, . . . ,mK) that specifies the

number of agents in each coalition. All agents have an identical utility function

u(m1,m2, . . . ,mK) =

∑K
k=1 wkmk∑K
k=1 mk

where w1 > w2 > · · · > wK > 0 are weights of different income classes. That is, everyone

wants to live in a rich jurisdiction. Coalition formation games induced by such problems

satisfy the top-coalition property: For each V ⊆ N members of its richest class is always a

top coalition. Therefore a core partition exists. Moreover there is no mixed coalition at any

core partition. Equivalently, perfect segregation occurs.13

6.3 Becker’s [1973] Marriage Game

Let M = {m1,m2, ...,mn} be the set of men and W = {w1, w2, ..., wn} be the set of women.

All men have identical preferences: they like w1 the best, w2 the second, ..., and wn the last.

All women have identical preferences in an analogous way. For simplicity, we assume that

staying single is the last choice for all agents. Becker [1973] suggests that mi and wi should

be matched for any i = 1, 2, ..., n.

We can generate Becker’s proposition as the unique core partition of the corresponding

coalition formation game where players mi ∈M and wi ∈ W have the following preferences:

{mi, w1} �mi {mi, w2} �mi · · · �mi {mi, wn} �mi {mi} �mi (others),

{wi,m1} �wi {wi,m2} �wi · · · �wi {wi,mn} �wi {wi} �wi (others).

This game satisfies the top-coalition property. That is, for any non-empty coalition V ⊆ N

there is a top coalition: If V ∩M 6= ∅ and V ∩W 6= ∅ then {mi, wj} ⊆ V is a top coalition,

where k ≥ i for any man mk ∈ V and ` ≥ j for any woman w` ∈ V . That is because, mi

12The common ranking property is not necessarily satisfied for such games. See Game 4 for an example.
13Rose-Ackerman [1977] analyzes a two class economy with exclusion that generates residential segregation.
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and wj are the most attractive man and woman in V respectively. If on the other hand

V ∩W = ∅ or V ∩M = ∅, then every singleton subset of V is a top coalition. By Theorem 2

the coalition structure π∗ = {{m1, w1}, {m2, w2}, . . . , {mn, wn}} is the unique core partition.

6.4 TU Games with Proportional Sharing

Let N be a finite set of players and v : 2N\{∅} → IR+ be a real-valued function. The

pair (N, v) is called a TU game and for any S ⊆ N , v(S) is called the worth of coalition

S. Suppose that the worth of each coalition is allocated among its members based on the

proportional rule for some given list of shares (αi)i∈N . Therefore when a coalition S forms,

the payoff to its member i ∈ S is

ui(S) =
αi∑
j∈S αj

× v(S).

Example 1. Consider a village where the main industry is sugar cane production. Land is

common property and it is in abundance. Each farmer i ∈ N owns αi > 0 units of labor.

Sugar cane can be produced via labor using a common production function f : IR+ → IR+.

Market price of sugar cane is normalized to one. Therefore the worth of coalition S is v(S) =

f(
∑
j∈S aj). Finally, the worth of a coalition is shared among its members proportionally to

labor inputs.

Note that, any TU game together with a proportional rule naturally induces a coalition

formation game. This game satisfies the common ranking property and hence its core is

non-empty.14

Corollary 2. Consider a simple coalition formation game G that is induced by a propor-

tional rule implemented on a TU game. Game G has a non-empty core.

Proof. Consider player i ∈ N. For any S, T ∈ Si(N) with S 6= T,

S �i T ⇐⇒ αi∑
j∈S αj

× v(S) ≥ αi∑
j∈T αj

× v(T )

⇐⇒ v(S)∑
j∈S αj

≥ v(T )∑
j∈T αj

Define ϕ(S) = v(S)∑
j∈S αj

. For any i ∈ N and any S, T ∈ Si(N), S �i T iff ϕ(S) ≥ ϕ(T ). We

next show that there is a top coalition for each V ⊆ N with V 6= ∅. Let M(V ) = {S ∈
2V \{∅} : ϕ(S) ≥ ϕ(T ) for any T ∈ 2V \{∅}}. Each element S of M(V ) is a top coalition.

This is because, for any i ∈ S and any T ∈ 2V \{∅} we have ϕ(S) ≥ ϕ(T ) or equivalently

S �i T. Thus, the common ranking property (and therefore the top-coalition properties as

well) is satisfied. Theorem 1 implies that there is a core partition.♦
14Jackson & Wolinsky’s [1996] technique to prove existence of a stable network is an application of this

argument. See also Dutta & Mutuswami [1997].
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We can cover Farrell & Scotchmer’s [1988] partnership game and Moulin & Shenker’s

[1994] average cost sharing problem as special cases of TU games with proportional sharing.

6.4.1 Farrell & Scotchmer’s [1988] Partnership Game

Let N = {1, 2, ..., n} and each player j ∈ N has ability ej > 0. The productivity of each

coalition S ∈ 2N\{∅} is t(|S|)×∑j∈S ej, where t : IN→ IR+. When a coalition S forms, its

output is shared equally among its members and hence the payoff to each member is

t(|S|)×∑j∈S ej
|S|

.

Farrell & Scotchmer’s partnership games is a specific application of TU games with

proportional sharing where v(S) = t(|S|)×∑j∈S ej for all S ∈ N and (αi)i∈N = (1, 1, . . . , 1).

Therefore partnership games satisfy the common ranking property (as was shown in Farrell

& Scotchmer [1988]) and thus it has a non-empty core.

6.4.2 Moulin & Shenker’s [1994] Average Cost Sharing Problem

Let N = {1, 2, ..., n} and each player i ∈ N be endowed with divisible money. There is

one divisible commodity besides money which can be produced by money with a common

production technology that is accessible by anybody or any coalition. The technology is

described by a cost function C : IR+ → IR+ that is a mapping from the amount of commodity

production to the amount of money needed. Each player i ∈ N has a fixed demand ai > 0 for

the commodity. Players have monotonic preferences on money. Players are allowed to form

coalitions and produce the commodity jointly using the common production technology. For

a non-empty coalition S ⊆ N , amount of production needed is
∑
j∈S aj and therefore the

cost of production is C(
∑
j∈S aj). The cost is shared based on the average cost sharing rule.

That is, each player in a coalition pays the average cost of the coalition times her demand.

Moulin & Shenker’s average cost sharing problem is another application of TU games with

proportional sharing where v(S) = −C(
∑
j∈S aj) for all S ⊆ N and (αi)i∈N = (ai)i∈N .

Therefore a coalition formation game that is induced by the average cost sharing rule satisfies

the common ranking property and thus has a non-empty core.

6.5 Shapley & Scarf’s [1974] Housing Market

Let N = {1, 2, ..., n} and each player i ∈ N own one indivisible house hi. Thus, the set

of houses can be denoted by H(N) = {h1, h2, ..., hn}. Similarly, we can define H(V ) for

any V ⊆ N with V 6= ∅. Each player i can consume (or live in) at most one house, and

has a strict preferences Pi over H(N). An allocation is a one-to-one and onto mapping

µ : N → H(N). A weak coalitional deviation from µ is a pair (S, ν) such that (i) S ⊆ N

with S 6= ∅, (ii) ν : S → H(S) is one-to-one and onto, and (iii) ν(i)Piµ(i) for at least one

i ∈ S and ν(i) = µ(i) for others. A strict core allocation is an allocation µ that is immune

to any weak coalitional deviation. Shapley & Scarf [1974] show that the core is non-empty
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and Roth & Postlewaite [1977] show that the strict core is singleton and coincides with the

unique competitive allocation.

David Gale invented the following top trading cycles algorithm that yields the competitive

allocation: Pick any i ∈ N and let her point her most favorite house in H(N), say house

hj. If i = j then i → i is a top cycle. Otherwise, j 6= i and let j point her most favorite

house, say hk. If k = i then i→ j → i is a top cycle and if k = j then j → j is a top cycle.

Otherwise let k point her most favorite house, say h`. If ` = i then i → j → k → i is a

top cycle, if ` = j then j → k → j is a top cycle, and if ` = k then k → k is a top cycle.

Otherwise, let ` choose her most favorite house, and so on and so forth. Since the number

of players is finite, by continuing this procedure we find at least one trading cycle. Let the

set of players in the first top trading cycle be S∗1 . Remove them out of the market together

with their assignments. We now have a reduced group of players V1 = N\S∗1 and houses

H(V1). Among the remaining players V1, there is a subset S∗2 that forms a top cycle. Again

remove them from the market together with their assignments and proceed in a similar way.

This algorithm yields the unique competitive allocation that coincides with the unique strict

core allocation. Given any housing market, the competitive mechanism naturally induces a

coalition formation game: For any non-empty subset of players V, let µ∗V : V → H(V ) be the

unique competitive allocation. Then, for any player i and any two coalitions S, T ∈ Si(N),

we have S �i T ⇐⇒ µ∗S(i)Riµ
∗
T (i). By the dynamics of the top trading cycles algorithm

S∗1 ∈M(N), and S∗k ∈M(Vk) for each k with Vk 6= ∅. Therefore the top-coalition property is

satisfied for the induced coalition formation game. Note that the common ranking property

is not necessarily satisfied for such games.

Example 2. N = {1, 2, 3} and the preferences are as follows:

h2 �1 h3 �1 h1,

h3 �2 h1 �2 h2,

h2 �3 h1 �3 h3.

Let V = {1, 2}. We have

µ∗N =

(
1 2 3

h1 h3 h2

)
and µ∗V =

(
1 2

h2 h1

)
.

Therefore µ∗V (1)P1µ
∗
N(1) and µ∗N(2)P2µ

∗
V (2) which implies V �1 N and N �2 V violating

the common ranking property.

6.6 Benassy’s [1982] Uniform Reallocation

Let N = {1, 2, . . . , n} and each player i ∈ N be endowed with an initial endowment ω(i) ∈
IR+ of a perfectly divisible commodity. Each player i has a single-peaked preference relation

Ri over IR+. That means she has a best consumption b(i) ∈ IR+ such that: for all x, y ∈ IR+,

[x < y ≤ b(i) or x > y ≥ b(i)] ⇒ yPix. Whenever z(i) = b(i) − ω(i) ≥ 0 we say agent i

has an excess demand and whenever z(i) = b(i)− ω(i) ≤ 0 we say she has an excess supply.
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Similarly, a coalition V ⊆ N has an excess demand if z(V ) =
∑
i∈V z(i) ≥ 0 and it has

an excess supply if z(V ) =
∑
i∈V z(i) ≤ 0. For any coalition V ⊆ N , a feasible allocation

is a vector x ∈ IRV
+ such that

∑
i∈V x(i) =

∑
i∈V ω(i). When a coalition V ⊆ N forms, its

members reallocate ω(V ) =
∑
i∈V ω(i) based on the uniform reallocation rule: For all i ∈ V ,

UV (i) =

{
min{b(i), ω(i) + λ} if z(V ) ≥ 0

max{b(i), ω(i) + λ} if z(V ) ≤ 0

where λ ∈ IR solves
∑
i∈V UV (i) = ω(V ).

A detailed analysis of the uniform reallocation rule is beyond the scope of this paper.15

However the following feature of its is of particular importance to us: Whenever the coalition

V has an excess demand, the uniform rule UV allocates (i) each agent i ∈ V who has an

excess supply, her best consumption b(i) and (ii) each agent i ∈ V who has an excess

demand, at least her endowment ω(i). Similarly whenever the coalition V has an excess

supply, the uniform rule UV allocates (i) each agent i ∈ V who has an excess demand, her

best consumption b(i) and (ii) each agent i ∈ V who has an excess supply, at most her

endowment ω(i). This feature implies that, whenever all agents have excess demand (or

whenever all have excess supply), the uniform rule allocates them their endowments.

For any given triple (N, (ω(i))i∈N , (Ri)i∈N), the uniform reallocation rule induces a coali-

tion formation game: For any player i ∈ N , and any two coalitions S, T ∈ Si(N), we have

S �i T ⇐⇒ US(i)RiUT (i). This game satisfies the weak top-coalition property and hence

has a non-empty core.

Corollary 3. Consider a coalition formation game G that is induced by the uniform

reallocation rule. Game G has a non-empty core.

Proof. We show that, for any V ⊆ N the coalition V itself is a weak top-coalition. Suppose

without loss of generality that coalition V has an excess demand z(V ) ≥ 0 (the other case

is similar). Define V 1 = {i ∈ V : z(i) ≤ 0} and V 2 = {i ∈ V : z(i) > 0}. We have two cases

to consider.

Case 1 : V 1 6= ∅. Let i ∈ V 1. The uniform rule UV allocates agent i her best consumption

b(i). Therefore, for all T ⊆ V we have V �i T . Next consider an agent i ∈ V 2 and suppose

T ⊆ V is such that T �i V . We will show that T ∩ V 1 6= ∅ which in turn implies that

V is a weak top-coalition. The uniform rule UV allocates agent i at least her endowment

ω(i). Since z(i) = b(i)−ω(i) > 0 and the preferences are single-peaked, the relation T �i V
implies UT (i) > UV (i) ≥ ω(i). But that means, there is at least one agent j ∈ T with

z(j) < 0 since otherwise the uniform rule UT allocates all agents in T (including agent i)

their endowments. Hence T ∩V 1 6= ∅ and V is a weak top-coalition with {V 1, V 2} being the

associated partition.

Case 2 : V 1 = ∅. In this case all agents in V are excess demanders. Therefore no matter

which subcoalition T ⊆ V forms, all its members are also excess demanders and the uniform

15Sprumont [1991] initiated a large literature that analyzes the uniform rule. See also Ching [1992,1994],
Thomson [1994a,1994b,1995] and Klaus, Peters, & Storcken [1998].
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rule UT allocates each member her endowment. As a result all agents in V are indifferent

between all subsets of V . Hence V is a top coalition (and thus a weak top-coalition as well).

Therefore the weak top-coalition property is satisfied and the coalition structure {N} is a

core partition. ♦.

Finally note that, the top coalition property is not necessarily satisfied in these coalition

formation games.

Example 3. N = {1, 2, 3}, (ω(1), ω(2), ω(3)) = (5, 5, 5), and (b(1), b(2), b(3)) = (1, 8, 8).

The following table gives the outcome of the uniform rule UT , for any T ⊆ N :

1 2 3

U{1} 5 - -

U{2} - 5 -

U{3} - - 5

U{1,2} 2 8 -

U{1,3} 2 - 8

U{2,3} - 5 5

U{1,2,3} 1 7 7

We have
N �1 T for all T ⊆ N with 1 ∈ T,
{1, 2} �2 T for all T ⊆ N with 2 ∈ T,
{1, 3} �3 T for all T ⊆ N with 3 ∈ T,

and therefore there is no top coalition for the grand coalition N .
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