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Abstract
Most previous studies of binary choice panel data models with Þxed ef-

fects require strictly exogeneous regressors, and except for the logit model
without lagged dependent variables, cannot provide rate root n parameter
estimates. We assume that one of the explanatory variables is independent
of the individual speciÞc effect and of the errors of the model, conditional on
the other explanatory variables. Based on Lewbel (2000a), we show how this
alternative assumption can be used to identify and root-n consistently esti-
mate the parameters of discrete choice panel data models with Þxed effects,
only requiring predetermined (as opposed to strictly exogeneous) regressors.
The estimator is semiparametric in that the error distribution is not speciÞed,
and allows for general forms of heteroscedasticity.
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1 Introduction
The contribution of this paper is to provide a set of conditions for identiÞcation
of the parameters of a binary choice model with individual speciÞc effects and
explanatory variables that are predetermined as opposed to strictly exogenous.
The identiÞcation strategy suggests an estimator which is shown to be root�n
consistent under appropriate regularity conditions.
Consider the model

yit � I ��i t � x �i t� � �i � �i t � 0� (1)

where i � 1� 2� 	 	 	 � n� and t � 1� 2� 	 	 	 � T . Here I ��� is the indicator function
that equals one if � is true and zero otherwise, �i t is a regressor having a coefÞcient
that has been normalized to equal one, xit is a J vector of other regressors, � is a J
vector of coefÞcients, �i is an individual speciÞc (�Þxed�) effect, and the distribu-
tion of the errors �i t is unknown. The model (1) was considered by Rasch (1960)
and by Andersen (1970) who showed that the parameter � can be estimated by
a conditional likelihood approach provided that the errors, ��i t �, are independent
and logistically distributed and independent of the sequence of explanatory vari-
ables ��i t � xit �. Manski (1987) generalized this approach by showing that � can
be estimated by a conditional maximum score approach as long as the sequence
��i t � is stationary conditional on the sequence of explanatory variables ��i t � xit �.
A recent paper by Honoré and Kyriazidou (2000) generalized the approaches

of Rasch (1960), Andersen (1970) and Manski (1987) by considering a binary
choice model with strictly exogenous explanatory variables as well as lagged de-
pendent variables. The present paper provides an alternative to Honoré and Kyr-
iazidou, which allows for general predetermined explanatory variables (not just
lagged dependent variables) and results in a root-n consistent estimator, as op-
posed to the slower rate of Honoré and Kyriazidou�s estimator. The cost is that a
strong assumption is made on one of the explanatory variables �i t . This assump-
tion is not used by Honoré and Kyriazidou. By permitting estimation of � in (1) at
rate root�n� this assumption also allows us to overcome a result by Chamberlain
(1993) who showed that even if all the explanatory variables are strictly exoge-
nous and the distribution of �i t in (1) is known, the logit model is the only version
of (1) in which � can be estimated at rate root-n.
The main insight of this paper is to observe that a method due to Lewbel

(2000a) can be used to construct a linear moment condition from (1). We can
then combine this idea with the methods used for linear panel data models. In
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particular, we can allow for predetermined variables in exactly the same way as
can be done in the linear model.
The key assumption used in this paper is that �i � �i t in (1) is conditionally

independent of one of the explanatory variables, �i t . This assumption is strong.
However, given Chamberlain�s result it is clear that some additional assumption
is needed in order to construct estimators that are root�n consistent.1�2 We stress
that the requirement is conditional independence. This means that when the value
of xit (and instruments zi ) are known, additional knowledge of the one regressor
�i t does not alter the conditional distribution of �i � �i t . This conditional in-
dependence is neither weaker or stronger than unconditional independence. It is
possible for �i t and �i to be independent, but still not be conditionally indepen-
dent, because both may correlate with other regressors. It is also possible that �i t
and �i are dependent but still satisfy the required conditional independence. The
assumption made here is in the same spirit as the assumption made by Hausman
and Taylor (1981), but differs from theirs because their assumption is uncondi-
tional.
Whether the assumption made here is reasonable depends on the context. It

will naturally arise in applications where��i t is some cost measure and x �i t���i
is some beneÞt measure, or vice versa. Adams, Berger and Sickles (1999) argue
that such an assumption is appropriate in a particular linear model of bank efÞ-
ciency. In labor supply or consumer demand models, where the errors and Þxed
effects are interpreted as unobserved ability or preference attributes, the assump-
tion will hold if there exists explanatory variables that are assigned to individuals
independently of these unobserved attributes (an example might be government
beneÞts income). Maurin (1999) applies a similar conditional independence as-

1In a recent paper, Lee (1999) proposed an estimator based on a different set of assumptions.
The advantage of the approach taken here over Lee�s is that we only require predetermined regres-
sors and that our assumption is easier to interpret (see Abreveya, 1999, for a discussion of Lee�s
assumptions).

2In some situations it may be more appropriate to take a random effects approach like the one in
Chen, Heckman andVytlacil (1998). Such an approach typically requires assumptions about initial
conditions, and about the relationship between the individual speciÞc effect and the explanatory
variables, but these additional assumptions often lead to much more precise estimators (if they are
satisÞed). As pointed out by Wooldridge (2001) such an approach also leads to parameters that
are more easily interpretable. Arellano and Carrasco (2000) propose methods for a different panel
data discrete choice model that the one considered here. Their model is less general than ours, but
their approach captures many of the desirable features of both Þxed and random effects. The class
of models and parameters considered by Altonji andMatzkin (2000) is in some ways more general
than ours, but although endogeneity is permitted, their model cannot accomodate dynamics.

3



sumption in a model of whether students repeat a grade in elementary school, us-
ing date of birth as the special regressor, and Alonso, Fernandez, and Rodriguez-
Póo (1999) use age as the independent regressor in a duration model application.
Explanatory variables based on experimental design, as in Lewbel, Linton, and
McFadden (2001), would also satisfy the assumption. On the other hand, it is
clearly not a reasonable assumption in a structural model of the type considered
by Heckman and MaCurdy (1980) where the Þxed effect is related to all the ex-
planatory variables by construction.
The next section demonstrates identiÞcation of � in our framework by express-

ing it as a function of estimable data densities and expectations. This is the main
contribution of the paper. The limiting root n distribution of an estimator based
on this identiÞcation is then given in the following section. To ease exposition,
the results will be presented using a single pair of time periods, r and s, and a
corresponding vector of instruments zi , which will be assumed to be uncorrelated
with �i t in both periods. zi would typically consist of predetermined regressors
up to period min �r� s�, although other instruments could be used (including time�
invariant ones).

2 IdentiÞcation
As discussed in the introduction, identiÞcation is obtained by treating one regres-
sor, �i t , as special. Assume that the coefÞcient of �i t is positive (otherwise replace
�i t with ��i t �, and without loss of generality normalize this coefÞcient to equal
one. An estimator of the sign of the coefÞcient of �i t will be provided later.

ASSUMPTIONA.1: Equation (1) holds for i � 1� 2� 	 	 	 � n� and t � 1� 2� 	 	 	 � T .
For t � r and t � s the conditional distribution of �i t given xit and zi is
absolutely continuous with respect to a Lebesgue measure with nondegenerate
Radon-Nikodym conditional density ft��i t � xit � zi �.
ASSUMPTION A.2: For each t , let eit � �i��i t 	 Assume eit is conditionally

independent of �i t , conditioning on xit and zi . Let Fet �eit � xit � zi � denote the
conditional distribution of eit , with support denoted by 
et �xit � zi �.

ASSUMPTION A.3: For t � r and t � s, the conditional distribution of �i t
given xit and zi has support [Lt � Kt ] for some constants Lt and Kt � �� 	 Lt �
0 � Kt 	 �, and the support of �xTit� � eit is a subset of the interval [Lt � Kt ].
ASSUMPTION A.4: Let �xtz � E�xit z�i � and �zz � E�zi z�i �. E��ir zi � �
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0 and E��is zi � � 0	 E��i zi �� �zz� �xrz , and �xsz exist. �zz and ��xrz �
�xsz��

�1
zz ��xrz ��xsz�

� are nonsingular.

In the special case of �i � 0 for all i (no Þxed effects), for each time period
t , these assumptions reduce to the assumptions in Lewbel (2000a), which pro-
vided an estimator for � in the corresponding cross section binary choice model.
Implications of these assumptions are described at length in that paper, so the dis-
cussion below will focus on the additional implications for panels and for Þxed
effects.
Assumption A.1 says that yit is given by the binary choice model (1) and that

�i t is drawn from a continuous conditional distribution. Note that �ir � �is � �i
is permitted, that is, the special regressor can be an observed attribute of individual
i that does not vary by time. The assumptions allow �i to be correlated with (and
in other ways depend upon) �i t , xit or zi , but as discussed in the introduction,
�i � �i t and �i t must be independent given xit and zi . The assumptions also allow
model errors �i t to depend on xit and zi , as long as they are uncorreleted with
the instruments zi . In particular, heteroskedasticity of general form is permitted.
Although assumptions are made about the data generating process of the �i �s, we
still interpret the model as a �Þxed� effects model because the estimator does not
make use of any parametric or nonparametric model of the distribution of the �i �s,
and in fact differencing will be used to eliminate the contribution of the �i �s, as is
done in linear Þxed effects models.
Assumption A.3 requires �i t to have a large support, and in particular requires

that��i t be able to take on any value that the rest of the latent variable xTit� � eit
can take on. This implies that for any values of xit and zt , there are values of �i t
such that the (conditional) probability that yit � 1 is arbitrarily close to 0 or 1.
Standard models for the errors like logit or probit would therefore require that �i t
have support equal to the whole real line. Of course, data and error distribution
supports are rarely known in practice. The practical implication of these support
assumptions is that the resulting estimator will generally perform better when the
spread or variance of observations of �i t is large relative to the rest of the latent
variable. Assumption A.3 also assumes that zero is in the support of �i t . This
can be relaxed to assume that there exists some point 
 that is known to be in
the interior of the support of �i t . We may then without loss of generality redeÞne
�i t and �i as �i t � 
 and �i � 
 , respectively. Finally, the support, [Lt � Kt ], can
depend on �xit � zi �.
An important feature of Assumptions A.1�3 is that they do not restrict the

relationship between the variables over time. They therefore allow for arbitrary
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feed�back from the current value of y to future values of the explanatory variables.
Allowing for this feature is a major contribution of the paper.
Assumption A.4 is identical to the conditions on the instruments zi that are

necessary to identify � from the moment conditions in a linear panel data model.
They are basically the conditions on the instruments zi required for linear two
stage least squares estimation on differenced data.
DeÞne y�i t by

y�i t � [yit � I ��i t � 0�]� ft ��i t � xit � zi � (2)

Theorem 1 If Assumptions A.1, A.2, and A.3 hold then, for t � r� s,
E�y�i t � xit � zi � � xTit� � E��i � �i t � xit � zi � (3)

Proof: Drop the subscripts to ease notation. Also, let s � s�x� e� � �xT��e.
Then

E�y� � x� z� � E
�
E[y � I �� � 0���� x� z]

f ���x� z� �x� z
�

�
� K

L

E[y � I �� � 0���� x� z]
f �� �x� z� f �� �x� z�d�

�
� K

L

�
�e

�
I �� � xT� � e � 0�� I �� � 0�

�
dFe�e � �� x� z�d�

�
�
�e

� K

L
[I �� � s�� I �� � 0�] d� dFe�e � x� z�

�
�
�e

� K

L
[I �s 	 � � 0�I �s 	 0�� I �0 � � 	 s�I �s � 0�] d� dFe�e � x� z�

�
�
�e

�
I �s 	 0�

� 0

s
1d� � I �s � 0�

� s

0
1d�

�
dFe�e � x� z�

�
�
�e

�s dFe�e � x� z� �
�
�e

�
xT� � e� dFe�e � x� z� � xT� � E�e � x� z�

Theorem 1 above is closely related to results in Lewbel (2000a). The dif-
ferences are that Lewbel (2000a) has no t subscript, and uses slightly different
assumptions so that only f ���z� is required instead of f �� �x� z� in the deÞnition
of y�	 Those alternative assumptions are less plausible in the present context in
which the error contains the individual speciÞc effect �i .
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DeÞne � and �t by

� � [��xrz ��xsz��
�1
zz ��xrz ��xsz�

�]�1��xrz ��xsz��
�1
zz

�t � E�zi y�i t�	

Corollary 1: If Assumptions A.1, A.2, A.3 and A.4 hold, then E�zi y�i t � � E�zi x �i t �
���

E�zi�i � for t � r� s, and hence

� � ���r � �s�

Corollary 1 shows that � is identiÞed, and can be estimated by an ordinary
two stage least squares regression of y�ir � y�is on xir � xis , using instruments zi .
Alternative GMM estimators can be obtained by replacing ��1

zz in the deÞnition
of � with any other nonsingular positive deÞnite matrix.
As mentioned earlier, it is not necessary that �i t be time varying. If it is not,

and if it is independent of all the other variables, then y�ir � y�is simpliÞes to
�yir � yis�

�
f ��i �.

3 Root N Estimation
For t � r� s, deÞne hit by

hit � zi y�i t � zi [yit � I ��i t � 0�]� ft ��i t � xit � zi � (4)

and, given a density estimator 
ft , deÞne


�t � N�1
N	
i�1


hit � N�1
N	
i�1
zi [yit � I ��i t � 0�]� 
ft��i t � xit � zi � (5)

One choice of conditional density estimator 
ft ��i t � xit � zi � is a kernel estimator
of the joint density of �i t � xit , and zi divided by a kernel estimator of the joint
density of just xit and zi (see the Appendix for details). The estimator 
�t is a two
step estimator with a nonparametric Þrst step. The limiting root N distribution
for two step estimators of this type has been studied by many authors. See, e.g.,
Sherman (1994), Newey and McFadden (1994), and references therein. Based on
these results, the inßuence function for 
�t is given by

qit � hit � E�hit � xit � zi �� E�hit � �i t � xit � zi � (6)
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and therefore

�
N � 
�t � �t � � N�1�2

N	
i�1

�
qit � E�qit �

�� op�1� (7)

The Appendix provides one set of regularity conditions that are both sufÞcient for
equations (6) and (7) to hold and are consistent with Assumptions A.1 to A.4.
DeÞne 
�xtz� 
�zz� 
�� 
�, and Qi by


�xtz � N�1
N	
i�1
xit z�i � t � r� s


�zz � N�1
N	
i�1
zi z�i


� � [� 
�xrz � 
�xsz� 
��1
zz � 
�xrz � 
�xsz��]�1� 
�xrz � 
�xsz� 
��1

zz


� � 
�� 
�r � 
�s� (8)

Qi � �qir � qis�� zi �xir � xis���
It follows immediately from equations (6) and (7) and Corollary 1 that

�
N � 
� � �� � N�1�2

N	
i�1

�[Qi � E�Qi �]� op�1� (9)

so �[Qi � E�Qi �] is the inßuence function for 
�, and therefore
�
N � 
� � �� � N [0� ��ar�Qi ���] (10)

When f is known, equation (6) simpliÞes to qit � hit � zi y�i t , which makes
(10) simplify to ordinary two stage least squares. Otherwise, the density estima-
tion error 
ft � ft contributes the term E�hit � xit � zi � � E�hit � �i t � xit � zi � in
equation (6) to the variance.
The variance of 
� can be estimated as 
� vâr� 
Qi � 
���N , where vâr denotes the

sample variance and 
Qi is constructed by replacing hit � his , and � with 
hit � 
his ,
and 
�, respectively, and replacing the conditional expectations in equation (6)
with nonparametric regressions.
The estimator above is based on two time periods, r and s. It can be read-

ily extended to include more time periods as follows. Rewrite Qi as Qrsi ����

8



where the dependence of the deÞnition of Qi on � is made explicit, and the rs
subscript denotes the pair of time periods used. Then 
� in equation (8) and its
limiting distribution in equations (9) and (10) are equivalent to applying the stan-
dard generalized method of moments (GMM) estimator to the moment conditions
E[Qrsi ���] � 0. The inßuence functions q contained in Q appropriately account
for the effect of the density estimation error in the resulting limiting distribution.
Withmore than two time periods, one can stack the moment conditions E[Qrsi ���] �

0 for all pairs �r� s�, and do standard (optimally weighted) GMM.

4 Additional Comments
Writing the binary choice model as yit � 1��0�i t � � �xit � eit � 0� where
ei t � �i � �i t , Theorem 1 and the associated estimator, equation (8), assume
that �0 � 1. The error eit can be arbitrarily scaled, so if �0 
� 0, �0 can be
normalized to equal �1 or 1 without loss of generality. To conÞrm that �0 is
indeed 1 rather than �1, observe that by Assumption A.2, E�yit � �i t � xit � zi � �
1�Fet [���0�i t�� �xit � � xit � zi ], so �E�yit � �i t � xit � zi ����i t � �0 fet [���0�i t�
� �xit� � xit � zi ]. Since densities are positive, it follows that �0 equals the sign3 of
�E�yit � �i t � xit � zi ����i t . Provided that �E�yit � �i t � xit � zi ����i t is consistently
estimated, its sign converges at faster than rate root N. This estimator (or any other
consistent estimator of the sign) can be used prior to estimation of � to ensure that
�i t has the proper sign, without affecting the limiting distribution of
�	
Equation �3� has the same structure as a linear panel data model. All the

tools that are available for the linear panel data model can therefore be applied
to �3� once y� has been obtained, and the generalizations to the linear panel data
model apply here as well. For example, given 
�, information regarding the dis-
tribution �i can be recovered. In particular, it follows from Corollary 1 that
N�1�N

i�1zi � 
hit � x �i t 
�� will be a consistent estimator of E�zi�i �, so the mean
of �i across individuals, and the correlation of �i with instruments zi , can be esti-
mated. It is also possible to allow for a time�varying coefÞcient on the Þxed effect
or to replace �i by a time varying individual speciÞc effect �1i � �2i uit for some
observed, strictly exogenous variable uit 	 For example, uit could be a macroeco-
nomic variable such as interest rates or GDP that affects individuals differentially.
On the other hand, it is also clear that the approach discussed here will suffer from

3Note that �0 also equals the sign of a weighted average derivative of E�yit � �i t � xit � zi � with
respect to �i t , which is usually easier to estimate than the derivative at a point. See, for example,
Powell, Stock, and Stoker (1989).

9



many of the problems that makes estimation of linear panel data models with pre-
determined variables difÞcult. These include problems associated with many and
potentially weak instruments, and an analysis similar to that in Blundell and Bond
(1998) might be appropriate.
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5 Appendix: Root N Convergence
A set of regularity conditions that are sufÞcient for root N consistent, asymptot-
ically normal convergence of 
�t , and hence of 
�, is provided here as Theorem 2
below. Theorem 2 is a special case of a two step estimator with a nonparametric
Þrst step, based on generic results in Newey (1994), Newey andMcFadden (1994),
and Sherman (1994), with closely related results in numerous other papers.
The regularity conditions provided below are not necessary for identiÞcation

or consistency. They are merely one possible set of sufÞcient conditions for root
N consistent convergence. Based on Newey (1994), any density estimator that is
regular enough to yield root N consistent convergence of 
�t to a normal can be
expected to possess the same limiting distribution.
Theorem 2 below provides the limiting distribution for 
�t . To ease notation

for this Appendix, all time subscripts are dropped and the estimand is denoted ��
where

hi � zi [yi � I ��i � 0�]� f ��i � xi � zi �
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� � E�hi �
The difÞculty with applying generic methods like Newey andMcFadden (1994)

or Sherman (1994) is that those estimators require hi to vanish on the boundary of
the support of �i � xi � zi to avoid boundary effects arising from density estimation
(where a kernel or other estimator 
f is substituted in for f ). In our application,
this may not hold for xi or zi 	
We resolve this technicality by bounding f away from zero, and introduce an

asymptotic trimming function that sets to zero all terms in the average having data
within a distance � of the boundary. We then let � go to zero more slowly than
the bandwidth to eliminate boundary effects in the kernel estimators, but we also
let N 1�2� � 0, which sends the volume of the trimmed space to zero at faster
than rate root N , which in turn makes the bias from the trimming asymptotically
irrelevant. Formally, this trimming requires that the support of the data be known.
In practice, trimming might be accomplished by simply dropping out a few of
the most extreme observations of the data, e.g., observations where the estimated
density is particularly small. In related applications, Hardle and Stoker (1989) and
Lewbel (2000a) Þnd that asymptotic trimming has very little impact on estimates
and is often unnecessary in practice.
Based on Rice (1986), Hong and White (2000) use jackknife boundary ker-

nels to deal with this same problem of boundary bias for one dimensional densi-
ties. Their technique (which also requires known support) could be generalized to
higher dimensions as an alternative to the trimming proposed here.
DeÞne ti to be the vector of variables used to deÞne xi and zi , so xi and

zi can be written as functions of ti , but no element of ti equals a function of
other elements of ti . For example, if x1i � z1i and x2i � z21i , then z1i could
be one element of ti , and x1i and x2i would not also be elements of ti . By this
deÞnition f ��i � xi � zi � � f ��i � ti �, and the latter is used in place of the former
for estimating � in Theorem 2. The vector t below is divided into a vector of
continuously distributed elements c and a vector of discretely distributed elements
d, to permit regressors and instruments of both types.
ASSUMPTION B.1: Each �i � �yi � �i � ti � is an independently, identically

distributed draw from some joint data generating process, for i � 1� 	 	 	 � N . Let

 be the support of the distribution each �i is drawn from. Let xi � x�ti � and
zi � z�ti � for some known vector valued functions x and z.
ASSUMPTION B.2: Let ti � �ci � di � for some vectors ci and di . The sup-

port of the distribution of ci is a convex, bounded, subset of Rk with a nonempty
interior. The support of the distribution of di is a Þnite number of real points.
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The support of the distribution of �i is some interval [L � K ] on the real line R,
for some Þnite constants L and K . The underlying measure � can be written in
product form as � � � y � �� � �c � �d , where �c is Lebesgue measure on Rk 	 ci
is drawn from an absolutely continuous distribution (with respect to a Lebesgue
measure with k elements). ft�ti � is the product of the (Radon-Nikodym) condi-
tional density of ti given di times the marginal probability mass function of di .
f� t��i � ti � is the product of the (Radon-Nikodym) conditional density of ��i � ti �
given di times the marginal probability mass function of di . Let 
�c and 
c de-
note the supports of ��i � ci � and ci , respectively. Let f �� � t� � f�t ��� t�� ft �t�.

ASSUMPTIONB.3: Assume f�t ��� t�,
�c� and the support of hi are bounded,
and that f�t ��� t� is bounded away from zero. Let � be a trimming parameter.
Assume the 
�c is known, and deÞne the trimming function I� ��� c� to equal
zero if ��� c� is within a distance � of the boundary 
�c, otherwise, I� ��� c�
equals one. Let h� i � hi I� ��� u�	 The expectations E[h2� ft �c� d��2 � c� d] and
E[h2� f�t ��� c� d��2 � �� c� d] exist and are continuous in c and �	 Let � t� �c� d� �
�E�h� � c� d� and � �t� ��� c� d� � �E�h� � �� c� d�. For some �c and ��� � �c� in
an open neighborhood of zero there exist some functionsmt �c� d� andm�t ��� c� d�
such that the following local Lipschitz conditions hold:

�� f�t �� � �� � c � �c� d�� f�t ��� c� d��� 	 m�t ��� c� d������ � �c���
��� �t� �� � �� � c � �c� d�� � �t� ��� c� d��� 	 m�t ��� c� d������ � �c���

�� ft �c � �c� d�� ft�c� d��� 	 mt�c� d����c��
��� t� �c � �c� d�� � t� �c� d��� 	 mt�c� d����c��

ASSUMPTION B.4: The following exist for all d in the support of di

sup
��0����c����c

E[h2� f� t��� c� d�
�2 � �� c� d]

sup
��0�c��c

E[h2� ft �c� d�
�2 � c� d]

sup
��0

E
�
�[1� �h�� f� t��� c� d��]m� t��� c� d��2 � d

�
sup
��0

E
�
�[1� �h�� ft �c� d��]mt �c� d��2 � d

�
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ASSUMPTION B.5: The kernel function Kc�c� has support Rk . Kc�c� � 0
for all c on the boundary of, and outside of, a convex bounded subset of Rk	 This
subset has a nonempty interior and has the origin as an interior point. Kc�c� is a
bounded, differentiable, symmetric function, that satisÞes



Kc�c�dc � 1. The

kernel function K�c��� c� satisÞes the same properties for ��� c� on the support
Rk�1.
ASSUMPTIONB.6: The kernel Kc�c� has order p � 1, that is,



cl11 	 	 	 c

lk
k Kc�c�dc �

0 for 0 � l1 � 	 	 	 � lk � p,


cl11 	 	 	 c

lk
k Kc�c�dc 
� 0 for l1 � 	 	 	 � lk �

p and all partial derivatives of ft �c� d� with respect to c of order p exist, and
for all 0 	 � 	 p and all d on the support of di , for l1 � 	 	 	 � lk � �,
sup��0



� t �c� d�[�� ft�c� d���l1c1 	 	 	 �lk ck]dc exists, where the integral is over

the support of c. All of the conditions in this assumption also hold for K�c and
f�c, replacing c with ��� c� everywhere above.
DeÞne the kernel density estimators:


ft�c� d� � �Nhk��1
N	
i�1
Kc[�c � ci ��h]I �d � di � (A.1)


f� t��� c� d� � �Nhk�1��1�N
i�1K�c[�� � �i ��h� �c � ci ��h]I �d � di � (A.2)


f �� � x� z��1 � 
f �� � t��1 �

ft�c� d�I� ��� c�

f�t ��� c� d�


� � N�1
N	
i�1
zi [yi � I ��i � 0�] 
f ��i � xi � zi ��1

Theorem 2 below also holds if I �d � di � in equations (A.1) and (A.2) are re-
placed by Kd[�d�di ��h] for some kernel function Kd , which results in smoothing
data across discrete d �cells� at small sample sizes, and at large sample sizes be-
comes equal to (A.1) and (A.2). Equation (A.1) constructs 
ft separately for each
value of di and then averages the results.
DeÞne qi by

qi � hi � E�hi � xi � zi �� E�hi � �i � xi � zi �

THEOREM 2: Let Assumptions B.1 to B.6. hold. Let either Assumptions B.7
or B.7� hold. Assume Nh2�k�1� � �� Nh2p � 0, h�� � 0, and N� 2 � 0.
Then

�
N � 
� � �� � N�1�2�N

i�1
�
qi � E�qi �

�� op�1�	
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The assumptions of Theorem 2 do not conßict with those of Theorem 1. How-
ever, boundedness of
�c and Assumption A.3 together require that the regressors
� and x and the errors e all have bounded support.
Theorem 2 is proved in Lewbel (2000b), which is available on request.
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