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Abstract
Let y be a vector endogenous variables and let w be a vector of co-

variates, parameters and errors or unobservables that together are assumed
to determine y. A structural model y = H(y, w) is complete and coher-
ent if it has a well defined reduced form, meaning that for any value of w
there exists a unique value for y. Coherence and completeness simplifies
identification, and is required for many estimators and many model appli-
cations. Incoherency or incompleteness can arise in models with multiple
decision makers such as games, or when the decision making of individ-
uals is either incorrectly or incompletely specified. This paper provides
necessary and sufficient conditions for the coherence and completeness of
simultaneous equation systems where one equation is a binomial response.
Examples are dummy endogenous regressor models, regime switching re-
gressions, treatment response models, sample selection models, endogenous
choice systems, and determining if a pair of binary choices are substitutes
or complements.
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1 Introduction
Let y be a vector of endogenous variables, and let w ∈ be a vector of ob-
servables and unobservables that determine y. Here w could contain unknown
parameters, exogenous observed covariates and error terms. Consider a proposed
structural model of the form y = H(y, w). Gourieroux, Laffont, and Monfort
(1980) define the model to be coherent if for each w ∈ there exists a unique
value for y, which we may denote by the reduced form equation y = G(w), such
that G(w) = H [G(w),w]. Heckman (1978) refers to this condition as the prin-
cipal assumption and as conditions for existence of the model. Other authors that
consider coherency of various model specifications include Blundell and Smith
(1994) and Dagenais (1997). More recently, Tamer (2003) uses the term co-
herency to only refer to existence of a y that solves y = H(y, w), and calling
the model complete if the solution is unique. I will adopt this newer terminology.
Coherency and completeness of a structural model together imply existence and
uniqueness of a reduced form.
Incoherent or incomplete models with dummy endogenous regressors arise in

some simultaneous games, e.g., the industry entry game of Bresnahan and Reiss
(1991) yields a system of two binary choice equations, each of which depends on
the outcome of the other. Tamer (2003) observes that incoherency corresponds to
case where the game has no Nash equilibrium, and incompleteness to the case
of multiple equilibria. Aradillas-Lopez (2005) removes the incompleteness in
these games by showing that a unique Nash equilibrium exists when the player’s
information sets are incomplete.
Incoherence can be interpreted as a form of model misspecification, since it

implies that for some feasible values of w there does not exist a corresponding
value of y, whereas in reality some value of y would be observed. We may think
of incompleteness as a model that is not fully specified, since for some feasible
values of w, the model does not deliver a corresponding unique value for y. Para-
meters of incoherent or incomplete models can sometimes be point identified and
estimated (Tamer 2003 provides examples), however, such models cannot be used
to make predictions about y over the space of all values of w, and they cannot be
used with any parameter identification scheme or estimator that depends on the
existence of a well defined reduced form. Incompleteness may often give rise to
models with parameters that are set rather than point identified. See, e.g., Manski
and Tamer (2002). Nevertheless, coherency and completeness are certainly desir-
able and commonly assumed properties of econometric models. If nothing else, it
is important to know when a model may or may not be coherent or complete for
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estimation and interpretation of the model.
Incompleteness or incoherency can arise in models with multiple decision

makers, with one example being strategically interacting players. Models of a sin-
gle optimizing agent will typically be coherent though sometimes incomplete (if,
e.g., the same utility or profit level can be attained in more than one way), though
more general incoherency or incompleteness can arise in such models when the
decision making process is either incorrectly or incompletely specified, or is not
characterized by optimizing behavior. Ad hoc equilibrium selection mechanisms
or rules for tie breaking in optimization models can be interpreted as techniques
for resolving this type of incompleteness. These are relatively harmless when
incompleteness, such as ties, can only occur with probability zero. This paper
will be concerned with more fundamental incompleteness or incoherence, where
no solutions or multiple solutions exist on a positive measure subset of relevant
variables’ supports.
Let y = (y1, y2), where y1 is a dummy endogenous variable. This paper

provides necessary and sufficient conditions for coherence and completeness of

(1) y1 = H1(y1, y2, w)
(2) y2 = H2(y1, y2, w)

for arbitrary functions H1 and H2, where H1 can only equal zero or one. Struc-
tural models of this type are very common in econometrics. Examples include
discrete endogenous regressor models, regime shift models, treatment response
models, sample selection models, joint continuous-discrete demand models, and
simultaneous choice models (in which both y1 and y2 are discrete). Heckman
(1978), Blundell and Smith (1994), and Dagenais (1997) each provide conditions
required for coherence and completeness of different special cases of this class of
models, while Gourieroux, Laffont, and Monfort (1980) analyze coherency and
completeness for closely related piecewise linear models.
The system of equations (1) and (2) is defined to be triangular, or recursive, if

either H1 does not depend on y2 or H2 does not depend on y1. See, e.g., Maddala
and Lee (1976). Triangular systems are generally coherent and complete if the
individual equations are separately coherent and complete.
To illustrate the completeness and coherency problems in simultaneous sys-

tems, consider the simple model

y1 = I (y2 + e1 ≥ 0)
y2 = αy1 + e2
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where w = (α, e1, e2) and I is the indicator function that equals one if its argu-
ment is true and zero otherwise. These equations could be the reaction functions
of two players in some game, where player one makes a discrete choice y1 (such
as whether to enter a market), and player two makes some continuous decision y2
(such as the quantity to produce of a good). Then y1 = I (αy1 + e1 + e2 ≥ 0)
so y1 = 0, y2 = e2 if 0 = I (e1 + e2 ≥ 0), that is, e1 + e2 < 0, and y1 = 1,
y2 = a + e2 if 1 = I (α + e1 + e2 ≥ 0), meaning α + e1 + e2 ≥ 0. Therefore, the
model implies both y1 = 0 and y1 = 1, and so is incomplete, if−a ≤ e1+e2 < 0.
Neither y1 = 0 nor y1 = 1 satisfy the model if 0 ≤ e1+e2 < −a, so in that region
the model is incoherent. This model is both coherent and complete only if a = 0
or if e1 + e2 is constrained to not lie between zero and −a.
The next section provides general characterizations of conditions for com-

pleteness and coherence. This is then followed by examples including endoge-
nous selection and treatment models, dummy endogenous regressor models, and
regime switching models. Next, simultaneous systems of binary choice equations
are considered in depth. For these models completeness and coherency are ob-
tained both by applying the general characterization theorems and by replacing
the simultaneous system with a model of optimizing behavior, and examples of
likelihood functions for such models are provided. Application of these models
for determining if a pair of binary choices are substitutes or complements is de-
scribed.

2 Necessary and Sufficient Conditions for Coherence
and Completeness

Theorem 1: Assume y1 ∈ {0, 1}, y2 ∈ and w ∈ for some support sets and
. The system of equations (1) and (2) is coherent and complete if and only if
there exists a function g : {0, 1}× → such that, for all w ∈ , the following
equations hold

(3) H1[1, g(1, w),w] = H1[0, g(0, w),w]
(4) y2 = g(y1, w)

Theorem 1 demonstrates the severity of the completeness and coherency con-
ditions with a dummy endogenous variable. Equation (3) shows that, after sub-

4



stituting out y2 into the equation for y1, the right side of the resulting expression
must be independent of y1.
As an example, consider the general selection model in which y1 indexes

whether y2 is observed.

Corollary 1: The general endogenous selection model

y1 = R(y2, w)
y2 = r(w)y1

is coherent and complete if and only if R is independent of y2.

Corollary 1 illustrates the strength of Theorem 1, by showing that no com-
plete, coherent selection model can be endogenous, where endogeneity is defined
as having the selection criterion y1 depend on the observed outcome y2. Note,
however, that completeness is possible using some other notion of endogeneity,
such as having y1 depend on the latent outcome r(w).
Next consider a typical binary choice specification for y1, with a latent additive

error. Replace equation (1) with

(5) y1 = I [h(y1, y2, w)+ e1 ≥ 0]
for some function h, where e1 ∈ w. If equation (4) holds, define functions s0 and
s1 by

s0(w) = h[0, g(0, w),w]
s1(w) = h[1, g(1, w),w].

Theorem 2. The system of equations (5) and (2) is coherent and complete if
and only if there exists a function g such that equation (4) holds and, for every
w ∈ , either s0(w) = s1(w), or e1 does not lie in the interval bounded by
−s0(w) and −s1(w). The equality s0(w) = s1(w) holds if and only if there exists
a function f such that.

(6) y1 = I [ f [y2 + [g(0, w)− g(1, w)]y1, w]+ e1 ≥ 0]
Alternatively, s0(w) = s1(w) holds if and only if there exists a function φ and a
dummy function d that only takes on the values zero and one, such that

(7) y1 = I [φ[(1− d(w))y2, w]+ e1 ≥ 0]
(8) y2 = g[d(w)y1, w]
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Theorem 2 shows there are only two methods to obtain coherence and com-
pleteness in the presence of a binary choice equation. One method is to restrict
the support of the errors to rule out regions of incoherency or incompleteness. Da-
genais (1997) is a special case of this method. It is, however, difficult to motivate
such data dependent restrictions on the values that the error can take on.
The only other way to obtain coherence is to restrict attention to the class of

models that can be represented by equations (4) and (6), or equivalently by (7) and
(8). The usefulness of one of these representations over the other will depend on
context, e.g., taking f to be linear in (6) yields a different coherent system than
taking φ to be linear in (7). The next section provides examples.
Theorem 2 shows that, unless one peculiarly restricts the support e1, by equa-

tions (7) and (8) completeness requires a model that is equivalent to a triangular
system, though the direction of dependence (whether y1 depends on y2 or y2 de-
pends on y1), which is indexed by the binary dummy variable d(w), may vary
across observations. It is perhaps surprising that the simple introduction of d
to generalize triangular systems has not been proposed before. In contrast, the
representation given by equations (4) and (6) can be interpreted as the nonlinear
generalization of Blundell and Smith (1994).
Equations (7) and (8) readily extend to provide coherent, complete specifica-

tions for endogenous y having any support. The system

y1 = g1[(1− d(w))y2, w]
y2 = g2[d(w)y1, w]

is coherent for any functions g1 and g2, since it has the well defined reduced form

y1 = g1[(1− d(w))g2(0, w),w]
y2 = g2[d(w)g1(0, w),w].

3 Examples
Let d = d(w) be a dummy variable that only takes the values zero and one.
Here d can either be observed or it can be a known function of errors, covariates,
and parameters. Let x be a vector of regressors, which can include both d and a
constant term. For integers j let each e j be an unobserved error which may have
conditional support equal to the real line, let each β j be a parameter vector and
let each α j and γ j be scalar parameters.
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3.1 Nonparametric Dummy Endogenous Regressor and Treat-
ment Models

Consider a model of y2 where y1 is a dummy endogenous regressor. For some
functions G1 and G2 let

y1 = G1(y2, x, e1)
y2 = G2(y1, x)+ e2

where e1 is independent of x and E(e2|x) = 0. Das (2004) proposes a nonpara-
metric estimator for the function G2, leaving G1 unspecified. The function G2
can be interpreted as the conditional average outcome of an endogenous treatment
y1.
Theorem 1 shows that coherency and completeness of this model requires that

G1[G2(y1, x) + e2, x, e1] be independent of y1. Analogous to equation (6), a
complete, coherent alternative model is

y1 = G1[y2 + [G2(0, x)− G2(1, x)]y1, x, e1]
y2 = G2(y1, x)+ e2

which would permit application of the Das estimator to G2.
Another complete coherent alternative is

y1 = G1[(1− d)y2, x, e1)
y2 = G2(dy1, x)+ e2,

which for d = 1 equals a standard treatment effects specification.

3.2 Linear Dummy Endogenous Regressor Models
Consider the linear dummy endogenous regressor system

y1 = I [x β1 + y2α1 + e1 ≥ 0]
y2 = x β2 + y1α2 + e2

Without restricting the support of the errors, Heckman (1978) found that co-
herency and completeness of this model requires either α1 = 0 or α2 = 0, which
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are triangular systems. A recent semiparametric estimator for this model is Klein
and Vella (2001). Blundell and Smith (1994) proposed the generalization

y1 = I [x β1 + y2α1 + y1γ 1 + e1 ≥ 0]
y2 = x β2 + y1α2 + e2

which they found to be complete and coherent if γ 1 = −α1α2. This model equals
the special case of equations (4) and (6) in which the functions f and g are linear.
A new complete coherent system may be obtained by taking the functions φ

and g in equations (7) and (8) to be linear. This yields the model

y1 = I [x β1 + (1− d)y2α1 + e1 ≥ 0]
y2 = x β2 + dy1α2 + e2

which is complete and coherent without restriction on the coefficients. We could
also add y2α3 + dy1γ 1 to the latent variable determining y1 and maintain com-
pleteness by imposing γ 1 = −α2α3.

3.3 Endogenous Regime Switching Models
The linear regime switching regression specification

y1 = I [x β1 + y2α1 + e1 ≥ 0]
y2 = x β2 + e2 + (x β3 + e3)y1

will not be coherent except under severe restrictions such as α1 = 0. Paralleling
the previous section, Theorem 2 suggests two alternatives. One is

y1 = I [(x β1 + y2α1 + y1x β4 + e4 ≥ 0]
y2 = x β2 + e2 + (x β3 + e3)y1

which is coherent and complete if β4 = −α1β3 and e4 = −α1y1e3+ e1 for some
e1. Another is

y1 = I [x β1 + (1− d)y2α1 + e1 ≥ 0]
y2 = x β2 + e2 + (x β3 + e3)dy1

(where d is again a binary dummy variable), which is coherent and complete
without restrictions on the coefficients.
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4 Simultaneous Systems of Binary Choices
Consider the simultaneous system of binomial responses

y1 = I [h1(y1, y2, w)+ e1 ≥ 0]
y2 = I [h2(y1, y2, w)+ e2 ≥ 0]

A practical application of models like this is to determine whether interrelated
binary choices are substitutes or complements, e.g., finding out if selecting y1 =
1 increases or decreases the probability of choosing y2 = 1. Dagenais (1997)
obtains coherence and completeness in this model by imposing linearity on h1
and h2 and restricting the support of (e1, e2) to rule out regions of values that
result in either no solutions or multiple solutions for y1 and y2.
Based on Theorem 2, a coherent and complete simultaneous system of binary

choices that does not restrict the error supports is

y1 = I [ f1[y2 − r(w)y1, w]+ e1 ≥ 0]
y2 = I [ f2(y1, w)+ e2 ≥ 0]

for arbitrary choices of the functions f1 and f2, where the function r is defined by

r(w) = I [ f2(1, w)+ e2 ≥ 0]− I [ f2(0, w)+ e2 ≥ 0].
Alternatively, equations (7) and (8) in Theorem 2 suggest a simpler, more

symmetric system

y1 = I [φ1[(1− d)y2, w]+ e1 ≥ 0]
y2 = I [φ2[dy1, w]+ e2 ≥ 0]

which will be coherent and complete for any choice of the functions φ1, φ2, and
binary dummy d. In particular, a nearly linear complete system of binary choice
equations is

(9) y1 = I [x β1 + (1− d)y2α1 + e1 ≥ 0]
(10) y2 = I [x β2 + dy1α2 + e2 ≥ 0]

which can be readily estimated with, e.g., jointly normal errors. Here d may be
included in the list of regressors x . An example of d is to let d = 1 for individuals
that make decision y1 first, otherwise let d = 0.

9



Given a completely specified model, estimation can proceed using maximum
likelihood by parameterizing the error distributions and evaluating the probability
or density of each value the endogenous variables can take on. For example, in
the model of equations (9) and (10), the probability that y1 = 1 and y2 = 1 is the
probability that x β1 + (1− d)α1 + e1 ≥ 0 and x β2 + dα2 + e2 ≥ 0, while the
probability that y1 = 0 and y2 = 1 is the probability that x β1+(1−d)α1+e1 < 0
and x β2 + e2 ≥ 0 (note the absence of dα2 in this last equation, because y1 =
0). Let f (e1, e2, λ) denote the joint probability density functions of e1 and e2,
parameterized by a vector λ, assumed independent of x . Then, conditioning on x ,
the probability of choosing y1 = 1 and y2 = 1 is

P11(θ | x) =
∞

−x β2−dα2

∞

−x β1−(1−d)α1
f (e1, e2, λ)de1 de2

where θ denotes the set of parameters β1, β2, α1, α2, λ. Similarly, the probabili-
ties of choosing other values for y, denoted Py1,y2 , are

P01(θ | x) =
∞

−x β2

−x β1−(1−d)α1

−∞
f (e1, e2, λ)de1 de2

P10(θ | x) =
−x β2−dα2

−∞

∞

−x β1
f (e1, e2, λ)de1 de2

P00(θ | x) =
−x β2

−∞

−x β1

−∞
f (e1, e2, λ)de1 de2

If e1 and e2 are independent standard normals, then these expression simplify to

P11(θ | x) = 1− −x β1 − (1− d)α1 1− −x β2 − dα2
P01(θ | x) = −x β1 − (1− d)α1 1− −x β2
P10(θ | x) = 1− −x β1 −x β2 − dα2
P00(θ | x) = −x β2 −x β1

Using either expression for the P functions, assuming n draws with independent
errors, the log likelihood function for this model is then

n

i=1
y1i y2i ln P11(θ | xi )+ (1− y1i)y2i ln P01(θ | xi)
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+y1i(1− y2i) ln P10(θ | xi )+ (1− y1i )(1− y2i) ln P00(θ | xi)
which may be maximized with respect to θ to yield estimates of β1, β2, a1, a2.
If the temporal order of the decisions is not observed, one might let d =

I (|x β1 + e1| > |x β2 + e2|), so the choice that an individual feels most strongly
about (as evidenced by the magnitude of the latent variable) is the decision that
is made first. In this case estimation might be facilitated by using simulated mo-
ments as in McFadden (1989), though this would also introduce the difficulty of a
nondifferentiable objective function.

4.1 Binary Choice Systems Based on Maximizing Behavior
Many of the example models provided so far are somewhat ad hoc, that is, they
apply Theorems 1 or 2 to obtain coherency and completeness, but no underly-
ing economic argument is provided to motivate the resulting models. One set of
economically rationalizable models arising from Theorem 2 are those that use the
dummy regressor d, which can be motivated as a model of sequential decision
making, with d being the indicator of which decision an individual makes first,
or which player in a sequential game moves first. This generalizes the usual tri-
angular systems that are known to be coherent and complete, by permitting the
direction of triangularity to vary across individuals.
In some applications, incompleteness may be eliminated by more fully mod-

eling the behavior of agents, e.g., incompleteness resulting from games having
multiple equilibria may be resolved by modeling how agents choose amongst the
equilibria.
Consider an individual that makes two simultaneous binary decisions. The

naive model in which each decision depends upon the other as a regressor,

(11) y1 = I [x β1 + y2α1 + e1 ≥ 0]
(12) y2 = I [x β2 + y1α2 + e2 ≥ 0]

is incoherent and incomplete without some restrictions on the parameters, the
supports of the errors, or both. One way to resolve both incoherency and incom-
pleteness is by sequential decision making, using equations (9) and (10).
Another possibility is to avoid incoherence by restricting the parameters and

augmenting the model to resolve incompleteness. For example, suppose the in-
dividual acts as if this were a game, choosing a Nash equilibrium that allows for
randomness (essentially, flipping weighted coins to construct mixed strategies). If
α1α2 ≤ 0 then a unique mixed strategy equilbrium exists resulting in a coherent
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and complete model. In this case the coin tosses and Nash behavior complete an
otherwise incomplete model. See Bresnahan and Reiss (1991), Tamer (2003), and
Aradillas-Lopez (2005) for a more detailed analysis of treating (11) and (12) as a
two person game.
Yet another way to avoid incoherence and incompleteness is to consider a

random utility model, as in McFadden (1973). Equation (11) arises from as-
suming that the difference in utility U1 between choosing y1 = 1 vs y1 = 0 is
x β1+ y2α1+e1, and so the individual chooses y1 to maximizeU1. Similarly, the
individual chooses y2 using equation (12) to maximize the utility U2 associated
with that decision. To eliminate incoherency and incompleteness, we may as-
sume the consumer chooses both y1 and y2 to maximize an overall utility function
U(U1,U2) that depends upon the utilities associated with each choice. Equiva-
lently, if y1 and y2 are the actions of two players in a game, this would correspond
to removing incoherency and incompleteness by collusion.
Generally, maximizing U(U1,U2) results in the structure of a multinomial

choice problem, maximizing the overall utility associated with each of the four
values that y = (y1, y2) can take on. However, specific forms for U(U1,U2) will
give rise to restricted versions of this model. Suppose

(13) U(U1,U2) = U1 +U2
where

(14) U1 = (x β1 + y2α1 + e1)y1
(15) U2 = (x β2 + y1α2 + e2)y2

For example, if the individual is a firm, x β1 + y2α1 + e1 could be the difference
in profit resulting from choosing y1 = 1 versus y1 = 0 holding y2 fixed, and
similarly x β2+y1α2+e2 could be the difference in profit resulting from choosing
y2 = 1 versus y2 = 0 holding y1 fixed. Then profit is maximized by choosing the
value of y = (y1, y2) that maximizesU1+U2 withU1 andU2 given by equations
(14) and (15).
This model has the feature that, conditioning on y2, the utility maximizing

choice for y1 is given by equation (11), and that conditioning on y1, the util-
ity maximizing choice for y2 is given by equation (12). This model is therefore
consistent with the logic that gives rise to ordinary binary choice models such as
probit or logit for each of the choices considered separately, while avoiding the
incoherency or incompleteness of equations (11) and (12) as a system. The poten-
tial incoherency or incompleteness is eliminated by simultaneously considering

12



the utilities of both choices. Letting a = a1 + a2, and letting V (y) denote the
utility associated with choice y, the result is

V (0, 0) = 0
V (1, 0) = x β1 + e1
V (0, 1) = x β2 + e2
V (1, 1) = x (β1 + β2)+ a + e1 + e2

where one chooses whichever value of y yields the maximum of these four values
of V . This is a special case of ordinary multinomial choice where the utility
associated with the last value y is x (β1+β2)+ a+ e1+ e2, instead of x β3+ e3.
The above model is coherent and complete (or more formally only has a harm-

less, probability zero chance of incompleteness) as long as e1 and e2 are contin-
uously distributed, which ensures that ties in utility, which make the choice of y
indeterminate, happen with probability zero.
Let f (e1, e2, λ) denote the joint probability density functions of e1 and e2, pa-

rameterized by a vector λ, assumed independent of x . For example, if e1 and e2
are independent normals, then f (e1, e2, λ) = φ(e1/σ 1)φ(e2/σ 2)/(σ 1σ 2) where
λ = (σ 1, σ 2) and φ is the standard normal probability density function. Condi-
tioning on x , the probability of choosing y = (1, 1) is the probability that V (1, 1)
is larger than the other values of V , which is

P11(θ | x) =
∞

−x β2−a

∞

max[−x β1−a,−x (β1+β2)−a−e2]
f (e1, e2)de1 de2

where θ denotes the set of parameters β1, β2, a, λ. Similarly, the probabilities of
choosing other values for y, denoted Py1,y2 , are

P01(θ | x) =
−x β2

−∞

min(−x β1−a,x (β2−β1)+e2

−∞
f (e1, e2)de1 de2

P10(θ | x) =
−x β2−a

−∞

∞

max[−x β1,x (β2−β1)+e2]
f (e1, e2)de1 de2

P00(θ | x) =
−x β2

−∞

min(−x β1,−x (β1+β2)−a−e2

−∞
f (e1, e2)de1 de2
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Assuming n draws with independent errors, the log likelihood function for this
model is then, as before,

n

i=1
y1i y2i ln P11(θ | xi )+ (1− y1i)y2i ln P01(θ | xi)

+y1i(1− y2i) ln P10(θ | xi )+ (1− y1i )(1− y2i) ln P00(θ | xi)

4.2 Are Binary Choices Substitutes or Complements?
Does engaging in one risky behavior like speeding or smoking make one more
or less likely to engage other risky behaviors like not wearing seat belts or gam-
bling? Does adopting a poison pill make firms more or less likely to adopt other
antitakeover measures? Let y1 and y2 denote two binary choices, such as the de-
cision to smoke and the decision to drink, respectively. If we wanted to know
whether drinking makes one more or less likely to smoke, then a standard model
is equation (11), where α1 > 0 means that drinking increases the probability of
smoking, making it a complement, otherwise it is a substitute. Similarly, the sign
of α2 in equation (12) would show whether smoking increases or decreases the
probability of drinking, but both equations together can be incoherent.
One complete, coherent solution is to estimate the system of equations (9) and

(10). In this model the signs of α1 and α2 still indicate whether each choice is a
substitute or a complement for the other. They can have opposite signs, e.g., if
α1 > 0 and α2 < 0, then individuals that decide y1 first, or more generally have
d = 1, view the choices as substitutes, while for individuals that have d = 0, the
choices are complements.
Another complete, coherent solution, one that does not require ordering the

decisions, is equations (13), (14) and (15) described in the previous section. In
that model a1 and a2 are not separately identified, since the chosen outcome only
depends on their sum a. If a1 and a2 are known to have the same sign, then
identification of a tells whether the choices are substitutes or complements. Even
if a1 and a2 have opposite signs, it is still reasonable to say that the choices are
complements if the sum a is positive and substitutes if a is negative, because
having a > 0 in this model increases the utility of (and hence the probability of
choosing) y1 = y2 = 1, relative to other choices
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5 Conclusions
Necessary and sufficient conditions for coherency and completeness of simultane-
ous systems containing a binary choice equation were provided. One interpreta-
tion of the results is that coherency and completeness usually requires the model
to be triangular or recursive, similar to Heckman’s (1978) linear model result,
except that nonlinearity permits the direction of causality to vary across obser-
vations. Alternatively, coherency and completeness can be obtained by nesting
the behavioral models that generate each equation separately into a single larger
behavioral model that determines both.
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6 Appendix
Proof of Theorem 1:. Assume first that the system is coherent and complete. Sup-
pose for a given w that y1 = 1. Then for that w the equation y2 = H2(1, y2, w)
must be complete, which requires the existence of a uniquely valued function g21
such that g21(w) = H2[1, g21(w),w]. Similarly, if for the givenwwe have y1 = 0
then there exists g20 such that g20(w) = H2[0, g20(w),w]. We may then define
the function g in equation (4) by g(y1, w) = g20(w)(1−y1)+g21(w)y1. Substitut-
ing (4) into (1) gives y1 = H1[y1, g(y1, w),w]. Let I1(w) = H1[1, g(1, w),w]
and I0(w) = H1[0, g(0, w),w]. If I1(w) = 1 and I0(w) = 0 then equation
(1) is satisfied for both y1 = 1 and y1 = 0, which contradicts completeness. If
I1(w) = 0 and I0(w) = 1 then equation (1) is not satisfied by either y1 = 1 or
y1 = 0, which also contradicts coherence. We therefore require I1(w) = I0(w),
which is equation (3). It has now been shown that completeness and coherency
implies (3) and (4). To show the converse, we have that given (3) and (4) the re-
duced form model is given by y1 = I1(w) = I0(w) and y2 = g[I1(w),w]. It can
then be verified by the definitions of I1, I0, and g that this reduced form defines
unique values for y1 and y2 that satisfy equations (1) and (2).

Proof of Corollary 1:. Applying equation (3) in Theorem 1 shows that com-
pleteness requires R[r(w),w] = R(0, w), and hence that R(y2, w) = R(0, w)
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for every value y2 may take on.

Proof of Theorem 2:. Applying Theorem 1 implies completeness of (2) and
(5) if and only if (4) holds and I [s0(w) + e1 ≥ 0] = I [s1(w) + e1 ≥ 0]. If
s0(w) = s1(w) then this completeness requirement will be violated if and only if
e1 equals the negative of any value between s0(w) and s1(w).
Now consider s0(w) = s1(w). Define the functions r and f by r(w) =

g(1, w)−g(0, w) and f [ψ1, ψ2−r(w)ψ1, w] = h(ψ1, ψ2, w). Given equations
(3) and (4), we have that s0(w) = s1(w) implies f [0, g(0, w),w] = f [1, g(0, w),w],
so we may define the function f by f [ψ2−r(w)ψ1, w] = f [0, ψ2−r(w)ψ1, w].
This shows that completeness implies existence of a function f satisfying equa-
tion (6). To show the converse, observe that for any functions f and g, the
system (4) and (6) has the reduced form y1 = I [ f [g(0, w),w] + e1 ≥ 0] and
y2 = g[I [ f [g(0, w),w]+ e1 ≥ 0], w].
Next, starting from equations (4) and (6) let d(w) = I [r(w) = 0], and

φ[ψ,w] = f [ψ + d(w)g(0, w),w]. With these definitions, the equivalence of
(4) with (8) follows from both being equivalent to y2 = g(0, w) + r(w)y1. For
the equivalence of (6) with (7) observe that y2 − r(w)y1 = [1 − d(w)]y2 +
d(w)[y2 − r(w)y1] = [1 − d(w)]y2 + d(w)g(0, w). Substituting this expres-
sion for y2 − r(w)y1 into equation (6) gives equation (7). It has now been shown
that given completeness, and hence an f and g, we may construct correspond-
ing functions φ and d. To show the converse, observe that the system (7) and
(8) has the reduced form y1 = I [φ[(1 − d(w))g(0, w),w] + e1 ≥ 0] and y2 =
g[d(w)I [φ[(1− d(w))g(0, w),w]+ e1 ≥ 0], w].
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