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Abstract
In a sample selection or treatment effects model, common unobservables

may affect both the outcome and the probability of selection in unknown
ways. This paper shows that the distribution function of potential outcomes,
conditional on covariates, can be identified given an observed variable V
that affects the treatment or selection probability in certain ways and is con-
ditionally independent of the error terms in a model of potential outcomes.
Selection model estimators based on this identification are provided, which
take the form of simple weighted averages, GMM, or two stage least squares.
These estimators permit endogenous and mismeasured regressors. Empiri-
cal applications are provided to estimation of a firm investment model and
schooling effects on wages model.
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1 Introduction
Assume that for a sample of individuals i = 1, ..., n we observe an indicator
D that equals one if an individual is treated, selected, or completely observed,
and zero otherwise. If D = 1 we observe some scalar or vector P , otherwise
let P = 0. Define P∗ to equal the observed P when D = 1, otherwise P∗
equals the value of P that would have been observed if D had equaled one, that
is, either a counterfactual or an unobserved response. Then P = P∗D. We also
observe covariates, though selection on observables is not assumed. Treatment
or selection D may be unconditionally or conditionally correlated with P∗, so P∗
and D may depend on common unobservables. Rubin (1974) type restrictions like
unconfoundedness or ignorability of selection are not assumed.
To illustrate, in a classic wage model (Gronau 1974, Heckman 1974, 1976),

D = 1 if the individual is employed, P∗ is the wage an individual would get
if employed, and P is the observed wage, which is zero for the unemployed.
Both P∗ and D depend on common unobservables such as ability, as well as on
observable covariates such as measures of schooling or training.
Another example is models based on data sets where some regressors are miss-

ing, not at random. For example, models of individual’s consumption or purchas-
ing decisions depend on income P∗, and in surveys many individuals do not report
their income. Failure to report income (D = 0) is likely to be correlated with in-
come, even after conditioning on other observed covariates.
For simplicity, refer to D as selection, though more generally it is just an

indicator of not observing P∗ for whatever reason. Assume that selection D is
given by

D = I (0 ≤ M∗ + V ≤ A∗) (1)

where the unobserved A∗ can be a constant, a random variable, or infinity, V is
an observed, continuously distributed covariate (or known function of covariates)
with large support, M∗ is an unobserved latent variable, and I is the indicator
function that equals one if its argument is true and zero otherwise. Typical para-
metric or semiparametric models of selection are special cases of equation (1)
where M∗ is linear in covariates X and a well behaved error term e, but that struc-
ture is not imposed here.
Setting the lower bound to zero in equation (1) is a free normalization, since no

location assumptions are imposed on M∗ and A∗. Similarly, setting the coefficient
of V to one is (apart from sign) a free scale normalization that is imposed without
loss of generality.
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In the wage model example, the typical assumption is that one chooses to
work if the gains in utility from working, indexed by the latent M∗ + V , are
sufficiently large, so in that case A∗ is infinite. Examples in which A∗ is finite
arise in ordered treatment or ordered selection models. For example, if an ordered
choice model with latent variable M∗ + V determines an individual’s years of
schooling and D indexes having exactly 12 years of schooling then individuals
with M∗ + V < 0 choose 11 or fewer years while those with M∗ + V > A∗
choose 13 or more years. We might then be interested in modelling the returns
P from having exactly 12 years of schooling. Examples of models like this with
A∗ random include Cameron and Heckman (1998) and Carneiro, Hansen, and
Heckman (2003).
A convenient feature of the proposed estimators is that they will not require

specifying, modeling or estimating the D (propensity score) model, apart from
assuming equation (1) holds. For example, any dependence of M∗ on X can be
unknown and need not be estimated, and the estimator is the same regardless of
whether A∗ is constant, random, or infinite. Empirical applications with both finite
A∗ and infinite A∗ are provided.
Regarding outcomes, define U∗ and U by

ψ(P∗, X, V, θ0) = U∗ (2)

ψ(P, X, V, θ0)D = U
for some known vector valued function ψ . The initial goal will be estimation of
E(U∗) which in turn is used to estimate the parameter vector θ0. For example, if
ψ is defined by P∗ = U∗, then an estimate of E(U∗) = E(P∗) is an estimate of
what the mean outcome in the population would be if everyone in the population
were treated, selected, or observed. More generally, suppose that θ0 uniquely
satisfies E[ψ(P∗, X, V, θ0)] = 0. If there were no selection problem, so if P∗
instead of P = P∗D was observable, then the generalized method of moments
(GMM) could be applied, minimizing a quadratic form in the sample mean of
ψ(P∗, X, V, θ0), to consistently estimate θ0. In the presence of selection this
GMM is infeasible, but it becomes feasible given an estimator of E(U∗).
For example, let X be the union of elements in vectors Y and Z , where Y is a

vector of regressors and Z is a vector of instruments. Suppose potential wages are
determined by the model P∗ = Y )βY + VβV + ε, where some of the regressors
in Y may be mismeasured, endogenous, or otherwise correlated with the error ε,
and the error ε could also have unspecified heteroskedasticity. Given ordinary in-
struments Z that are uncorrelated with ε and correlated with V,Y (Z may include
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exogenous elements of Y ), define ψ by Z(P∗ − Y )βY − VβV ) = U∗. If P∗
were observable for everyone then β = βV , βY could be estimated by GMM, an
example of which is a linear two stage least squares regression of P∗ on V,Y us-
ing instruments Z . The difficulty is that this estimator is infeasible because of the
selection problem, that is, we only observe P instead of P∗, and unobservables
that determine the selection such as M∗ are correlated with P∗ and U∗. Feasible
estimation of β requires an estimator for E(U∗).
Define the weighting scalar W by

W = D
f (V | X)

where f is the conditional probability density function of V given X . This paper
shows that under general conditions

E(U∗) = plimn→∞
3n
i=1UiWi3n
i=1Wi

(3)

so E(U∗) is consistently estimated as the weighted average of the observed Ui
(including Ui = 0 for all unobserved outcomes) using weights W . Based on
equation (3), the infeasible GMM for estimating θ0 is converted into a feasible
GMM using the observable Wψ(P, X, V, θ0) in place of the unobservable func-
tion ψ(P∗, X, V, θ0). In the above two stage least squares example, this means
β would be consistently estimated by an ordinary linear two stage least squares
regression of WP on WV,WY using instruments Z .
The main assumptions required for equation (3) to hold are that the support of

V |X contains the supports of both−M∗|X and A∗ −M∗|X (these could all equal
the real line, for example), and that

V | X,U∗,M∗, A∗ ∼ V | X (4)

that is, V is conditionally independent of the unobserved latent variables of the
model, conditioning on the set of covariates X .
To give some intuition for equation (3), and why the above restrictions on V

are required, suppose for the moment that A∗ = a is constant and that V has
a uniform distribution with constant density f , independent of M∗,U∗. In that
case we would have E(U) = E[E(I (0 ≤ M∗ + V ≤ a)U∗ | M∗,U∗)] =
E
r5 a−M∗
−M∗ U∗ f dv

s
= aE(U∗) and similarly E(D) = a, so in that case there

would be no selection problem (or more precisely, unconditional propensity score
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weighting would then fix the selection problem), because we would then have
E(U∗) = E(DU)/E(D). The key is that M∗, the source of unobserved correla-
tion between D andU∗, drops out when V is independently, uniformly distributed.
In the general problem, V is not an independent uniform, but weighting byW , and
hence scaling by the conditional density of f , is algebraically equivalent to con-
verting V to a uniform. Given equation (4), it suffices to condition the density of
V on the observable X , and the support assumption on V ensures the bounds of
the integral are not cut off.
Equation (3) resembles propensity score weighting estimators (see, e.g., Horvitz

and Thompson (1952), Koul, Susarla, and van Ryzin (1981), Hahn (1998), and
Hirano, Imbens and Ridder (2003)), but equation (3) holds even though the in-
dependence and conditioning assumptions required for consistency of propen-
sity score weighted estimators are not imposed here. Specifically, we cannot use
E(U)/E(D) or E[E(U | V, X)/E(D | V, X)] to estimate E(U∗), because D and
U∗ (or equivalently, M∗ and U∗) can covary, even after conditioning on observ-
ables like X, V . The unconfoundedness assumption is not satisfied. However, av-
eraging after V density weighting is equivalent to integrating over V , that is equa-
tion (3) implies E(U∗) = E[

5∞
−∞ E(U | V, X)dV ]/E[5∞−∞ E(D | V, X)dV ]

when these expectations exist, so the proposed estimator is equivalent to weight-
ing an integral of the conditional expectation ofU by an integral of the conditional
propensity score.
One interpretation of equation (4) is simply that V is an exogenous covariate,

in the strong sense of being conditionally (conditioning on other covariates X)
independent of the unobservables in the model, and hence conditionally indepen-
dent of the errors if the model were parameterized. More generally, equation (4)
is an example of an exclusion restriction, of the sort that is commonly used to
identify models in simultaneous systems. Section 2.5 of Powell’s (1994) survey
discusses the use of exclusion assumptions in semiparametric estimators. Magnac
and Maurin (2003) call this a partial independence assumption. In models where
the errors are independent of regressors, every regressor is exogenous and so sat-
isfies equation (4). Blundell and Powell (2004) and Heckman and Vytlacil (2004)
use exclusion assumptions for identification in binary choice and treatment mod-
els.
Requiring a regressor to have support containing a large or infinite interval,

encompassing the supports of other variables, is also common in the semipara-
metric limited dependent variable model literature. Examples include Manski
(1975,1985), Han (1987), Horowitz (1992), and Cavanagh and Sherman (1998).
The estimator here weights observations by the density of a regressor V that
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satisfies exclusion and large support assumptions. Lewbel (1998, 2000) and Khan
and Lewbel (2005) use a similar idea to estimate linear index, binary choice and
truncated regression models, respectively. Magnac andMaurin (2003) prove semi-
parametric efficiency of Lewbel (2000), and Jacho-Chavez (2005) shows semi-
parametric efficiency of a general class of density weighted estimators. Magnac
and Maurin (2003) also show in the binary choice context that large support can
be replaced by a tail symmetry restriction, and that identification based on either
is observationally equivalent. Lewbel, Linton, and McFadden (2002) extend and
apply the binary choice estimator in Lewbel (2000) to recover general features
of a distribution from binary outcomes, with application to contingent valuation
and willingness to pay studies. Other empirical applications of the methodology in
discrete choice applications include Anton, Fernández, and Rodriguez-Póo (2001)
and Cogneau and Maurin (2001). The latter analyze enrollment of children into
school in Madagascar, using the date of birth of the child within the relevant year
as the regressor V that satisfies exclusion and large support.
No restriction is placed on the joint distribution of M∗ and U∗ other than

equation (4). In the wage example, this means that no restriction is placed on
the joint distribution of unobservables such as ability that determine employment
status and wages, other than that these unobservables are (conditionally on X) in-
dependent of the one covariate V . This is a markedly weaker restriction on the
joint distribution of outcomes and selection than is required by other selection or
treatment estimators. In particular, the estimators proposed here do not assume
unconfoundedness, selection on observables, independence of errors and covari-
ates, or any parameterization of the joint distribution of selection and outcome
errors. The assumptions permit general forms of endogeneity, mismeasurement,
and heteroskedasticity in both selection and outcomes.
Estimation based on equation (3) is consistent whether A∗ in equation (1) is

finite or infinite. The estimator is numerically the same in either case. When A∗ is
finite the estimator has an ordinary root n limiting distribution. However, when A∗
and the support of M∗ are both infinite, then the identification is only at infinity,
as in Heckman (1990) and Andrews and Schafgans (1998). If A∗ is infinite and
the support of V |X is bounded, then the estimator can still be used and will again
have an ordinary root n limiting distribution, though in this case the estimator will
be asymptotically biased, with bias of order 1/τ where τ is the largest value V
can take on. Since τ can be arbitrarily large this bias, when it is present, can be
arbitrarily small. In particular, with a finite sample size one could never tell if V
really had infinite support, or if it had bounded support with τ large enough to
make the resulting bias smaller than any computer roundoff error, or any number
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of significant digits one chose for reporting estimates.
Many estimators exist for treatment, sample selection, missing data, and other

related models. Standard maximum likelihood estimation requires that the entire
joint distribution of the unobservables, conditional on covariates or instruments,
be finitely parameterized. In particular, the selection equation (and the endoge-
nous regressors as functions of instruments) would need to be completely speci-
fied. Alternative assumptions like unconfoundedness or selection on observables
likewise impose strong restrictions on the joint behavior of unobservables affect-
ing selection and outcomes.
Related parametric estimators of sample selection models include Horvitz and

Thompson (1952), Heckman (1974, 1976, 1979, 1990), Rubin (1974), Koul,
Susarla, and van Ryzin (1981), Lee (1982), and Rosenbaum and Rubin (1985).
Related semiparametric estimators of sample selection, and other probability weighted
models, include Newey (1988), (1999), Cosslett (1991), Ichimura and Lee (1991),
Lee (1992, 1994), and Ahn and Powell (1993), Angrist and Imbens (1995), Don-
ald (1995), Wooldridge (1995), Kyriazidou (1997), Andrews and Schafgans (1998),
Hahn (1998), Chen and Lee (1998), Abadie (2001), Hirano, Imbens and Ridder
(2003), and Das, Newey, and Vella (2003). Surveys include Wainer (1986), Man-
ski (1994), and Vella (1998).

2 Mean Estimation
Selection or treatment is determined by the model D = I (0 ≤ M∗ + V ≤ A∗).
The following lemma gives an alternate characterization for the case where A∗ is
infinite. Proofs of Lemmas, Theorems, and Corollaries are in the Appendix.

LEMMA 1. If pr(D = 1 | V, X) is strictly monotonically increasing in V ,
then there exists an M∗ such that E(D | V, X) = E[I (0 ≤ M∗ + V ) | V, X] and
V ⊥ X,M∗.
Lemma 1 shows that the assumption that selection is determined by a model

of the form D = I (0 ≤ M∗ + V ) with an independent M∗ is observationally
equivalent to just assuming that, conditional on V, X , the probability of selection
is monotonically increasing in V . Closely related equivalence results are Vyt-
lacil (2002) and Magnac and Maurin (2003). In this case where A∗ is infinite, D
equals one with probability approaching one as V goes to infinity, which provides
identification at infinity for the outcome model.
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When A∗ is finite, the probability of selection is not monotonic in V . Instead,
this probability goes to zero for both small and large V , so in this case the outcome
model is not identified at infinity.

ASSUMPTION A1. D is a binary treatment or selection indicator, X is a co-
variate vector, and V is a covariate scalar. U∗ is an unobserved random vec-
tor with finite mean. U = U∗D. The indicator D is determined by D =
I (0 ≤ M∗ + V ≤ A∗), where A∗ and M∗ are unobserved latent variables and
E(U∗ | A∗) = E(U∗). The random scalar V is continuously distributed condi-
tional on X . V | X,U∗,M∗, A∗ ∼ V | X . 0 < E(D) < 1. Either E(A∗) is finite
or E (M∗U∗) and E (M∗) are finite.

Let f (V | X) denote the probability density function of V given X and define
W = D/ f (V | X).
ASSUMPTION A2. The support of V |X is an interval on the real line and

contains the supports of −M∗|X and A∗ − M∗|X .
Define the estimator Eµ = 3n

i=1UiWi3n
i=1Wi

(5)

THEOREM 1. Let Assumptions A1 and A2 hold. Given n independent, iden-
tically distributed draws of Ui ,Wi ,

E(U∗) = plim Eµ (6)

The proof given for Theorem 1 in the appendix separately considers the three
cases where E(A∗) is finite (which of course includes the case where A∗ is a
constant), where A∗ is infinite, and other cases such as A∗ infinite with probability
between zero and one, as would arise if some individuals have D = I (0 ≤ M∗ +
V ≤ A∗) for finite A∗ while others have D = I (0 ≤ M∗ + V ). A more concise
proof combining these cases is possible, but intermediate results in the proof as
provided are used later.
Theorem 1 provides a consistent estimator of the mean of P∗ when P∗ is

(conditional on X) independent of V , by letting P∗ = U∗. This conditional inde-
pendence can be rather restrictive, so later extensions relax this, instead imposing
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only that the errors in a model that includes P∗ be conditionally independent of
V .
Theorem 1 immediately implies identification of the entire distribution func-

tion of U∗ (and hence of P∗ under conditional independence of V ) because, for
any constant c, Theorem 1 can be applied replacing U∗i with I (U∗i ≤ c) and
replacing Ui with I (Ui ≤ c)Di , from which it then follows that

plim
3n
i=1 I (Ui ≤ c)Wi3n

i=1Wi
= E dI (U∗i ≤ c)e = prob(U∗i ≤ c).

Similarly, Theorem 1 can also be used to directly estimate any moments ofU∗ by
replacing U∗i and Ui with (U∗i )c and (Ui )c respectively.

ASSUMPTION A3. The support of V |X contains the interval (−τ , τ) for
some positive constant τ .

COROLLARY 1. Let Assumptions A1 and A3 hold. Then, given n indepen-
dent, identically distributed draws of Ui ,Wi , plim Eµ = E(U∗)+ O(τ−1).
Assumption A2 cannot be directly tested since M∗ is unobserved, but Corol-

lary 1 shows that as long as the observable V has a large support as defined by
Assumption A3 for large τ , the estimator will have at most a small asymptotic
bias even if the support of V is not large enough to satisfy Assumption A2.

ASSUMPTION A4. sup (supp(W )) and E
b
U∗2

c
are finite. Define µ = plimEµ.

Assumption A4 implies that the means and variances ofW andUW are finite.

COROLLARY 2. Let Assumptions A1 and A4 hold. Then, given n indepen-
dent, identically distributed draws of Ui ,Wi ,

√
n(Eµ− µ) d−→ N

t
0,
var[(U − µ)W ]

E(W )2

u
.

Corollary 2 shows that with finite fixed or random A∗, the estimatorEµ is root n
consistent and asymptotically normal. Assumption A4 conflicts with Assumption
A2 when A∗ is infinite. However, by Corollary 1, if we limit V to a very large but
not infinite support, the resulting asymptotic bias µ−E(U∗)will be tiny. If V has
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large enough bounded support, this bias can be made smaller than any computer
roundoff error, while still preserving Assumption A4 and hence a root n normal
limiting distribution.
The difficulty with allowing A∗ to be infinite while satisfying Assumption A2

(which would then require the upper bound on the support of V to be infinite) is
not only that the rate of convergence of Eµ becomes slower than root n, but also
that the Lindeberg condition for asymptotic normality at any rate will generally be
violated. This problem could be overcome using asymptotic trimming, replacing
the weights Wi in the estimator with Wτ i as defined in the proof of Theorem 1,
and letting τ → ∞ at an appropriate rate (slower than the rate in the proof of
Theorem 1, and hence using an estimator that is not asymptotically equivalent toEµ). The resulting estimator would then be essentially equivalent to the Andrews
and Schafgans (1998) identification at infinity estimator (using f in place of their
weighting function), and so is not pursued further here. So, although the estimator
can be consistent even when A∗ is infinite by Theorem 1, for the sake of obtaining
simple limiting distributions, avoiding asymptotic trimming, exploiting Corollary
1 in place of the untestable Assumption A2, and avoiding duplication of exist-
ing identification at infinity estimators, Assumption A4 will be maintained for
the remainder of this paper, with the understanding that the estimand will there-
fore suffer from an arbitrarily small asymptotic bias in applications where A∗ is
infinite.

3 GMM Estimation
ASSUMPTION A5. Let P be an observed outcome satisfying P = P∗D for some
latent, unobserved P∗. Let U∗ = ψ(P∗, X, V, θ∗) and U = ψ(P, X, V, θ∗)D,
where the vector valued function ψ(P, X, V, θ) is known and continuously dif-
ferentiable in a parameter vector θ . Define � to be the set of possible values of θ
and P to be a positive definite matrix. Among all θ ∈ �, E[ψ(P∗, X, V, θ)] = 0
only if θ = θ∗. For all θ ∈ �, ν(θ0))Pν(θ) is nonsingular, where ν(θ) and θ0 are
given by

ν(θ) = E
t
W
∂ψ(P, X, V, θ)

∂θ

u
/E(W ) (7)

θ0 = argmin
θ∈� E[Wψ(P, X, V, θ)]

)PE[Wψ(P, X, V, θ)] (8)
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THEOREM 2. Let Assumptions A1, A3, A4, and A5 hold. If µ = E(U∗) then
θ0 = θ∗, and if µ = E(U∗)+ O(τ−1) then θ0 = θ∗ + O(τ−1).
COROLLARY 3. Let Assumptions A1, A3, A4, and A5 hold. Assume n in-

dependent, identically distributed draws of Wi , Pi , Xi , Vi . Assume � is compact
and θ0, which is uniquely defined by equation (8), is in the interior of�. Assume
the second moment of Wψ(P, X, V, θ) is finite and that W∂ψ(P, X, V, θ)/∂θ is
bounded in absolute value by a function b(W, P, X, V ) that has finite mean. Let
Pn be a sequence of positive definite matrices with p limPn = P. DefineEθ by

Eθ = argmin
θ∈�

�
n;
i=1
Wiψ(Pi , Xi , Vi , θ)

�)
Pn

�
n;
i=1
Wiψ(Pi , Xi , Vi , θ)

�
Then

√
n(Eθ − θ0) d−→ N

r
0,
b
S)0PS0

c−1 S)0P�0PS0 bS)0PS0c−1s .
where S0 = E[W∂ψ(P, X, V, θ0)/∂θ] and�0 = E[W 2ψ(P, X, V, θ0)ψ(P, X, V, θ0))].

Efficiency is obtained in the usual way by two step GMM, constructing Pn so
that P = �−10 .
As discussed in the introduction, if there were no selection problem so P∗

could be observed, θ would be estimated by applying GMM to the moments
E[ψ(P∗, X, V, θ∗)] = 0. This estimator is infeasible, but Theorem 2 and Corol-
lary 3 describe the corresponding feasible GMM that replaces P∗ with the ob-
servable P and corrects for selection by multiplying the moments by W , i.e.,
using the feasible moments E[Wψ(P, X, V, θ0)] = 0. The resulting estimand
θ0 equals the desired θ∗ when A∗ has finite mean and the support of V is suffi-
ciently large, otherwise the difference between θ0 and θ∗ (the asymptotic bias) is
of order O(τ−1) where τ is the largest value V can take on. As discussed earlier,
this bias can be assumed to be smaller than any printed coefficient roundoff error,
by a support assumption that could never be falsified with a finite data set. Of
course the real question, addressed later in the empirical applications and Monte
Carlo, will be whether the above root n limiting distribution theory provides a
good approximation to the distribution ofEθ .
4 Example Models
The example models in this section will all be consistent with the assumptions of
Theorem 2. These models use the following definitions and assumptions. Let Z be
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a vector of covariates, which are exogenous in the sense that they are uncorrelated
with the errors in a model of P∗. Assume Z does not include V (more generally,
V is not a deterministic function of Z ). Let Y be a vector of covariates, some
of which may be endogenous, in that they may be correlated with the errors in a
model of P∗. The vector Y can include elements of Z . Define X to be the union
of all the elements of Z and Y . The data consist of a sample of observations of
X, V, P, D, which implies that Z and Y are also observed.

4.1 Examples of Selection Models
This paper’s estimators assume equation (1) holds, but they do not require spec-
ifying, modeling or estimating the resulting probability of selection (propensity
score). However, as an illustration consider D = I (a0 + e0 ≤ M(X, e) + V ≤
a1 + e1) with errors e1, e0, and e and unknown function M . Then equation (1)
holds with A∗ = a1−a0+e1−e0 and M∗ = −a0+M(X, e)+e0. This is a random
thresholds ordered selection model. For example, M(X, e) could equal the bene-
fits of college and−V could be a measure of the cost of college. If benefits minus
cost for an individual are low, below a0+e0, then the individual does not get a col-
lege degree, while if the benefits are very high, above a1 + e1, then the individual
goes on to graduate school. D would then the indicator of just getting a college
degree, and the associated P∗ could be some outcome like earnings associated
with getting just a college degree. The possible randomness in the thresholds, e0
and e1, could embody unobserved heterogeneity in the utility of education.
More common models like fixed threshold ordered choice D = I (a0 ≤ X )β+

V + e ≤ a1) or standard binary choice D = I (0 ≤ X )β + V + e), are special
cases that are included in this general framework. The estimator allows covariates
other than V to be endogenous, and errors to be heteroskedastic. For example, in
all of the above models X could be endogenous or mismeasured, with the joint
distribution of e1, e0, e, X unknown. More generally, the estimator does not
require modeling or estimating the dependence of M∗ on X , and the estimator
is the same regardless of whether A∗ is constant, random, or infinite. Empirical
applications with both finite A∗ and infinite A∗ are provided.

4.2 Examples of Outcome Models
Suppose for a known function h that

h(P∗,Y, V, β) = ε, E(εZ) = 0, ε | V, X ∼ ε | X (9)
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Some or all of the elements of P∗,Y may be endogenous and hence correlated with
ε, so estimation is based on E(εZ) = 0, that is, if P∗ were observed the parame-
ters β would be estimated by applying GMM to themoments E[Zh(P∗,Y, V, β)] =
0. The unobservables that affect selection D (that is, M∗ and A∗) can be corre-
lated in unknown ways with ε. This model fits the assumptions of Theorem 2 by
defining the function ψ as

ψ(P∗, X, V, θ) = Zh(P∗,Y, V, β).
For example, h(P∗,Y, V, β) = P∗ − H(Y, V, β) could be a model of wages P∗
where Y includes some endogenous regressors, e.g., spouse’s income or transfers
from parents, and V (which helps determine labor force participation D) can be
regressor in the h model.
Another example is h(P∗,Y, V, β) = Y − H(P∗, Z , V, β), which could be

a model of consumption of a vector of goods Y where P∗ is income that is not
reported by a significant number of individuals in the sample, and where income
nonresponse is correlated with ε, even after conditioning on observables.
Another class of models that can estimated using Corollary 3 are models that

could have been estimated by maximum likelihood if P∗ were observed. For
example, suppose that

P∗ = H(X, β, ε), ε | V, X ∼ ε | X , ε ∼ Fε(ε | X, δ) (10)

So H is a known parametric model for P∗ having latent errors ε, The errors ε
are conditionally independent of V given X (so V is exogenous), and the con-
ditional distribution function of ε given X , denoted by Fε, is known up to a
parameter vector δ. The unobservables that affect D can be correlated in un-
known ways with ε. Let θ = (β, δ). Assuming each ε | X is independently and
identically distributed, we can construct a corresponding log likelihood function3n
i=1 L(P∗i , Xi , θ) that could be used to estimate θ by maximum likelihood if

P∗ were observable. Given ordinary maximum likelihood regularity, define the
function ψ by ψ(P∗, X, V, θ) = ∂L(P∗, X, θ)/∂θ , (the score function) and θ
would be identified from E[ψ(P∗, X, V, θ0)] = 0. Corollary 3 can then be used
to estimate θ given P instead of P∗
For an example of model (10), suppose that

P∗ = I (β )X + ε ≥ 0), ε ⊥ V, X , ε ∼ N(0, 1)
that is, the unobserved outcome P∗ is determined by a probit model. Equivalently,
we may interpret this model as one where an individual makes two binary deci-
sions or choices, D and P∗, and we can only observe the outcome of the second
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decision, P∗, when the first decision is D = 1. The unobservables that affect both
decisions are related in unknown ways, so we do not know the joint distribution
of ε and errors in the D model, nor do we know how those errors jointly vary with
X . It is only the marginal distribution of ε that is specified here. In this example
ψ(P∗, X, V, β)would just be the ordinary probit score function for each observa-
tion of this P∗. As this example shows, we do not require continuity of P∗, so the
methodology can be used without change when the unobserved potential outcome
P∗ is discrete, censored, or otherwise limited.
The main impact of the exclusion restriction (4) for the P∗ model is the im-

plication that U∗ | V, X ∼ U∗ | X for U∗ = ψ(P∗, X, V, θ). In the above
examples, the assumption that either ε | V, X ∼ ε | X or ε ⊥ V, X ensures that
this requirement is satisfied.

4.3 Examples of Density Models
The GMM estimator in Corollary 3 assumes W and therefore the density f (V |
X) is known. Estimation remains straightforward if f (V | X) is finitely parame-
terized. In this case, denote the conditional density of V as f (V | X, λ), and let
the vector θ include both the set of unknown parameters in the P∗modelψ and the
parameters λ of the distribution of f . Let R(V, X, θ) be any vector valued func-
tion having the property that λ is identified from the moments E[R(V, X, θ)] = 0.
In particular, we could let

R(V, X, θ) = ∂ ln f (V | X, λ)
∂λ

in which case R(V, X, θ) is the score function associated with the maximum like-
lihood estimator of the parameters of f . Estimation of the model then proceeds
by applying GMM to the set of moments

E
t
ψ(P, X, V, θ)D/ f (V | X, θ)

R(V, X, θ)

u
= 0 (11)

and standard GMM limiting distribution theory applies. See, e.g., Newey (1984)
or Wooldridge (2001), p. 425.
For example, suppose that we can model V in terms of other covariates as

V = g(X, α)+ σ(X, γ )η, η ⊥ X, ε (12)

for some known functions g and σ with σ(X, γ ) > 0, unknown parameter vectors
α and γ , and unobserved error term η having some known density function fη with
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mean zero and variance one. We may think of η as an exogenous covariate in the
P∗ model. Then

f (V | X) = 1
σ(X, γ )

fη
t
V − g(X, α)
σ(X, γ )

u
(13)

and equation (11) then becomes

E


σ(X,γ )ψ(P,X,V,θ)D
fη([V−g(X,α)]/σ(X,γ ))
V − g(X, α)d

V − g(X, α)e2 − σ(X, γ )2
 = 0 (14)

where θ (which includes α and γ along with whatever parameters appear in the
model ψ) is estimated by applying standard GMM to this set of moments. A
leading case would be taking fη to be standard normal, though other (in particular
more flexible classes of densities), could also be used.
If f (V | X) is not finitely parameterized, the GMM estimator can still be

applied by replacing W = D/ f (V | X) with EW = D/Ef (V | X) in Corollary
3, where Ef (V | X) is a nonparametric estimator of f (V | X), such as a kernel
density estimator. The general limiting distribution theory for these types of semi-
parametric two step estimators (where the first step is a nonparametric plug in like
this) is given by Newey and McFadden (1984). The relevant result is that, with
sufficient regularity,

√
n

�
1
n

n;
i=1

TiEf (Vi | Xi) − E
t

T
f (V | X)

u�
d−→ N

t
0, var

v
T

f (V | X) + E
t

T
f (V | X) | X

u
− E

t
T

f (V | X) | V, X
uwu

where T is a random vector. Khan and Lewbel (2005) provide one example of
detailed regularity conditions that suffice, including asymptotic trimming to deal
with boundary effects in the kernel estimation of f in the denominator. They
assume the density is bounded away from zero except in the neighborhood of the
boundary of the data, and trim by excluding observations that are within a given
distance from this boundary, letting that distance decrease at an appropriate rate
as the sample size grows. They also show that with retangular support one can
more simply trim by dropping the observations where each continuous covariate
takes on its smallest and biggest values in the sample.
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To apply this result to the GMM estimator, let T = Dψ(P, X, V, θ) to obtain
the limiting distribution of the sample average of EWψ(P, X, V, θ). The result is
ifEθ is given by
Eθ = argmin

θ∈�

�
n;
i=1

Diψ(Pi , Xi , Vi , θ)Ef (Vi | Xi )
�)
Pn

�
n;
i=1

Diψ(Pi , Xi , Vi , θ)Ef (Vi | Xi)
�

(15)

with independent, identically distributed observations, then

√
n(Eθ − θ0) d−→ N

r
0,
b
S)0PS0

c−1 S)0PH�0PS0 bS)0PS0c−1s
where P and S0 are as before and

H�0 = var vDψ(P, X, V, θ)f (V | X) + E
t
Dψ(P, X, V, θ)
f (V | X) | X

u
− E

t
Dψ(P, X, V, θ)
f (V | X) | V, X

uw
.

Efficiency would be obtained in the usual GMMway by having plim Pn = H�−10 .
In very closely related contexts, Magnac and Maurin (2003) and Jacho-Chavez
(2005) show that the estimator that plugs in a nonparametric estimator of f is
semiparametrically efficient, being more efficient than estimation using the true f
(similar to Hirano, Imbens, and Ridder 2003).
Nonparametric estimation of f (V | X) may be problematic in applications

where X has moderate or high dimension. In those cases f could be semipara-
metrically estimated. For example, suppose equation (12) holds but the distribu-
tion of η is unknown. One could then estimate the parameters of equation (12) by
GMM, apply a one dimensional nonparametric density estimator to the estimated
residualsEη from that equation to obtain Efη, then estimateEθ by equations (13) and
(15). Lewbel and Schennach (2005) provide root n limiting distribution theory
for a numerically simple "sorted data" estimator of this form (one that does not
require selection of kernels or bandwidths), using

1Efη(Eηi) = Eη[i+1] −Eη[i−1]2n
(16)

whereEη[i+1] is the smallest value ofEη1,...,Eηn that is greater thanEηi andEη[i−1] is
the largest value ofEη1,...,Eηn that is smaller thanEηi .
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4.4 Linear Two Stage Least Squares
Suppose that

P∗ = Y )βY + VβV + ε, E(εZ) = 0, ε | V, X ∼ ε | X. (17)

This is just the special case of model (9) where h(P∗,Y, V, β) is P∗ − Y )βY −
VβV . As before, some of the elements of Y may be endogenous and hence cor-
related with ε, so estimation is based on E(εZ) = 0, which for this linear model
means that if P∗ were observed, then the parameters β = βY , βV could be esti-
mated by regressing P∗ on Y, V using linear two stage least squares with instru-
ments Z .
With this model, the GMM estimator of Theorem 2 and Corollary 3 is based

on the moments
E
d
ZW (P − Y )βY − VβV )

e = 0
and so simplifies to estimating β by linearly regressing WP on WY,WV using
two stage least squares with instruments Z . Define

� =
v
E
t
W
t
Y
V

u
Z )
u
E(Z Z ))−1E

t
WZ

t
Y
V

u)uw−1
E
t
W
t
Y
V

u
Z )
u
E(Z Z ))−1

β = �E(WZP)

The estimator is just these equations, replacing expectations with sample averages.
Suppose f (V | X) is parameterized as f (V | X, λ) and we have some esti-

mator for the vector λ satisfying

√
n(Eλ− λ) d−→ N [0, var(Qλ)] (18)

for some influence function Qλ. For example, λ might consist of means or other
moments of V, X andEλ could be the corresponding sample moments, or λ could
be estimated by a separate GMM, or by maximum likelihood as before. Then
the estimatorEβ is a linear two stage least squares regression of PD/ f (V | X,Eλ)
on (Y,W )D/ f (V | X,Eλ) using instruments Z . With independent, identically
distributed observations, standard limiting distribution theory for parametric two
step estimation (see, e.g., section 6 of Newey and McFadden 1994) then gives

√
n(Eβ − β) d−→ N [0,�var

b
Qβ −WZY )β

c
�)] (19)
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where
Qβ = WZP

t
1− Q)λ

∂ ln f (V | X, λ)
∂λ

u
If instead of a parametric density, we use a kernel or other sufficiently regular

nonparametric density estimator Ef (V | X), then let EW = D/Ef (V | X) and esti-
mate β by regressing EWP on EWY, EWV using linear two stage least squares with
instruments Z . This is then just a special case of GMMwith a nonparametric den-
sity estimator as described in the previous section, which yields the same limiting
distribution (19) as the parametric density case, except that now

Qβ = WZP + E(WZP | X)− E(WZP | V, X).
These two stage least squares estimators do not require numerical searches,

so it would also be computationally feasible to estimate limiting distributions by
bootstrapping.

4.5 A Numerically Trivial Estimator
Consider the weighted least squares model with a semiparametric specification of
f , specifically,

P∗ = Y )βY + VβV + ε, E(εZ) = 0,
V = X )α + η, η ⊥ ε, X

and D given by equation (1). Assume the distributions of errors ε, η and unob-
servables A∗,M∗ are unknown. This model is a special case of equations (17) and
(12), and provides a compromise between parametric vs nonparametric V density
estimation. A numerically trivial estimator (which combines estimators described
in the previous sections) consists of the following steps.
First estimate a by linearly regressing V on X using ordinary least squares,

and then letEηi = Vi − X )iEα at each data point i . By equation (13) in this model we
have W = D/ fη (η), so by equation (16) at each data point i we may constructEWi using EWi = Eη[i+1] −Eη[i−1]2n

Di (20)

whereEη[i+1] is the smallest value ofEη1,...,Eηn that is greater thanEηi andEη[i−1] is
the largest value ofEη1,...,Eηn that is smaller thanEηi . To handle the endpoints, forEη j = min(Eη1,...,Eηn) letEη[ j−1] =Eη j and forEη j = max(Eη1,...,Eηn) letEη[ j+1] =Eη j .
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Alternatively, instead of equation (20), fη
b
ηi
c
could be estimated using a one di-

mensional nonparametric kernel density estimator. Finally, estimate β by linearly
regressing EWP on EWY, EWV using two stage least squares with instruments Z .
Lewbel and Schennach (2005) provides relevant root n asymptotic distribution
theory. They also show that no asymptotic trimming is required, and that semi-
parametric efficiency can be obtained usingEη[i+k] −Eη[i−k] where k → ∞ at an
arbitrarily slow rate.
This estimator consists only of sorting data and some linear regressions, so

bootstrapping by repeatedly resampling from the original data with replacement
would be computationally trivial. Consistency of the bootstrap may require k →
∞. Estimation in the later empirical application keeps k = 1.

4.6 Outliers and Trimming
The estimators entail division by a density f (V | X). This raises potential nu-
merical issues when the density is close to zero. Formally, asymptotic trimming is
generally required for high dimensional nonparametric density plug ins to avoid
boundary bias issues, and while not required in theory for root n convergence with
a parametric Ef , may still be advisable in terms of mean squared error. Essentially,
the issue is that f (Vi | Xi) and henceWi will be extremely small, makingUi pos-
sibly extremely large, for observations i where Vi is moderately large, and such
observations may dominate the associated sample averages. Basically, such ob-
servations i will be outliers. This suggests that one should look for and possibly
discard outliers in the moments Ui or two stage least squares errors. One could
more formally replace the weighted means in the GMM or two stage least squares
with robust estimators of such means, e.g., discarding some small percentage of
the observations in the regressions that have the largest residuals.

5 A Factory Investment Model
Let Pi be the rate of investment in manufacturing plant i, defined as the level of
investment in a year divided by the beginning of the year value of the plant’s cap-
ital, and let Qi be Tobin’s Q for the plant. Classical models of firm behavior (e.g.,
Eisner and Strotz 1963) imply Pi proportional to Qi , where the constant of pro-
portionality is inversely related to the magnitude of adjustment costs. However,
simple estimates of this relationship at varying levels of aggregation typically find
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a very low constant of proportionality (see, e.g., Summers 1981 or Hayashi 1982),
implying implausibly large adjustment costs.
Another empirical finding inconsistent with proportionality is that plant or firm

level data on investment show many periods of zero or near zero investment, al-
ternating with periods of high investment. See, e.g., Doms and Dunne (1998) and
Nilsen and Schiantarelli (2003). These empirical findings are generally attributed
to discontinuous costs of adjustment, due to factors such as irreversibility or indi-
visibility of investments. See Blundell, Bond, and Meghir (1996) for a survey.
One difficulty in applying Q models to disaggregate data is that accurate mea-

sures of an appropriate firm or plant level marginal Q are difficult to construct.
Typical proxies for Q are sales or profit rates. Let Ri be the profit rate of plant
i, defined as profits derived from the plant in a year divided by the beginning
of the year capital. A problem with the use of a proxy like Ri is that it may be
endogenous, since profits depend on the level of investment.
Let Ci be the cost of investment in plant i in a year, divided by capital at the

beginning of the year. Based on the model of Abel and Eberly (1994), assume
plant i has investment costs of the form

Ci = a1i I (Pi /= 0)+ a2i Pi + a3P2i
The term a1i is plant i’s fixed (per unit of capital) cost associated with any nonzero
investment, a2i is the price of investment, which can vary across plants, and a3 is a
quadratic adjustment cost parameter. Following the derivations in Abel and Eberly
(1994), given the above investment cost function the firm chooses investment Pi
to maximize the present value of current and expected future profits, resulting in
a model of the form

Pi = [g∗(a2i )+ β∗1Qi ]Di
Di = I

d
Qi > g(a1i , a2i )

e
Where the functions g∗ and g and the parameter β∗1 depend on features of the
firm’s intertemporal profit function. Abel and Eberly’s model also implies disin-
vestment (Pi < 0) if Qi is below some lower bound. Very few firms in the data
set have negative investment, so that outcome will not be explicitly modeled. The
above equations for P and D hold as written for all firms if Pi is set to zero for
any firm having negative investment.
The above equations show that profit maximization yields a model that has a

sample selection structure. It also has the features that the outcome P is linear
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in Q when D = 1, and that the fixed cost parameter a1i appears only in the
expression for D.
Comparing this model for D with equation (1) shows that A∗ will be infinite,

but one could construct more elaborate versions that would give rise to a finite
upper bound, e.g., if it were the case that a firm would build a new plant rather
than invest in the old one when the benefits from investment were sufficiently
large.
Marginal plant level Tobin’s Q is not observed, and is proxied by the profit

rate Ri . Specifically, Qi is assumed to be linear in Ri , X2i , and an additive error,
where X2i is a vector of observable attributes of the firm or plant. The function
g∗(a2i) is also assumed to be linear in X2i and an additive error. This yields
the outcome model Pi = (Riβ1 + X )2iβ2 + εi )Di . The error term εi will be
independent of profits, or nearly so, if a collection of restrictive assumptions hold
(including constant returns to scale, competitive product markets, and a first order
autoregressive model for Ri . See Abel and Eberly 1994 for details). Because these
assumptions are unlikely to hold in practice, the estimator here will not require εi
to be independent of the profit rate Ri , and so will allow for possible endogeneity
of profits.
Let Zi be a vector of instruments, comprised of Z1i defined as the lagged

profit rate, and plant characteristics Z2i = X2i . Define the function H by H(z) =
E(R | Z = z), and define εRi by Ri = H(Zi)+εRi . The function H is unknown.
Because of endogeneity of profits, the error term εRi may be correlated with εi ,
and is not assumed to be independent of Zi .
Let Vi be a measure of the size of plant i . In standard Q models, the rela-

tionship of the investment rate P to Q does not depend on the size of the firm or
plant, except to the extent that both P and Q are expressed in ”per unit of capital”
terms. However, in empirical applications it is generally found that size does mat-
ter. The Abel and Eberly model provides one possible explanation, by allowing
Vi to affect the fixed cost of investments a1i . In particular, a1i is the fixed cost
per unit of capital, so if true fixed costs (in absolute terms) are present, then a1i
will be a decreasing function of Vi . Nilsen and Schiantarelli (2003) find strong
statistical evidence of this relationship, including much greater incidences of zero
investments in small versus large plants. They attribute this relevance of plant
size both to the presence of absolute as well as relative fixed costs and to potential
indivisibilities in investment. Other studies confirm the relevance of size on the
decision to invest, but most cannot separate plant level effects from other factors,
because they use more aggregated firm or industry level data. Since Vi is a plant
characteristic, it may also appear everywhere in that model that X2i appears.
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Based on the above, it is assumed that a1i depends on Vi and may also de-
pend on other characteristics of the plant, firm, or industry, both observed X2i
and unobserved ei . Consistent with the presence of absolute fixed costs, Nilsen
and Schiantarelli (2003) find that D is monotonically increasing in V, so (recall-
ing Lemma 1) we may write the resulting selection equation as Di = I [0 ≤
Vi + M(Ri , X2i , ei)] for some function M, where ei denotes a vector of unob-
served variables or errors that affect the decision to invest. The unobservables ei
will in general be correlated with the other unobservables in the system, εi and
εRi . Also, in the Abel and Eberly model the function g is nonlinear in a1i (it’s
related to a root of a quadratic equation) and a1i itself is an unknown, possibly
nonlinear function of Vi . Therefore M, which is based on g, a1i , and a2i , is an
unknown function that is likely to be nonlinear.
The above derivations yield the following system of equations

Pi = (Riβ1 + X )2iβ2 + Viβ3 + εi)Di (21)

Di = I [0 ≤ Vi + M(Ri , X2i , ei)] (22)

Ri = H(Zi)+ εRi (23)

The profit rate Ri is endogenous, correlated with εi , and the selection unobserv-
ables vector ei is correlated with both the investment rate error εi and the profit
rate error εRi . The joint distribution of these errors, and the functions M and
H , are unknown. The goal is estimation of the parameters β. The coefficient of
Ri , which is β1, is of particular interest as the proxy for the relationship between
investment and Q.
Equation (21) takes the form P = P∗D with P∗ linear, so this paper’s two

stage least squares estimators will be used. In the notation of the previous sections
of this paper, P, D, V, and Z are the same, Y is R, X2, and X is the union of the
elements of R, X2, and Z .

5.1 Data and Estimation
The model is estimated using data from Norwegian manufacturing plants in 1986,
ISIC codes (industry numbers) 300-390. The available sample consists of n = 974
plants. See Nilsen and Schiantarelli (2000) for a full data description. The main
advantage over more conventional investment data sets is that data here are avail-
able at the level of individual manufacturing plants, rather than firm level data that
is aggregated across plants. This is important because the theory involving fixed
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costs applies at the plant level, and averaging this nonlinear model across plants
or firms may introduce aggregation biases, particularly in the role of variables
affecting Di , such as Vi .
Pi is investment just in equipment in plant i in 1986, divided by the beginning

of the year’s capital stock in the plant. The investment rate Pi equals zero in
about tweny per cent of the plants. Around two percent of plants have negative
investment. Consistent with the model, negative investment plants have Pi set to
zero. The selection function is then Di = I (Pi > 0).
The variable Ri is profits attributable to plant i in 1986, divided by the be-

ginning of the year’s capital stock. Plant characteristics X2i consist of a constant
term, dummy variables for two digit ISIC code, and dummies indicating whether
the firm is a single plant or multiplant firm, and if multiplant, whether plant i is
the primary manufacturing facility or a secondary plant. The instruments Zi are
comprised of Z2i = X2i , and Z1i defined as lagged Ri , so Z1i is the profit rate
for the plant in 1985. The size variable Vi is taken to be the log of employment at
plant i in an earlier year. Experiments with other measures of size, such as lagged
capital stock, yielded similar results.
To apply this paper’s estimator for β, we need the assumptions of Corollary

3 to hold. The structural model is equations (21), (22), and (23). This requires
that the unobservables in the model, e, ε, and εR, be conditionally independent of
V, conditioning on Z . The most likely source of violation of this assumption is
from the replacement of Q with R (in part because Q should subsume all dynamic
effects, but R need not). This was also the motivation for inclusion of the term
β3Vi in equation (21).
The required support conditions for V imply that, at any given time, some

plants could be so small that they will not invest regardless of their values for X2
and e, while other plants could be so large that they definitely invest. Over time
plant sizes change, both through the model via investment, and by depreciation,
closings, technology change, etc., so the model does not require the existence of
plants that are permanently static or permanently growing.
Empirically, the supports of the continuous variables in this model are un-

known, so the required support conditions cannot be directly verified. However,
indirect evidence is favorable. In this data set V takes on a large range of values
relative to the other covariates. For example, as a measure of data spread, the stan-
dard deviation of V is 1.16, while the profit rate R has a standard deviation of .17.
In the applications where, for comparison, the selection equation is parameter-
ized, the systematic component of M∗, modeled as X )2γ , has a standard deviation
comparable to that of V , ranging from .80 to 1.40 depending on the model and the
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estimator. In a Monte Carlo analysis, Lewbel (2000) found that the similar binary
choice estimator generally performed well when the standard deviation of V was
comparable in magnitude to the standard deviation of M∗.
Very strong alternative assumptions are required to estimate β by other means,

such as maximum likelihood. The model can be rewritten as

Ri = H(Zi)+ εRi (24)
Pi = [H(Zi)β1 + X )2iβ2 + Viβ3 + (εRiβ1 + εi)]Di
Di = I [0 ≤ Vi + M(H(Zi)+ εRi , X2i , ei)]

The parametric model that will be estimated for comparison is

Ri = Z )i b +HεRi (25)
Pi = [(Z )i b)β1 + X )2iβ2 + Viβ3 +Hεi )Di
Di = I [0 ≤ Vi + (Z )i b)γ 1 + X )2iγ 2 +Hei ]

where the errors (HeRi ,Hεi ,Hei) are assumed to be trivariate normal and independent
of Zi and Vi . Unlike the general semiparametric specification, this parametric
model requires the simultaneous estimation of the equations for Ri and Di along
with the Pi equation. The parametric model also assumes that the functions H and
M are linear, that the errors and unobservables εRi and ei can be subsumed into a
single additive errorHei , and that the errors are jointly normal and independent of
Z . Assumptions like these are required for estimation of the model by any stan-
dard method such as maximum likelihood, although they are not well motivated
in terms of the economics of the problem. For example, linearity of the function
M with a scalar error is inconsistent with the theoretical derivation of the model.
This illustrates the value of the semiparametric estimation, which does not require
such assumptions.

5.2 Empirical Results
Table 1 summarizes results for six different estimators. For brevity, Table 1 only
reports estimates of the coefficient of interest, β1. A complete list of all parameter
estimates in all equations, along with the Gauss code used to generate them, are
available from the author on request.
Let X1i = Ri , X2i and let β denote the corresponding coeficients in equation

(21). The first and second estimators in Table 1, labeled OLS and TSLS, ignore
the sample selection problem, and just estimate the equation Pi = X )1iβ +Hεi by
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ordinary least squares and two stage least squares, respectively (the latter using
instruments Zi ).
The third estimator, labeled Heckman, controls for sample selection paramet-

rically, but does not control for possible endogeneity. This is the two equation
parametric model Pi = (X )1iβ +Hεi )Di and Di = I [0 ≤ Vi + X )1iγ +Hei ], as-
sumingHεi and Hei are jointly normal and independent of Vi and X1i . This third
estimator is the standard Heckman model, estimated using maximum likelihood.
The fourth estimator, labeled Endogenous ML, is maximum likelihood esti-

mation of the entire three equation parametric model (25), which entails simulta-
neously estimating the parametric selection, outcome, and instrument equations,
assumingHeRi ,Hεi , andHei are jointly normal and independent of Zi and Vi .
The remaining estimators are this paper’s estimators from section 4.4. The

fifth estimator, Weighted OLS, is a linear least squares regression of EWi Pi onEWi X1i , where the weights are EWi = Di/ f̂ (Vi | X1i ). This semiparametrically
controls for selection but not for endogeneity, and so corresponds to estimating
β when the true model is defined by the system of two equations (21) and (22),
assuming β3 = 0 (see below for more on this point) and εi is uncorrelated with
X1i .
The final estimator, Weighted TSLS, is a linear two stage least squares re-

gression of EWi Pi on EWi X1i using instruments Z1i , where the weights are EWi =
Di/ f̂ (Vi | Xi) with Xi = X1i , Z1i . This estimator semiparametrically controls
for both selection and endogeneity, and so corresponds to estimating β when the
true model is defined by the general structure of equations (21), (23), and (22).
A kernel density estimator is used to construct f̂ (Vi | Xi). A quartic kernel is

used for continuous regressors, calculated for each cell of the discrete regressors
and averaged across cells (examples of estimation using the more trivial paramet-
ric and ordered data density estimators are provided later). The kernel bandwidth
is chosen by ordinary cross validation. No density trimming was used. Estimates
were also generated with bandwidth’s constructed using the procedure described
in Lewbel (2000), and by halving the cross validated bandwidths to undersmooth
as required for root n convergence. Those are not reported, since the resulting
coefficient estimates were not very sensitive to bandwidth choice.
The semiparametric estimators are computationally quick and straightforward,

since they only entail kernel density estimation and linear two stage least squares.
In contrast, the maximum likelihood estimates were quite difficult to obtain, with
frequent numerical problems and failures to converge. Attempts to replicate the
analysis for a different year of data failed because no converged values for the
maximum likelihood estimator could be obtained. The difficulty with maximum
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likelihood is that some parameters are intrinsically difficult to identify in the sense
that the likelihood function is relatively flat in directions that involve changing
these parameters. These parameters include correlations between the latent se-
lection errorHei and the other model errors, and many structural parameters were
sensitive to the estimates of these correlations. The semiparametric estimator does
not require estimation of these difficult to obtain nuisance parameters.
Table 1 reports estimates imposing β3 = 0 in equation (21). This is a nec-

essary assumption for the weighted OLS estimator (because U , which equals ε
times instruments, must be conditionally independent of V , and in weighted OLS
the instruments are the regressors, which include V when β3 is nonzero). The
other estimators do not require this assumption in theory, however, the Endoge-
nous ML estimates failed to converge when β3 was allowed to be nonzero, and
when the other estimators were redone allowing β3 to be nonzero, the resulting
estimates of β3 were tiny and completely insignificant statistically. Also, impos-
ing β3 = 0 only slightly changed the resulting estimates of β1. Note that having
β3 = 0 is consistent with a model where Vi only affects fixed costs of investment.
In both the parametric and semiparametric models, controlling for selection

and for endogeneity each raises the estimate of β1 (recall the empirical finding
in this literature is that naive estimates of this coefficient are implausibly low).
The semiparametric estimates are comparable to, though generally higher than,
the corresponding parametric model estimates.
One could easily question whether V satisfies all of the required assumptions

in this application. Of course the maximum likelihood estimators also require
some rather suspect, though very different, strong assumptions. Still, the empirical
results are sensible, suggesting at a minimum that the semiparametric estimator
produces plausible results here. Moreover, the similarity in estimates obtained
by the parametric and semiparametric estimators should increase confidence in at
least rough validity of the underlying model.

5.3 Monte Carlo Simulation
To assess the performance of the proposed estimator, a Monte Carlo simulation
based on the investment model application is provided. For the simulation, the
true model is taken to be the three equation parametric model (25), without plant
or industry dummies, and β3 = 0. Parameter values are taken to equal the esti-
mated coefficients from applying maximum likelihood to the investment data (the
Endogenous MLmodel in Table 1) with the full set of plant and industry dummies
included in X2i . The intercept term in the outcome equation is then taken to equal

26



the mean in the real data of X )2iβ2, and the intercepts for the other two equations
are defined analogously. The exogenous variables V and Z, corresponding to
the size and lagged profit rate variables, are drawn as independent normals with
means and variances matching those in the data. The covariance matrix of the
normal model errors (HeRi ,Hεi ,Hei) is then constructed so that the means, variances,
and covariances of the endogenous variables Ri , Pi , and Di generated by the para-
metric model match those in the real data. The sample size is the same as the real
data, 974 observations.
Simulated data were drawn in this way five thousand times, and each of the six

estimators described in Table 1 were applied to each replication. With each repli-
cation, the same code that was used on the real data was applied to the simulated
data to provide estimates of both the coefficients and the standard errors.
Table 2 reports summary statistics on the distribution of the estimated profit

coefficient in the outcome equation from these simulations. Corresponding sum-
mary statistics on all of the estimated parameters, along with the Gauss code used
to generate them, is available from the author on request. Reported summary
statistics include moments, quantiles, root mean squared errors, and mean and
median absolute errors. Also reported is the mean across replications of the esti-
mated standard errors, and the fraction of simulations in which the true coefficient
was within two estimated standard errors of the estimated coefficient.
By the Monte Carlo design, the endogenous ML estimator is consistent and

efficient, and so provides an asymptotically best case benchmark. The results
show that this ML estimator is mean and median unbiased, with a smaller root
mean square error than the other estimators, as expected. One way in which ML
behaved poorly was that its estimated standard errors were much too large, pro-
viding 100% coverage of what is supposed to be a 95% confidence interval. This
illustrates the problem noted in the real data analysis that the ML estimates are
sensitive to the estimated covariance matrix of the model errors, which in turn
is estimated imprecisely because one of the errors is latent. Equivalently, in this
application ML is a highly nonlinear function, making the linearization required
for standard error estimation a poor approximation.
The OLS, TSLS, Heckman, and Weighted OLS estimators are inconsistent for

this design. The simulated estimates of each of these estimators show consid-
erable bias, with means and medians that are very similar to estimates reported
with real data (compare the next to last column of Table 1 with the mean and
median columns of Table 2). The estimated standard errors of these estimators
also closely match the real data estimated standard errors. The Weighted OLS
estimator delivers estimates close to those of the Heckman model, as it should.
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The Weighted TSLS estimator has about a ten percent mean and median bias,
and a standard deviation about double that of ML. This is the price paid for the
generality of the semiparametric estimator. Unlike ML, the standard errors of the
weighted TSLS are quite accurate, resulting in 96 percent.of coverage for what
is supposed to be a 95% confidence interval. This paper’s proposed weighted
TSLS estimator does not require estimation of the latent errors (indeed, it does
not involve any estimation at all of the selection equation), which may explain its
better behavior regarding standard error estimation.
In this Monte Carlo design all of the variables and errors, including V , have

unbounded support and no asymptotic trimming was applied. These estimates
can be consistent based on Theorem 1, but formally the unbounded support vio-
lates our root n limiting distribution theory (since in these designs A∗ is infinite).
Nevertheless, the Monte Carlo results suggest that the root n limiting distribution
theory (with a small limiting bias) provides a good approximation to the observed
sampling distribution. Also, these results show that the finite sample bias from
the proposed estimator is much smaller than that of other simple biased estimators
which ignore either selection or endogeneity. Some experiments with asymptotic
trimming were performed, but they are not reported because they did not produce
any improvements in the simulations.

6 Wages and Schooling
This section describes an empirical application in which A∗ is finite. Let −Vi be
the log cost of a year of school, and let M∗i denote an individual i’s unobserved
utility from education (comparably normalized), so the larger M∗i + Vi is, the
more education individual i will choose to obtain. Let Di equal one if i has an
undergraduate degree and no post graduate education, and zero otherwise. Then
Di = I (0 ≤ M∗i + Vi ≤ A∗i ), where i does not get an undergraduate degree if
M∗i + Vi < 0 and gets some graduate education if M∗i + Vi ≥ A∗i . This simple
model of the selection equation ignores dynamic optimization issues in school-
ing choice, but does allow thresholds to vary either randomly or systematically
across individuals (see, e.g., Cameron and Heckman 1998 or Carneiro, Hansen,
and Heckman 2003), and leaves unspecified the many observables and unobserv-
ables that affect utility and thresholds, that is, M∗i and A∗i .
Let the potential outcome P∗i = Y )i β + εi be the log wages individual i would

get if he or she chose to obtain an undergraduate degree but no graduate edu-
cation, where Yi is a vector of observed covariates and E(Yiεi) = 0, so we do
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not have endogenous regressors in this example. The goal is estimation of β and
hence the effect on wages from obtaining an undergraduate degree. The selec-
tion problem is that we can only observe P∗i for individuals having Di = 1, and
we can expect M∗i and possibly also A∗i to correlate with P∗i in unknown ways.
We may therefore directly apply the estimators described in section 4.4, to ob-
tain Eβ by a linear ordinary least squares regression of EWi Pi on EWiYi , where Pi
is individual ı́’s observed log wage and EWi is Di divided by an estimate of the
conditional density of Vi given Xi . This density is estimated three ways. The first
uses the same nonparametric estimator as in the investment application. The sec-
ond assumes Vi = X )iα + ηi where ηi is an independent normal error, with the V
and WP equations estimated jointly by GMM. The third is the numerically trivial
estimator of section 4.5, which again assumes Vi = X )iα+ηi , but now with the in-
dependent error ηi having an unknown density that is nonparametrically estimated
using Lewbel and Schennach (2005). This last estimator is sequential, where first
V is linearly regressed on X , then the errors in that regression are sorted and dif-
ferenced to construct EW using equation (20), and last β is estimated by a linear
least squares regression of EWi Pi on EWiYi .
For comparison, estimates are also obtained by just regressing Pi on Yi for

those individuals having Di = 1. This regression suffers from selection bias, un-
less the Di = 0 observations are missing at random. Also reported are maximum
likelihood estimates of a two equation system where A∗i is a constant and M∗i is
modeled as X )iγ + ei and assuming ei , εi are bivariate normal, independent of Yi
and Xi . The results are all in Table 3.
The data set used here, and the choice of regressors Yi , Xi , and Vi , is from

Chen (2003), constructed primarily from the National Longitudinal Survey for
Youth (NLSY). Vi is minus the log of the total expense of attending a local in state
public college, deflated by the local average hourly wage of unskilled workers that
prevailed when i was 17 years old. Alternative choices for Vi such as distance to
schools as in Card (1995) could be used, but did not vary as much as this cost
measure. Xi consists of a constant term, a scholastic ability index (constructed as
a composite of test scores), dummy variable indicators for a parent that went to
college, whether i is black, whether i is male, and whether i’s cohort is from the
1980’s or the 1990’s. Yi equals Xi plus additional dummies indicating one to five
years of work experience and over five years of work experience. The total sample
size is 7013 individuals, with 3775 of them having Di = 1. See Chen (2003) and
Chen and Khan (2003) for more details on the construction and use of this data
set, and Kane and Rouse (1995) for related results on NLSY data.
The estimates from all the estimators are roughly comparable, which shows
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that the density weighted estimators are at least not generating wild estimates.
A possible exception is the normal weighted OLS, which has a few implausible
coefficient estimates, such as a negative effect on having over five years of work
experience. Normality may not be a reasonable assumption for ηi , or may be
resulting in some extreme outliers that should be trimmed out. It is notable that
the numerically trivial estimator (sorted weighted OLS in Table 3) appears to work
well.
One substantial difference across the estimates is that OLS gives a significant

5 percent increase in wages resulting from a parent having a college education,
while MLE gives an implausible negative 5 percent effect. The semiparametric
kernel and sorted density estimates are near zero and completely insignificant sta-
tistically (unlike every other coefficient, the sign of this coefficient in the kernel
estimator changes when a different bandwidth is used). Selection bias may cause
the OLS estimate to be too high, because parent’s education is a strong determi-
nant of whether the child goes to college.
Another notable (though not statistically significant) difference is that all the

semiparametric estimators say the increase from the 1980’s to the 1990’s in real
wages from having a degree, after controlling for other covariates, is around 12
percent or more, while the MLE and OLS give gains of only 9 and 10 percent. The
semiparametric estimates also have higher scholastic test score effects on wages
than MLE (though not as high as OLS).
Most of the OLS estimates are not very different from the others, which sug-

gests that in this application the effects of selection bias may not be very large. It
may be the case that, with two sided censoring, the selection bias due to censoring
from above partially offset the selection bias due to censoring from below.
Empirical and theoretical objections have been raised regarding the validity

and exogeneity of access to schooling measures like distance and average school-
ing costs (see, e.g., Carneiro and Heckman 2002, Carneiro, Hansen, and Heckman
2003, and Hogan and Rigobon 2003), so the results reported here must all be in-
terpreted with caution, particularly if the resulting estimates are to be interpreted
as measures of the returns to schooling.
Similar models could be estimated for other amounts of schooling. Another

caveat on interpreting these results is that only employed individuals are included
in the data set, so the results are conditional on finding employment. The esti-
mators in this paper could also be used to estimate the differences in probabilities
of employment resulting from schooling, by defining Pi to be an indicator of
employment and estimating a nonlinear or nonparametric discrete choice model,
again controlling for selection by V density weighting.
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7 Conclusions
Instead of weighting by a propensity score, this paper shows that selection can
be addressed through weighting by the conditional density of one covariate V .
Strong support and independence assumptions about V replace the usual strong
assumptions about the joint distribution of unobservables affecting selection or
treatment and outcomes. Essentially, this density weighting converts expectations
of data censored by D into expectations of uncensored data. As a result, selection
problems can be handled in conjunction with any estimator that is based on ex-
pectations. This paper focused on GMM type estimators, including least squares,
instrumental variables, and maximum likelihood, but the method could also be
used with other estimators based on expectations. For example, Theorem 1 and
its corollaries can be extended to identify and estimate E(U∗ | X) (assuming
A∗ ⊥ X), essentially by replacing the numerator and denominator of equation (5)
with nonparametric regressions of UW on X and of W on X , respectively. An-
other example is estimation of panel models with fixed effects and selection. If
P∗i t = Y )i tβ + αi + εi t and Pit = P∗i t Di then β can be estimated by regressing
Pit − Pit−1 on Yit−1 − Yit with weights Wi , thereby differencing out the fixed
effects despite the selection problem.
The usefulness of these results in any application of course depends on whether

an appropriate covariate V exists. This paper provided two empirical applications,
one with A∗ finite, and the other with the more common case of infinite A∗. It
seems likely that, in at least some applications, one would be more comfortable
making strong assumptions about a single observed covariate than the alternative,
which requires strong assumptions regarding the joint distribution of all the un-
observables that affect both selection and outcomes. If nothing else, one would
have more confidence in the results produced by more conventional estimators if
the very different identifying assumptions employed here yield comparable esti-
mates.
If more than one plausible candidate for V is present, they could in general be

combined. For example, if D = I (0 ≤ M∗ + b1V1 + b2V2), then we could let
V =Eb1V1+Eb2V2 using some consistent (up to scale) estimators forEb1 andEb2 such
as Powell, Stock, and Stoker’s (1989) weighted average derivatives. Alternatively,
with GMM estimation we could write one set of moments for estimating θ using
V1 as V , and a second set of moments for estimating θ using V2 as V , and then
estimate a single GMM with both sets of moments simultaneously to efficiently
combine the information in both sets (though in this case the relative supports of
V1 and V2 are an issue).
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Magnac and Maurin (2003) showed that, for the related binary choice esti-
mator in Lewbel (2000), the large support assumption for V could be relaxed by
adding an error tail symmetry assumption, and that the two assumptions (large
support vs tail symmetry) are observationally equivalent. As discussed earlier,
many semiparametric estimators require a regressor to have a large or infinite sup-
port, but it would still be desirable to search for alternatives that could relax the
large support requirement in the present sample selection context.

8 Appendix: Proofs
PROOF OF LEMMA 1: Define π(V, X) = pr(D = 1 | V, X). Let e have uniform
distribution on [0, 1], independent of V, X . Define M∗ = π−1(e, X) and HD =
I (0 ≤ M∗ + V ). Then

pr(HD = 1 | V, X) = pr[π−1(e, X)] ≤ V | V, X]
= pr[e ≤ π(V, X) | V, X] = π(V, X)

PROOF OF THEOREM 1. First consider the case where E(A∗) is finite. Then

E(UW ) = E
t

DU∗

f (V | X)
u

= E
v
E
t
I (0 ≤ M∗ + V ≤ A∗)U∗

f (V | X) | X,U∗,M∗, A∗
uw

= E
v=
supp(V |X,U∗,M∗,A∗)

I (0 ≤ M∗ + ν ≤ A∗)U∗
f (V | X) f (V | X,U∗,M∗, A∗)dν

w
= E

v=
supp(V |X)

I (−M∗ ≤ ν ≤ A∗ − M∗)U∗dν
w

= E

�= A∗−M∗

−M∗
1dvU∗

�
= E[bA∗ − M∗ + M∗cU∗]

= E
b
A∗U∗

c = E bA∗)E(U∗c
and by the same logic

E(W ) = E
t

D
f (V | X)

u
= E(A∗)
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so
p lim

3n
i=1UiWi3n
i=1Wi

= E(UW )
E(W )

= E(A∗)E (U∗)
E(A∗)

= E bU∗c
Now consider the case where A∗ is infinity. In that case E(UW ) and E(W )

are both infinite. To deal with this complication, define

Wτ i = I (Vi ≤ τ)Wi
τ

= I (Vi ≤ τ)Di
τ f (Vi | Xi)

Eµτ1 = 1
n

n;
i=1
UiWτ i , Eµτ2 = 1

n

n;
i=1
Wτ i

where τ = τ(n) is an asymptotic trimming parameter. Let τ → ∞ at a rate
that makes [infxsupp(X) F(τ | x)]n → 1 where F is the cumulative distribution
function of V |X . By the definition ofEµτ1,
Pr

�Eµτ1 = 1
nτ

n;
i=1
UiWi

�
= Pr

�
1
nτ

n;
i=1
UiWi I (Vi > τ i ) = 0

�

≤
n<
i=1
Pr(Vi ≤ τ)

≤
n<
i=1

inf
X,U∗,M∗,A∗∈supp(X,U∗,M∗,A∗) F(τ | X,U

∗,M∗, A∗)

≤ [ inf
xsupp(X)

F(τ | x)]n → 1

soEµτ1− (nτ)−13n
i=1UiWi → 0 with probability one. The same logic replacing

Ui with one shows that Eµτ2 − (nτ)−13n
i=1Wi → 0 with probability one, and

therefore (Eµτ1/Eµτ2) −Eµ→ 0 with probability one, given the fast rate that τ →
∞. It follows that

p limEµ = p lim Eµτ1Eµτ2 = lim
τ→∞

E(Eµτ1)
E(Eµτ2)
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assuming E(Eµτ1) and E(Eµτ2) are finite for any given sufficiently large τ . Now
E(Eµτ1) = E

t
I (V ≤ τ)DU∗
τ f (V | X)

u
= E

v
E
t
I (0 ≤ M∗ + V )I (V ≤ τ)U∗

τ f (V | X) | X,U∗,M∗
uw

= E
v=
supp(V |X,U∗,M∗)

I (−M∗ ≤ V ≤ τ)U∗
τ f (V | X) f (V | X,U∗,M∗)dν

w
= E

v=
supp(V |X)

I (−M∗ ≤ V ≤ τ)U∗
τ

dν
w

= E
v= τ

−M∗
1
τ
dvU∗

w
= E

b
U∗
c+ E (M∗U∗)

τ

and by the same logic

E(Eµτ2) = 1+ E (M∗)τ

so limτ→∞ E(Eµτ1)/E(Eµτ2) = E (U∗).
The remaining case to consider is where A∗ is random and has infinite mean.

This can include the case where A∗ has a positive but less than one probability
of being infinite, corresponding to the case where some fraction of the population
has selection that is not bounded from above. For this case, consider the more
complicated weighting function W ∗

τ i defined by

W ∗
τ i =

I (Vi ≤ τ)Wi
(1− I ∗i )τ + I ∗i A∗i

where I ∗i equals one if A∗i is finite and zero otherwise, and assume τ → ∞
sufficiently fast so that prob(τ < A∗i − M∗i ) is zero when I ∗i = 1. Following the
same logic as before

E
t

I (V ≤ τ)W
(1− I ∗)τ + I ∗A∗

u
= E

t
I (V ≤ τ)DU∗

[(1− I ∗)τ + I ∗A∗] f (V | X)
u
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= E
v=
supp(V |X,U∗,M∗,A∗)

I (−M∗ ≤ V ≤ min(τ , A∗ − M∗))U∗
[(1− I ∗)τ + I ∗A∗] f (V | X) f (V | X,U∗,M∗, A∗)dν

w
= E

�= min(τ ,A∗−M∗)

−M∗
1

(1− I ∗)τ + I ∗A∗dvU
∗
�

= E

�
I ∗
= A∗−M∗

−M∗
1
A∗
dvU∗ + (1− I ∗)

= τ

−M∗
1
τ
dvU∗

�

= E
v
I ∗U∗ + (1− I ∗)U∗ + (1− I

∗)M∗U∗

τ

w
= E

b
U∗
c+ E d(1− I ∗)M∗U∗e

τ

and the remainder of the proof also follows as before.

The proof of Corollary 1 is omitted to save space, since it follows the same
logic as the proof of Theorem 1 in the case where A∗ is infinite, with a fixed
instead of asymptotic τ .

PROOF OF COROLLARY 2. Let W and WU denote the sample means of
Wi and WiUi , respectively, and let c = sup (supp(W )). Then E((WU)2) =
E((WU∗)2) ≤ c2E (U∗)2, and similarly E((W )2) ≤ c2 so Wi and WiUi have
finite second moments. Assumption A1 also implies E(W ) > 0. Corollary 2 then
follows from applying the Lindeberg-Levy central limit theorem to (WU ,W ), and
the delta method.

PROOF OF THEOREM 2. θ0 is equivalently given by

θ0 = argmin
θ∈�

t
E[Wψ(P, X, V, θ)]

E(W )

u)
P

t
E[Wψ(P, X, V, θ)]

E(W )

u
The first order condition for θ0 and the mean value theorem give

0 = ν(θ0)
)P
E[Wψ(P, X, V, θ0)]

E(W )

= ν(θ0)
)P
t
E[Wψ(P, X, V, θ∗)]

E(W )
+ ν(Hθ)(θ0 − θ∗)u

= ν(θ0)
)P
d
µ+ ν(Hθ)(θ0 − θ∗)e
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whereHθ lies between θ∗ and θ0. Solving for θ0 − θ∗ gives
θ0 − θ∗ = −

d
ν(θ0)

)Pν(Hθ)e−1 ν(θ0))Pµ
Now E(U∗) = 0, so if µ = E(U∗) then θ0 − θ∗ = 0, while if µ = E(U∗) +
O(τ−1) then

θ0 − θ∗ = −
d
ν(θ0)

)Pν(Hθ)e−1 ν(θ0))PO(τ−1) = O(τ−1)

PROOF OF COROLLARY 3. This is standard GMM limiting distribution the-
ory with iid data. See, e.g., Newey and McFadden (1984) or Wooldridge (2001)
Theorems 14.1 and 14.2.
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Table 1. Estimates of the Outcome Equation Profit Coefficient

no dummies plant type dummies types & ISIC dummies
OLS .231 .036 .219 .035 .221 .035
2SLS .383 .051 .353 .050 .355 .050
Heckman .298 .087 .287 .092 .298 .094
Endogenous ML .468 .061 .403 .062 .413 .057
Weighted OLS .323 .062 .317 .059 .316 .051
Weighted TSLS .470 .070 .431 .073 .411 .080

Notes: In each block, the first number is β1, the coefficient of the profit rate in the
outcome equation, and the second number is the estimated standard error. In the
first pair of columns, X2 and Z2 consist only of the constant term. In the second
pair of columns, X2 and Z2 also include plant type dummies, and in the third pair
of columns, X2 and Z2 contain dummies both for plant type and for two digit
industry (ISIC) code.

Table 2. Simulations of the Outcome Equation Profit Coefficient

MEAN SD LQ MED UQ RMSE MAE MDAE MESE %2SE
OLS .231 .017 .221 .232 .245 .183 .182 .182 .036 .000
TSLS .362 .023 .346 .362 .377 .056 .052 .051 .051 .987
Heckman ML .268 .020 .254 .268 .282 .146 .145 .145 .102 .997
Endogenous ML .414 .028 .394 .413 .433 .028 .023 .020 .145 1.00
Weighted OLS .243 .043 .213 .243 .273 .177 .171 .170 .049 .060
Weighted TSLS .399 .061 .358 .397 .440 .063 .050 .043 .066 .961

Notes: In these simulations the ’true’ value of the coefficient is .4132. The re-
ported statistics are as follows. MEAN and SD are the mean and standard de-
viation of the estimates across the simulations. LQ, MED, and UQ are the 25%
(lower) 50% (median) and 75% (upper) quartiles. RMSE, MAE, and MDAE are
the root mean squared error, mean absolute error and median absolute error of the
estimates. MESE is the mean estimated standard error, and %2SE is the percent-
age of simulations in which the true coefficient was within two estimated standard
errors of the estimated coefficient.
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Table 3. Estimates of Wage Outcome Equations

OLS MLE Kernel Weighted OLS
Constant 1.37 .053 1.69 .111 1.40 .371
Test Score .120 .009 .059 .020 .109 .061
Parent College .048 .016 −.048 .034 −.011 .122
Black −.017 .027 −.087 .035 −.047 .140
Male .249 .015 .266 .017 .225 .113
Urban .161 .020 .132 .023 .167 .104
90’s cohort .097 .018 .086 .019 .122 .117
1 to 5 years work .001 .038 −.000 .038 .027 .273
Over 5 years .342 .051 .337 .051 .350 .306

Normal Weighted GMM Sorted Weighting OLS
Constant 1.34 .143 1.51 .132
Test Score .161 .027 .129 .022
Parent College .118 .058 .027 .064
Black −.162 .079 −.135 .103
Male −.077 .053 .167 .056
Urban .019 .063 .054 .062
90’s cohort .207 .076 .152 .073
1 to 5 years work .198 .057 −.047 .084
Over 5 years .194 .087 .222 .091

Notes: In each block, the first number is the coefficient, and the second number is
the estimated standard error. OLS is the wage equation only using data on college
graduates with no graduate education, and so does not control for any selection
bias. ML is a parametric two equation system of selection and wages with nor-
mal errors. Weighted OLS is the density weighted semiparametric estimator of
the wage equation, using a kernel estimator of the conditional density of V given
X . Normal Weighted GMM models V as linear in X with an independent normal
error, estimating the V and density weighted wage equations simultaneously by
GMM. Sorted Weighting OLS models V as linear in X with an independent er-
ror of unknown density that is estimated using the numerically trivial sorted data
estimator.
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