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Abstract

This paper shows that the recent literature that tests for a long-run Fisher relationship

using cointegration analysis is seriously 
awed. Cointegration analysis assumes that the

variables in question are I(1) or I(d) with the same d. Using monthly post-war U.S. data

from 1959-1997, we show that this is not the case for nominal interest rates and in
ation.

While we cannot reject the hypothesis that nominal interest rates have a unit root, we �nd

that in
ation is a long-memory process. A direct test for the equality of the fractional

di�erencing parameter for both series decisively rejects the hypothesis that the series share

the same order of integration.
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1 Introduction

The existence of a one-to-one long-run equilibrium relationship between after-tax nominal interest

rates and expected in
ation, known as the Fisher hypothesis, has been tested extensively in the

literature. Since most studies cannot reject the null hypothesis of a unit root in nominal interest

rates and in
ation, tests of the Fisher hypothesis have centered on testing for the existence of a

cointegrating relationship between interest rates and in
ation. For example, Mishkin (1992) and

Evans and Lewis (1995) �nd cointegration between interest rates and in
ation using single equation

testing methods (such as Engle and Granger's (1987) least squares estimator), while Crowder and

Ho�man (1996) obtain more robust �ndings supporting the Fisher equation by applying Johansen's

(1988) maximum likelihood system estimation methodology.

We argue that it is inappropriate to use cointegration methods to test the Fisher relationship

in postwar U.S. data. Using monthly series spanning the period from 1959:1 to 1997:8, we apply

a thorough testing procedure to the individual data series to determine their trending and long-

memory behavior, and conclude that nominal interest rates and in
ation are characterized by

di�erent orders of integration. This implies that standard cointegration analysis, which assumes

that all variables are integrated of order one (or are I(1)) cannot be applied to these series. The

concept of fractional cointegration, which generalizes the methodology to allow for fractionally

integrated series (or I(d) with d di�erent from unity) and equilibrium errors, is also inapplicable

since it also assumes that the series share the same order of integration (i.e. the series being studied

must be I(d) with the same d).

We employ standard unit root tests, unit root tests that allow for structural breaks, and various

methods that directly estimate the fractional di�erencing parameter for the individual series. While

a number of previous studies have established that in
ation rates follow mean-reverting fractionally

integrated processes (see, for example, Hassler and Wolters (1995), Baum, Barkoulas and Caglayan

(1999) and Crato and Rothman (1994)), the evidence on nominal yields is somewhat mixed. Several

papers have called into question the common �nding that nominal interest rates are integrated

processes (i.e. Wu and Zhang (1996), Hauser and Kunst (1998)) and Dueker and Startz (1998)).

However, since unit root tests have low power in rejecting the unit root hypothesis in favor of
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fractional alternatives, direct tests for the existence of fractional integration seem necessary. In

addition, to directly address the issue of a common order of integration, we make use of tests that

jointly estimate the fractional di�erencing parameter for both series, and test for their equality.

The evidence from this battery of tests leads us to conclude that nominal interest rates contain

unit roots (or are I(1)) whereas in
ation series are long memory (or I(d)) stochastic processes, so

that nominal interest rates and in
ation do not share the same order of integration.

These �ndings cast serious doubt on the validity of recent tests of the Fisher hypothesis that

have appeared in the literature. In addition, cointegration tests that incorrectly assume the un-

derlying variables are integrated processes may be misleading. A recent study by Gonzalo and Lee

(1998) compares the robustness of the Engle and Granger (1987) and Johansen's Likelihood Ratio

cointegration tests with respect to varying characteristics of the underlying data generating pro-

cesses. They �nd that, depending on the size of the fractional di�erencing parameter, incorrectly

assuming that a process is I(1) will lead to a false �nding for cointegration.

The next section brie
y reviews the current literature on empirical tests of the Fisher equation.

Our empirical methodology and results are presented in Section 3, as well as comparisons of our

�ndings to those appearing in the literature. Section 4 concludes and o�ers suggestions for future

research.

2 The Fisher equation and cointegration

The Fisher hypothesis simply states that the nominal interest rate, it, is equal to the real interest

rate, rt, plus expected in
ation, �et , as shown in equation (1) below:

it = rt + �et ; (1)

Earlier tests of Fisher's theory often consisted of estimating a regression of the form:

it = �+ ��t + �t; (2)

where � and � are parameters to be estimated, �t is actual in
ation, and �t is a composite error
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term under the assumption of rational expectations.2 The null hypothesis to be tested is that

movements in in
ation are fully re
ected in nominal interest rates or that � = 1:3 In this case, the

parameter � estimates the mean of the ex post real interest rate which is de�ned as it � �t:
4 As is

well known in the literature, testing whether � = 1 using conventional regression methods is valid

only if nominal interest rates and in
ation are stationary (or I(0)) variables since the distribution

of the parameters is nonstandard otherwise. If it and �t are characterized by unit roots (or are

I(1)), the Fisher hypothesis may be tested by examining whether these two variables form a linear

combination which is stationary, or whether �t is I(0). Assuming the latter is true, equation (2)

may be interpreted as a cointegrating regression, re
ecting an equilibrium relationship between

nominal interest rates and in
ation, with the error term �t representing short-run deviations from a

long-run equilibrium. Therefore, a �nding of cointegration where the cointegrating vector is (1;�1)

(i.e. if the coeÆcient on in
ation is indistinguishable from unity) is supportive of a \long-run"

Fisher relationship and implies that the real interest rate, rt, is stationary.

One recent study using this methodology to test the Fisher hypothesis is that of Crowder and

Ho�man (1996). In this paper, the authors employ Johansen's (1988) fully-eÆcient maximum like-

lihood estimator to test for cointegration between three-month Treasury bill rates and quarterly

in
ation for the 1952:1 to 1991:4 period. Their estimates of the cointegrating vector indicate that

after-tax nominal rates respond fully to movements in in
ation, consistent with the Fisher hypoth-

esis. Evans and Lewis (1995) and Mishkin (1992) also examined the long-run Fisher relationship

in U.S. data with cointegration analysis, but using di�erent estimation methods.5 Using Engle and

Granger's (1987) bivariate cointegration test, Mishkin's (1992) results do not support the Fisher

equation, while Evans and Lewis (1995) report that after-tax nominal rates move one-for-one with

2If forecasts of in
ation are rational, �t = �
e
t + et; where the forecast error, et, is orthogonal to all variables in

the information set at time t. Since �t is the sum of the regression error (which is orthogonal to �t by construction)

and the in
ation forecast error et, the parameters of equation (2) can be consistently estimated using ordinary least

squares.
3if nominal interest rates are measured on a before-tax basis, then the null hypothesis to be tested is that � =

1=(1 � �) where � is the tax rate.
4Alternatively, one can examine the correlation between the nominal interest rate and in
ation by regressing

in
ation on the nominal rate. This has been termed the \Fama speci�cation" in reference to Fama (1975). The

choice of normalization is of consequence; some authors have reached very di�erent conclusions depending on their

choice of normalization, as Crowder and Ho�man (1996, p.104) indicate.
5Crowder and Ho�man (1996) provide a detailed comparison of the three studies.
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in
ation only when regime shifts in the expected in
ation process are taken into account. Ac-

cording to Crowder and Ho�man (1996), Monte Carlo analysis shows that ordinary least squares

(OLS) estimates of the cointegrating relationship su�er from small sample bias when in
ation is

characterized as an integrated moving average process, as they �nd is the case in their data set.

They conclude that the inability of previous studies to support the long-run Fisher hypothesis is

due to the choice of estimator of the cointegrating relationship.

Standard cointegration analysis, as applied by the aforementioned studies, may only be used to

test for the existence of a long-run Fisher relationship if nominal rates and in
ation are both unit

root processes. However, a number of recent studies have shown that in
ation is best described as

a long-memory or I(d) process, where the order of integration, d, is not restricted to the values of

0 or 1:6 Using monthly Consumer Price Index (CPI) in
ation rates for �ve industrialized countries

including the U.S., Hassler and Wolters (1995) �nd that, for most countries over their 1969-1992

sample period, in
ation is a fractionally integrated (long-memory) process with the integration

order, d, found to be close to the stationary value of 0:5, implying that shocks to the in
ation

process are persistent but that the process is mean-reverting. Baillie, Chung and Tieslau (1996) also

�nd fractional integration in in
ation rates using an extended model which allows for conditional

heteroskedasticity in the error term. Using monthly in
ation rates extending over the period from

1948 to 1990, they �nd that for nine of the ten countries considered, in
ation is a stationary

long-memory process with time-dependent heteroskedasticity. More recently, Baum, Barkoulas

and Caglayan (1999) report similar �ndings of fractional integration using in
ation rates that are

computed from both CPIs and WPIs for a larger set of industrialized and developing countries.

Given the widespread evidence that in
ation rates are not unit-root processes, the interpretation

of previous studies' cointegration results becomes questionable. Standard unit root tests are known

to have low power against fractional alternatives, as discussed by Diebold and Rudebusch (1991),

Sowell (1990), Cochrane (1991), and Hassler and Wolters (1994). Given this weakness, it seems

prudent to directly test for fractional integration in nominal interest rates as well before proceeding

with tests of the Fisher equation. Recent evidence of di�ering orders of integration is provided

by Phillips (1998), who estimates the integration parameter for nominal interest rates, in
ation

6Details on the de�nition of long-memory processes and the relevant statistical tests are given in section 3.
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and the ex post real interest rate for the period 1934-1997. He �nds that the nominal rate is

nonstationary (d = 0:95) while the in
ation rate and the ex post real interest rate are fractionally

integrated processes with d = 0:53; clearly rejecting unit root nonstationarity and short memory

dependence for the entire period and for postwar subsamples.

Whether nominal interest rates and in
ation are I(d) or I(1), the existence of a long-run equilib-

rium relationship between the two series is still possible if they share the same order of integration.

Although it is not generally recognized, Engle and Granger's (1987) original development of the

concept of cointegration included the possibility that the error term in the cointegrating regression

might be fractionally integrated, rather than stationary. In our context, that would imply that

deviations from the long-run relationship shared by nominal rates and in
ation take a long time

to dissipate and return the two series to their equilibrium relationship. If �t is a long-memory sta-

tionary process, then nominal rates and in
ation are said to be fractionally cointegrated. However,

fractional cointegration bears the same prerequisite as the cointegration of I(1) series: each of the

series must be integrated of the same order. In this study, we show that cointegration analysis

should not be applied to tests of the Fisher hypothesis since nominal yields and in
ation do not

share the same order of integration. We �nd that in
ation is fractionally integrated, while nominal

interest rates are best characterized as unit-root processes. Therefore the concept that the two

series share a stochastic trend which represents a long-run relationship is not applicable.

3 Empirical results

3.1 Data

We conduct our investigation using one- to nine-month yields on Treasury bills acquired from the

CRSP Monthly Government Bond dataset's TB12 table. In
ation is calculated from the CPI-U

measure (series PZUNEW in the DRI Basic Economics dataset) as 1200 (log Pt+1 � log Pt) for the

one-month in
ation rate (�1t ), as 600 (log Pt+2 � log Pt) for the two-month in
ation rate (�2t ) , and

so on. Monthly data for 1964:6 through 1997:6 are employed.
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3.2 Time series characteristics of the data

We �rst apply conventional unit root tests to the nominal yields and in
ation rate series in order

to ascertain their degree of integration. We employ the eÆcient test for an autoregressive unit root

proposed by Elliott, Rothenberg and Stock (ERS, 1996). Their test, referred to as the DFGLS

test, is similar to the Augmented Dickey-Fuller t test as it applies GLS detrending before the

(detrended) series is tested via the Dickey-Fuller regression. Compared with the ADF and Phillips-

Perron tests, the DFGLS test is asymptotically \most powerful invariant" (Stock, 1994, p.2768),

possessing the best overall performance in terms of small-sample size and power, with \substantially

improved power when an unknown mean or trend is present." (ERS, p. 813) We also employ the

Kwiatkowski et al. (KPSS, 1992) test, which has a null hypothesis of stationarity. The DFGLS

test and KPSS test results, both allowing for trends in the data generating processes, are presented

in Table 1. None of the nominal yields nor in
ation rates reject the DFGLS null hypothesis of a

unit root in these series at the �ve percent level of signi�cance. The KPSS tests uniformly reject

trend stationarity for all series tested at the one percent level of signi�cance. The combination of

this evidence strongly implies that both nominal rates and in
ation rates are not stationary (I(0))

processes.

These conventional unit root tests have frequently been employed to establish the nonstation-

arity of time-series processes. One critique of that strategy has been levelled by Perron (1990,

1997) and Perron and Vogelsang (1992), who have demonstrated that shifts in the intercept and/or

slope of the trend function of a stationary time series biases these standard unit-root tests toward

nonrejection. Their work has been extended to handle a speci�cation allowing for two shifts in the

mean of the stochastic process by Clemente et al. (1998). These tests, allowing for either \addi-

tive outliers" (mean shifts) or \innovational outliers" (trend shifts), may give a more convincing

indication of whether apparent unit-root behavior is truly indicative of those dynamics, or merely

an artifact of structural breaks in the series (caused, for instance, by the oil price shocks of the

1970s, or changes in monetary operating procedures of the early 1980s). We applied the Clemente

et al. tests for both additive outliers and innovational outliers for one-, two- and three-month

tenors. 7 Both sets of tests detected two distinct breaks in the series: for yields, in 1978-79 and

7To save space, these test results are not presented here, but are available on request from the authors.
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1984-85; for in
ation, in 1972-73 and late 1981.8 The additive outlier unit-root tests could never

reject the unit-root null. The innovational outlier unit-root tests could not reject I(1) for nominal

yields, but rejected the unit-root null at the �ve percent level for each of the three in
ation series.

Thus, the in
ation processes exhibit some characteristics that do not con�rm unit-root behavior,

but those �ndings are sensitive to the test employed. In summary, considering only the I(0)=I(1)

distinction of conventional unit-root tests, both nominal rates and in
ation appear to resemble unit

root processes.

3.3 Fractional integration tests

The common �ndings of unit-root behavior in the yield and in
ation rate series may be an artifact

of the testing methodology in a di�erent sense. Conventional unit-root tests, whether their null is

I(1) or I(0) behavior, fail to consider the possibility that the order of integration of these series

may be fractional: I (d), rather than integer, I(1) versus I(0): The mean-reverting properties of

nominal yields and in
ation rate series may not be detectable by standard integer-order unit-root

tests, which as cited above are known to have low power against fractional alternatives. We employ

a fractional integration framework to overcome this criticism and allow for fractional integration in

the time-series processes.

We make use of two nonparametric tests for the order of fractional integration: Phillips' (1999a)

modi�ed log-periodogram regression estimator and Robinson's (1995) log-periodogram regression

estimator. Phillips' estimator is a recently-proposed extension of the well-known Geweke/Porter-

Hudak (GPH, 1983) test that addresses some of the weaknesses of the GPH test. Robinson's

log-periodogram estimator may be applied to individual time series or, as in our setting, to a group

of time series, allowing for comparison of their respective orders of integration. Before describing

those tests, we discuss the characteristics of a fractionally integrated time series. The model of

an autoregressive fractionally integrated moving average process of order (p; d; q), denoted by

ARFIMA (p; d; q), with mean �, may be written as

�(L)(1� L)d (yt � �) = �(L)ut; ut � i:i:d:(0; �2u) (3)

8Malliaropulos (2000) demonstrates that common structural breaks in the nominal rate and in
ation series, if not

taken into account, can lead to incorrect inference of a common stochastic trend among trend-stationary series.
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where L is the backward-shift operator, �(L) = 1 - �1L - .. - �pL
p , �(L) = 1 + #1L + ... + #qL

q,

and (1� L)d is the fractional di�erencing operator de�ned by

(1� L)d =
1X
k=0

�(k � d)Lk

�(�d)�(k + 1)
(4)

with � (�) denoting the gamma function. The parameter d is allowed to assume any real value.

The arbitrary restriction of d to integer values gives rise to the standard autoregressive integrated

moving average (ARIMA) model. The stochastic process yt is both stationary and invertible if all

roots of �(L) and �(L) lie outside the unit circle and jdj < 0:5. The process is nonstationary for

d � 0:5, as it possesses in�nite variance, i.e. see Granger and Joyeux (1980).

Assuming that d 2 [0; 0:5), Hosking (1981) showed that the autocorrelation function, �(�), of

an ARFIMA process is proportional to k2d�1 as k ! 1. Consequently, the autocorrelations of

the ARFIMA process decay hyperbolically to zero as k ! 1 in contrast to the faster, geometric

decay of a stationary ARMA process. For d 2 (0; 0:5),
P

n
j=�n j�(j)j diverges as n ! 1, and the

ARFIMA process is said to exhibit long memory, or long-range positive dependence. The process

is said to exhibit intermediate memory (anti-persistence), or long-range negative dependence, for

d 2 (�0:5; 0). The process exhibits short memory for d = 0, corresponding to stationary and

invertible ARMA modeling. For d 2 [0:5; 1) the process is mean reverting, even though it is not

covariance stationary, as there is no long-run impact of an innovation on future values of the process.

3.3.1 Phillips' Log-Periodogram Regression Estimator9

Geweke and Porter-Hudak (1983) proposed a semiparametric procedure to obtain an estimate of

the memory parameter d from n observations on a fractionally integrated process Xt in a model of

the form

(1� L)dXt = ut; (5)

where ut is stationary with zero mean and continuous spectral density fu (�) > 0: The estimate d̂

is obtained from the application of ordinary least squares to

log (Ix (�s)) = ĉ� d̂ log
���1� ei�s

���2 + residual (6)

9This section draws upon Phillips (1999a) in its exposition and notation.
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computed over the fundamental frequencies
n
�s =

2�s

n
; s = 1; :::; m

o
where m; the number of fre-

quencies to be included in the regression, is chosen as a fraction of the sample size to pre-

vent contamination of the estimate by \short-memory" (high-frequency) components. We de-

�ne !x (�s) = 1p
2�n

Pn
t=1Xte

it�s as the discrete Fourier transform (dft) of the time series Xt,

Ix (�s) = !x (�s)!x (�s)
� as the periodogram, and xs = log

���1� ei�s
��� : Ordinary least squares on

(6) yields

d̂ = 0:5

Pm
s=1 xs log Ix (�s)Pm

s=1 x
2
s

: (7)

Geweke and Porter-Hudak (1983) prove consistency and asymptotic normality for d < 0, while

Robinson (1995) proves consistency and asymptotic normality for d 2 (0; 0:5) in the case of Gaus-

sian ARMA innovations in (5).

Phillips (1999a) points out that the prior literature on this semiparametric approach does not

address the case of d = 1; or a unit root, in (5), despite the broad interest in determining whether

a series exhibits unit-root behavior or long memory behavior. In recent work with Kim (Kim and

Phillips, 1999), it has been shown that the d̂ estimate of (7) is inconsistent when d > 1; with d̂

exhibiting asymptotic bias toward unity.

Phillips (1999b) proposes a modi�cation of the GPH estimator that circumvents these diÆcul-

ties, based on an exact representation of the dft in the unit root case. This representation \. . . shows

that the dft of a fractionally integrated process comprises two distinct components. The �rst of

these is the dft of the innovations ut; scaled by the transfer function of the di�erencing �lter . . .The

second involves a weighted sinusoidal sum . . . of the observations Xt:" (1999b, p.5) Phillips shows

that when d = 1; the latter sum is an expression depending only on the �nal sample observation.

Thus, the modi�ed estimator expresses the dft as �x (�s) = !x (�s) +
ei�s

1�ei�s
Xnp
2�n

with associated

periodogram ordinates Iv (�s) = �x (�s)�x (�s)
� (1999a, p.9). He notes that both �x (�s) and, thus,

Iv (�s) are observable functions of the data. The log-periodogram regression is now the regression of

log Iv (�s) on as = log
���1� ei�s

��� : De�ning �a = m�1Pm
s=1 as and xs = as � �a; the modi�ed estimate

of the long-memory parameter (MODLPR) becomes

~d = 0:5

Pm
s=1 xs log I� (�s)Pm

s=1 x
2
s

: (8)

Phillips proves that, with appropriate assumptions on the distribution of ut; the distribution of ~d
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follows
p
m
�
~d� d

� d

�!
N

 
0;
�2

24

!
; (9)

so that ~d has the same limiting distribution at d = 1 as does the GPH estimator in the stationary

case (and, as Kim and Phillips show, applies over the range 0 < d < 2); so that ~d is consistent

for values of d around unity. A semiparametric test statistic for a unit root against a fractional

alternative is then based upon the statistic (1999a, p.10):

zd =

p
m
�
~d� 1

�
�=24

(10)

with critical values from the standard normal distribution. This test, consistent against both d < 1

and d > 1 fractional alternatives, is that employed in our empirical analysis.10

3.3.2 Robinson's Log-Periodogram Regression Estimator11

Robinson (1995) proposes an alternative log-periodogram regression estimator which he claims

provides \modestly superior asymptotic eÆciency to �d (0)" ( �d (0) being the Geweke and Porter-

Hudak estimator)(1995, p.1052). Robinson's formulation of the log-periodogram regression also

allows for the formulation of a multivariate model, providing justi�cation for tests that di�erent

time series share a common di�erencing parameter. Normality of the underlying time series is

assumed, but Robinson claims that other conditions underlying his derivation are milder than

those conjectured by GPH.

We present here Robinson's multivariate formulation, which applies to a single time series as

well. Let Xt represent a G�dimensional vector with gth element Xgt; g = 1; :::; G. Assume that

Xt has a spectral density matrix
R
�

�� e
ij�f (�)d�; with (g; h) element denoted as fgh (�) : The g

th

diagonal element, fgg (�) ; is the power spectral density of Xgt: For 0 < Cg <1 and �1

2
< dg <

1

2
;

assume that fgg (�) ~Cg�
�2dg as �! 0+ for g = 1; :::; G: The periodogram of Xgt is then denoted

as

Ig (�) = (2�n)�1
�����
nX
t=1

Xgte
it�

�����
2

; g = 1; :::G (11)

10This estimation procedure is implemented in routine modlpr, written for Stata version 6 (Baum and Wiggins,
2000).

11This section draws upon Robinson (1995) in its exposition and notation.
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Robinson's method also allows for averaging the periodogram over adjacent frequencies and omission

of l initial frequencies from the regression. Use of those options does not qualitatively alter our

�ndings. Without averaging, we may de�ne Ygk = log Ig (�k) : The least squares estimates of

c = (c1; :::cG)
0 and d = (d1; :::; dG)

0 are given by

"
~c
~d

#
= vec

n
Y 0Z

�
Z 0Z

��1o
; (12)

where Z = (Z1; :::Zm)
0
; Zk = (1;�2 log�k)

0, Y = (Y1; :::YG) ; and Yg = (Yg;1; :::Yg;m)
0 for m

periodogram ordinates. Standard errors for ~dg and for a test of the restriction that two or more

of the dg are equal may be derived from the estimated covariance matrix of the least squares

coeÆcients.12

3.4 Univariate Test Findings

For the nominal yields, the Phillips MODLPR tests, presented in Table 2, fail to reject the null

hypothesis of d = 1 at the �ve percent level of signi�cance for all but a few sample sizes (i.e. m)

when applied to the levels of the series. The Robinson LPR tests, presented in Table 4, show

that the null hypothesis of d� = 0 cannot be rejected. Since the Robinson test is applied to the

di�erences of the original series, this implies that a unit root in the original levels series cannot be

rejected.

For the in
ation rate series, the �ndings from fractional integration tests are distinctly di�erent.

As other authors have found (cf. Baillie et al. (1996), Hassler and Wolters (1995)) in
ation

rate series may well exhibit fractional orders of integration. Table 3 presents test results for the

MODLPR test; evidence for d < 1 is quite widespread for the 1-5 month in
ation rate series,

with an order of integration for in
ation in the 0.5{0.8 range.13 The Robinson LPR test results,

presented in Table 5, largely corroborate these �ndings for 1-4 month in
ation rate series, with

broadly similar d estimates and implied orders of integration of 0.5{0.8 for in
ation proper. Both

the Phillips tests and Robinson tests provide some evidence of d > 1 for 7-9 month in
ation rate

12This estimation procedure is implemented (in more general form) as routine roblpr, written for Stata version 6
(Baum and Wiggins, 2000).

13Phillips suggests that if a deterministic trend is present in the series, it should be removed prior to testing.

Signi�cant linear trends were detected in the in
ation series, and the test applied to the detrended series.
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series. The in
ation series appear to be characterized by fractional behavior, with an order of

integration clearly distinguishable from both zero and unity, especially for short horizons.

3.5 Multivariate Test Findings

The Robinson LPR test may be applied to a vector of time series, yielding a vector of d̂ estimates,

which may be tested for their joint equality via a standard F statistic. For each maturity and sample

size (choice of m) , we have jointly estimated the long memory parameters for (the di�erences of)

nominal rates and in
ation, as well as the test statistic for their equality. The results, presented

in Table 6, are quite striking. 38 of the 45 F-tests for equality reject the null at the �ve percent

level, with none of the maturities failing to reject more than twice over the �ve sample sizes tested.

Thus, the �ndings appear quite robust: when both (the changes in) nominal rates and in
ation for

a given tenor are modelled as fractional processes, the data decisively reject the hypothesis that

their orders of integration are equal. In most cases, the long-memory parameter for the change in

the nominal rate cannot be distinguished from zero, supporting the earlier �ndings of a unit root in

nominal yields. In contrast, the long-memory parameter for the change in in
ation can generally be

distinguished from both zero and its counterpart for the change in the nominal yield. The strength

of this evidence should cast serious doubt on the use of any methodology relying upon a shared

order of integration for these two processes.

3.5.1 Comparison with Wu and Zhang �ndings on nominal yields

Further evidence on the dissimilarity of nominal yields' and in
ation rates' stochastic properties

may be developed through application of the Robinson LPR test with equality constraints. Wu

and Zhang (1996) point out that previous researchers' failure to reject a unit root for nominal

yields may be an artifact of the low power of univariate unit root tests. They propose employing

a multivariate, or pooled, test of the hypothesis that a unit root is jointly present in all series.

A similar test in the context of fractional integration may be performed with the Robinson LPR

test, applying the linear constraints of coeÆcient equality across series. We tested one- to three-

month nominal yields and one- to three-month in
ation rate series under the maintained hypothesis
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of a common d coeÆcient across tenors.14 The results support the �ndings presented in Table

6. The common d coeÆcient estimate on 1-3 month yields ranges from -0.003 to -0.133, and is

distinguishable from the null of unit root behavior for two of the powers employed at 5%. The

equivalent coeÆcient for in
ation ranges from -0.194 to -0.503, distinguishable from zero at any

level of signi�cance. When the six coeÆcients are estimated jointly, subject to the four constraints

that the yields share di and the in
ation series share d�, the F-test for equality of di and d� rejects

its null at any level of signi�cance. Thus, although we cannot decisively reject Wu and Zhang's

conclusion that the nominal yields are stationary (rather than unit root) processes, we can clearly

distinguish their order of integration from that of the in
ation rate series. We concur with Wu

and Zhang's argument that \recent e�orts devoted to the cointegration analysis...on the long-run

Fisher relationship might not be appropriate..." (1996, p.606) and cannot dispute their conclusion

that \...shocks to interest rates are found to be fairly persistent." (1996, p. 619) However, for

cointegration (or fractional cointegration) analysis to proceed, it is the degree of persistence that

matters. We �nd clear evidence of disparities.

3.6 Comparison with Crowder and Ho�man �ndings

To evaluate the robustness of our results, we applied the same battery of tests to the 1952-1991

quarterly sample employed by Crowder and Ho�man (1996).15 We used the GDP implicit de
a-

tor from DRI Basic Economics (GD) rather than the implicit de
ator for personal consumption

expenditures (GDC) (since the latter is no longer available prior to 1959) and the three-month

Treasury bill rate, FYGM3. Although all of the tests employed produce sharper �ndings on the

larger monthly data set, their �ndings for this quarterly sample are broadly similar. The DFGLS

test cannot reject the presence of a unit root in either series, while the KPSS test can reject station-

arity in both series, analogous to the �ndings in Table 1. The MODLPR tests cannot reject d = 1

at the ten percent level in either series (contrary to the stronger �ndings in Table 3 for in
ation)

but the ROBLPR tests reject d = 1 for two of the powers considered for the in
ation rate series.

The multivariate tests can reject equality of the two series' d coeÆcients for three of the �ve power

levels considered at the �ve percent level. Therefore, although the ability to detect fractional inte-

14For brevity, the detailed results are not tabulated, but are available on request from the authors.
15These results are not presented here in the interests of brevity, but are available from the authors on request.
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gration via nonparametric methods in a considerably smaller sample is hindered, our results on the

Crowder and Ho�man sample are consistent with those from the later monthly sample employed

in earlier sections. There is evidence of fractional integration, particularly in the in
ation series,

casting question on application of cointegration methodologies that rely upon I(1) processes.

4 Conclusions

We �nd clear evidence that the research strategy pursued in several recent contributions to the

Fisher equation literature is 
awed. The application of cointegration techniques, of either the

Engle-Granger or Johansen types, depends crucially on the series being considered exhibiting unit

root behavior. Tests of the Fisher equation that presume that nominal interest rates and in
ation

measures share the same unitary order of integration are in con
ict with a growing body of evidence

that in
ation rates, in the U.S. and in other industrialized countries, are fractional processes which

exhibit long memory behavior. In this case, the application of standard cointegration techniques is

inappropriate.

We have demonstrated, using a variety of tenors of short-term Treasury yields and several

recently developed tests for fractional integration, that a Fisher equation constructed from those

yields and appropriate measures of in
ation is a spurious regression. In the sense of Engle and

Granger, the two variables cannot be shown to share the same order of integration. This �nding

of long-memory behavior in the in
ation series casts serious doubt on the �ndings of those studies

that have assumed that both variables may be treated as unit root processes.
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Table 1: DFGLS and KPSS tests for trend stationarity

of nominal yield and inflation rate series

DFGLS KPSS

lags 6 lags 12 lags

i1 -2.078 12 0.768 0.439

i2 -2.161 14 0.763 0.435

i3 -2.125 14 0.769 0.438

i4 -2.058 16 0.781 0.444

i5 -2.015 16 0.793 0.450

i6 -1.804 15 0.802 0.455

i7 -1.801 15 0.811 0.460

i8 -1.938 11 0.815 0.462

i9 -1.911 11 0.819 0.464

�1 -2.350 16 0.526 0.324

�2 -1.662 15 0.529 0.322

�3 -2.009 16 0.532 0.322

�4 -1.658 16 0.535 0.321

�5 -1.955 16 0.541 0.321

�6 -2.079 15 0.548 0.323

�7 -1.881 15 0.556 0.325

�8 -1.445 16 0.562 0.326

�9 -2.259 16 0.567 0.327

Notes: the 10% (5%) critical values for the DFGLS test range from -2.538 to -2.599

(-2.820 to -2.887), respectively, depending on lag order.

Lags refers to the lag order used in the DFGLS test, chosen by the Ng-Perron (1995) criterion.

The 10% and 5% critical values for the KPSS test are 0.119 and 0.146, respectively.

19



Table 2: Modified Log-Periodogram Regression tests for

stationarity of nominal yield series

Power 0.50 0.55 0.60 0.65 0.70

i1 1.136 1.114 0.909 0.831 0.846

(0.356) (0.253) (0.393) (0.067) (0.053)

i2 1.176 1.153 0.951 0.846 0.932

(0.232) (0.222) (0.644) (0.095) (0.391)

i3 1.269 1.225 1.011 0.874 0.946

(0.067) (0.073) (0.920) (0.172) (0.496)

i4 1.363 1.281 1.029 0.877 0.963

(0.014) (0.026) (0.783) (0.185) (0.638)

i5 1.319 1.261 1.043 0.883 0.963

(0.030) (0.038) (0.688) (0.205) (0.644)

i6 1.294 1.270 1.009 0.862 0.961

(0.046) (0.032) (0.931) (0.135) (0.623)

i7 1.255 1.228 0.974 0.845 0.960

(0.083) (0.069) (0.807) (0.094) (0.612)

i8 1.224 1.203 0.957 0.841 0.973

(0.129) (0.106) (0.685) (0.085) (0.738)

i9 1.192 1.166 0.938 0.831 0.949

(0.192) (0.187) (0.563) (0.068) (0.525)

Notes: the MODLPR test (Phillips, 1999a) is applied to the levels of the series

after removal of a linear trend. Power indicates the sample used:

T power ordinates are included, where T = 397:

The P-value for H0 : d = 1 is given in parentheses.
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Table 3: Modified Log-Periodogram Regression tests for

stationarity of inflation rate series

Power 0.50 0.55 0.60 0.65 0.70

�1 0.923 0.835 0.753 0.518 0.541

(0.602) (0.190) (0.021) (0.000) (0.000)

�2 0.941 0.845 0.753 0.528 0.571

(0.687) (0.219) (0.021) (0.000) (0.000)

�3 0.976 0.863 0.755 0.545 0.628

(0.868) (0.275) (0.022) (0.000) (0.000)

�4 1.002 0.882 0.774 0.585 0.722

(0.987) (0.349) (0.035) (0.000) (0.000)

�5 0.993 0.892 0.808 0.652 0.844

(0.961) (0.390) (0.073) (0.000) (0.050)

�6 0.990 0.909 0.856 0.746 1.044

(0.945) (0.470) (0.177) (0.006) (0.575)

�7 1.010 0.938 0.918 0.876 1.242

(0.944) (0.624) (0.443) (0.180) (0.002)

�8 1.033 0.973 0.971 1.059 1.250

(0.824) (0.830) (0.789) (0.523) (0.002)

�9 1.057 1.014 1.016 1.199 1.211

(0.698) (0.910) (0.884) (0.032) (0.008)

Notes: the MODLPR test (Phillips, 1999a) is applied to the levels of the series

after removal of a linear trend. Power indicates the sample used:

T power ordinates are included, where T = 397:

The P-value for H0 : d = 1 is given in parentheses.
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Table 4: Robinson Log-Periodogram Regression tests for

stationarity of changes in nominal yield series

Power 0.60 0.70 0.80

�i1 -0.074 -0.147 -0.045

(0.530) (0.000) (0.430)

�i2 -0.016 -0.055 -0.069

(0.900) (0.520) (0.250)

�i3 0.040 -0.008 -0.042

(0.77) (0.930) (0.510)

�i4 0.125 0.008 -0.002

(0.91) (0.930) (0.970)

�i5 -0.015 0.051 0.004

(0.870) (0.670) (0.960)

�i6 -0.035 0.005 -0.017

(0.700) (0.950) (0.770)

�i7 -0.055 -0.011 -0.008

(0.530) (0.880) (0.880)

�i8 -0.061 -0.001 0.023

(0.470) (0.990) (0.690)

�i9 -0.062 -0.021 -0.006

(0.470) (0.760) (0.910)

Notes: the ROBLPR test (Robinson, 1995) is applied to the �rst di�erences of the series.

Power indicates the sample used: T power ordinates are included, where T = 396:

The P-value for H0 : d
� = 0 (d = 1) is given in parentheses.
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Table 5: Robinson Log-Periodogram Regression tests for

stationarity of changes in inflation rate series

Power 0.60 0.70 0.80

��1 -0.317 -0.459 -0.482

(0.018) (0.000) (0.000)

��2 -0.304 -0.428 -0.366

(0.020) (0.000) (0.000)

��3 -0.283 -0.362 -0.102

(0.030) (0.000) (0.210)

��4 -0.254 -0.265 0.345

(0.048) (0.014) (0.001)

��5 -0.215 -0.110 0.220

(0.096) (0.330) (0.015)

��6 -0.166 0.169 0.206

(0.200) (0.220) (0.027)

��7 -0.103 0.356 0.405

(0.400) (0.008) (0.000)

��8 -0.024 0.349 0.386

(0.850) (0.004) (0.000)

��9 0.081 0.379 0.278

(0.510) (0.004) (0.002)

Notes: the ROBLPR test (Robinson, 1995) is applied to the �rst di�erences of the series.

Power indicates the sample used: T power ordinates are included, where T = 396:

The P-value for H0 : d
� = 0 (d = 1) is given in parentheses.
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Table 6: Robinson Multivariate Log-Periodogram Regression

for nominal yields and inflation rates

Power 0.65 0.70 0.75 0.80 0.85

i � i � i � i � i �

1 mo -0.16 -0.52 -0.15 -0.46 -0.12 -0.51 -0.05 -0.48 -0.03 -0.52

(0.13) (0.00) (0.11) (0.00) (0.13) (0.00) (0.49) (0.00) (0.57) (0.00)

F 6.29 (0.01) 6.02 (0.02) 13.73 (0.00) 21.99 (0.00) 39.05 (0.00)

2 mo -0.14 -0.51 -0.05 -0.43 -0.07 -0.45 -0.07 -0.37 0.01 -0.27

(0.20) (0.00) (0.56) (0.00) (0.35) (0.00) (0.31) (0.00) (0.89) (0.00)

F 6.03 (0.02) 7.80 (0.01) 11.89 (0.00) 9.76 (0.00) 12.14 (0.00)

3 mo -0.10 -0.48 -0.01 -0.36 -0.06 -0.32 -0.04 -0.10 0.01 0.21

(0.36) (0.00) (0.93) (0.00) (0.44) (0.00) (0.57) (0.17) (0.85) (0.04)

F 5.81 (0.02) 6.43 (0.01) 4.79 (0.03) 0.34 (0.56) 4.17 (0.04)

4 mo -0.11 -0.42 0.01 -0.26 -0.05 -0.09 -0.00 0.35 0.03 0.14

(0.29) (0.00) (0.93) (0.01) (0.55) (0.29) (0.98) (0.00) (0.67) (0.05)

F 4.86 (0.03) 4.07 (0.05) 0.11 (0.74) 7.71 (0.01) 1.27 (0.26)

5 mo -0.04 -0.35 0.05 -0.11 -0.03 0.28 0.00 0.22 0.04 0.24

(0.73) (0.00) (0.66) (0.34) (0.76) (0.00) (0.97) (0.01) (0.60) (0.00)

F 2.93 (0.09) 0.97 (0.33) 4.58 (0.03) 3.40 (0.07) 4.45 (0.04)

6 mo -0.12 -0.26 0.01 0.17 -0.05 0.29 -0.02 0.21 0.05 0.30

(0.21) (0.00) (0.96) (0.14) (0.61) (0.00) (0.83) (0.01) (0.44) (0.00)

F 1.01 (0.32) 1.06 (0.31) 6.49 (0.01) 4.19 (0.04) 6.77 (0.01)

7 mo -0.13 -0.11 -0.01 0.36 -0.06 0.20 -0.01 0.41 0.07 0.25

(0.16) (0.22) (0.92) (0.00) (0.50) (0.02) (0.92) (0.00) (0.29) (0.00)

F 0.02 (0.89) 6.11 (0.02) 4.47 (0.04) 13.17 (0.00) 3.52 (0.06)

8 mo -0.13 0.14 -0.00 0.35 -0.05 0.18 0.02 0.39 0.09 0.35

(0.19) (0.17) (1.00) (0.00) (0.53) (0.03) (0.76) (0.00) (0.14) (0.00)

F 3.72 (0.06) 6.59 (0.01) 4.23 (0.04) 12.02 (0.00) 8.18 (0.00)

9 mo -0.14 0.39 -0.02 0.38 -0.07 0.31 -0.01 0.28 0.08 0.28

(0.20) (0.00) (0.84) (0.00) (0.38) (0.00) (0.93) (0.00) (0.20) (0.00)

F 12.09 (0.00) 7.64 (0.01) 10.23 (0.00) 8.04 (0.01) 4.90 (0.03)

Notes: the multivariate form of the ROBLPR test (Robinson, 1995) is applied to the �rst

di�erences of the series.

Power indicates the sample used: T power ordinates are included.

P-values for H0 : d
� = 0 are given below the coeÆcient estimates.

F is a test of H0 : d
�
i = d��; and its P-value is given in parentheses.
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