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Uniqueness of User Equilibrium in Transportation
Networks with Heterogeneous Commuters

Abstract

This paper discusses uniqueness of user equilibrium in transportation net-

works with heterogeneous commuters. Daganzo (1983, Transportation Sci-

ence) proved the uniqueness of (stochastic) user equilibrium when com-

muters have heterogeneous tastes over possible paths but identical disutil-

ity functions from time costs. We Þrst show, by example, that his result

may not apply in general networks if disutility functions are allowed to

differ. However, for �simple� transportation networks, we show that user

equilibrium is always unique and weakly Pareto efficient (cf. the Braess

example) for a general class of utility functions. We investigate if this re-

sult applies to more general networks. We also show that user equilibrium

is unique in a dynamic bottleneck model with a simple network. We dis-

cuss an interesting relationship between the following two problems: the

existence of user equilibrium in a Þnite model and the uniqueness of user

equilibrium in a continuum model. In the appendix, we also provide a

proof of a slightly generalized version of Daganzo�s theorem.

Keywords: transportation network, user equilibrium, heterogeneous commuters,

uniqueness, efficiency, bottleneck model, game theory
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Introduction
This paper analyzes the uniqueness of heterogeneous commuters� equilibrium route

choices (user equilibrium) in transportation networks. Uniqueness of user equilib-

rium is important to the transit authority�s policy-making on issues such as toll/fare

schemes, capacity expansions, or whether to introduce new modes of transportation.

If user equilibrium is not unique, the transit authority cannot predict the effects of its

policy change. For example, suppose there are two distinct possible user equilibria re-

sulting from an increase in highway tolls: commuters beneÞt in one user equilibrium,

and lose in the other. In such a case, how does the transit authority decide if this

policy is beneÞcial for commuters? If the transit authority arbitrarily assigns a user

equilibrium for each policy when it evaluates all possible policies, then the suppos-

edly optimal policy may result in a poor outcome if an unexpected user equilibrium

is realized. The same comments apply to the cases of using numerical simulations

to evaluate policies when user equilibrium is not unique. Thus it is practically im-

portant to identify the situations in which we can guarantee the uniqueness of user

equilibrium.

When commuters are homogeneous, uniqueness of user equilibrium is guaranteed

under a fairly general condition (see Beckmann et al., 1956, for a potential function

approach, and Nagurney, 1993, for a variational inequality approach). As long as

congestion is bad for commuters, user equilibrium is unique in static models. However,

less is known about the uniqueness of user equilibrium when there are heterogeneous

commuters. Although Dafermos (1980) extends the variational inequality analysis to

such cases, it is not easy to see what kinds of preferences are allowed in order to secure
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uniqueness. A notable exception is the stochastic user equilibrium literature initiated

by Daganzo (1983) (see also Sheffi, 1985). In his pioneering paper, Daganzo (1983)

considers an interesting discrete choice model with heterogeneous commuters. He

assumes that each commuter�s utility from choosing a path is her willingness-to-pay

for the path minus her disutility from congestion in the path (i.e., quasi-linear utility

functions). Although commuters� disutility functions (interpreted as commuting time)

are required to be identical, their willingnesses-to-pay for paths can differ across

commuters. He proves that (stochastic) user equilibrium is nonempty and unique in

his model.

Although Daganzo�s result is obviously helpful, his restriction on preferences may

be somewhat strong. First, he requires that commuters have the same relative

marginal disutilities among any pair of transportation modes. But consider the follow-

ing two types of commuters: the Þrst type do not mind waiting (one more minute) in

traffic very much as long as they are sitting comfortably in their cars, but they cannot

stand being (one more minute) in a congested train. The second type of commuters

care only about the amount of time they spend in commuting. Under this kind of

situation, the relative marginal disutilities between two transportation modes differ

across these two types of commuters. This is not allowed under Daganzo�s preference

restriction. Second, quite obviously, Daganzo�s restriction rules out the possibility

that commuters� disutility functions from congestion take different functional forms.

In this paper, we complement Daganzo�s (1983) analysis by abandoning his as-

sumption of a common relative marginal disutility. Instead, we impose conditions on

the shape of networks in order to guarantee uniqueness of user equilibrium. Through-
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out the paper, we impose three reasonable conditions on commuters� preferences. The

Þrst condition is anonymity (AN): Commuters care only about the congestion level

of each transportation link: that is, they do not care about characteristics of other

commuters. This condition may be questioned by the readers (e.g., car commuters

surely care whether the other car commuters are good drivers and bad drivers), but

we can weaken this assumption to some extent by using a standard trick in Da-

ganzo (1983) (see concluding section). The second condition is no spillover (NS):

Each commuter cares only about the congestion levels of her chosen commuting path

(route). The last condition is negative externality from congestion (NEC):

A commuter�s utility level decreases if her chosen commuting route becomes more

congested. As long as these three conditions are satisÞed, commuters can be hetero-

geneous in their tastes in any dimensions and their tastes can differ from each other

discretely or continuously. Such a general situation can be modeled easily by using

atomless games in game theory. Schmeidler�s (1973) classical theorem in atomless

games shows that there exists a user equilibrium in pure strategies under anonymity

only. Thus the only issue is that of the uniqueness of user equilibrium.

The paper is organized as follows: Section 1 describes the model. Section 2 dis-

cusses Daganzo�s (1983) result and provides a robust example with multiple user

equilibria when his �common relative marginal disutility� assumption is weakened

(Example 1). Section 3 shows that if the transportation network is simple, then

user equilibrium is essentially unique (Theorem 1) and is efficient in the sense that

monetary transfers are not allowed (Theorems 2 and 3) under a general class of prefer-

ences. A simple network is a network that involves only the origin and the destination
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nodes with multiple disjoint transportation routes (links) connecting these two nodes.

Although this restriction is obviously very strong, it may still be a reasonable approxi-

mation if the transit authority is interested in commuters� choices over different trans-

portation modes (see, e.g., Arnott and Yan, 2000). Section 4 shows that it is hard

to extend these desirable results to cases even with slightly more general networks

(Theorem 4, Examples 3 and 4). Section 5 analyzes the dynamic bottleneck model

introduced by Vickery (1969) in a simple network. Even though the environment is

a bit different (NS does not apply), we can show uniqueness of user equilibrium as

an approximation (Theorem 5). Section 6 points out a mysterious and interesting

connection between two very different problems: the existence of user equilibrium in

a Þnite model and the uniqueness of user equilibrium in a continuum model. The

conditions that guarantee the above two properties are essentially the same. Both

Daganzo�s restriction on preferences and the restriction of a network being simple are

sufficient conditions to obtain positive results in these two problems. Moreover, if

these restrictions are dropped, we can Þnd counterexamples to the positive results.

Section 7 concludes. In the appendix, we generalize the demand side of Daganzo�s

theorem, and discuss a potential function approach that can link the two problems in

Section 6.

1. The Model

There is a Þnite set of transportation nodes denoted by A. A (multi-mode)

transportation network (A,G) is a pair consisting of A and a Þnite set of links

that connect directed pairs of distinct elements of A. There can be multiple links
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that directly connect a directed pair of elements in A. The set of links that directly

connect a with a0 is denoted by R(a, a0) ⊂ G. A path of (A,G) is a sequence of links

{ρ1, ρ2, ..., ρK} ⊂ G such that there exists a list of K +1 distinct nodes a0, a1, ..., aK ,

where each ρk satisÞes ρk ∈ R(ak−1, ak) for k = 1, ...,K. The set of all paths of (A,G)

is denoted by Ω. In order to have elastic demand, we can include a �no commuting�

option, denoted by ∅. When this option is included, the choice set for consumers

is denoted by Ω̄ ≡ Ω ∪ {∅}. The reader may wonder if commuters are classiÞed by

their origins and destinations (OD) pairs as in the homogeneous commuter literature.

However, in the heterogeneous commuter case, such a distinction is not necessary. We

can simply assign prohibitively low utilities to infeasible paths (paths with different

OD pairs) for commuters. Thus we can use common Ω̄ as commuters� choice set.

Since (A,G) is a Þnite set, Ω̄ is also Þnite.

There is a continuum of commuters; the set of commuters is given by an interval

I = [0, 1] and is endowed with the Lebesgue measure µ. An allocation based on com-

muters� choices is a mapping f : I → Ω̄, where f(i) denotes the path that commuter i

chooses. The measure of commuters who choose ω ∈ Ω̄ under allocation f is denoted

bymω(f) = µ(f
−1(ω)). Thus the distribution of commuters over paths is denoted

by a vector m = m(f) = (mω(f))ω∈Ω̄ ∈M = µ(I)×4Ω̄ (4Ω̄ represents a |Ω̄| dimen-

sional simplex). Each commuter makes her choice over the available paths depending

on her utility function u. The space of utility functions (commuters� characteristics)

is denoted by U . The economy is described by a measurable mapping e : I → U ,

where e(i) = u ∈ U denotes commuter i�s utility function. Her utility is dependent on

her own path and on other commuters� choices of paths (deÞned formally below under
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the case of anonymity). For each u ∈ U , we can Þnd the measure of commuters whose

utility function is u by µ(e−1(u)). Every commuter�s utility function is assumed to

satisfy the following condition.

Anonymity (AN): Suppose that allocations f and g attain the same distribution of

commuters over paths: m(f) = m(g). Then, for any u ∈ U , u attains the same utility

levels for f and g as long as the path chosen by the commuter is the same. In other

words, utility function u ∈ U can be written as a function u : Ω̄×M → < such that

u = u(ω,m) denotes a commuter�s utility by choosing path ω when the distribution

of commuters is described by m. We set u(∅,m) = u(∅).

This assumption says that each commuter cares only about how many others choose

each path: she does not care who they are. For notational simplicity, we denote e(i)

by ui from now on.

To introduce more preference restrictions, we need more notation. The measure

of commuters who use link ρ is described by nρ(m) ≡
P
ω3ρmω), since mode ρ is

utilized by commuters who choose paths ωs that contain ρ as a part of them. We

impose more assumptions on utility functions:

No Spillovers (NS): For any u ∈ U , any ω ∈ Ω, any ρ ∈ ω, and any m,m0 ∈ M

with nρ(m) = nρ(m0), u(ω,m) = u(ω,m0) follows.

This assumption means that each commuter cares only about the congestion levels

of the links in her chosen path. It is commonly used in the literature, although it

assumes there are no delays in intersections (nodes). The Þnal assumption builds on
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NS:

Negative Externality from Congestion (NEC): For any u ∈ U , any ω ∈ Ω, and

any m,m0 ∈ M such that nρ(m) ≤ nρ(m0) holds for any ρ ∈ ω with at least one of

the inequalities being strict, u(ω,m) > u(ω,m0) follows.

The meaning of this assumption is that a commuter�s utility level decreases as

the number of commuters who choose the same links as she chooses increases. This

assumption does not seem questionable in the transportation problem. It says only

that commuters do not want congestion. For obvious reasons, we do not require strict

inequality for no commuting (∅).

We now deÞne a user equilibrium allocation. A user equilibrium allocation

is an allocation f such that commuter i chooses her optimal transportation path

a almost everywhere (a.e.) for i in I: i.e., ui(f(i),m(f)) ≥ ui(ω,m(f)) for any

ω ∈ Ω̄, where ui = e(i). Commuter i chooses transportation path f(i) = ω0 only if

ui(ω0,m) ≥ ui(ω,m) for any ω ∈ Ω̄.

In order to guarantee the existence of user equilibrium, we assume that u satisÞes

a regularity assumption: (i) u(ω, ·) : M → < is continuous for any u ∈ U , and

there is a constant K such that |u(ω,m)| < K for any u ∈ U , any ω ∈ Ω̄, and any

m ∈ M , and (ii) the set {i ∈ I : ui(ω,m) > ui(ω0,m)} is measurable for any u ∈ U ,

any ω,ω0 ∈ Ω̄, and any m ∈ M . This technical assumption is due to Schmeidler

(1973) and will be adopted throughout the paper. The following is the fundamental

result in anonymous games obtained by Schmeidler (1973).
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Theorem. (Schmeidler, 1973) Under AN, there exists a user equilibrium allocation.

We can deÞne the essential uniqueness of user equilibrium with AN and NS. We

say that user equilibrium allocation is essentially unique if and only if at any user

equilibria f and g, nρ(m(f)) = nρ(m(g)) follows for any ρ ∈ G. Note that with NS, if

the congestion level at each link is the same under f and g, then we necessarily have

ui(f(i),m(f)) = ui(g(i),m(g)) for i a.e. in I. In the next section, we show that user

equilibrium is not essentially unique in general networks.

2. Nonuniqueness of User Equilibrium

In this section, we demonstrate the nonuniqueness of user equilibrium if Daganzo�s

(1983) preference restriction is weakened. We Þrst review Daganzo�s result, and then

we proceed to the example.

2.1. Daganzo�s result

Daganzo assumes the following quasi-linear utility function (cost function is simpliÞed

here). Commuter i�s utility function when she uses ω is written as:

ui(ω,m) =
X
ρ∈ω

vi(ρ, nρ(m)) =
X
ρ∈ω

(θρi − cρ(nρ(m))) ,

where θρi and cρ(nρ) denote commuter i�s personal taste on link ρ and common con-

gestion cost (commuting time) in link ρ, respectively. Thus commuters are allowed

to differ only with respect to their θis (θi ≡ (θρi)ρ∈G). When ω = ∅, ui(∅) = vi(∅)
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and c∅(n) = 0. The economy is speciÞed by a distribution of θ. Under the law of

large numbers (see Judd, 1985, for the case of a continuum of IID random variables),

consumers� taste distribution and the distribution of consumers� random utilities be-

come equivalent, and the Daganzo model can be regarded as a type of discrete choice

model (for a nice survey of discrete choice models, see Anderson, de Palma, and Thisse,

1992). As is easily seen, this model is a direct generalization of the standard homoge-

neous commuter model in which commuters care only about costs, −Pρ∈ω cρ(nρ(m)).

With this preference restriction, Daganzo (1983) proves the following theorem. This

version of Daganzo�s theorem is slightly more general than the original one in terms

of distribution of commuters� tastes. Although the line of the proof is essentially the

same (both use �strict monotonicity�), we need no restriction over the distribution of

θ (we drop his Assumption 2). We provide a proof in the appendix for completeness.

Theorem. (Daganzo, 1983) Suppose that commuters� utility functions have a quasi-

linear form with common congestion costs: i.e., ui(ω,m) =
P
ρ∈ω (θρi − cρ(nρ(m))).

If cρs are continuous and strictly increasing, then user equilibrium is essentially unique.

Although Daganzo�s result is useful, it does not apply to the case where com-

muters have heterogenous relative marginal disutilities. Obviously, it is a very strong

condition to impose that the functional forms (the shapes) of cρs are exactly the same

among commuters. However, even a slight modiÞcation of the utility functions can

cause a problem. Consider the following functional form:

ui(ω,m) =
X
ρ∈ω

vi(ρ, nρ(m)) =
X
ρ∈ω

¡
θρi − φρi × cρ(nρ(m))

¢
,
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where a positive vector φi ≡ (φρi)ρ∈G represents commuter i�s marginal disutility

vector. The second term in the parenthesis φρi × cρ(nρ(m)) denotes the amount of

disutility commuter i suffers in going through link ρ. In this case, the functional forms

of cρs are still identical: only coefficients of cρs are heterogeneous among commuters.

Note that as long as φi and φj are proportional to each other for any i and j, we can

apply Daganzo�s argument. We need only normalize φis by multiplying a scalar to θi

and φi. Such a situation (φi = t × φj for each pair of i and j) corresponds to the

case where commuters are different only in their time costs (opportunity costs: wage

rates). By redeÞning �θi = θi/t and �cρ = φjcρ, we can recover Daganzo�s functional

form. Arnott, de Palma, and Lindsey (1992), Verhoef and Small (1999), and Small

and Yan (1999) assume that commuters are heterogeneous in their time costs and

analyze the optimal pricing rules (at various levels) over two different transportation

modes. These papers adopt proportionality of φis.

However, if φis are not proportional to each other, then we can no longer apply

Daganzo�s argument. Recall the example discussed above in the introduction. Sup-

pose that there are two types of commuters: type 1 commuters do not mind spending

one more minute in traffic very much as long as they are sitting comfortably in their

car, but they cannot stand being in a congested train for one more minute. Type

2 commuters primarily care about the amount of time spent in commuting. In such

a situation, the ratio of φcar1 and φtrain1 and the one of φcar2 and φtrain2 are very

different from each other, thus violating Daganzo�s preference restriction. Example 1

in the next subsection shows that user equilibrium may be multiple if this preference

restriction is violated.
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2.2. An Example

In this subsection, we show that there can be multiple user equilibria if Daganzo�s

preference restriction is slightly weakened. This counterexample seems robust. The

transportation network is not complicated, congestion cost is linear, demand is in-

elastic (there is no noncommuting option), and all types of commuters have the same

origins and destinations.

Example 1. There is a transportation network connecting four nodes {a, b, c, d} with

six links: ρ1 (a → b), ρ2 (b → d), ρ3 (b → d), ρ4 (a → c), ρ5 (c → d), ρ6 (c → d)

(see Figure 1-1). There are three types of atomless commuters (types 1, 2, and 3)

commuting from node a to node d. The measures of types 1, 2, and 3 are 1.2, 1,

and 1, respectively. There are four paths Ω = {ω1,ω2,ω3,ω4}, where ω1 = (ρ1,ρ2),

ω2 = (ρ1, ρ3), ω3 = (ρ4, ρ5), and ω4 = (ρ4, ρ6). There is no noncommuting option.

Each commuter�s utility function is additively separable over links:
P
ρ∈ω vi(ρ, nρ) =P

ρ∈ω
¡
θρi − φρicρ(nρ)

¢
with cρ(nρ) = nρ for each ρ. Three types of commuters have

the following subutility functional forms, respectively (we omit subscript ρ from nρ

for simplicity):

Type 1:

v1(ρ1, n) = v1(ρ2, n) = v1(ρ4, n) = v1(ρ6, n) = −n,

v1(ρ3, n) = v1(ρ5, n) = −100− n;
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Type 2:

v2(ρ1, n) = v2(ρ4, n) = −n,

v2(ρ2, n) = 19− 20n,

v2(ρ5, n) = −2− n,

v2(ρ3, n) = v2(ρ6, n) = −100− n;

Type 3:

v3(ρ1, n) = v3(ρ4, n) = −n,

v3(ρ6, n) = 19− 20n,

v3(ρ3, n) = −2− n,

v3(ρ2, n) = v2(ρ5, n) = −100− n.

Claim 1. Example 1 possesses two distinct equilibria in which everybody in the same

type chooses the same path. In user equilibrium (A), type 1 commuters choose ω1,

and types 2 and 3 commuters choose ω3 and ω4, respectively. In user equilibrium (B),

types 1, 2, and 3 choose ω4, ω1, and ω2, respectively.

Proof. First observe that types 1, 2, and 3 choose from sets of paths {ω1,ω4},

{ω1,ω3}, and {ω2,ω4}, respectively. This is because type 1 (2 and 3) will not choose

links ρ3 and ρ5 (ρ3 and ρ6; and ρ2 and ρ5) given that the total measure of population

is 3.2. We prove that the allocation described as user equilibrium (A) is actually a
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user equilibrium. A similar argument applies for user equilibrium (B) almost sym-

metrically. In allocation (A), the congestion level at each link is described as follows:

nρ1 = nρ2 = 1.2, nρ3 = 0, nρ4 = 2, and nρ5 = nρ6 = 1. We start with type 1 com-

muters. On path ω1, a type 1 commuter obtains −2.4, but if she switches to ω4, then

she obtains only −3. Thus no type 1 commuter has an incentive to switch her path.

Second, consider type 2 commuters. In allocation (A), a type 2 commuter obtains

−5. If she switches to ω1, then she obtains −6.2. Similarly, no type 3 commuter has

an incentive to switch her path either. In allocation (A), she obtains −3, yet she gets

only −3.2 by choosing ω2. Thus allocation (A) is a user equilibrium. It is easy to

show that allocation (B) is also a user equilibrium owing to symmetry. Thus the user

equilibrium (A) payoff vector is (−2.4,−5,−3), and the user equilibrium (B) payoff

vector is (−2.4,−3,−5).¥

A couple of remarks are in order. First, note that φis are common in most links:

φ1 = (1, 1, 1, 1, 1, 1), φ2 = (1, 20, 1, 1, 1, 1), and φ3 = (1, 1, 1, 1, 1, 20). Only two links

have heterogeneous φis. This implies that Daganzo�s result is sensitive to the pref-

erence restriction. Second, commuters� utilities differ between these two equilibria.

Types 2 and 3 have different utilities in (A) and (B) (−5 and −3, and −3 and −5,

respectively). Although type 1 commuters have the same utilities in this example, we

can make them strictly prefer user equilibrium (B) by modifying their payoff func-

tion slightly: i.e., v1(ρ1, n) = −0.1− n. We assume symmetry only to give a clearer

example. Third, these two user equilibria are both locally stable in a natural sense

(although we do not provide formal stability analysis). Even if small numbers (mea-
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sures) of any types of consumers deviate from a user equilibrium, they will revise

their strategies and recover the original user equilibrium. Thus it is very difficult to

select a more �natural� user equilibrium among these two. For an analysis of the

evolutionary stability of user equilibrium, see Sandholm (2001a). Sandholm analyzes

homogeneous commuter case using a potential function approach (see the appendix:

see also Tabuchi and Zeng, 2001). Finally, note that we can easily make Example 1

more realistic without altering the result, although its simplicity and clarity might be

compromised (available from the author upon request).

3. Simple Networks

In this section, we impose a strong condition on the transportation network G. A

transportation network (A,G) is simple if and only if A = {a, a0} and Ω = R(a, a0) =

G, and Ω̄ = Ω∪ {∅}. That is, there are only two transportation nodes, the origin and

the destination, in a simple network (see Figure 2). The implication of assuming a

simple network is that each commuter�s utility depends only on her choice of ω and

the number of commuters who choose the same ω. Obviously, Example 1 does not

satisfy this condition. Given this restriction, we can abuse our notation a little bit:

we can denote the utility function by ui(ω,mω) instead of ui(ω,m). This condition

guarantees two desirable properties of user equilibrium: uniqueness and efficiency.

3.1. Uniqueness

We start with uniqueness:
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Theorem 1. Suppose that (A,G) is simple and that there are commuting options.

Under AN, NS, and NEC, user equilibrium allocation is essentially unique.

Proof. Suppose that f and g are both user equilibrium allocations withm(f) 6= m(g).

Then, without loss of generality, there is ω0 ∈ Ω (ω0 6= ∅) such thatmω0(f) < mω0(g).

Thus there is a subset C0 ⊂ I with µ(C0) > 0 and ω0 = g(i) 6= f(i) for i a.e. in C0.

Given NEC, ui(ω0,mω0(g)) < ui(ω0,mω0(f)). Since f is a user equilibrium allocation,

ui(ω0,mω0(f)) ≤ ui(f(i),mf(i)(f)) for i a.e. in C0. On the other hand, since g is a

user equilibrium allocation, ui(f(i),mf(i)(g)) ≤ ui(ω0,mω0(g)) for i a.e. in C0. Tak-

ing these three inequalities together, we obtain ui(f(i),mf(i)(g)) < ui(f(i),mf(i)(f))

for i a.e. in C0. Thus we can conclude that there is a path ω1 ∈ Ω\{ω0} with

mω1(f) < mω1(g) (set ω1 to be such f(i)). By repeating the same argument, we ob-

tain a sequence {ω0,ω1, ...} such that for each k, mωk(f) < mωk(g). By construction,

for any positive integer k, there are ωk+1 ∈ Ω\{ω0, ...,ωk}. However, since Ω is a

Þnite set, this is not possible, and we have a contradiction. Hence m(f) = m(g) for

any user equilibrium allocations f and g.¥

The idea behind the proof is very simple. If there are two distinct user equilibrium

allocations f and g, then there is at least one path that is strictly less congested under

f (without loss of generality). This implies that under g more commuters use this

path. Since f is a user equilibrium, those commuters who decide not to use this

path (emigrés) voluntarily choose other paths if user equilibrium switches from g to

f . However, this means that these other paths are also less congested under f than

under g, since otherwise emigrés would not have moved out of the original path (it
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was the best choice for them under g, and it is less congested under f). Also note

that commuters would not switch to noncommuting option, since it could have been

chosen under g. By applying the same argument repeatedly, we reach a contradiction,

since there is only a Þnite number of paths and the population is Þxed. Actually,

Theorem 1 is a variation of Milchtaich (2000). He shows that in a class of atomless

congestion games, the user equilibrium distribution of strategies is generically unique

even under equilibria with mixed strategies. Our proof is much more elementary since

we concentrate on the pure strategy case. We also include a noncommuting option.

Congestible transportation modes are the crucial property for the result of Theo-

rem 1. The following example illustrates the importance of NEC.

Example 2. (network externalities) Consumers are homogeneous ({u} = U), and

Ω = {α, ι} (they stand for Apple and IBM). The utility function is described by

u(α,mα) = 0.5 +mα and u(ι,mι) = mι. Note that NEC is violated here. In this

example, there are three user equilibrium distributions: (mα,mι) = (1, 0), (0.25, 0.75),

and (0, 1). These equilibria are strictly Pareto ranked, and (1, 0) is the Pareto efficient

user equilibrium. The reason there are multiple Nash equilibria is that externalities

are positive instead of negative (there are network externalities instead of NEC).

3.2. Efficiency

In this subsection, we discuss the efficiency of user equilibrium. As is well known,

a user equilibrium allocation is not efficient when appropriate transfers among con-

sumers and the government are available (as with, say, Pigouvian tax). The proposed

notion of efficiency is a constrained efficiency in the sense that the transfer of money
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is prohibited. Interestingly, the simple network assumption also guarantees efficiency

of user equilibrium (in the heterogeneous commuter case). Even in the homogeneous

commuter case, a nonsimple network may have a unique inefficient user equilibrium

in the sense that there is an allocation that is strictly better than the user equilibrium

allocation. To see this, we can simply recall a famous and beautiful example by Braess

(1968; see, e.g., Nagurney, 1993). It shows that building a bridge may reduce com-

muters� equilibrium utilities in the homogeneous commuter case. This implies that

user equilibrium in the network with the bridge is inefficient: an allocation without

using the bridge Pareto dominates the user equilibrium.

The Braess example implies that the user equilibrium allocation may not be effi-

cient when the transportation network (A,G) is not simple. The unique user equilib-

rium distribution m attains a lower utility level than a user distributionm0 that is ob-

viously feasible in the original network. This implies that user equilibrium may not be

even weakly Pareto efficient in general. Formally, a weakly Pareto efficient alloca-

tion is an allocation f such that there is no allocation g such that for almost any i ∈ I,

ui(g(i),m(g)) > ui(f(i),m(f)). A Pareto efficient allocation is an allocation f

such that there is no allocation g with ui(g(i),m(g)) ≥ ui(f(i),m(f)) a.e. in i ∈ I,

and there is a subset C ⊆ I with µ(C) > 0 such that ui(g(i),m(g)) > ui(f(i),m(f))

a.e. in i ∈ C. Note that our deÞnition of (weak) Pareto efficiency is deÞned only

over allocations without transfers among commuters. Apparently, a Pareto efficient

allocation is also a weakly Pareto efficient allocation. In simple networks, we can show

that user equilibrium allocations are weakly Pareto efficient even when commuters are

heterogeneous.
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Theorem 2. Suppose that (A,G) is simple and that there are noncommuting options.

Under AN, NS, and NEC, a user equilibrium allocation is weakly Pareto efficient.

Proof. Let f be a user equilibrium. Then, for any ω ∈ Ω̄, ui(f(i),mf(i)(f)) ≥

ui(ω,mω(f)) follows for i a.e. in I. Now, suppose that there is an allocation g that

Pareto dominates f . Then ui(f(i),mf(i)(f)) < ui(g(i),mg(i)(g)) follows for i a.e. in

I. This implies that ui(g(i),mg(i)(g)) > ui(g(i),mg(i)(f)) for i a.e. in I. Since (A,G)

is simple, NEC implies mg(i)(g) < mg(i)(f) for i a.e. in I. Since the total population

is Þxed,
P
ω∈Ω̄mω(f) =

P
ω∈Ω̄mω(g). This is a contradiction.¥

This theorem can be considered a corollary of Konishi, Le Breton, and Weber�s

(1997a) Proposition 4.4. Proposition 4.4 shows that if f is a user equilibrium, then

it is also a strong Nash user equilibrium under AN, NS, and NEC: i.e., there is no

measurable subset C with µ(C) > 0 and no allocation g : I → Ω̄ with g(i) = f(i) for

i a.e. in I\C such that ui(g(i),mg(i)(g)) > ui(f(i),mf(i)(f)) for i a.e. in C. Thus,

by setting C = I, we can show weak Pareto efficiency. Here, we provided a direct and

simple proof instead. A natural next question is if we can strengthen the notion of

efficiency. The answer is unfortunately �no� even when commuters are homogeneous.

Example 3. Commuters are homogeneous ({u} = U), and Ω̄ = {ω, ∅}. The set

of consumers I = [0, 1] is endowed with Lebesgue measure. The utility function

is described by u(∅,m∅) = 0.5 and u(ω,mω) = 1 − mω. Then, the unique user
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equilibrium distribution is (m0,mω) = (0.5, 0.5). A user equilibrium allocation can

be written as f : I → Ω̄ such that f(i) = ∅ if i ∈ [0, 0.5] and f(i) = ω if i ∈ (0.5, 1].

For i a.e. in I, ui = 0.5 in the user equilibrium. However, this is not a Pareto efficient

choice. Consider g² : I → Ω̄ such that g²(i) = ∅ if i ∈ [0, 0.5 + ²) and g²(i) = ω

if i ∈ [0.5 + ², 1]. In this case, ui = 0.5 for i ∈ [0, 0.5 + ²), but ui = 0.5 + ² for

i ∈ [0.5 + ², 1] for any ² ∈ (0, 0.5).

This example is quite robust, so given a noncommuting option, we cannot expect

Pareto efficiency of user equilibrium allocation. However, it is weakly Pareto efficient,

and it is on the boundary of the set of Pareto efficient allocations (lim²→0 g² = f).

One of the reasons Pareto efficiency is not attained is that user equilibrium requires

equal treatment of equals. Thus one can expect that if commuters who are indifferent

between not commuting and commuting form a zero measure, the efficiency result

can be recovered. The following Theorem summarizes the results.

Theorem 3. Suppose that (A,G) is simple. Under AN, NS, and NEC, if either (i)

there is no noncommuting option (Ω instead of Ω̄) or (ii) a user equilibrium allocation

satisÞes µ({i ∈ I : ui(f(i),mf(i)(f)) = ui(∅)}) = 0, then the user equilibrium is

Pareto efficient.

Before we provide the proof, we prove the following lemma:

Lemma 1. Suppose that (A,G) is simple. Suppose that AN, NS, and NEC are

satisÞed. Moreover, we assume either condition (i) or (ii) in Theorem 3 holds. If g is

Pareto superior choice to a user equilibrium allocation f , then mω(f) = mω(g) holds
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for each ω ∈ Ω̄.

Proof. First, we show that mω(g) > mω(f) = 0 cannot happen. Suppose to the

contrary that it is the case. Then, commuter i weakly prefers g to f a.e. in g−1(ω).

This is equivalent to: ui(ω,mω(g)) ≥ ui(f(i),mf(i)(f)) a.e. in g−1(ω). If ω 6= ∅

(condition (i)), then, by NEC, ui(ω, 0) > ui(ω,mω(g)) holds. This, together with

our supposition, implies that ui(ω,mω(f)) = ui(ω, 0) > ui(f(i),mf(i)(f)) a.e. in

g−1(ω). This is a contradiction to f being a user equilibrium. If ω = ∅ and µ({i ∈

I : ui(f(i),mf(i)(f)) = ui(∅)}) = 0 (condition (ii)), then there are a subset C ⊂ I

with µ(C) > 0 and a path ω0 6= ∅ such that f(i) = ω0 and g(i) = ∅ a.e. in C. Since f

is a user equilibrium allocation and since µ({i ∈ I : ui(f(i),mf(i)(f)) = ui(∅)}) = 0,

ui(ω
0,mω0(f)) > ui(∅). This is a contradiction to g being Pareto-superior to f .

Second, we show that mω(g) = mω(f) has to hold for any ω with mω(f) > 0.

Suppose not. Then, there is ω such that mω(g) > mω(f). This implies that there is a

subset S ⊂ C with µ(S) > 0 such that almost everywhere in S, commuter i chooses ω

under g, but does not choose ω under f . Suppose Þrst that ω 6= ∅. In this case, by the

same logic as in the previous case, ui(ω,mω(f)) > ui(ω,mω(g)) ≥ ui(f(i),mf(i)(f))

holds. This is a contradiction. Suppose second that ω = ∅. Then, there is a subset

T ⊂ I with µ(T ) > 0 and ω0 6= ∅ such that almost everywhere in T , commuter

i chooses ω0 under f and does not choose ω0 under g (since there is ω0 6= ∅ with

mω0(f) > mω0(g) owing to constant total measure). By applying the same argument

as before, we again get a contradiction, and the proof of Lemma 1 is complete.¥

Proof of Theorem 3. We show that there is no allocation g that Pareto dominates
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a user equilibrium choice f . Suppose that there is such an allocation g. Then, there is

a C ⊂ I with µ(C) > 0 and g : I → Ω̄ such that ui(g(i),mg(i)(g)) > ui(f(i),mf(i)(f))

a.e. in C, and ui(g(i),mg(i)(g)) = ui(f(i),mf(i)(f)) a.e. in I\C. Since preference

inequalities are strict a.e. in C, g(i) 6= f(i) a.e. in C. However, from Lemma

1, mω(g) = mω(f) for any ω ∈ Ω̄. This implies that under f , these commuters

in C had incentives to choose g(i), since ui(g(i),mg(i)(g)) = ui(g(i),mg(i)(f)) >

ui(f(i),mf(i)(f)) a.e. in C. This is a contradiction. Therefore, any user equilibrium

allocation f must be Pareto efficient.¥

4. Node-Tree Networks

In this section, we explore whether our results in the previous section extend to more

general cases. We Þrst deÞne a node-tree network that is a natural extension of a

simple network. Given node-tree networks, we consider two cases: inelastic demand

(without a noncommuting option) and elastic demand case (with a noncommuting

option). This distinction turns out to be critical in the general case, although it

played no role in establishing uniqueness in the simple network case. We start with

imposing restrictions on the transportation network and utility functions in order to

guarantee uniqueness of user equilibrium.

First, we need a few deÞnitions. In order to guarantee a positive result, we will

not allow noncommuting options in the commuters� choice set. In this particular

case, it is convenient to specify the origin and the destination of each commuter. The

set of commuters can be partitioned according to their origins and destinations. Let

I(a, a0) ⊂ I for a 6= a0 be the set of commuters who commute from node a to node a0.
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Obviously, I = ∪a,a0∈A,a6=a0I(a, a0) and I(a, a0) ∩ I(a00, a000) = ∅ if a 6= a00 or a0 6= a000.

The relevant paths in Ω for i ∈ I(a, a0) are just those that start from a and end at a0.

We denote the collection of all such paths by Ω(a, a0). Thus Ω = ∪a,a0∈A,a6=a0Ω(a, a0)

and Ω(a, a0)∩Ω(a00, a000) = ∅ if a 6= a00 or a0 6= a000. A sequence of nodes {a0, a1, ..., aK}

is a node-path from a0 to aK if and only if for any k = 1, ...,K, R(ak−1, ak) 6= ∅. A

transportation network (A,G) forms a node-tree if and only if for any ordered pair

of nodes (a, a0), there is a unique node-path from a to a0 (see Figure 3). Note that

the network in Example 1 does not have a node-tree since there are two node paths

{a, b, d} and {a, c, d} from a to d. Given that a transportation network forms a node-

tree, for commuter i ∈ I(a, a0), the set of available paths Ω(a, a0) can be denoted by

Ω(a, a0) = ΠKk=1R(ak−1, ak), where {a0, ..., aK} is a node-path from a = a0 to a0 = aK

(if there is no noncommuting option). For commuter i ∈ I(a, a0), utility function ui

is weakly separable if and only if we can write ui as a strictly increasing function

of subutilities from segments of paths:

ui(ω,m) = Ui(vi(ρ1, nρ1(m)), ..., vi(ρK , nρK (m))),

where ω = (ρ1, ..., ρK) ∈ ΠKk=1R(ak−1, ak), Ui is strictly increasing in its arguments,

and vi(ρk, nρk(m)) is commuter i�s subutility function for the k-th segment of paths

from choosing ρk ∈ R(ak−1, ak), which is strictly decreasing in the user population

nρk (NEC). Weak separability excludes complementarities across choices in different

segments of paths. With complementarities, we can easily modify Example 1 to

achieve nonuniqueness of user equilibrium in a node-tree network. Our positive result
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in this section is the following.

Theorem 4. Suppose that (i) (A,G) forms a node-tree, (ii) utility functions are

weakly separable, and (iii) there is no noncommuting option. Under AN, NS, and

NEC, user equilibrium allocation is essentially unique.

Proof. The proof is a trivial application of that of Theorem 1. Under the listed

assumptions, at each node a ∈ A, the set of commuters to go to any next node

a0 ∈ A with R(a, a0) 6= ∅ is predetermined (given inelastic demand plus the node-tree

property). Thus we can apply Theorem 1 to this segment by weakly separable utility

functions, and user equilibrium allocation at this segment is essentially unique. This

argument applies to any pair of directly connected nodes, and user equilibrium must

be essentially unique.¥

What about the case with a noncommuting option? Actually, we may have mul-

tiple user equilibria even when the transportation network has a node-tree. The next

example is constructed using the same logic as in Example 1.

Example 4. There is a transportation network connecting four nodes {a, b, c, d} with

Þve links: ρ1 (a→ b), ρ2 (b→ c), ρ3 (b→ c), ρ4 (c→ d), ρ5 (c → d) (see Figure 4).

There are three types of atomless commuters (types 1, 2, and 3) commuting from node

a to node d. The measures of types 1, 2, and 3 are 1.2, 1, and 1, respectively. There

are four paths Ω = {ω1,ω2,ω3,ω4}, where ω1 = (ρ1, ρ2, ρ4), ω2 = (ρ1, ρ2, ρ5), ω3 =
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(ρ1,ρ3, ρ4), and ω4 = (ρ1, ρ3, ρ5). There are noncommuting options. Each commuter�s

utility function is additively separable over links:
P
ρ∈ω vi(ρ, nρ), unless ω = ∅. The

three types of commuters have the following subutility functions, respectively:

Type 1:

v1(ρ1, n) = v1(ρ2, n) = v1(ρ4, n) = −n,

v1(ρ3, n) = v1(ρ5, n) = −100− n,

u1(∅) = −3.8;

Type 2:

v2(ρ1, n) = v2(ρ5, n) = −n,

v2(ρ2, n) = 19− 20n,

v2(ρ3, n) = v2(ρ4, n) = −100− n,

u2(∅) = −5;

Type 3:

v3(ρ1, n) = v3(ρ3, n) = −n,

v3(ρ4, n) = 19− 20n,

v3(ρ2, n) = v2(ρ5, n) = −100− n,

u3(∅) = −5.
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Example 4 possesses two distinct user equilibria in which everybody in the same

type chooses the same path. In user equilibrium (A), type 1 commuters choose ω1 and

types 2 and 3 choose not to commute (∅). In user equilibrium B, type 1 commuters

choose not to commute (∅) and types 2 and 3 choose ω2 and ω3, respectively. This

example shows that we cannot generalize Theorem 1, if commuters are allowed a

noncommuting option.

What about efficiency? Note that Theorem 4 does not mention efficiency of user

equilibrium. Unfortunately, Milchtaich (2001) demonstrates that the simplest possible

node-tree may not achieve efficiency even if commuters are homogeneous and there

is no noncommuting option. In the paper, he characterizes network topologies that

generate inefficient user equilibrium. The following intriguing example is taken from

the paper. Unlike Braess�s example, there is no way to support an efficient allocation

as a user equilibrium by closing links.

Example 5 (Milchtaich, 2001). There is a transportation network (A,G) with

A = {a, b, c} and G = {ρ1, ρ2, ρ3, ρ4}, ρ1(a→ b), ρ2(a→ b), ρ3(b→ c), ρ4(b→ c) (see

Figure 5). There are homogeneous commuters commuting from a to c. The population

measure is assumed to be unity. There are four paths Ω = {ω1,ω2,ω3,ω4}, where

ω1 = (ρ1, ρ3), ω2 = (ρ1, ρ4), ω3 = (ρ2,ρ3), ω4 = (ρ2, ρ4). There is no noncommuting

option. Each commuter has an identical utility function that is additively separable

over links:
P
ρ∈ω v(ρ, nρ). Commuters have the following subutility functions:

v(ρ1, n) = v(ρ3) = −2n,
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v(ρ2, n) = v(ρ4) = −n− 2.

In the unique user equilibrium, all commuters choose path ω1, and they get utilities

−4. However, if measure 1
2 population choose ω2 and the other half choose ω3, then

commuters� utilities are −3.5.

5. Bottleneck Models with Simple Networks

The bottleneck model introduces the dimension of time to the model. It is assumed

that only a limited amount of traffic can go through a bottleneck of a transportation

path at a certain time period, and leftover traffic forms a queue that generates a

time delay in arriving at destinations. It is true that we can generalize the basic

model to accommodate bottleneck models by renaming ω as a pair of paths and times

(ω, t). However, the bottleneck model does not satisfy NS, since the length of a queue

formed by commuters who choose t0 < t affects the utility of a commuter who chooses

to depart at t. Moreover, NEC is not satisÞed in a strict sense. Thus we cannot apply

our theorems directly to the bottleneck model even if the network is simple. In this

section, we extend our Theorem 1 to such cases.

There are many papers that investigate user equilibrium in bottleneck models.

Smith (1984) shows existence of user equilibrium in a model with a single bottleneck

(with a single path) when schedule delay cost functions are common across consumers.

Daganzo (1985) proves uniqueness of user equilibrium under essentially the same

condition. Newell (1987) extends the analysis in the case of heterogeneous schedule

delay functions, although they are assumed to be linear. An intertemporal model
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that analyzes mass-transit in Kraus and Yoshida (2002) is also related to Newell

(1987). Wie (1995) extends single path models to a simple network model with a

bottleneck for each path. He characterizes the equilibrium by using a differential

game approach. Richter, Griffin, and Arnott (1992) analyze the same model by using

a convex programming approach. Although many papers listed above (except for

Richter, Griffin, and Arnott, 1992) assume continuous time, we employ a discrete

time model in order to apply a similar argument in the previous sections. Unlike

other papers, we allow commuter preferences to be very general.

Let {1, ..., T} be the set of timings, where a smaller index means an earlier time.

Each commuter chooses her commuting plan (ω, t) ∈ Ω × {1, ..., T} ∪ {∅}, which

consists of a path and a time. For notational convenience, we let (ω∅, t∅) = ∅. We

assume that the transportation network G is simple. The number of commuters who

choose (ω, t) is denoted by mωt, and m = (mωt)(ω,t)∈Ω×{1,...,T}∪{∅}. The capacity

of a path ω at t is denoted by cωt, and the length of a queue of path ω at period t

(formed by commuters who chose to depart at time t0 ≤ t) is denoted by qωt(m), where

qω1(m) = max{0,mω1 − cω1}, and for any t = 2, ..., T , qωt(m) is recursively deÞned

by qωt(m) = max{0, qωt−1(m) +mωt − cωt}. Thus this is a Þrst-in-Þrst-out (FIFO)

model. Note that qωt(m) is not affected by (mωt+1, ...,mωT ). Each commuter�s

utility is a function of her commuting plan (ω, t) and the length of queue at (ω, t):

u = u(ω, t, qωt(m)). Queue qωt(m) = 0 means that there is no congestion at (ω, t).

The utility function is strictly decreasing in the length of queue q at any commuting

plan (ω, t). As usual, if commuter i chooses ∅ = (ω∅, t∅), then she can secure her

utility at ui(∅). We call this model a bottleneck model with a simple network.
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We can extend the proof of Theorem 1 to this case.

Theorem 5. In a bottleneck model with a simple network, user equilibrium allocation

is essentially unique if µ({i ∈ I : ui(ω, t, 0) = ui(ω0, t0, 0)}) = 0 for any (ω, t), (ω0, t0) ∈

Ω× {1, ..., T} ∪ {∅} with (ω, t) 6= (ω0, t0).

Proof. Let f and g be equilibria with m(f) 6= m(g). Then there exists ω0 ∈ Ω with

mω0(f) 6= mω0(g). Let t0 ∈ {1, ..., T} such that mω0t0(f) 6= mω0t0(g) yet mω0t(f) =

mω0t(g) for any t < t0. Without loss of generality, assumemω0t0(f) < mω0t0(g). Since

we have qω0t0−1(m(f)) = qω0t0−1(m(g)) (unless t0 = 1), qω0t0(m(f)) ≤ qω0t0(m(g))

must follow. Since Ω×{1, ..., T} is Þnite, there is a subset C0 ⊂ I with µ(C0) > 0 and

(ω1, t1) = f(i) 6= g(i) = (ω0, t0) for i a.e. in C0. (Note that f(i) = ∅ for i a.e. in C0

cannot happen, since µ({i ∈ I : ui(ω0, t0, 0) = ui(∅)}) = 0 and ui(ω, t, n) is strictly

increasing in n.) Since commuters in C0 could have chosen (ω0, t0) under allocation

m(f), we have ui(ω0, t0, qω0t0(m(f))) ≤ ui(ω1, t1, qω1t1(m(f))) for i a.e. in C0. Since

qω0t0(m(f)) ≤ qω0t0(m(g)), we have ui(ω0, t0, qω0t0(m(g))) ≤ ui(ω0, t0, qω0t0(m(f)))

a.e. in I. Since g is a user equilibrium, we have ui(ω1, t1, qω1t1(m(g))) ≤ ui(ω0, t0, qω0t0(m(g))).

We now show qω1t1(m(g)) > qω1t1(m(f)). To prove this, it is sufficient to show that

ui(ω1, t1, qω1t1(m(g))) < ui(ω1, t1, qω1t1(m(f))) for i a.e. in C0. First suppose that

ui(ω0, t0, qω0t0(m(g))) = ui(ω0, t0, qω0t0(m(f))) a.e. in I. Then, have qω0t0(m(g)) =

qω0t0(m(f)) = 0. Since we assume that ui(ω0, t0, 0) = ui(ω1, t1, 0) holds only for

measure zero commuters, ui(ω0, t0, qω0t0(m(f))) < ui(ω1, t1, qω1t1(m(f))) for i a.e. in

C0. Together with ui(ω1, t1, qω1t1(m(g))) ≤ ui(ω0, t0, qω0t0(m(g))), we can conclude

ui(ω1, t1, qω1t1(m(g))) < ui(ω1, t1, qω1t1(m(f))) for i a.e. in C0. Second, suppose
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that ui(ω0, t0, qω0t0(m(g))) < ui(ω0, t0, qω0t0(m(f))) for i a.e. in I. In this case, the

desired inequality obviously follows.

Since qω1t1(m(g)) > qω1t1(m(f)), there exists t
0 ≤ t such thatmω1t01(g) > mω1t01(f)

and qω1t01(m(g)) > qω1t01(m(f)). Thus there is again a subset of commuters C1 with

µ(C1) > 0 and (ω2, t2) = f(i) 6= g(i) = (ω1, t
0
1) for i a.e. in C1. Note that we

can choose (ω2, t2) 6= (ω0, t0). By the same argument, we can show qω2t2(m(g)) >

qω2t2(m(f)). Hence there is a sequence {(ω0, t0, t00, C0), (ω1, t1, t01, C1), ...} such that

for each k, (ωk, t0k) = g(i) 6= f(i) = (ωk+1, tk+1) for i a.e. in Ck, where t0k ≤ tk (t00 = t0

for k = 0). By construction, we can choose (ωk+1, tk+1) ∈ Ω×{1, ..., T}\∪kl=1 (ωl, tl)

for each k. However, both Ω and T are Þnite. This is a contradiction. Hence user

equilibrium is essentially unique.¥

Note that the above FIFO setting has some inconsistency in the model due to

Þniteness of T . Suppose that at the end of (ω, t − 1), there is a queue with length

qωt−1(m). Then, if in period t, mωt > cωt of commuters are arriving, then even if we

assume FIFO, some of the newly arrived commuters would face a queue with length

qωt−1(m), while some of them would face a queue with length qωt−1(m)+ mωt − cωt.

Nonetheless, in the above model, we assume that everybody faces a queue with length

qωt−1(m)+ mωt − cωt. Isn�t this inconsistent? Strictly speaking, the answer is yes.

However, if T is large enough, mωt−cωt becomes smaller, and this difference becomes

negligible (as in a continuous time model). On the other hand, if we adopt an expected

waiting time criterion in evaluating commuters� utility when T is small, the result in

Theorem 5 may be overturned even in the homogeneous commuter case. The following

31



example illustrates this point.

Example 6. Suppose that Ω = {ω}, T = 2, capacity c is constant for each period c =
2
3 , and a homogeneous commuter�s utilities given her choice t = 1, 2 and distribution

of other commuters� choices m = (m1,m2) ∈ ∆{1,2} are as follows:

U(1,m) = −1
9

if m1 ≤ 2

3
,

U(1,m) = −1
9
−
Z 2

3

0

0× dn−
Z m1

2
3

(n− 2
3
)dn

= −1
9
−
·
m2
1

2
− 2
3
m1 +

2

9

¸
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2

3
.

U(2,m) = −max
½
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3
, 0

¾
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3
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, 0
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−
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¸
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where −1
9 in U(1,m) is a disutility to departing earlier, −

R 2
3

0
0× dn− Rmt

2
3
(n− 2

3)dn

is the expected queue length when a within-period ßow congestion at period t is

positive (when mt exceeds c = 2
3), and −max

©
m1 − 2

3 , 0
ª
is an accumulated queue

from period 1.

Example 6 has at least two equilibria,m = (m1,m2) = (0, 1) andm0 = (m0
1,m

0
2) =

(1, 0). To verify this, Þrst check allocationm. Commuters� utility levels are− £12 − 2
3 +

2
9

¤
=

− 1
18 . If a commuter deviates from this, she gets−1

9 , which does not pay. Now consider

m0. Their utility levels are −1
9 − 1

18 = −1
6 . If a commuter deviates from this, she gets
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−1
3 , which again does not pay. Thus there are two equilibria that are Pareto-ordered.

Essentially, these multiple equilibria are the outcome of a coordination problem due

to the difference between the expected cost of waiting given a within-period ßow con-

gestion (− 1
18) and the cost of waiting given an accumulated queue from the previous

period (−1
3). This discrepancy would be signiÞcant only when T is small and the grid

of period divisions is not Þne enough.

6. A Mysterious Coincidence: Existence in Finite Models and

Uniqueness in Continuum Models

There is an intriguing relationship between the nonemptiness of user equilibrium in

Þnite models (models with a Þnite number of commuters) and the uniqueness of user

equilibrium in continuum models. Somewhat surprisingly, the conditions that are

required to guarantee the existence of user equilibrium in a Þnite model are very

similar to the ones that are required to guarantee the uniqueness of user equilibrium

in continuum models. We discuss these two cases in order.

6.1. Simple Networks with General Utility Functions

When there is a continuum of atomless commuters, we know, from Theorem 1, that

AN, NS, and NEC suffice to guarantee uniqueness of user equilibrium if the network is

simple, and we also know from Example 1 that there may be multiple user equilibria,

otherwise. Now, let us consider a Þnite commuter problem: a Þnite commuter

problem is a list (I,A,G, Ω̄, (ui)i∈I), where I = {1, ..., |I|} is a Þnite set of commuters

and ui = ((ui(ω, ·))ω∈Ω, ui(∅)) is commuter i�s utility function, where ui(ω, ·) : Z++ →
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< is commuter i�s utility function when she chooses path ω. An allocation is f : I → Ω̄

where f(i) ∈ Ω̄ for any i ∈ I. The collection of all feasible allocations is denoted

by F . A pure strategy user equilibrium in an anonymous Þnite model is an

allocation f such that ui(f(i),m(f)) ≥ ui(ω,m(f (i,ω))) for any ω ∈ Ω̄\{f(i)}, where

f (i,ω) : I → Ω̄ with f(i,ω)(j) = f(j) for any j 6= i and f (i,ω)(i) = ω. In the literature of

game theory, Milchtaich (1996), Konishi, Le Breton, and Weber (1997a), and Quint

and Shubik (1994) analyze Þnite �congestion games� with simple networks (in our

context). They prove that under the exactly the same conditions (AN, NS, and NEC:

adjusting these deÞnitions to Þnite problem versions is straightforward), there exists a

user equilibrium if the network is simple. Note that the proofs are completely different

from each other. Milchtaich (2000) uses a limit approach to analyze the sets of user

equilibria of congestion games in the Þnite and continuum cases. Consider a sequence

of Þnite games generated by duplicating a Þnite game repeatedly. He Þnds that the

sequence of the sets of equilibria in these games shrinks to a singleton. The unique

element in the limit set is the unique equilibrium of the limit inÞnite game. However,

it is still a mystery how the same network restriction obtains existence in Þnite games

and uniqueness in continuum games. In the following, we provide an example of a

Þnite problem, which has no user equilibrium (in pure strategies) when the network

is not simple.

Example 7. There is a transportation network connecting Þve nodes {a, b, c, d, e}

with eight links {ρ1, ρ2, ...,ρ8}, where ρ1 (a→ b), ρ2 (b→ e), ρ3 (b→ c), ρ4 (a→ c),

ρ5 (c→ e), ρ6 (d→ c), ρ7 (a→ d), and ρ8 (d→ e) (see Figure 6-1). There are three

commuters commuting from node a to node e. The set of commuters is = {1, 2, 3}.
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There are Þve paths Ω = {ω1,ω2, ...,ω5}, where ω1 = (ρ1, ρ2), ω2 = (ρ1, ρ3,ρ5),

ω3 = (ρ4, ρ5), ω4 = (ρ7, ρ6, ρ5), and ω5 = (ρ7, ρ8). There is no noncommuting option.

Each commuter�s utility function is additively separable over links:
P
ρ∈ω vi(ω, nρ).

Three commuters� utility functions satisfy the following conditions on top of AN, NS,

and NEC:

v1(ρ3, 1) + v1(ρ5, 3) > v1(ρ2, 1) > v1(ρ3, 2) + v1(ρ5, 2) > v1(ρ3, 2) + v1(ρ5, 3),

v1(ρ4, 1) = v1(ρ7, 1) = −L;

v2(ρ4, 1) + v2(ρ5, 2) > v2(ρ7, 1) + v2(ρ8, 1) > v2(ρ7, 2) + v2(ρ8, 1) > v2(ρ4, 1) + v2(ρ5, 3),

v2(ρ1, 1) = v2(ρ6, 1) = −L;

v3(ρ7, 1) + v3(ρ6, 1) > v3(ρ1, 2) + v3(ρ3, 1) > v3(ρ1, 2) + v3(ρ3, 2) > v3(ρ7, 2) + v3(ρ6, 1),

v3(ρ2, 1) = v3(ρ4, 1) = v3(ρ8, 1) = −L;

where L is a sufficiently large number such that commuter i would not use such a link

under any situation.

Claim 3. Example 7 does not possess a pure strategy user equilibrium.

Proof. Observe that players 1, 2, and 3 choose from sets of paths {ω1,ω2}, {ω3,ω5},

and {ω2,ω4}, respectively. Given this, there are eight strategy proÞles (in pure

strategies): A = (ω1,ω3,ω2), B = (ω1,ω3,ω4), C = (ω1,ω5,ω2), D = (ω1,ω5,ω4),

E = (ω2,ω3,ω2), F = (ω2,ω3,ω4), G = (ω2,ω5,ω2), and H = (ω2,ω5,ω4). As

we can easily see, at each strategy proÞle a commuter changes her path: A →3 B,

B →1 F , C →2 A, D →3 C, E →1 A, F →2 H, G →1 C, and H →3 G. For ex-
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ample, A→3 B is interpreted as follows: if the strategy proÞle is A, then commuter

3 switches her path, and this change results in a new strategy proÞle B (see Figure

6-2). This example does not possess a pure strategy user equilibrium.¥

Example 7 describes the importance of a �simple� network in obtaining the exis-

tence of user equilibrium in Þnite models. It can be considered as a counterpart to

Example 1. Example 1 shows the nonuniqueness of user equilibrium in a continuum

model if the network is not simple.

6.2. Daganzo�s Restriction over Preferences

We Þrst show that Daganzo�s (1983) assumptions can be applied to Þnite games. We

can prove this by using an idea in Konishi, Le Breton, and Weber (1997b) to extend

Rosenthal�s (1973) potential function approach. The proof of the theorem is found in

the appendix. The potential function approach has been used in both continuum and

Þnite models (Beckmann et. al. (1956) for continuum models, and Rosenthal (1973)

for Þnite models). In the appendix, we brießy discuss how this approach loosely links

these two different problems under Daganzo�s preference restriction.

Theorem 6. Consider a Þnite commuter problem in which ui(ω,m) =
P
ρ∈ω (θρi − cρ(nρ(m)))

for any i ∈ I. This problem has a pure strategy user equilibrium.

Without Daganzo�s assumption, a Þnite commuter problem may not have a pure

strategy user equilibrium. This can be seen from Example 7 again. The following

claim shows that preferences in Example 7 violate Daganzo�s assumption.

Claim 4. Example 7 violates Daganzo�s preference restriction.
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Proof. From the inequalities over vis, we obtain:

v1(ρ3, 1)− v1(ρ3, 2) > v1(ρ5, 2)− v1(ρ5, 3),

v2(ρ5, 2)− v2(ρ5, 3) > v2(ρ7, 1)− v2(ρ7, 2),

v3(ρ7, 1)− v3(ρ7, 2) > v3(ρ3, 1)− v3(ρ3, 2).

Suppose that Daganzo�s preference restriction is satisÞed. Then, these three inequal-

ities imply

cρ3(1)− cρ3(2) > cρ5(2)− cρ5(3),

cρ5(2)− cρ5(3) > cρ7(1)− cρ7(2),

cρ7(1)− cρ7(2) > cρ3(1)− cρ3(2).

This is a contradiction. Thus Daganzo�s preference restriction is not satisÞed in

Example 7.¥

7. Concluding Remarks

In this paper, we provide sufficient conditions on the shape of transportation net-

works that guarantee the uniqueness of user equilibrium when there are heterogeneous

commuters. We impose three conditions: anonymity, no spillovers, and negative ex-

ternality from congestion. Under these reasonable conditions, we show that as long

as a transportation network is simple, then user equilibrium is essentially unique in

general. However, once we depart from simple networks, we need to impose further
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qualiÞcations to guarantee uniqueness. One may question if anonymous congestion

is a good approximation of the real world. Of course, it might not be. Bad drivers

may slow down traffic more than good drivers. However, using Daganzo�s (1983)

technique, we can easily translate this situation to our anonymous framework in the

following simple case: good drivers and bad drivers are perfect substitutes for each

commuter�s perception. Let mb(f) and mg(f) be bad and good drivers� distributions

over paths. If bad drivers are always t times more annoying to every commuter than

good drivers, then effectively the level of congestion at path ω is tmb
ω(f)+m

g
ω(f). By

deÞning zω(f) ≡ tmb
ω(f)+m

g
ω(f), we can use exactly the same analysis in the paper.

The equilibrium condition will not be affected because each commuter is atomless.

Of course, if there is no such linear relationship, then we cannot apply this argument.

However, it is easy to see that user equilibrium may not be unique, if congestion

externalities across commuters are nonlinear.

Appendix

In this appendix, we Þrst provide a proof of Daganzo�s theorem. We then provide

a proof of Theorem 6 and discuss a potential function approach.

Proof of Daganzo�s Theorem (Daganzo, 1983). We will work on paths instead

of links. Let Cω(m) ≡
P
ρ∈ω cρ(nρ(m)) and let C ≡ (Cω)ω∈Ω. Let Θω ≡

P
ρ∈ω θω

and Θ ≡ (Θω)ω∈Ω̄. In this special case, the space of utility functions is U = <Ω̄.

We Þrst derive aggregated demand correspondence. This correspondence describes
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how many commuters are willing to choose each path under congestion cost of ω.

Let B(ω,ω0;C) ≡ {Θ ∈ <Ω̄ : Θω − Cω ≥ Θω0 − Cω0}, which denotes the set

of commuter characteristics that weakly prefer ω to ω0 under C. Let B∗ω(C) ≡

∩ω0∈Ω̄\{ω}B(ω,ω0;C), which denotes the set of commuter characteristics that weakly

prefer ω ∈ Ω̄ to any other path including a noncommuting option. Given this, con-

sumer�s best response correspondence (demand correspondence) can be written as

ψ : <Ω̄ × <Ω+ ³ Ω̄ such that ψ(Θ, C) = {ω ∈ Ω̄ : Θ ∈ B∗ω(C)}. Let D : <Ω+ ³ M

be the aggregated (average) demand correspondence such that D(C) ≡ R
Θ
ψ(Θ, C)dµ

(for an integration of a correspondence, see, e.g., Hildenbrand, 1974). The ω�s argu-

ment of D(C) is denoted by Dω(C): the aggregate demand for path ω under C.

It is well known that a strictly increasing cost functionC :M → <Ω+ satisÞes �strict

monotonicity�: i.e., (C(m0) − C(m))(m0 −m) > 0 for any m,m0 ∈ M with m 6= m0

and C(m) 6= C(m0) (see, e.g., Nagurney, 1993). Let C = {C ∈ <Ω+ : C = C(m) for

some m ∈ M}, and let S : C ³ M be such that S(C) = {m ∈ M : C(m) = C}.

Note that (s0 − s)(C0 − C) > 0 also holds for any C,C0 ∈ C with C0 6= C, and any

s0 ∈ S(C0) and s ∈ S(C).

We now describe equilibrium congestion level C. The user equilibrium congestion

level C∗ can be described by a system of excess demand equations:

Z(C∗) ≡ D(C∗)− S(C∗) 3 0.

Thus we can show the uniqueness of solution C∗ ∈ C of the above, if (z0−z)(C0−C) < 0

(strong monotonicity) holds for any C,C0 ∈ C with C0 6= C, and any z0 ∈ Z(C0) and
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z ∈ Z(C). Note z0 = d0 − s0 and z = d− s for some s0 ∈ S(C0), s ∈ S(C), d0 ∈ D(C0)

and d ∈ D(C). Thus what is left to show is that (d0 − d)(C0 − C) ≤ 0 holds for any

C,C0 ∈ C with C0 6= C, and any d0 ∈ D(C0) and any d ∈ D(C).

So, we prove this statement. Fix C, C0, and pick any d ∈ D(C) and any d0 ∈

D(C 0). Let ∆C ≡ C0 − C and ∆d ≡ d0 − d. Reorder the elements of Ω according to

the values of ∆Cω: ∆Cω1 ≥ ∆Cω2 ≥ ... ≥ ∆Cω|Ω| . Note B(ωk,ωk0 ;C) ≡ {Θ ∈ <Ω̄ :

Θωk − Cωk ≥ Θωk0 −Cωk0} = {Θ ∈ <Ω̄ : Θωk −Θωk0 ≥ Cωk −Cωk0}. This implies

B(ωk,ωk0 ;C +∆C) ⊂ B(ωk,ωk0 ;C)

for any k < k0, since (Cωk + ∆Cωk) − (Cωk0 + ∆Cωk0 ) ≥ Cωk − Cωk0 . Now deÞne

{ω1, ...,ωk+} ≡ {ω ∈ Ω : ∆Cω > 0} and {ωk− , ...,ω|Ω|} ≡ {ω ∈ Ω : ∆Cω < 0}; i.e.,

ωk+ is the path that has the smallest cost increase, and ωk− is the path that has the

smallest cost decrease. Since C∅ = 0, we have

B(ωk, ∅;C +∆C) ⊂ B(ωk, ∅;C)

for any k ≤ k+, and

B(ωk, ∅;C +∆C) ⊃ B(ωk, ∅;C)

for any k ≥ k−. Given these three inclusion relationships, we have ∪kl=1B∗ωl(C +

∆C) ⊂ ∪kl=1B∗ωl(C) for any k ≤ k+, and ∪|Ω|l=kB
∗
ωl
(C +∆C) ⊃ ∪|Ω|l=kB

∗
ωl
(C) for any

k ≥ k−. This implies that we have
Pk
l=1 d

0
ωl
≤ Pk

l=1 dωl for any k ≤ k+, and

40



P|Ω|
l=k d

0
ωl ≥

P|Ω|
l=k dωl for any k ≥ k−; or

kX
l=1

∆dωl ≤ 0 for any k ≤ k+, and
|Ω|X
l=k

∆dωl ≥ 0 for any k ≥ k−.

Then, we have (for any d0 ∈ D(C +∆C) and d ∈ D(C)):

k+X
l=1

∆dωl∆Cωl = ∆dω1∆Cω1 +∆dω2∆Cω2 +

k+X
l=3

∆dωl∆Cωl

= ∆dω1(∆Cω1 −∆Cω2) +∆dω1∆Cω2 +∆dω2∆Cω2 +
k+X
l=3

∆dωl∆Cωl

≤ (∆dω1 +∆dω2)∆Cω2 +

k+X
l=3

∆dωl∆Cωl

≤ (∆dω1 +∆dω2 +∆dω3)∆Cω3 +

k+X
l=4

∆dωl∆Cωl

≤ ... ≤
 k+X
l=1

∆dωl

∆Cωk+ ≤ 0.
The last inequality applies since ∆Cωk+ > 0. Similarly, we have:

|Ω|X
l=k−

∆dωl∆Cωl ≤
 |Ω|X
l=k−

∆dωl

∆Cωk− ≤ 0.
Since ∆Cωl = 0 for any l with k+ < l < k−, we obtain:

(d0 − d)(C0 −C) =
X
ω∈Ω

∆dω∆Cω

=

k+X
l=1

∆dωl∆Cωl +

|Ω|X
l=k−

∆dωl∆Cωl
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≤
 k+X
l=1

∆dωl

∆Cωk+ +
 |Ω|X
l=k−

∆dωl

∆Cωk− ≤ 0.
The proof is complete.¥

Proof of Theorem 6. Without loss of generality, we normalize u∅ = 0. Consider a

function Φ : F → < such that

Φ(f) ≡
X
i∈I

 X
ρ∈f(i)

θρi

−X
ρ∈G

n̄ρ(f)X
k=1

cρ(k)

 ,
where n̄ρ(f) =

P
ω3ρmω(f) is the number of commuters who use link ρ under allo-

cation f . Let f∗ ∈ argmaxf∈F Φ(f). Since F is a Þnite set, f∗ exists. We claim f∗ is

a pure strategy user equilibrium. Suppose not. Then, there exist a commuter i and

a path ω ∈ Ω̄\{f∗(i)} such that

X
ρ∈ω

θρi −
X
ρ∈ω

cρ(n̄ρ(f
∗(i,ω))) >

X
ρ∈f∗(i)

θρi −
X

ρ∈f∗(i)
cρ(n̄ρ(f

∗)).

Note that n̄ρ(f∗(i,ω)) = n̄ρ(f∗) iff ρ /∈ ω∪f∗(i) or ρ ∈ ω∩f∗(i), n̄ρ(f∗(i,ω)) = n̄ρ(f∗)+1

iff ρ ∈ ω\f∗(i), and n̄ρ(f∗)−1 iff ρ ∈ f∗(i)\ω. Given this, it is easy to see the following:

Φ(f∗(i,ω)) =
X
i∈I

 X
ρ∈f∗(i,ω)(i)

θρi

−X
ρ∈G

n̄ρ(f
∗(i,ω))X
k=1

cρ(k)


= Φ(f∗) +

X
ρ∈ω

θρi −
X

ρ∈f∗(i)
θρi −

X
ρ∈ω

cρ(n̄ρ(f
∗(i,ω))) +

X
ρ∈f∗(i)

cρ(n̄ρ(f
∗))

= Φ(f∗) +

ÃX
ρ∈ω

θρi −
X
ρ∈ω

cρ(n̄ρ(f
∗(i,ω)))

!
−
 X
ρ∈f∗(i)

θρi −
X

ρ∈f∗(i)
cρ(n̄ρ(f

∗))


> Φ(f∗).
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This contradicts the deÞnition of f∗, and the proof is complete.¥

Function Φ in the proof of Theorem 6 is called a potential function (Rosenthal,

1973). Note that
P
ρ∈f(i) θρi denotes the gross utility that commuter i can obtain by

choosing f(i), and the content of the Þrst parenthesis is the sum of gross utilities in

the economy. However, the content of the second parenthesis is not the total cost in

the economy. It is the sum of marginal costs when one by one commuters joined in

this link. This theorem shows that Daganzo�s preference restriction also guarantees

the existence of a pure strategy user equilibrium in Þnite commuter problems. Again,

note that the proof of Theorem 6 and the proof of Daganzo�s theorem provided in the

appendix are very different. Note also that there are differences in the conditions of

the theorems if we generalize these two theorems. The proof of Daganzo�s theorem

allows more general cost functions as long as they exhibit strict monotonicity, while

it requires NEC. In contrast, the proof of Theorem 6 works even if NEC is dropped,

while it requires separability of cost functions over links.

We now brießy illustrate an alternative proof for the Daganzo theorem by using a

potential function to extend Beckmann et al.�s (1956) analysis. This alternative proof

requires separable cost functions. The discussion is based on a private correspondence

with Igal Milchtaich. Following Mas-Colell (1984), we will use so-called distribution

approach instead of working on allocation f . Without loss of generality, we assume

µ(I) = 1. Let ν be the probability distribution of commuters over utility space U

(here, the space of θs: θ = (θρ)ρ∈G), generated from e : I → U and µ. We introduce

some more notation: let BE be the collection of Borel sets on a metric space E. We
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denote byME the space of all probability measures on E. If τ ∈ME×F , we denote

by τE the marginal distribution on E. An allocation in distribution is a probability

measure τ ∈ MU×Ω̄, where τU = ν. A point (θ,ω) ∈ U × Ω̄ describes a commuter

of type θ choosing path ω. Let the collection of allocations be T ≡ {τ ∈ MU×Ω̄ :

τU = ν}. Given this setup, we can construct a potential function in the following

way: Φ :MU×Ω̄ → < such that

Φ(τ) =
X
ω∈Ω̄

Z
U

ÃX
ρ∈ω

θρ

!
dτω −

X
ρ∈G

ÃZ nρ(τ)

k=0

cρ(k)dk

!
,

where τω is marginal distribution on ω ∈ Ω̄, and nρ(τ) =
P
ω3ρ

R
U
dτω. Since we

assume c(ρ, k) is strictly increasing in k,
R nρ(τ)
k=0

cρ(k)dk is strictly convex in nρ(τ). As

a result, Φ(τ) is a strictly concave function. Consider the following problem:

max
τ∈MU×Ω̄

Φ(τ).

Since MU×Ω̄ is a convex set, there is a unique solution to the above problem. We

can show that the solution of the above problem is the only allocation in distribution

that satisÞes user equilibrium condition. Hence we can see that the potential function

links these two problems closely.

There are other interesting applications of potential functions in transportation

science. Jehiel (1993) considers a traffic corridor with multiple transportation modes

with a continuum of entry points and a single exit point. Commuters with common

preferences are distributed over the entry points, and they all commute to the exit
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point. In this generalized model, Jehiel proves uniqueness of user equilibrium by

employing the potential function approach. Sandholm (2001b) analyzes evolutionary

implementability of an efficient toll system in the standard homogeneous commuter

setting. He Þnds a supporting toll system of an efficient allocation by using a potential

function directly. Sandholm (2001a) discusses the stability of Nash equilibria in gen-

eral games with a continuum of homogeneous players employing potential functions.
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