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Abstract

We present the sampling distributions for the coefficient of skewness, kurtosis, and a joint test
of normality for time series observations. In contrast to independent and identically distributed
data, the limiting distributions of the statistics are shown to depend on the long run rather
than the short-run variance of relevant sample moments. Monte Carlo simulations show that
the test statistics for symmetry and normality have good finite sample size and power. However,
size distortions render testing for kurtosis almost meaningless except for distributions with thin
tails such as the normal distribution. Nevertheless, this general weakness of testing for kurtosis
is of little consequence for testing normality. Combining skewness and kurtosis as in Bera and
Jarque (1981) is still a useful test of normality provided the limiting variance accounts for the
serial correlation in the data.
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1 Introduction

Consider a series {Xt}T
t=1 with mean µ and standard deviation σ. Let µr = E[(x− µ)r] be the rth

central moment of Xt with µ2 = σ2. The coefficient of skewness and kurtosis are defined as:

τ =
µ3

σ3
=

E[(x− µ)3]
E[(x− µ)2]3/2

(1)

κ =
µ4

σ4
=

E[(x− µ)4]
E[(x− µ)2]2

. (2)

Sample estimates of τ and κ can be obtained upon replacing population moments µr by the sample

moments µ̂r = T−1 ∑T
t=1(Xt − X̄)r. If Xt is i.i.d. and normally distributed, then

√
T τ̂

d−→ N(0, 6)

and
√

T (κ̂−3) d−→ N(0, 24), [see, e.g. Kendall and Stuart (1969)]. This paper presents the limiting

distributions for τ̂ and κ̂ when the data are weakly dependent.

Whether time series data exhibit skewed behavior has been an issue of macroeconomic interest.

Some authors [e.g. Neftci (1994) and Hamilton (1989)] use parametric models to see if economic

variables behave similarly during expansions and recessions. Others use simple statistics to test

skewness. In a well-known article, Delong and Summers (1985) studied whether business cycles are

symmetrical by applying the skewness coefficient to GDP, industrial production, and the unem-

ployment rate. However, because the sampling distribution of the skewness coefficient for serially

correlated data is not known, the authors obtained critical values by simulating an AR(3) model

with normal errors. These critical values are correct only if the AR(3) model is the correct data

generating process and that the errors are indeed normal. The results developed in this article

allows us to test for symmetry without making such assumptions.

The coefficient of kurtosis is informative about the tail behavior of a series, an issue which

has drawn substantial interest in the finance literature. However, we argue that measuring tails

behavior by using kurtosis is not a sound approach. As will be shown below, the true value of κ

is, in general, substantially underestimated. A very large number of observations is required to get

a reasonable estimate. This bias translates into size distortion for testing kurtosis. Exceptions are

distributions with thin tails, such as the normal distribution. But in such cases, concerns for heavy

tails are quite rare. As such, testing for kurtosis is not a very useful exercise per se.

If Xt is symmetrically distributed, µ3 and thus τ will be zero. The Gaussian distribution has

τ = 0 and κ = 3. When κ > 3, the distribution of Xt is said to have fat tails. Normality is often a

maintained assumption in estimation and finite sample inference. A joint test of τ = 0 and κ−3 = 0

is often used as a test of normality. Bera and Jarque (1981) showed that T (τ̂2/6+(κ̂−3)2/24) d−→
χ2

2. We extend their results developed for i.i.d. data to weakly dependent data.
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2 The Test Statistics

For any integer r ≥ 1, we first note the following:

µ̂r

σ̂r
− µr

σr
=

(µ̂r − µr)
σ̂r

− µr

σr

[
(σ̂2)r/2 − (σ2)r/2

σ̂r

]
,

=

[
T−1 ∑T

t=1(Xt − X̄)r − µr

σ̂r

]
− µr

σr

[
((σ̂2)r/2)− ((σ2)r/2)

σ̂r

]
.

Lemma 1 in the Appendix provides large sample approximations to the normalized central moment.

This is used to obtain the sampling distributions of τ̂ and κ̂.

2.1 Testing for Skewness

We first derive the limiting distribution of the estimated skewness coefficient under arbitrary τ (not

necessarily zero) and then specialize the general result to τ = 0. Throughout, we assume that the

central limit theorem holds for the 4× 1 vector series W ′
t = [Xt − µ, (Xt − µ)2 − σ2, (Xt − µ)3 −

µ3, (Xt − µ)4 − µ4] (t = 1, ..., T ). This requires finite (8 + δ)th (δ > 0) moment and some mixing

conditions. When testing symmetry, finite (6 + δ)th moment and some mixing conditions will be

sufficient.

Theorem 1 Suppose Xt is stationary up to sixth order. Then

√
T (τ̂ − τ) =

α

σ̂3

1√
T

T∑

t=1

Zt + op(1),

where α = [1 − 3σ2 − 3στ

2
], Zt =




(Xt − µ)3 − µ3

(Xt − µ)

(Xt − µ)2 − σ2




,

and 1√
T

∑T
t=1 Zt

d−→ N(0,Γ), where Γ = limT→∞TE(Z̄Z̄ ′) with Z̄ being the sample mean of Zt.

Moreover,
√

T (τ̂ − τ) d−→ N(0,
αΓα′

σ6
).

Serial dependence in Xt is explicitly taken into account through Γ, the spectral density matrix

at frequency zero of Zt. This result permits testing the skewness coefficient at any arbitrary value

of τ and even when the data are serially correlated.

In the special case when τ = 0 (or equivalently, µ3 = 0), the last element of α is zero. Thus,

one only needs to consider the sampling properties of

1√
T

T∑

t=1

Zt =
1√
T

T∑

t=1




(Xt − µ)3

(Xt − µ)


 . (3)
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This leads to the following result.

Corollary 1 Under the null hypothesis that τ = 0,

√
T τ̂

d−→ N(0,
α2Γ22α

′
2

σ6
) (4)

where α2 = [1,−3σ2] and Γ22 is the first 2× 2 block matrix of Γ.

Similarly, one can easily show that, under τ = µ3 = 0,

√
T µ̂3

d−→ N(0, α2Γ22α
′
2).

The only difference between the limiting distributions of µ̂3 and τ̂ is the normalizing constant

σ6. If the asymptotic standard deviations are estimated by s(µ̂3) = (α̂2Γ̂22α̂
′
2)

1/2 and s(τ̂) =

(α̂2Γ̂22α̂
′
2/σ̂6)1/2, then we have the numerical identity, µ̂3/s(µ̂3) = τ̂ /s(τ̂). We summarize the

above results in the following theorem.

Theorem 2 Suppose Xt is stationary up to sixth order and let α̂2 = [1, −3σ̂2]. Let σ̂2 and

Γ̂22 be consistent estimates of σ2 and Γ22, respectively. Let s(µ̂3) = (α̂2Γ̂22α̂
′
2)

1/2 and s(τ̂) =

(α̂2Γ̂22α̂
′
2/σ̂6)1/2. Then, under the null hypothesis of τ = µ3 = 0, we have

π3 =
√

T µ̂3

s(µ̂3)
=
√

T τ̂

s(τ̂)
d−→ N(0, 1).

That is, µ̂3 and τ̂ are the same. To construct π̂3, one needs only to obtain a consistent estimate of

this long-run variance, such as non-parametrically by kernel estimation. The test is valid even if

the null distribution is not normally distributed, albeit symmetric. Simple calculations show that

if Xt is iid normal, the variance of τ̂ is 6.

Depending on the distribution under investigation, a large number of observations might be

required to detect symmetry. The possibility of low power can be remedied in two ways. The first

is to exploit the fact that most economic time series are bounded below by zero. Hence, one can

test symmetry against positive skewness. Second, the odd moments of symmetric distributions are

zero, if they exist. Therefore, one can construct a joint test of several odd moments to increase

power. To illustrate, consider a joint test of two odd moments, r1 and r2. Let

YT =




1√
T

∑T
t=1(Xt − X̄)r1

1√
T

∑T
t=1(Xt − X̄)r2




By Lemma 1 in the appendix, we can show

YT = α
1√
T

T∑

t=1

Zt + op(1)
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where

α =




1 0 − r1µr1−1

0 1 − r2µr2−1


 , Zt =




(Xt − µ)r1

(Xt − µ)r2

(Xt − µ)




.

Assuming that a central limit theorem holds for Zt such that 1√
T

∑T
t=1 Zt

d−→ N(0, Γ), where

Γ = limT→∞TE(Z̄Z̄ ′), we have YT
d−→ N(0, αΓα′) under the null hypothesis of symmetry. Let

α̂Γα′ be a consistent estimate for αΓα′ (which is easy to obtain), we then have

µ̂r1,r2 = Y ′
T

(
α̂Γα′

)−1
YT

d−→ χ2
2.

Generally, this is a more powerful test than the test based on the third moment alone. The cost is

that this test requires the finiteness of (2r2)th moment (r1 < r2). The test for r1 = 3 and r2 = 5,

that is, µ̂35, is reported in Table 1.

2.2 Testing for Kurtosis

Again, we derive the limiting distribution of the estimated kurtosis under arbitrary true κ and then

specialize it to κ = 3 under normality. By Lemma 1 in Appendix, we have

Theorem 3 Suppose Xt is stationary up to eighth order. Then

√
T (κ̂− κ) =

β

σ̂4

1√
T

T∑

t=1

Wt + op(1),

where β = [1 − 4µ3 − 2σ2κ], Wt =




(Xt − µ)4 − µ4

(Xt − µ)

(Xt − µ)2 − σ2




and 1√
T

∑T
t=1 Wt

d−→ N(0, Ω) with Ω = limT→∞TE(W̄W̄ ′). Let σ̂2 and Ω̂ be consistent estimates

of σ2 and Ω, respectively. Then

π̂4(κ) =
√

T (κ̂− κ)
s(κ̂)

d−→ N(0, 1),

where s(κ̂) = (β̂Ω̂β̂′/σ̂8)1/2.

Note that the first component of Wt depends on the fourth moment of (Xt − µ)4, which itself

is a highly skewed random variable even if Xt is not skewed. The convergence to normal could be

extremely slow, and the sample estimate of κ̂ can deviate substantially from its true value even

with a large number of observations. Thus for moderate sample sizes, the kurtosis test cannot be

expected to be accurate. This will be confirmed by simulations in the next section.
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2.3 Testing for Normality

Under normality, τ = 0 and κ = 3. Let π̂3 be the test defined earlier for testing τ = 0, and let π̂4

be the test statistic for kurtosis evaluated at κ = 3. That is, π̂4 = π̂4(3). It can be shown that π̂3

and π̂4 are asymptotically independent under normality even for time series data. Thus a direct

generalization of the Bera-Jarque test to dependent data is

π̂34 = π̂2
3 + π̂2

4
d−→ χ2

2.

An asymptotically equivalent test, based directly on the third and fourth central moments, can

be constructed as follows. Let

YT =




1√
T

∑T
t=1(Xt − X̄)3

1√
T

∑T
t=1

[
(Xt − X̄)4 − 3(σ̂2)2

]




Under normality, it can be shown that

Yt = γ
1√
T

T∑

t=1

Zt + op(1)

where

γ =



−3σ2 0 1 0

0 −6σ2 0 1


 , Zt =




(Xt − µ)

(Xt − µ)2 − σ2

(Xt − µ)3

(Xt − µ)4 − 3σ4




with 1√
T

∑T
t=1 Zt

d−→ N(0, Φ) and Φ = lim T→∞TE(Z̄Z̄ ′). Thus YT
d−→ N(0, γΦγ′). Let γ̂ and Φ̂

be consistent estimators of γ and Φ, respectively, we have

µ̂34 = Y ′
T (γ̂Φ̂γ̂′)−1YT

d−→ χ2
2.

Summarizing the above results, we have

Theorem 4 Suppose that Xt is stationary. Then under the null hypothesis of normality,

π̂34
d−→ χ2

2,

µ̂34
d−→ χ2

2.
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2.4 Simulations

To assess the size and power of the tests, we consider well-known distributions such as the normal,

the t and the χ2, as well as distributions from the generalized lambda family. This family encom-

passes a range of symmetric and asymmetric distributions that can be easily generated since they

are defined in terms of the inverse of the cumulative distribution F−1(u) = λ1+[uλ3−(1−u)λ4 ]/λ2,

0 < u < 1. The λ parameters are taken from Table 1 of Randles, Fligner, Policello and Wolfe (1980).

Specifically, data are generated from 7 symmetric and 8 skewed distributions:

S1 : N(0, 1);

S2 : t5;

S3 : e1I(z ≤ .5) + e2I(z > .5), where z ∼ U(0, 1), e1 ∼ N(−1, 1), and e2 ∼ N(1, 1);

S4 : F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2=.19754, λ3=.134915, λ4=.134915;

S5 : F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2=-1, λ3=-.08, λ4=-.08;

S6 : F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2=-.397912, λ3=-.16, λ4=-.16;

S7 : F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2=-1, λ3=-.24, λ4=-.24.

A1 : lognormal: exp(e), e ∼ N(0, 1);

A2 : χ2
2;

A3 : exponential: − ln(e), e ∼ N(0, 1),

A4 : F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2=1.0, λ3=1.4, λ4 = .25;

A5 : F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2=-1, λ3=-.0075, λ4=-.03;

A6 : F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2=-1, λ3=-.1, λ4=-.18;

A7 : F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2=-1, λ3=-.001, λ4=-.13;

A8 : F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2=-1, λ3=-.0001, λ4=-.17.

To evaluate the size of the test for skewness, we draw et from seven symmetric distributions.

The power of the tests is assessed by considering eight asymmetric distributions. Since the kurtosis

of all fifteen distributions are known (and are given in Table 2), the size and power of π̂4 as well as

the normality tests can be easily obtained.

The data used in the simulations are generated as Xt = ρXt−1 + et. Many values of ρ were

considered, and results are presented for ρ = 0, .5 and .8. The long run covariance matrix is
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estimated by kernel method with the truncation lag selected using the automatic procedure with

prewhitening as discussed in Andrews and Monahan (1992). We use the Parzen window:

w(x) = 1− 6x2 + 6|x|3 if 0 ≤ |x| ≤ 1/2

= 2(1− |x|)3 if 1/2 ≤ |x| ≤ 1.

2.5 Skewness

We consider both one and two tailed tests for symmetry (denoted π̂∗3 and π̂∗∗3 , respectively). Results

are reported at the 5% level without loss of generality. The critical values are 1.64 (one tailed)

and 1.96 (two tailed). We also consider µ̂35, a joint test of the third and fifth central moment, and

the 5% critical value is 5.99. Three sample sizes are considered: T=100, 200, and 500. Table 1

indicates that π̂3 has accurate size even for small T , but the µ̂35 statistic rejects less often than

π3 under the null. The size of the tests are, however, quite robust to the degree of persistence

in the data. Note also that although the t5 distribution does not have finite 6th moment, testing

symmetry still gives very good size.

The two-sided test has low power, but imposing a priori information on the direction of skewness

leads to substantial power gains. All the tests considered have low power for A4, A5 and A6 unless

the sample size is large (say, more than 200 observations). The statistics developed in Randles et

al. (1980) for testing symmetry in i.i.d. data also have low power for the same distributions, all of

which have large kurtosis. In general, µ̂35 has very good power even for T as small as 50. However,

whereas the size of the test is quite robust to serial correlation in the data, the power function is

quite sensitive to persistence. Results for ρ = .8 reveal that the power of the tests drop significantly

when the degree of persistence increases. The reason is that for AR(1) models, yt =
∑t

j=1 αjut−j

(assuming y0 = 0). In the limit when α = 1, yt (scaled by
√

T ) is asymptotically normal. The data

thus becomes more symmetric as persistence increases. This is confirmed upon comparison with

results for i.i.d. data, which is given in panel (a) of Table 1.

From the simulations, µ̂35 has a smaller probability of Type I error and higher power and

dominates π̂3. Thus this test is recommended when symmetry is the main concern. In principle, a

joint test of more moments is feasible, and there is no reason to stop at testing two moments jointly.

We have laid out the general framework in which more comprehensive tests can be developed. A

practical strategy would be to start with the third moment and consider joint tests of higher

moments only if one does not reject the null hypothesis.
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2.6 Kurtosis and Normality

In Table 2, we report results for π̂4(κ), which tests the true population value of κ, and π̂4(3), which

tests κ = 3 as would be the case under normality. There are two notable results. First, there are

large size distortions, so that a large Type 1 error can be expected if one was to test κ = κ0. Second,

while the test has power to reject κ = 3, the power is very low for the sample sizes considered.

In many cases, serial correlation in the data further reduces the power of the test. For example,

consider case A3 with κ = 9. With T = 1000, the power is .89 when ρ = 0, falls to .84 when ρ = .5,

and is only .24 when ρ = .8. One needs more than 5000 observations to reject the hypothesis that

κ = 3 when ρ = .8. For this reason, we report results for sample sizes much larger than for τ̂ to

highlight the problems with testing for kurtosis in finite samples.

To understand the properties of the kurtosis tests, we report in Table 3 the average estimates of

κ and τ at the different sample sizes. Three results are noteworthy. First, both τ̂ and κ are generally

downward biased with biases that are increasing in ρ. However, the biases are substantially larger

for κ̂. Second, even with T as large as 5000, κ cannot be precisely estimated from serially correlated

data. In some cases, κ̂ is severely biased even for iid data (see, for example, case A1). This result

has the important empirical implication that the sample kurtosis measure is generally unreliable

and should always be viewed with caution. Third, the one exception when κ̂ can be well estimated

is when κ = 3. This is important in interpreting the results for testing normality.

Results for testing normality are reported in Table 4. Except for the first row which is based

on the normal distribution and thus indicates size, all other rows indicate power. The µ̂34 test is

generally more powerful than the π̂34 test. Since the kurtosis test has such low power, the results

for normality by and large reflect the results for the tests for skewness. The tests have low power

when a distribution is symmetric.

The fact that the kurtosis test has large size distortions might appear problematic for the

normality test. Interestingly, however, this is not the case. This is because κ̂ precisely estimates κ

when κ = 3 and size distortion is not an issue. Thus, while the kurtosis test is itself not very useful

per se, we can still use it to test normality, as in Bera and Jarque (1981).

3 Empirical Applications

The tests are applied to 21 macroeconomic time series. Data for GDP, the GDP deflator, the

consumption of durables, final sales, the consumption of non-durables, residential investment, and

non-residential investment are taken from the national accounts and are quarterly data. The

unemployment rate, employment, M2, CPI are monthly series. The 30 day interest rate, and M2
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are weekly data.1 With the exception of the interest rate and the unemployment rate (which we

do not take logs), we take first difference of the logarithm of the data before applying the tests.

We also considered three exchange rates (in logged first differences), and the value as well as the

equally weighted CRSP daily stock returns. These data are not transformed. The sample skewness

and kurtosis coefficients for the 21 series are also reported, along with tests for skewness, kurtosis,

and normality.

The first column of Table 4 reports tests for symmetry, i,e.testing τ = 0, with τ̂ given in column

4. Several aspects of the results are of note. As in Delong and Summers (1985), we fail to reject

symmetry in output and industrial production. However, while these authors find asymmetry in the

unemployment rate, using a longer sample period and a different procedure to conduct inference, we

find no evidence of skewness in the unemployment rate. The US-Japan exchange rate, CPI inflation,

as well as stock returns reject symmetry at 1% level. We also reject symmetry in manufacturing

employment and the consumption of durable goods at the 10% level. Interesting, series that exhibit

skewness also failed the conditional symmetry test of Bai and Ng (2001).

The second column of Table 4 reports results for testing κ = 3 with κ̂ given in column 5. We

failed to find evidence of excess kurtosis in any of the real variables but found evidence of fat-tailed

behavior in US-Japan exchange rate, the 30 day interest rate, and the two stock returns. These are

financial series whose fat tailed properties have been well-documented. Our evidence is especially

convincing in view of the lower power of the test for kurtosis reported earlier.

Results for the normality test is reported in the third column of Table 4. We reject normality in

the US-Japan exchange rate, the unemployment rate, the CPI inflation, the 30 day interest rate, and

the two stock return series. With the exception of the 30 day interest rate which failed the kurtosis

test but has no evidence of skewness, the remaining series that exhibit non-Guassian behavior

failed the symmetry test. This accords with our observation that the power of the normality test

is derived from asymmetry.

4 Concluding Comments

The goal of this paper is to obtain tests for skewness, kurtosis, and a joint test of normality suited

for time series observations. Monte Carlo simulations accord with our prior that tests for kurtosis

will have low power because of the high moments involved. In finite samples, the test for kurtosis

has poor size. The difficulty in estimating kurtosis does not pose a size problem for normality

tests, however. Combining the coefficient of skewness with kurtosis as in Bera and Jarque is still
1All data are taken from the Economic Time Series Page, and URL is:

vos.business.uab.edu/data.htm.

9



useful for time series data, once the limiting variance takes into account of serial correlation in the

data. Nonetheless, the primary source of power in the test for normality is derived from the test

for skewness.

This paper has focused on the unconditional moment properties, in contrast to the conditional

distributions as in Bai and Ng (2001). To test for conditional symmetry, a model of the data

generating process is required, and the tests are applied to the regression residuals. In contrast, no

assumption about the data generating process is necessary for testing the unconditional moments

of the data. The results of the present analysis only depends on stationarity and the existence

of some moments. Furthermore, the unconditional tests are applied to the observed data rather

than to the regression residuals. In cases such as analyzed in Delong and Summers (1985) when

skewness of GDP is the object of interest, the unconditional tests developed in this paper are more

appropriate. Cabellero (1992) emphasized the role that asymmetric shocks might play in explaining

why firms’ job creation policies might be different from job destruction policies. In such a case,

testing for conditional symmetry in gross job flows may be more appropriate.

It should also clear that unconditional symmetry and conditional symmetry generally do not

imply each other. Consider an extreme example, Xt = εt − εt−1, where εt are independent and

identically distributed (i.i.d.). Whether or not εt has a symmetric distribution, Xt is always sym-

metric because Xt and −Xt have the same distribution. However, conditional on the information

at t − 1 (which include εt−1), the conditional distribution of Xt will be asymmetric provided εt is

asymmetric.
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Appendix

The following lemma is used for Theorem 1.

Lemma 1 Suppose Xt is stationary up to order r for some r ≥ 2. Then

µ̂r =
1√
T

T∑

t=1

(Xt − X̄)r =
1√
T

T∑

t=1

(Xt − µ)r − r µr−1
1√
T

T∑

t=1

(Xt − µ) + op(1).

Furthermore, by the delta method,
√

T
(
(σ̂2)r/2 − (σ2)r/2

)
=

r

2
(σ2)r/2−1

[
σ̂2 − σ2

]
+ op(1).

Proof: We show (without loss of generality) the derivations for r = 3. The generalization is

immediate.

1√
T

T∑

t=1

(Xt − X̄)3 =
1√
T

T∑

t=1

(Xt − µ + µ− X̄)3

=
1√
T

T∑

t=1

(Xt − µ)3 + 3
1
T

T∑

t=1

(Xt − µ)2
√

T (µ− X̄)

+3(µ− X̄)2
1√
T

T∑

t=1

(Xt − µ) +
√

T (µ− X̄)3.

The last two terms are op(1) since
√

T (X̄ − µ) = Op(1). Finally note that 1
T

∑T
t=1(Xt − µ)2) =

µ2 + op(1).

Proof of Theorem 1.

τ̂ − τ =
µ̂3

σ̂3
− µ3

σ3
=

µ̂3 − µ3

σ̂3
− τ

σ̂3 − σ3

σ̂3

=

[
1
T

∑T
t=1(Xt − X̄)3 − µ3

σ̂3

]
− τ

[
(σ̂2)3/2 − (σ2)3/2

σ̂3

]

=
1
σ̂3

[
1
T

T∑

t=1

(
(Xt − µ)3 − µ3

)
− 3

(
1
T

T∑

t=1

(Xt − µ)2
)

(X̄ − µ)

]
− 3τσ(σ̂2 − σ2)

2σ̂3
+ op(1)

=
1
σ̂3

[
1
T

T∑

t=1

(
(Xt − µ)3 − µ3

)
− 3

(
1
T

T∑

t=1

(Xt − µ)2
) (

1
T

T∑

t=1

Xt − µ

)]

− 3τσ

2T σ̂3

[
T∑

t=1

(Xt − µ)2 − σ2

]
+ op(1)

=
1
σ̂3

[
1 −3σ2 −3στ

2

]
1
T




∑T
t=1[(Xt − µ)3 − µ3]

∑T
t=1(Xt − µ)

∑T
t=1[(Xt − µ)2 − σ2]




+ op(1)

≡ α

σ̂3

1
T

T∑

t=1

Zt + op(1)
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Table 1: Size and Power of the Test Symmetry for τ = 0:
ρ = .0 T=100 T=200 T=500
τ κ π̂∗∗3 π̂∗3 µ̂35 π̂∗∗3 π̂∗3 µ̂35 π̂∗∗3 π̂∗3 µ̂35

S1 0.0 3.0 0.04 0.05 0.03 0.05 0.06 0.04 0.06 0.06 0.04
S2 0.0 9.0 0.03 0.05 0.02 0.04 0.05 0.03 0.03 0.04 0.02
S3 0.0 2.5 0.04 0.05 0.03 0.05 0.06 0.04 0.05 0.06 0.04
S4 0.0 3.0 0.03 0.04 0.02 0.04 0.05 0.03 0.05 0.05 0.04
S5 0.0 6.0 0.03 0.04 0.02 0.04 0.05 0.02 0.04 0.06 0.03
S6 0.0 11.6 0.02 0.04 0.02 0.04 0.04 0.02 0.03 0.04 0.03
S7 0.0 126.0 0.03 0.05 0.02 0.02 0.04 0.02 0.03 0.04 0.02
A1 6.18 113.9 0.42 0.62 0.59 0.51 0.68 0.80 0.68 0.81 0.95
A2 2.0 9.0 0.72 0.87 0.93 0.90 0.96 1.00 0.98 0.99 1.00
A3 2.0 9.0 0.74 0.88 0.95 0.90 0.97 1.00 0.98 0.99 1.00
A4 .5 2.2 0.84 0.92 0.63 1.00 1.00 0.99 1.00 1.00 1.00
A5 1.5 7.5 0.65 0.84 0.78 0.85 0.95 0.99 0.98 1.00 1.00
A6 2.0 21.2 0.23 0.41 0.21 0.43 0.64 0.54 0.72 0.85 0.93
A7 3.16 23.8 0.56 0.76 0.78 0.74 0.87 0.95 0.87 0.94 1.00
A8 3.8 40.7 0.52 0.71 0.73 0.67 0.82 0.94 0.83 0.92 0.99

ρ = .5
S1 0.0 3.0 0.04 0.05 0.03 0.03 0.04 0.02 0.04 0.05 0.03
S2 0.0 9.0 0.04 0.05 0.02 0.03 0.04 0.03 0.04 0.04 0.03
S3 0.0 2.5 0.03 0.04 0.02 0.03 0.05 0.03 0.04 0.05 0.03
S4 0.0 3.0 0.03 0.04 0.02 0.03 0.04 0.03 0.05 0.05 0.04
S5 0.0 6.0 0.03 0.04 0.03 0.04 0.06 0.03 0.05 0.06 0.03
S6 0.0 11.6 0.04 0.04 0.02 0.04 0.04 0.02 0.04 0.05 0.03
S7 0.0 126.0 0.04 0.04 0.02 0.03 0.04 0.03 0.03 0.04 0.03
A1 6.18 113.9 0.45 0.64 0.58 0.51 0.70 0.77 0.66 0.80 0.94
A2 2.0 9.0 0.61 0.79 0.73 0.85 0.93 0.98 0.97 0.99 1.00
A3 2.0 9.0 0.64 0.84 0.74 0.84 0.94 0.98 0.96 0.98 1.00
A4 .5 2.2 0.32 0.50 0.21 0.69 0.83 0.53 0.99 1.00 0.97
A5 1.5 7.5 0.49 0.72 0.44 0.76 0.89 0.89 0.96 0.99 1.00
A6 2.0 21.2 0.21 0.38 0.18 0.39 0.55 0.39 0.68 0.81 0.83
A7 3.16 23.8 0.55 0.72 0.68 0.70 0.84 0.92 0.85 0.93 0.99
A8 3.8 40.7 0.51 0.68 0.66 0.66 0.80 0.91 0.82 0.91 0.99

ρ = .8
S1 0.0 3.0 0.01 0.03 0.01 0.03 0.03 0.02 0.03 0.04 0.02
S2 0.0 9.0 0.02 0.04 0.01 0.03 0.05 0.01 0.03 0.04 0.03
S3 0.0 2.5 0.02 0.03 0.02 0.01 0.03 0.01 0.04 0.05 0.03
S4 0.0 3.0 0.01 0.02 0.01 0.03 0.03 0.02 0.04 0.04 0.03
S5 0.0 6.0 0.02 0.03 0.01 0.03 0.04 0.01 0.04 0.04 0.02
S6 0.0 11.6 0.03 0.04 0.02 0.03 0.03 0.02 0.04 0.05 0.02
S7 0.0 126.0 0.03 0.04 0.02 0.03 0.04 0.01 0.03 0.04 0.02
A1 6.18 113.9 0.10 0.21 0.10 0.30 0.50 0.25 0.59 0.75 0.80
A2 2.0 9.0 0.03 0.05 0.12 0.13 0.28 0.18 0.70 0.86 0.73
A3 2.0 9.0 0.04 0.05 0.11 0.13 0.25 0.16 0.71 0.85 0.75
A4 .5 2.2 0.10 0.19 0.08 0.12 0.24 0.08 0.29 0.44 0.15
A5 1.5 7.5 0.05 0.15 0.03 0.21 0.40 0.10 0.61 0.79 0.53
A6 2.0 21.2 0.08 0.19 0.04 0.14 0.28 0.09 0.41 0.61 0.34
A7 3.16 23.8 0.06 0.14 0.08 0.24 0.45 0.19 0.70 0.84 0.87
A8 3.8 40.7 0.06 0.17 0.07 0.29 0.50 0.22 0.70 0.84 0.88

** denote two sided test. * denote one sided test.
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Table 2: Size and Power of the Test Kurtosis
ρ = .0 T=100 T=200 T=500 T=1000 T=2500 T=5000
τ κ π̂4(κ) π̂4(3) π̂4(κ) π̂4(3) π̂4(κ) π̂4(3) π̂4(κ) π̂4(3) π̂4(κ) π̂4(3) π̂4(κ) π̂4(3)

S1 0.0 3.0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02
S2 0.0 9.0 0.66 0.00 0.73 0.10 0.69 0.51 0.64 0.70 0.61 0.82 0.58 0.88
S3 0.0 2.5 0.01 0.20 0.00 0.41 0.01 0.80 0.01 0.97 0.00 1.00 0.00 1.00
S4 0.0 3.0 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02
S5 0.0 6.0 0.32 0.01 0.36 0.14 0.37 0.65 0.32 0.86 0.24 0.94 0.23 0.99
S6 0.0 11.6 0.59 0.03 0.69 0.23 0.66 0.63 0.58 0.72 0.53 0.84 0.46 0.89
S7 0.0 126.0 0.42 0.05 0.47 0.25 0.36 0.50 0.25 0.58 0.11 0.67 0.05 0.70
A1 6.18 113.9 0.17 0.14 0.32 0.26 0.70 0.40 0.85 0.49 0.78 0.60 0.75 0.67
A2 2.0 9.0 0.22 0.07 0.28 0.35 0.29 0.75 0.24 0.92 0.17 0.98 0.15 1.00
A3 2.0 9.0 0.24 0.07 0.27 0.37 0.27 0.73 0.25 0.89 0.16 0.97 0.14 1.00
A4 .5 2.2 0.01 0.50 0.01 0.80 0.01 0.99 0.01 1.00 0.01 1.00 0.02 1.00
A5 1.5 7.5 0.34 0.03 0.36 0.18 0.34 0.65 0.31 0.84 0.23 0.97 0.17 0.99
A6 2.0 21.2 0.61 0.04 0.80 0.24 0.77 0.51 0.74 0.63 0.67 0.75 0.62 0.81
A7 3.16 23.8 0.33 0.14 0.57 0.33 0.66 0.58 0.58 0.66 0.51 0.82 0.46 0.88
A8 3.8 40.7 0.29 0.14 0.57 0.33 0.78 0.50 0.73 0.60 0.67 0.75 0.61 0.79

ρ = .5
S1 0.0 3.0 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.03 0.01 0.01
S2 0.0 9.0 0.57 0.01 0.83 0.04 0.85 0.28 0.82 0.58 0.84 0.80 0.82 0.86
S3 0.0 2.5 0.00 0.06 0.00 0.11 0.02 0.32 0.12 0.51 0.54 0.86 0.91 0.99
S4 0.0 3.0 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01
S5 0.0 6.0 0.33 0.01 0.56 0.05 0.66 0.34 0.68 0.74 0.72 0.92 0.81 0.98
S6 0.0 11.6 0.51 0.03 0.79 0.10 0.83 0.48 0.80 0.68 0.80 0.83 0.79 0.88
S7 0.0 126.0 0.36 0.06 0.56 0.15 0.60 0.45 0.54 0.56 0.38 0.66 0.29 0.69
A1 6.18 113.9 0.22 0.15 0.33 0.27 0.66 0.40 0.88 0.48 0.91 0.59 0.88 0.67
A2 2.0 9.0 0.36 0.04 0.52 0.18 0.68 0.63 0.72 0.87 0.79 0.97 0.86 0.99
A3 2.0 9.0 0.34 0.04 0.51 0.18 0.63 0.60 0.72 0.84 0.79 0.96 0.86 0.99
A4 .5 2.2 0.00 0.19 0.02 0.38 0.23 0.68 0.71 0.90 1.00 1.00 1.00 1.00
A5 1.5 7.5 0.40 0.02 0.55 0.07 0.67 0.44 0.69 0.75 0.76 0.96 0.80 0.98
A6 2.0 21.2 0.53 0.03 0.79 0.12 0.89 0.43 0.88 0.60 0.86 0.74 0.83 0.80
A7 3.16 23.8 0.34 0.08 0.59 0.26 0.83 0.52 0.81 0.63 0.81 0.80 0.79 0.88
A8 3.8 40.7 0.30 0.11 0.55 0.27 0.88 0.49 0.89 0.58 0.87 0.74 0.83 0.79

ρ = .8
S1 0.0 3.0 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02
S2 0.0 9.0 0.22 0.01 0.54 0.01 0.95 0.01 0.96 0.07 0.96 0.37 0.97 0.71
S3 0.0 2.5 0.00 0.01 0.00 0.01 0.04 0.03 0.23 0.06 0.82 0.12 1.00 0.17
S4 0.0 3.0 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.03
S5 0.0 6.0 0.13 0.00 0.39 0.00 0.87 0.01 0.95 0.07 0.96 0.34 0.99 0.77
S6 0.0 11.6 0.21 0.01 0.55 0.01 0.94 0.05 0.97 0.18 0.96 0.63 0.96 0.82
S7 0.0 126.0 0.16 0.02 0.37 0.04 0.80 0.12 0.86 0.29 0.79 0.58 0.76 0.67
A1 6.18 113.9 0.27 0.07 0.33 0.13 0.57 0.30 0.81 0.45 0.97 0.55 0.98 0.64
A2 2.0 9.0 0.19 0.04 0.50 0.03 0.91 0.09 0.97 0.25 0.99 0.73 1.00 0.93
A3 2.0 9.0 0.16 0.04 0.49 0.04 0.89 0.08 0.98 0.24 0.99 0.75 1.00 0.95
A4 .5 2.2 0.06 0.01 0.12 0.01 0.52 0.04 0.89 0.13 1.00 0.24 1.00 0.40
A5 1.5 7.5 0.20 0.00 0.53 0.01 0.90 0.02 0.95 0.10 0.98 0.49 0.99 0.84
A6 2.0 21.2 0.28 0.01 0.55 0.02 0.92 0.07 0.98 0.22 0.97 0.60 0.96 0.74
A7 3.16 23.8 0.30 0.03 0.47 0.04 0.83 0.19 0.96 0.41 0.97 0.71 0.97 0.82
A8 3.8 40.7 0.27 0.05 0.45 0.07 0.81 0.22 0.94 0.42 0.98 0.66 0.98 0.76
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Table 3: Sample estimates of τ and κ
τ 100 200 500 1000 2500 5000 κ 100 200 500 1000 2500 5000

ρ=0
S1 0.0 0.01 -0.00 -0.00 0.00 0.00 -0.00 3.0 2.95 2.95 3.00 2.99 3.00 3.00
S2 0.0 -0.01 0.02 -0.02 0.01 -0.02 -0.02 9.0 5.38 6.11 6.66 7.88 7.87 8.12
S3 0.0 0.01 0.00 0.00 0.00 0.00 0.00 2.5 2.47 2.49 2.49 2.50 2.50 2.50
S4 0.0 -0.01 -0.00 0.00 -0.00 -0.00 -0.00 3.0 2.96 2.97 2.99 2.99 3.00 3.00
S5 0.0 -0.02 -0.02 0.00 0.01 -0.00 0.00 6.0 4.95 5.39 5.63 5.75 5.90 5.88
S6 0.0 0.03 0.02 0.02 -0.00 -0.01 -0.01 11.6 6.70 7.66 8.92 9.80 10.71 11.09
S7 0.0 0.03 -0.04 0.06 -0.01 -0.03 -0.08 126.0 8.96 12.49 17.62 19.64 28.66 35.93
A1 6.18 3.15 3.81 4.44 4.82 5.34 5.71 113.9 17.24 25.71 37.63 46.55 63.72 79.20
A2 2.0 1.78 1.90 1.95 1.97 1.99 1.99 9.0 7.14 8.05 8.47 8.70 8.91 8.93
A3 2.0 1.76 1.89 1.98 1.97 2.00 1.99 9.0 6.98 7.94 8.85 8.70 9.02 8.91
A4 .5 0.48 0.50 0.51 0.51 0.51 0.51 2.2 2.19 2.21 2.22 2.22 2.22 2.22
A5 1.5 1.33 1.43 1.47 1.49 1.51 1.52 7.5 5.86 6.53 6.90 7.16 7.30 7.42
A6 2.0 1.34 1.49 1.72 1.80 1.87 1.97 21.2 8.30 10.00 12.66 14.14 15.74 18.68
A7 3.16 2.33 2.60 2.84 3.01 3.11 3.13 23.8 10.81 13.64 16.98 19.83 21.92 22.58
A8 3.8 2.58 2.89 3.21 3.56 3.66 3.72 40.7 12.65 16.43 20.86 27.93 31.22 32.50

ρ = .5
S1 0.0 0.00 -0.00 -0.00 0.00 0.00 0.00 3.0 2.91 2.94 2.98 2.99 2.99 3.00
S2 0.0 -0.02 0.02 -0.02 0.01 -0.01 -0.01 9.0 4.31 4.81 5.16 5.91 5.88 6.09
S3 0.0 0.00 0.01 0.00 0.00 -0.00 -0.00 2.5 2.63 2.67 2.68 2.70 2.70 2.70
S4 0.0 -0.01 -0.01 0.00 0.00 -0.00 -0.00 3.0 2.91 2.94 2.98 2.99 3.00 3.00
S5 0.0 -0.02 -0.01 -0.00 0.00 -0.00 -0.00 6.0 4.05 4.34 4.56 4.64 4.75 4.73
S6 0.0 0.03 0.01 0.01 -0.00 -0.01 -0.01 11.6 5.06 5.72 6.51 7.08 7.61 7.87
S7 0.0 0.02 -0.05 0.05 -0.00 -0.03 -0.06 126.0 6.43 8.57 11.65 12.91 18.27 22.72
A1 6.18 2.23 2.77 3.27 3.57 3.95 4.24 113.9 10.92 16.11 23.49 29.03 39.22 48.85
A2 2.0 1.21 1.35 1.42 1.45 1.47 1.47 9.0 5.14 5.80 6.18 6.36 6.51 6.52
A3 2.0 1.21 1.35 1.45 1.45 1.48 1.47 9.0 5.09 5.76 6.39 6.38 6.57 6.52
A4 .5 0.35 0.36 0.37 0.38 0.38 0.38 2.2 2.43 2.47 2.51 2.52 2.53 2.53
A5 1.5 0.96 1.05 1.09 1.10 1.12 1.13 7.5 4.53 5.04 5.32 5.45 5.55 5.65
A6 2.0 0.99 1.09 1.27 1.34 1.39 1.46 21.2 6.00 7.10 8.72 9.65 10.68 12.42
A7 3.16 1.65 1.90 2.10 2.22 2.31 2.32 23.8 7.31 9.17 11.29 13.01 14.33 14.68
A8 3.8 1.85 2.09 2.36 2.62 2.71 2.75 40.7 8.44 10.67 13.54 17.74 19.83 20.60

ρ = .8
S1 0.0 -0.00 0.00 -0.00 -0.00 0.00 0.00 3.0 2.80 2.90 2.95 2.99 2.98 2.99
S2 0.0 -0.01 0.01 -0.01 0.01 -0.01 -0.01 9.0 3.21 3.53 3.72 4.02 4.03 4.12
S3 0.0 0.00 0.01 0.00 0.00 0.00 0.00 2.5 2.71 2.79 2.84 2.88 2.88 2.89
S4 0.0 -0.01 -0.02 0.00 0.00 -0.00 0.00 3.0 2.78 2.89 2.95 2.98 2.99 3.00
S5 0.0 -0.01 0.00 -0.01 0.00 -0.00 0.00 6.0 3.14 3.35 3.50 3.57 3.63 3.63
S6 0.0 0.02 0.00 0.00 0.00 -0.00 -0.01 11.6 3.48 3.81 4.18 4.44 4.64 4.78
S7 0.0 -0.01 -0.05 0.03 0.01 -0.02 -0.04 126.0 3.92 4.80 6.03 6.53 8.49 10.13
A1 6.18 0.84 1.36 1.81 2.06 2.31 2.51 113.9 5.01 6.87 9.86 12.09 15.84 19.67
A2 2.0 0.20 0.49 0.70 0.79 0.85 0.86 9.0 3.71 3.90 4.07 4.19 4.25 4.27
A3 2.0 0.20 0.48 0.73 0.79 0.85 0.86 9.0 3.72 3.86 4.15 4.19 4.26 4.26
A4 .5 0.32 0.27 0.25 0.24 0.23 0.23 2.2 2.77 2.79 2.82 2.82 2.83 2.82
A5 1.5 0.42 0.52 0.61 0.64 0.66 0.67 7.5 3.17 3.46 3.73 3.82 3.90 3.97
A6 2.0 0.56 0.62 0.76 0.78 0.83 0.87 21.2 3.67 4.23 4.95 5.29 5.77 6.45
A7 3.16 0.53 0.88 1.14 1.27 1.35 1.37 23.8 4.07 4.85 5.76 6.47 7.09 7.20
A8 3.8 0.67 0.98 1.29 1.50 1.59 1.63 40.7 4.40 5.19 6.46 8.08 9.03 9.37
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Table 4: Size and Power of the Test Normality

ρ = .0 T=100 T=200 T=500 T=1000 T=2500 T=5000
τ κ π̂34 µ̂34 π̂34 µ̂34 π̂34 µ̂34 π̂34 µ̂34 π̂34 µ̂34 π̂34 µ̂34

S1 0.0 3.0 0.04 0.02 0.09 0.03 0.09 0.03 0.09 0.03 0.07 0.03 0.06 0.04
S2 0.0 9.0 0.04 0.02 0.11 0.08 0.39 0.30 0.61 0.56 0.81 0.76 0.89 0.80
S3 0.0 2.5 0.25 0.13 0.57 0.31 0.90 0.72 0.98 0.95 1.00 1.00 1.00 1.00
S4 0.0 3.0 0.04 0.02 0.08 0.02 0.07 0.03 0.07 0.03 0.06 0.03 0.07 0.02
S5 0.0 6.0 0.06 0.02 0.13 0.10 0.53 0.42 0.82 0.74 0.94 0.89 0.98 0.96
S6 0.0 11.6 0.07 0.04 0.20 0.13 0.49 0.43 0.66 0.60 0.85 0.77 0.91 0.83
S7 0.0 126.0 0.08 0.04 0.19 0.14 0.37 0.34 0.55 0.46 0.63 0.56 0.71 0.61
A1 6.18 113.9 0.06 0.46 0.71 0.55 0.98 0.69 1.00 0.80 1.00 0.84 1.00 0.90
A2 2.0 9.0 0.31 0.69 1.00 0.88 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00
A3 2.0 9.0 0.33 0.71 1.00 0.88 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00
A4 .5 2.2 0.74 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A5 1.5 7.5 0.71 0.59 0.99 0.82 1.00 0.97 1.00 0.99 1.00 1.00 1.00 1.00
A6 2.0 21.2 0.19 0.25 0.50 0.52 0.86 0.76 0.97 0.86 1.00 0.94 1.00 0.94
A7 3.16 23.8 0.18 0.59 0.95 0.74 1.00 0.86 1.00 0.92 1.00 0.97 1.00 0.98
A8 3.8 40.7 0.13 0.55 0.92 0.68 1.00 0.82 1.00 0.88 1.00 0.94 1.00 0.98

ρ = .5
S1 0.0 3.0 0.03 0.01 0.05 0.01 0.08 0.03 0.08 0.03 0.08 0.03 0.05 0.03
S2 0.0 9.0 0.02 0.02 0.05 0.05 0.20 0.16 0.48 0.42 0.76 0.72 0.87 0.79
S3 0.0 2.5 0.06 0.02 0.20 0.06 0.48 0.23 0.68 0.40 0.93 0.79 1.00 0.98
S4 0.0 3.0 0.03 0.01 0.06 0.02 0.08 0.03 0.09 0.03 0.07 0.03 0.05 0.02
S5 0.0 6.0 0.03 0.02 0.05 0.05 0.27 0.19 0.61 0.55 0.91 0.84 0.98 0.96
S6 0.0 11.6 0.05 0.04 0.09 0.07 0.34 0.28 0.60 0.56 0.82 0.74 0.89 0.82
S7 0.0 126.0 0.07 0.06 0.13 0.10 0.34 0.31 0.50 0.43 0.62 0.55 0.70 0.61
A1 6.18 113.9 0.47 0.51 0.94 0.57 0.99 0.68 1.00 0.79 1.00 0.84 1.00 0.90
A2 2.0 9.0 0.53 0.54 1.00 0.83 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
A3 2.0 9.0 0.58 0.56 1.00 0.82 1.00 0.95 1.00 0.99 1.00 1.00 1.00 1.00
A4 .5 2.2 0.52 0.34 0.95 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A5 1.5 7.5 0.33 0.35 0.89 0.71 1.00 0.94 1.00 0.98 1.00 1.00 1.00 1.00
A6 2.0 21.2 0.13 0.19 0.38 0.43 0.78 0.73 0.95 0.84 1.00 0.93 1.00 0.94
A7 3.16 23.8 0.55 0.54 0.98 0.70 1.00 0.85 1.00 0.91 1.00 0.97 1.00 0.98
A8 3.8 40.7 0.53 0.53 0.99 0.67 1.00 0.81 1.00 0.87 1.00 0.94 1.00 0.97

ρ = .8
S1 0.0 3.0 0.00 0.00 0.01 0.01 0.02 0.01 0.05 0.03 0.08 0.04 0.06 0.03
S2 0.0 9.0 0.01 0.01 0.01 0.01 0.02 0.02 0.07 0.05 0.24 0.22 0.60 0.55
S3 0.0 2.5 0.00 0.00 0.02 0.00 0.07 0.02 0.12 0.05 0.22 0.09 0.29 0.14
S4 0.0 3.0 0.01 0.01 0.01 0.00 0.04 0.01 0.07 0.03 0.09 0.03 0.07 0.03
S5 0.0 6.0 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.04 0.25 0.18 0.67 0.60
S6 0.0 11.6 0.01 0.01 0.01 0.02 0.04 0.05 0.11 0.12 0.50 0.47 0.76 0.71
S7 0.0 126.0 0.02 0.02 0.02 0.03 0.06 0.08 0.18 0.19 0.49 0.44 0.61 0.56
A1 6.18 113.9 0.07 0.11 0.19 0.35 0.92 0.62 0.99 0.74 1.00 0.83 1.00 0.89
A2 2.0 9.0 0.10 0.04 0.08 0.11 0.57 0.63 0.99 0.94 1.00 1.00 1.00 1.00
A3 2.0 9.0 0.11 0.04 0.07 0.11 0.59 0.64 1.00 0.92 1.00 1.00 1.00 1.00
A4 .5 2.2 0.04 0.04 0.05 0.04 0.26 0.18 0.67 0.46 0.97 0.91 1.00 1.00
A5 1.5 7.5 0.01 0.02 0.04 0.09 0.51 0.49 0.94 0.85 1.00 0.99 1.00 1.00
A6 2.0 21.2 0.02 0.03 0.04 0.09 0.30 0.37 0.70 0.67 0.97 0.89 1.00 0.94
A7 3.16 23.8 0.04 0.05 0.08 0.21 0.84 0.70 1.00 0.85 1.00 0.95 1.00 0.98
A8 3.8 40.7 0.04 0.07 0.12 0.26 0.90 0.70 0.99 0.82 1.00 0.93 1.00 0.96
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Table 5: Macroeconomic Data

Sample Series π̂3 π̂4 π̂34 τ̂ κ̂
71:1-97:12 Canada-U.S. Ex. Rate 1.559 0.371 2.685 0.226 3.139
71:1-97:12 German-U.S. Ex. Rate -0.646 1.128 1.799 -0.134 3.499
71:1-97-12 Japan-U.S. Ex. Rate -2.379 2.103 8.522 -0.481 3.905
48:1-97:12 Unemployment Rate 0.926 1.235 7.913 0.308 8.621
46:1-97:12 Ind. Prod. 1.223 1.675 5.074 0.994 13.274
59:1-97:4 Inflation (GDP) 1.771 0.253 3.076 0.870 3.284
59:1-97:4 GDP -1.408 1.410 2.305 -0.561 4.717
47:1-97:12 Inflation (CPI) 3.186 1.666 10.104 0.942 4.491

81:10:30-96:05:10: 30 day Int. Rate -0.564 2.704 8.496 -0.415 11.861
80:11:03-98:01:19 M2 -0.100 0.310 0.199 -0.017 3.116

59:3-96:4 Con. Durables -1.868 1.697 3.545 -0.791 5.023
59:3-96:4 Con. Non-Durables 0.569 1.443 4.181 0.212 4.721
46:1-96:11 Employment -1.560 1.589 3.747 -0.280 3.733
49:3-97:4 Investment -1.525 1.291 2.568 -0.732 5.254
46:1-97:12 Manu. Employment -1.845 1.710 2.624 -1.644 10.543
46:1-97:12 Non Manu. Employment 0.395 1.260 4.468 0.117 5.857
59;3-97:4 Final Sales -0.034 1.506 2.794 -0.017 5.404
59:3-97:4 Non-Resid. Invest -1.549 1.072 2.805 -0.409 3.680
59:3-97:4 Resid. Invest -0.955 1.341 2.249 -0.457 5.134

90:01:02-96:12:31 Stock Returns (V) -2.764 3.248 10.859 -0.481 5.187
90:01:02-96:12:31 Stock Returns (E) -3.931 3.455 16.166 -0.990 6.943

The 5% critical value for π3 and π4 is 1.96, and for π34 is 5.99.
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