
Urban Economic Aggregates
in

Monocentric and Non-monocentric Cities

Richard Arnott*

May 2001

* Department of Economics
Boston College
Chestnut Hill. MA 02467
USA
617-552-3674
richard.arnott@bc.edu



1

Urban Economic Aggregates in Monocentric and Non-monocentric Cities

1.  Introduction

It is well known that there is an elegant pair of relationships between urban economic

aggregates in simple, monocentric cities.  The first concerns the relationship between

aggregate transport costs (ATC) and differential land rents (DLR – the excess of urban land

rents over the agricultural land rent), the second the relationship between urban economic

aggregates in cities of optimal population size.

The monocentric city model has been under attack in recent years as providing a

twentieth-century analysis of the nineteenth-century city, since over the course of the

twentieth century cities have become increasingly polycentric.  This paper addresses the

question:  How do the relationships between urban economic aggregates in monocentric

cities extend to polycentric cities?

This is an apt choice of topic for this workshop since –– as will become evident –– it

is clearly related to Rena Sivitaidou’s first published paper (with Bill Wheaton), “Wage

and Rent Capitalization in the Commercial Real Estate Market” (Journal of Urban

Economics 31, 206-229 (1992)), though its focus is different.

Section 2 reviews the relationship between ATC and DLR in monocentric cities.

Section 3 explores how this relationship extends to non-monocentric cities.  Section 4

examines the relationship between urban economic aggregates in cities of optimal

population size in both monocentric and non-monocentric cities.  And section 5 concludes.

2.  ATC and DLR in Monocentric Cities

The first paper on this topic was Mohring (1961).  Mohring examined a circular city

with linear transport costs in which all individuals have identical and fixed lot sizes, T .  Let

x denote distance from the central business district (CBD), t transport costs per unit
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distance, fixed lot size, R(x) the rent function, N the city’s population, and RA the agricultural

rent.

Consider an individual’s choice of residential location.  If she moves a unit distance

further from the CBD her transport costs increase by t.  If lot rent falls by less than t, she

prefers the more central location; if it falls by more than t, she prefers the more distant

location; and if it falls by exactly t, she is indifferent between the two locations.  To satisfy

the equilibrium condition that the supply of land equal the demand for land at all locations

therefore requires that ′ = −R x T t( ) .  It also requires that all households obtain a lot, and

that at the urban boundary, x , the urban rent equals the agricultural rent, NT x= Π 2 and

R x RA( ) = , respectively.  Thus, at all locations between the boundary and the CBD

R O T R x T tx R x T tx R T txA( ) ( ) ( )= + = + = + . (1)

This series of equalities is depicted in Figure 1.

Now imagine rotating the diagram around the y-axis.  The base is then a circle with

radius x , which is just the area of the city, and the height of BE at a particular location the

land rent there.  Thus, aggregate land rents in the city are given by the volume of the cone

with base radius x  and height R(O).  Thus,

E

R(x)

R x
tx

T
( ) +

C

D

x
x

B

RA

tx

T

O

Figure 1:  The Mohring
Diagram
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ALR .= = ( )1
3

1
3

2bh x R Oπ ( ) (2)

Differential land rents are given by the corresponding volume but with agricultural land

rents subtracted off:

DLR = ( ) −( )1
3

2πx R O RA( )

= ( )



1
3

2πx
tx

T
. (using (1)) (3)

The sum of land rent and transport cost per unit area at location x is R x
tx

T
R

tx

TA( ) + = + .

Thus, aggregate land rents in the city plus aggregate transport costs are given by the volume

of a cylinder with base radius x and height R
tx

TA + .  Thus

ATC + ALR = ( ) +



πx R

tx

TA
2 . (4)

Subtracting off agricultural rents yields

ATC + DLR .= ( )

πx

tx

T
2 (5)

Comparing (3) and (5) yields

ATC=2DLR. (6)

Arnott and Stiglitz (1981–– AS hereafter) generalize the result in a number of

directions.  They demonstrated first that the result generalizes to variable lot size.  With

variable lot size, the equilibrium condition that land rent be such that individuals are

indifferent as to where in the city they locate is the “Muth condition”:

′ = −R x
t

T x
( )

( )
, (7)

where T(x) is the equilibrium lot size at x.  Then

DLR = −∫ ( ( ) )R x R xdxA

x
2

0
π
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= − ∫∫ R x xdx R xdxA

xx
( )2 2

00
π π

= ( ) − ′ −∫R x x R x x dx R x
x

A

x
( ) ( )π π π2

0

2

0

2   (integration by parts)

= + −∫R x x
t

T x
x dx R x

x

A( )
( )

π π π2

0

2 2  (using (7))

= ∫1
2

2
0

tx

T x
xdx

x

( )
π       (using R x RA( ) )=

= 1
2

ATC . (8)

The essential step in the derivation is the integration by parts, which shall recur repeatedly in

the analysis that follows.

AS then generalized the result to an arbitrary transport cost function, f(x), which gives

the cost of transportation associated with location x, and an arbitrary shape of the city, Φ(x),

which gives the residential land area within a distance x of the CBD.  With the transport cost

function, f(x) the Muth rule is

′ = − ′
R x

f x

T x
( )

( )

( )
. (7′)

Thus,

DLR = −( )∫ R x R x dxA

x
( ) ( )

0
ϕ ϕ ( ) ( )x x≡ ′( )Φ

= − ′∫ R x x dx
x

( ) ( )Φ
0

(integration by parts)

= ′∫ f x

T x
x dx

x ( )

( )
( )

0
Φ . (using (7′)) (9)

Meanwhile

ATC = ∫ f x

T x
x dx

x ( )

( )
( )

0
ϕ . (10)

Comparison of (9) and (10) gives rise to
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Theorem 1:  If ′ =>< ∈ =><f kf x x kΦ   for all  then DLR ATC .ϕ ( , ),0

Consider for example a long, narrow city ( ( ) )Φ x c x= 0 in which due to traffic congestion

f x c x( ) ..= 1
8   Then k=.8 and DLR =.8 ATC.

AS also demonstrated that Theorem 1 can be restated by defining the transport cost

shape of the city Ω(f) to be the residential land area within a transport cost distance f of the

CBD.  Then since Ω(f(x))=Φ(x), Ω′f′= ϕ, so that ′ ′
′ ′= =f

f
f
f f f

Φ Ω
Ω

Ω
Ωϕ and Theorem 1 can be

restated as:

Theorem 1′:  If Ω
Ωf k f f k′ =>< ∈ =>< for all  then DLR  ATC.( , )0

AS also showed that the result extends to multiple household groups who differ in

their transport cost functions and their choices of lot size as a function of location.  Index

groups by i and residential rings (indexed away from the city center) by j, and let i(j) denote

the group living in ring j.  Then, where ρ is the number of rings:

DLR = −+

∫∑
=

( ( ) ) ( )R x R x dxAx

x

j j

j ϕ
ρ

1

1

= − ′+

∫∑
=

R x x dx
x

x

j j

j

( ) ( )Φ  
1

1

ρ

=
′+

∫∑
=

f x

T x
x dxi j

i j
x

x

j j

j ( )

( )

( )

( )
( )

1

1

ρ

Φ (9′)

and

ATC = +

∫∑
=

f x

T x
x dxi j

i j
x

x

j j

j ( )

( )

( )

( )
( ) .ϕ

ρ
1

1

(10′)

Then the earlier results generalize when all groups have the same elasticity of transport costs

with respect to distance from the CBD.  Otherwise, the relationship between ATC and DLR

can be bounded by the maximum and minimum elasticities across groups.

Several comments are in order:
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1.  All the results are essentially capitalization results1 since the Muth rule, which is central

to the derivation, indicates how marginal transport costs are “capitalized” into marginal

land rent.

2. The results apply to any non-monocentric city with a competitive land markets in which

differences in land rents are determined only by differences in accessibility for residents.

Let a denote accessibility, ˆ ( )f a  transport costs as a function of accessibility and ˆ ( )Φ a the

area of land with accessibility greater than a.  Then all of the above analysis goes through,

except for the obvious changes that arise due to rent increasing with accessibility.

But in interesting non-monocentric cities, land rents are determined not only by the

accessibility for residents, but also by the productivity of different locations from the

perspective of firms.  The next section considers how the results are modified when these

complications are treated.

3.  The results apply to any city with a competitive land market in which differences in land

rents are determined only by differences in residential accessibility.  What is essential is that

the Muth rule apply.  Thus, the results apply with zoning, height restrictions, and/or traffic

congestion.  They do not apply, or are at least modified, if there are Ricardian differences in

land (microclimate, the view, proximity to the ocean), if there is spatially-varying pollution,

or if the level of taxes or public services vary over space.  They do apply to any optimal (as

opposed to equilibrium) city in which land rents depend only on accessibility, except of

course that DLR is shadow differential land rents.

To see how the results extend when residential land rents capture not only differences

in accessibility, consider a monocentric city in which pollution varies over space.  To start,

suppose that all residents are identical, that pollution is radially symmetric, with K(x) the

pollution concentration at x and K′(x)<0.  Then a resident’s locational choice problem is

                                                
1 “capitalization” is an abuse of terminology since properly a future stream of benefits is capitalized into an
asset value, which applies only in dynamic contexts.



7

max  s.t.      

max 

U C T K x Y C R x T f x
x

U Y R x T f x T K x
x

( , , ( )) ( ) ( )

( ( ) ( ), , ( )).

= + +

⇔ − −

The first-order condition with respect to x is

U R T f U KC K( ) ,− ′ − ′ + ′ = 0 (11)

so that the generalization of the Muth rule is

′ = − ′ + ′R T f
U

U
KK

C

. (11′)

Then2

DLR = − ′∫ R x x dx
x

( ) ( )Φ
0

= ′ − ′



∫∫ f x

T x
x dx

U

U

K

T
x dxK

C

xx

x

( )

( )
( ) ( ) ,Φ Φ 

00
(12)

while (10) continues to apply.  − ′U
U

K
T

K

C
 is the rental discount a resident requires to live a unit

distance closer to the CBD due to increased pollution.  Thus, − ( )′∫ U
U

K
T

x

x

K

C
x dx

0
Φ( )  can be

referred to the capitalized pollution discount (CP).  Likewise, ′∫ f x
T x

x
x dx( )

( ) ( )Φ
0

 can be

referred to as the capitalized transport cost premium (CT), so that (12) can be rewritten as

DLR = +CT CK. (12′)

4. In all the analysis thus far, it has been possible to index locations uni-dimensionally,

either because of radial symmetry or because locations can be unambiguously ranked in

terms of accessibility or more generally desirability.  But this is not always the case; for

example, when different groups attach different relative valuations to improved accessibility

and reduced pollution concentration, locations must be described using two coordinates. To
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introduce the analytics, two-dimensional analysis is applied to a problem that can also be

solved using one-dimensional analysis –– the relationship between DLR and ATC in a city

on a homogenous plane with a Manhattan network in which travel per unit distance in the

north-south direction is t0 and in the east-west direction t1.

The one-dimensional analysis proceeds as follows.  Let f t y t x= +0 1 denote

transport cost.  The residential area with transport cost less than f (the transport cost shape

of the city) is

Ω( )f dxdy

f t y

t

f
t

=
−

∫∫4
00

0

10   

= −∫4
20

10

2

1 0

0     =
f t y

t
dy

f

t t

f

t
.

From Theorem 1′, ATC=2DLR.

Consider now the two-dimensional analysis.  Rent and transport cost are now

functions of both x and y.  Since the four quadrants of the city are symmetric, the

relationship between ATC and DLR can be derived by examining only quadrant I, where

both x and y are positive.  The generalization of the Muth model is

R x y
t

T x y
R x y

t

T x yx y( , )
( , )

( , )
( , )

.= − = −1 0 and (13)

Also,

DLR R x y R dxdyA

f t y

t
f

t= −( )
−

∫∫ ( , )
00

0

10   , (14)

where f  is the transport cost to the boundary of the city at which R(x,y)=RA.  Integrate (14)

by parts:

                                                                                                                                                
2 With pollution it is possible that the residential bid-rent curve falls below RA at locations inside the city.
These locations are then farmed.  This complication can be dealt with by defining Φ(x) to be the
equilibrium residential area within x of the CBD.
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DLR = ( ) − − −

















− −

∫∫ R x y x R x y x dx R
f t y

t
dy

f t y

t

x A

f t y

t

f

t

( , ) ( , )
0

0

100

0

1

0

10

 

=
−

∫∫ t x

T x y
dxdy

f t y

t

f

t
1

00

0

10

( , )
.  (15a)

Reversing the order of integration:

DLR = =

−−

∫∫∫∫ t y

T x y
dydx

t x

T x y
dxdy

f t y

t

f

t
f t x

t

f

t
0 1

0000

0

10
1

01

( , ) ( , )
(15b)

Then

ATC = + =
−

∫∫ t y t x

T x y
dxdy

f t y

t

f
t

0 1
00 2

0

10

( , )
.  DLR (16)

Now consider the same city, except that there are two groups in the population which

have different transport cost functions f 1(x,y) and f 2(x,y).  The groups may be

differentiated by income or modal choice.  In general, a two-dimensional analysis is needed

to treat this problem.  Let I x yi ( , ) be an indicator function, equaling 1 if group I lives at

(x,y) and zero otherwise, for i=1,2.  Then

DLR
 

= −∫∫∑
=

I x y R x y R dxdyi
A

i

( , )( ( , ) ) ,
A1

2

(17)

where   A  denotes the residential area of the city.  The integration by parts yields

DLR
 

= ∫∫∑
=

I x y R x dxdyi
x

i

( , )   
A1

2

= =∫∫∑ ∫∫∑
= =

I x y f x y x

T x y
dx dy

I x y f x y y

T x y
dx dy

i
x

i
i

i
y

i
i

i i

i

( , ) ( , )

( , )

( , ) ( , )

( , )
A A1

2

1

2

    (18)

Also

ATC
 

= ∫∫∑
=

I x y f x y

T x y
dxdy

i i

i
i

( , ) ( , )

( , )
.

A1

2

(19)
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Eqs. (18) and (19) give an implicit relationship between DLR and ATC.  If the two groups

have different linear transport cost functions, it is still the case that ATC=2DLR.

Thus, the results do extend to situations where a two-dimensional analysis is needed.

5.  How do the  results extend when there is housing?  Consider first the case where

housing is non-durable.  The relationship between ATC and DLR remains unchanged.

Residents simply combine some of their composite good with their land to produce

housing.  What about the relationship between differential housing rents (DHR) and

aggregate transport costs?  When households derive utility from just housing and other

goods, the analog to the Muth condition, for the case of linear transport costs, is

′ = −
R x

t

H xH ( )
( )

, (20)

where RH(x) is the housing rent function and H(x) the quantity of housing consumed at x.

DHR = −( )∫ R x R x x dxH H H

x
( ) ( ) ( ) ,Φ

0
(21)

where ΦH x dx( ) is the floor area of housing between x and x+dx.  Integration by parts gives

DHR = − ′∫ R x x x dxH H

x
( ) ( )Φ

0

= ∫ t

H x
x dxH

x

( )
( )Φ   

0
. (22)

Also

ATC = ∫ tx

H x
x dx

x

H( )
( )

0
ϕ   . ϕ H

Hx
d x

dx
( )

( )=





Φ
(23)

Thus, there is a completely analogous relationship between DHR and ATC as between DLR

and ATC.  Once an immobile structure is built on a piece of land, the market land rent there

is not defined since it is not possible to rent the land without the structure on it.  Thus, with

durable housing, DLR is not well defined.  The relationship between DHR and ATC does,

however, continue to apply with durable housing since housing rent remains well-defined.
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6.  The analysis thus far has treated trip demand as completely inelastic.  Suppose instead

that the number of trips taken at x depends negatively on the location’s accessibility:

η η( ) ˆ ( ( ))x f x= , ′ <η 0.  Then the Muth rule becomes

′R x( ) = − ′η( ) ( )

( )
,

x f x

T x
(24a)

and so

DLR = − ′∫ R x x dx
x

( ) ( )Φ
0

= ′∫
η( ) ( )

( )
( )

x f x

T x
x dx

x

0
Φ (24b)

and

ATC = ∫ η ϕ( ) ( )

( )
( ) .

x f x

T x
x dx

x

0
(24c)

Thus, the relationship between ATC and DLR is unaffected by elastic trip demand, except

that f(x) is interpreted as per-trip transport costs at x.

3.  Analogous Relationships in Non-monocentric Cities

We have already seen that our analysis extends to non-monocentric cities when all the

urban land area is devoted to residential land/housing.  With identical households, “distance

to the CBD” is replaced by “accessibility”, and the analysis goes through as before.  With

heterogeneous households, a two-dimensional analysis is in general necessary, and (18) and

(19) apply.  The difficult aspect of the extension to non-monocentric cities is the treatment

of non-residential land use, which we shall term generically commercial land use.

Consider the location decision of a firm.  In making this decision, it takes into account

not only the accessibility of alternative locations, but also how wages and productivity vary

over location.  Thus, not only differences in transport costs, but also differences in wages

and productivity are capitalized into land rents.  The economics of the process was first

considered by Fujita and Ogawa (1981), then by Roback (1982), and subsequently by
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Sivitanidou and Wheaton (1992).  The analysis below will draw heavily on the insights

provided by those papers and apply them to examine the relationship between urban

economic aggregates in cities in which there is both commercial and residential land use.

To fix ideas, consider what Fujita and Ogawa term a “completely mixed urban

configuration” in which firms and households are completely interspersed, with each

household living right next to the firm where it works so that commuting costs are zero.

Firms benefit from the proximity of other firms, so that firms that are more centrally located

are more productive.  This translates into higher rents at more central locations.  The land

market is competitive.  Consequently workers at more central locations have to pay higher

rents, and require higher wages to compensate them for the higher rent.  What is the

relationship between urban economic aggregates in this city?

To simplify the analysis, the following assumptions are made:  i)  the city is long and

narrow (of unit width), which permits one-dimensional analysis; ii)  there are spatially-

attenuating Marshallian economies of scale, with each firm perceiving that it operates under

constant returns to scale, so that firm size is indeterminate; iii)  nevertheless, for analytical

convenience, each firm is taken to occupy a unit area of land. x is measured so that x=0

corresponds to the city center.

Following Fujita and Ogawa, a location potential function is defined which measures

the productivity of a location as a function of proximity to other firms.  To simplify, it is

assumed that the function P(x) has the general form

P x n y D x y dy
x

x
( ) ( ) ( ) ,= −

−∫ (25)

where n y( )is the number of workers at y and D x y( )−  is the distance-decay function, and

that output per unit area of commercial land at y is

q x P x g n x g g( ) ( ) ( ( )), ,= ′ > ′′ <           0 0. (26)

Let h(x) be the proportion of land at x used by households and b(x) be the proportion used

by business.

Now consider a representative firm’s profit function:
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Π( ) ( ) ( ) ( ) ( )x q x w x n x R xb= − −

= − −P x g n x w x n x R xb( ) ( ( )) ( ) ( ) ( ), (27)

where w(x) is the wage rate at x and Rb(x) is the business bid rent.  By assumption there is a

completely mixed urban configuration in equilibrium.  This implies that production must be

equally profitable at all urban locations.  Furthermore, free entry and exit of firms is

assumed, which implies that equilibrium profits are zero.  Then:

n(x): Pg wn − = 0 (28a)

x: ′ − ′ − ′ + −( ) ′ =P g w n R Pg w nb n 0 (28b)

Π=0: R Pg wnb = − . (28c)

Eq. (28a) is the labor-demand condition, (28b) the equal-profit-at-all-urban-locations

condition, and (28c) the zero-profit condition.

The representative worker’s utility-maximization problem is

max            U C T s t I w x R x T C
x T C

h( , ) . . ( ) ( )
, ,

+ − − =0 (29)

where I is lump-sum income and since R xh ( ) is the residential bid rent at x.  Since by

assumption there is a completely mixed urban configuration, there are workers living at all

urban locations.  Then

T: −U R UC h T+ = 0 (30a)

x: U w R TC h′ − ′( ) = 0 (30b)

Eq. (30a) is lot-size-choice condition, and (30b) the equal-utilities-at-all-urban-locations

condition.

There are three other equilibrium conditions:

n x b x
h x

T x
( ) ( )

( )

( )
− = 0  (with b x h x( ) ( )= −1 ) ∀ ∈x U (31a)

R x R xb ( ) ( )− = 0 ∀ ∈x U (31b)

R x R x RA−( ) = =( ) , (31c)
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where U is the set of the urban locations.  Eq. (31a) indicates that at all urban locations, all

land is used and the number of workers employed there equals the number of workers

living there; (31b), that equilibrium in the land market requires that the residential bid rent

equal the commercial bid rent at all urban locations; and (31c) that at the urban boundary the

urban rent equals the agricultural rent.

Now

DLR = −( ) = −( )∫∫−
R x R dx R x R dxA A

x

x

x
( ) ( )2

0
(using (31b))

= − ′∫2 00
R x xdx

x
( ) (integration by parts and (31c))

= − ′ + ′{ }∫∫2
00

R x b x xdx R x h x xdx
xx

( ) ( ) ( ) ( )

= − ′ − ′( ) + ′





∫∫2

00
P g w n bxdx

w

T
hxdx

xx
(using (28b) and (30b))

= − ′∫2
0
P gbxdx

x
. (using (31a)) (32a)

The terms on the RHS is the capitalized agglomeration premium (CG), and is analogous to

the capitalized transport cost premium and the capitalized pollution discount introduced

earlier.  Thus, (32) may be written succinctly as

DLR = CG. (32b)

Since there is no commuting, aggregate transport costs are of course zero.

There are still a few loose ends with respect to the characterization of equilibrium.

1.  The disposition of land rents affects the equilibrium but not the relationship between

aggregates derived in the paper.  For the sake of concreteness, however, assume that land

rents go to absentee landlords.

2.  How are the population and/or the utility level of workers determined?  To begin, take as

fixed the utility level.  Given the utility level and the agricultural rent, the equilibrium wage

and lot size at the boundary locations, w x T x( ) ( ) and respectively, can be solved for.  From

(28a) and (28c), P x n x( ) ( ) and can be solved.  Then from (31a) b x( )can be solved for.
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Now conjecture an equilibrium function n x( ) ( )0 which from (25) yields P x( ) ( )0  and

′P x( ) ( )0 .  From (28b) and (30b), ′ ′w x R x( ) ( ) and can be calculated, from which

w x dx R x dx( ) ( )− − and can be calculated, etc.  Proceeding recursively to smaller and

smaller values of x and stopping at x = 0, yields n x( ) ( )1 .  A function ˜( )n x which corresponds

to a fixed point of this procedure is a candidate equilibrium.

3.  A final equilibrium condition is that the allocation corresponding to a candidate

equilibrium n x( ) is consistent with a completely mixed urban configuration being the

equilibrium configuration.  A necessary and sufficient candidate for this is that no worker

have an incentive to work at a location different from where he resides.  This is equivalent to

the condition that ′ ≤w x t( ) at all urban locations, and will clearly be satisfied for

sufficiently large t.

Uniqueness of n(x) conditional on existence remains to be established.

Now consider how locational productivity differentials are capitalized into wages and

rents in such an equilibrium.  From (28b)

′P g = ′ + ′w n Rb

= ′ + ′w n R = ′ + ′
w n

w

T
(using (30b)

= ′ +
−





w n

nb

b1
(using (31a))

= ′
−





w n

b

1
1

(34a)

and ′P g = ′ + ′w n R = ′ +R nT( )1 (using (30b)

= ′

R

b

1
 .  (using (31a)) (34b)

Thus, the extent to which productivity differences are capitalized into rents compared to

wages depends on b, the proportion of land at that location in commercial use.  From (34a)

and (34b):
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′ = − ′ ′ = ′w n b P g R bP g( )1   and  . (35)

Define

∅ = =
−∫ ∫Pgbdx Pgbdx

x

x x
2

0
(33a)

to be gross urban output.  Comparing (32a) and (33), and making use of (32b), yields

DLR
∅

=
− ′∫
∫

P gbxdx

Pgbdx

x

x
0

0

(33b)

which provides bounds on the ratio of DLR to gross output; in particular ε ε∅ > > ∅DLR ,

when ε ε ε ε ε= = = ′

∈ ∈
 max       min    and , ,

( , ) ( , )

P x
P

x x x x0 0
  is the elasticity of productivity with respect

to distance from the city center.

The above analysis assumed that there are no restrictions on commercial and

residential density.  Restrictions on residential density do not affect the analysis –– (30b)

still applies.  Neither do restrictions on commercial density –– as characterized1 by n(x).

Assume a restriction on maximum labor density, n .  Consider the term Pg w nn −( ) ′ = 0 in

(28b); at those locations where the density restriction binds, ′ =n 0, and at other

locations Pg wn − = 0 .  If, however, the density restriction varies over space, then

DLR = − ′ − −( ) ′{ }∫∫2 2
00

P gbdx Pg n x w n x bdxn

xx
( ( )) ( )

= +CG EB , (33c)

where

EB = −( ) ′
−∫ Pg n x w n x bdxnx

x
( ( )) ( )

˜
(33d)

                                                
1 We may imagine that a fixed floor area is required for each worker.  g(n) is then the net product after
subtracting off the resources used to provide the floor area needed for n workers.



17

is the excess burden associated with the spatially varying component of the density

restriction.

Let us now turn to equilibrium configurations in which residential and commercial

land are everywhere separated.  Figure 2 displays a possible equilibrium land use pattern.

Locations are measured from the left to the right, with x=0 denoting the left boundary of the

city.  R denotes residential area and C commercial area.  Commercial and residential districts

are indexed from left to right.  Define ai to be the left edge of a commercial zone and c1 the

right edge.

It is well-known and can be quite easily established by contradiction that no worker

travels all the way across a subcenter.  Thus, all the workers living to the west of a1 work in

the commercial district between a1 and c1 etc.  Furthermore, there is no cross commuting in

equilibrium.  This implies that there is a location in the interior of commercial district i, bi ,

such that at all commercial locations in the district to the left of it workers travel to there

from left to right, and at all commercial locations in the district to the right of it, workers

travel from right to left.  This also implies that there is a location in the interior of each

interior residential district di such that at all residential locations to the left of it workers

travel to the commercial district to their left, and at all residential locations to the right of it

workers travel to the commercial district to their right.  The resulting commuting directions

are indicated by the arrows at the bottom of the figure.  These equilibrium conditions

considerably simplify the analysis.  Then

               a1    b1          c1            d1       a2         b2      c2      d2       a3      b3       c3

     R                  C  R         C       R               C              R

x

Figure 2

0
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DLR = −( ) + −( ) + −( ){ }∫∫∑∫
=

R x R dx R x R dx R x R dxA b A b Ab

c

a

b

i

ka

i

i

i

i

( ) ( ) ( )
1

0

1

+ −( ){ } + −( ){ } + −( )∫ ∫ ∫∑∑ +

=

−

=

−

R x R dx R x R dx R x R dxAc

d

Ad

a

Ac

x

i

k

i

k

i

i

i

i

k

( ) ( ) ( )
1

1

1

1

1

. (36)

Now

R x R dxA

a
( ) −( )∫0

1 = ( ) − ′ −∫R x x R x xdx R aa
A

a
( ) ( )0 10

1
1

= − −∫R a a
tx

T x
dx R a

a

A( )
( )

.1 1 0 1

1

(37)

Also,

R x R dxb Aa

b

i

i

( ) −( )∫ = ( ) − ′ − −∫R x x R x xdx R b ab a

b

b A i ia

b

i

i

i

i

( ) ( ) ( )

                            = − − ′ + ′ − −∫∫R b b R a a P gxdx w nxdx R b ab i i b i i A i ia

b

a

b

i

i

i

i

( ) ( ) ( ).

Between ai and bi, the wage has to compensate for the increase in transport cost: w′=t.

Thus,

R x R dx R b b R a a P gxdx tnxdx R b ab A b i i b i i A i ia

b

a

b

a

b

i

i

i

i

i

i

( ) ( ) ( ) ( )−( ) = − − ′ + − −∫∫∫ .(37b)

Between bi and ci, w′= –t.  Thus:

R x R dx R c c R b b P gxdx tnxdxb A b i i b i i b

c

b

c

b

c

i

i

i

i

i

i

( ) ( ) ( )−( ) = − − ′ −∫∫ ∫ (37c)

R x R dx R d d R c c
tx

T x
dx R d cA i i i i c

d

c

d

A i i
i

i

i

i

( ) ( ) ( )
( )

( )−( ) = − + − −∫∫ (37d)

R x R dx R a a R d d
tx

T x
dx R a dA i i i i d

a

d

a

A i i
i

i

i

i

( ) ( ) ( )
( )

( )−( ) = − − − −+ + +
++

∫∫ 1 1 1

11

(37e)

R x R dx R x x R c c
tx

T x
dx R x cA k k c

x

c

x

A k
kk

( ) ( ) ( )
( )

( )−( ) = − + − −∫∫ . (37f)

Hence,

DLR = − + − ′( ) − + ′( ){ }∫ ∫∫∑
=

tx

T x
dx tn P g xdx tn P g xdx

a

b

c

a

b

i

k

i

i

i

i

( )0
1

1
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+ −







+
+

=

−

∫∫∑ ∫tx

T x
dx

tx

T x
dx

tx

T x
dx

d

a

c

d

i

b

c

x

i

i

i

i

k( ) ( ) ( )

1

1

1

. (38)

Now,

ATC = − + −( ) + −( ){ }∫ ∫∫∑
=

t a x

T x
dx t x a ndx t c x ndx

a

i ib

c

a

b

i

k

i

i

i

i( )

( )
1

0
1

1

+ − + −







+ −+
+

=

−

∫∫∑ ∫t x c

T x
dx

t a x

T x
dx

t x c

T x
dxi i

d

a

c

d

i

k
k

c

x

i

i

i

i

k

( )

( )

( )

( )

( )

( )
1

1

1

1

(39)

= − + −{ }∫ ∫∫∑
=

tx

T x
tnxdx tnxdx

c

a

b

c

a

b

i

k

i

i

i

i

( )

1

1

+ −







++

∫∫∑ ∫
=

− tx

T x
dx

tx

T x
dx

tx

T x
dx

d

a

c

d

i

k

c

x

i

i

i

i

k( ) ( ) ( )

1

1

1

+ + − +{ }∫ ∫∫∑
=

a t

T x
dx tndx c tndx

a

ib

ci

a

a

i

k

ii

i1

0
1

1

( )

+ − +







−+
+

=

−

∫∫∑ ∫c t

T x

a t

T x
dx

c t

T x
dxi i

d

a

c

d

i

k
k

c

x

i

i

i

i

k( ) ( ) ( )
1

1

1

1

. (39′)

Now,  
1

0

1

1

1

T x
dx ndx

a

b

c

( )∫ ∫= , etc. Substituting these relationships into (39′) yields

ATC = − + −{ }∫ ∫∫∑
=

tx

T x
dx tnxdx tnxdx

a

b

c

a

b

i

k

i

i

i

i

( )0
1

1

+ −







++

∫∫∑ ∫
=

− tx

T x
dx

tx

T x
dx

tx

T x
dx

d

a

c

d

i

k

c

x

i

i

i

i

k( ) ( ) ( )

1

1

1

. (40)

Comparing (38) and (40) yields

DLR + ′ + ′{ } =∫∫∑
+

P gxdx P gxdx ATC
b

c

a

b

i

k

i

i

i

i

1

. (41)

Now, analogous to the case with the completely mixed urban configuration, we define the

capitalized agglomeration premium to be

  CG = − ′{ }∫∑
=

P gxdx
a

c

i

k

i

i

1

. (42)

Substituting (41) into (40) yields
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DLR=CG + ATC. (43)

We have already seen how density restrictions affect the analysis.  What about

restrictions on land use?  Suppose for example that commercial area 1 is restricted in size

such that R a R a R c R cb b( ) ( ) ( ) ( )1 1 1 1> > and .  Then from (37a), (37b), and (37c)

DLR = CG +  ATC − − + −( ( ) ( )) ( ( ) ( ))R a R a a R c R c cb b1 1 1 1 1 1 . (44a)

In general,

DLR = CG + ATC – DWL, (44b)

where DWL is the deadweight loss due to land use restrictions.

Now let us turn to capitalization results.  Consider two locations e1 and e2 in

adjacent commercial areas 1 and 2:

R e R e( ) ( )2 1− = ′ + ′ + ′∫∫∫ R dx R dx R dxb ba

e

e

a

e

c

2

2

1

2

1

1

= ′ − ′( ) + + − + ′ − ′( )∫ ∫ ∫ ∫P g w n dx
t

T
dx

t

T
dx P g w n dx

a

c

C

d

d

a

a

e

1

1

1

1

1

2

2

2

Extensions –– To Be Completed

i. Different groups –– jobs, tastes, transport costs
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ii. Different industries

iii. Two dimensions
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iv. Mixed and separated areas

v. Extend to congestion
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vi. Capitalization into wages

vii. Explain CD

viii. Capitalization into rent
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Figure 1:  The Mohring
Diagram


