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Urban Economic Aggregates in M onocentric and Non-monocentric Cities

1. Introduction

Itiswell known that there is an elegant pair of relationships between urban economic
aggregates in smple, monocentric cities. Thefirst concerns the relationship between
aggregate transport costs (ATC) and differential land rents (DL R — the excess of urban land
rents over the agricultural land rent), the second the relationship between urban economic
aggregatesin cities of optimal population size.

The monocentric city model has been under attack in recent years as providing a
twentieth-century analysis of the nineteenth-century city, since over the course of the
twentieth century cities have become increasingly polycentric. This paper addresses the
guestion: How do the relationships between urban economic aggregates in monocentric
cities extend to polycentric cities?

Thisisan apt choice of topic for this workshop since— as will become evident — it
isclearly related to Rena Sivitaidou’ sfirst published paper (with Bill Wheaton), “Wage
and Rent Capitalization in the Commercia Real Estate Market” (Journal of Urban
Economics 31, 206-229 (1992)), though its focusis different.

Section 2 reviews the relationship between ATC and DLR in monocentric cities.
Section 3 explores how this relationship extends to non-monocentric cities. Section 4
examines the relationship between urban economic aggregates in cities of optimal

population size in both monocentric and non-monocentric cities. And section 5 concludes.

2. ATC and DLR in Monocentric Cities

Thefirst paper on this topic was Mohring (1961). Mohring examined acircular city
with linear transport costsin which all individuals have identical and fixed lot sizes, T. Let

x denote distance from the central business district (CBD), t transport costs per unit



distance, fixed lot size, R(X) the rent function, N the city’ s population, and R, the agricultural

rent.
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Consider an individual’s choice of residential location. If she movesaunit distance
further from the CBD her transport costsincrease by t. If lot rent falls by lessthant, she
prefers the more central location; if it falls by more than t, she prefers the more distant
location; and if it falls by exactly t, sheisindifferent between the two locations. To satisfy

the equilibrium condition that the supply of land equal the demand for land at all locations

therefore requiresthat R'(x)T = —t. It also requiresthat all households obtain alot, and

that at the urban boundary, X , the urban rent equals the agricultural rent, NT = MNx* and
R(X) = R,, respectively. Thus, at al |ocations between the boundary and the CBD

R(O)T = R(X)T +tx = R(X)T +tx =R,T +X. (D
This series of equalitiesis depicted in Figure 1.

Now imagine rotating the diagram around the y-axis. The baseisthen acircle with
radiusx , which isjust the area of the city, and the height of BE at a particular location the
land rent there. Thus, aggregate land rentsin the city are given by the volume of the cone

with baseradius X and height R(O). Thus,
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Differential land rents are given by the corresponding volume but with agricultural land

rents subtracted off:
1/
DLR ==(m*)(RO) - R,)

1, \[IXQ .

=—(K° ) == using (1 3
5 (%) (using (1)) ®)
The sum of land rent and transport cost per unit areaat location xis R(X) +t:X =R, +%(.

Thus, aggregate land rentsin the city plus aggregate transport costs are given by the volume

of acylinder with baseradius Xand height R, +%(. Thus

(o2 X[
ATC+ALR = (7% )EB“?D )
Subtracting off agricultura rentsyields

ATC+DLR = (mz)g%_(g

(5)

Comparing (3) and (5) yields
(6)

ATC=2DLR.
Arnott and Stiglitz (1981— AS hereafter) generalize the result in a number of

directions. They demonstrated first that the result generalizesto variable lot size. With

variable lot size, the equilibrium condition that land rent be such that individuals are
indifferent as to where in the city they locate is the “Muth condition”:
R(X) = —— (7)
T(x)
where T(x) isthe equilibrium ot sizeat x. Then

DLR = J':(R(x) ~ R,)2mxdx



= Ij R(x)2rxdx —J’OXRAZ TRAX
(R(x)nx ) J’ R (x) 7&°dx — R, &* (integration by parts)
= RGO + onﬁrxzdx R R (using (7))

1 % tx . o
=5 Omz TIxdx (using R(X) = R,)

1
= ZATC. 8
> (8)

The essential step in the derivation isthe integration by parts, which shall recur repeatedly in
the analysisthat follows.

AS then generalized the result to an arbitrary transport cost function, f(x), which gives
the cost of trangportation associated with location x, and an arbitrary shape of the city, @(x),
which gives the residential land areawithin a distance x of the CBD. With the transport cost
function, f(x) the Muth ruleis

f'(x)

R(x)=- T

)
Thus,
DLR = [[(RX) ~RP(dX ()= ®'(x)

= J’;R'(x)qb(x)dx (integration by parts)

’[7 fT((X))cp(x)dx (using (7)) 9)

Meanwhile
x f(X)
_|' —¢(X)d (10)

Comparison of (9) and (10) givesriseto



Theorem 1: If f'd 2 kf¢for all x J(0,%), then DLR Z kATC.
Consider for example along, narrow city (®(x) = ¢,X) in which due to traffic congestion

f(x) =cx®. Thenk=.8and DLR=.8ATC.
AS also demonstrated that Theorem 1 can be restated by defining the transport cost

shape of the city Q(f) to bethe residentia land areawithin atransport cost distance f of the
CBD. Thensince Q(f(X))=®(x), Q= ¢, sothaky = =-2 and Theorem 1 can be

restated as:

Theorem 1': If -2 Zkfor all f 0(0, f) thenDLR Z kATC.
AS also showed that the result extends to multiple household groups who differ in

thelr transport cost functions and their choices of |ot size as afunction of location. Index

groups by i and residential rings (indexed away from the city center) by j, and let i(j) denote

the group living inring j. Then, where p isthe number of rings:

DLR = f LXJ_"”(R(x) —R)$(x)dx

_ _i [ ROO®)d
_ e o figy (X '
_Jz:l L, _l_i(j)(X)GJ(x)dx (9)
and
_ e o B (X) i
ATC = lef Ti(j)(x)cb(x)dx. (10)

Then the earlier results generalize when all groups have the same elasticity of transport costs
with respect to distance from the CBD. Otherwise, the relationship between ATC and DLR
can be bounded by the maximum and minimum elasticities across groups.

Several commentsarein order:



1. All theresults are essentially capitalization results' since the Muth rule, which is central
to the derivation, indicates how marginal transport costs are “ capitalized” into marginal
land rent.

2. Theresults apply to any non-monocentric city with a competitive land markets in which

differencesin land rents are determined only by differencesin accessibility for residents.

L et a denote accessihility, f (@) transport costs as afunction of accessibility and &J(a) the
areaof land with accessibility greater than a. Then all of the above analysis goes through,
except for the obvious changes that arise due to rent increasing with accessibility.

But in interesting non-monocentric cities, land rents are determined not only by the
accessihility for residents, but also by the productivity of different locations from the
perspective of firms. The next section considers how the results are modified when these
complications are treated.

3. Theresults apply to any city with acompetitive land market in which differencesin land
rents are determined only by differencesin residential accessibility. What is essentia isthat
the Muth rule apply. Thus, the results apply with zoning, height restrictions, and/or traffic
congestion. They do not apply, or are at least modified, if there are Ricardian differencesin
land (microclimate, the view, proximity to the ocean), if there is spatially-varying pollution,
or if thelevel of taxes or public services vary over space. They do apply to any optimal (as
opposed to equilibrium) city in which land rents depend only on accessibility, except of
course that DLR is shadow differential land rents.

To see how the results extend when residential land rents capture not only differences
in accessibility, consider amonocentric city in which pollution varies over space. To Start,
suppose that all residents are identical, that pollution isradially symmetric, with K(x) the

pollution concentration at x and K'(X)<0. Then aresident’slocational choice problemis

! “capitalization” is an abuse of terminology since properly afuture stream of benefits is capitalized into an
asset value, which applies only in dynamic contexts.



max U(CT.K() st Y=C+RO)T +f(x)

o n)1(ax U(Y - R(X)T - f(x),T,K(x)).

Thefirst-order condition with respect to x is

U.(-RT-f")+U.K'=0, (11
so that the generalization of the Muth ruleis

R’T=—f'+Ld—KK'. (11)

C

Then?

DLR = —LXR'(X)CD(x)dx

E d(x)dx, (12

—||X

x f'(X) «[U,
I T(x )CD(x)dx IH

while (10) continues to apply. —tj—’;% Isthe rental discount aresident requiresto live aunit

distance closer to the CBD due to increased pollution. Thus, —J’ (U—KKT) @(x)dx can be

referred to the capitalized pollution discount (CP). Likewise, IOX fT'((XX)) d(x)dx can be

referred to as the capitalized transport cost premium (CT), so that (12) can be rewritten as
DLR =CT +CK. (12)
4. In dl the analysis thusfar, it has been possible to index locations uni-dimensionaly,
either because of radial symmetry or because |ocations can be unambiguoudly ranked in
terms of accessibility or more generally desirability. But thisis not always the case; for
example, when different groups attach different relative valuations to improved accessibility

and reduced pollution concentration, locations must be described using two coordinates. To



introduce the analytics, two-dimensional analysisis applied to a problem that can also be
solved using one-dimensional analysis— the relationship between DLR and ATC in acity
on a homogenous plane with a Manhattan network in which travel per unit distance in the

north-south direction ist, and in the east-west direction t,.
The one-dimensional analysis proceeds asfollows. Let f = toM+t1|X| denote

transport cost. The residential areawith transport cost less than f (the transport cost shape

of thecity) is

f o f-tey

Q(f) =4 fotofotl dxdy

_2f*?
tty

f

o f -ty
=4 [—2L (¢

¥

From Theorem 1', ATC=2DLR.

Consider now the two-dimensional analysis. Rent and transport cost are now
functions of both x and y. Since the four quadrants of the city are symmetric, the
relationship between ATC and DLR can be derived by examining only quadrant I, where
both x and y are positive. The generaization of the Muth model is

t0
T(xy)

R(XY) = ——2— andR (x.y) = -

13
T(xy) ()

Also,

foof-tyy

DLR= J:° Io " (R(xy) - R,) dxdy, (14)

where f isthetransport cost to the boundary of the city at which R(X,y)=Ra. Integrate (14)

by parts:

2 With pollution it is possible that the residential bid-rent curve falls below R, at locations inside the city.
These locations are then farmed. This complication can be dealt with by defining @(x) to be the
equilibrium residential areawithin x of the CBD.



f-toy f7t0y

DLR = J’%R(xy)x . —J’ R(Xy)xdx - R, ;toy%y

o [
f f- toy
dxd 15
.[ I T(x y) - (158)
Reversing the order of integration:
i f- tlx ; f toy
DLR = dxd 15b
If T(xy) II T(xy)xy (150)
Then
f t0)/
t,x
ATC = LY*UX iy =2DLR 16
f B Txy) Y (16)

Now consider the same city, except that there are two groups in the population which
have different transport cost functions f*(x,y) and f(x,y). The groups may be
differentiated by income or modal choice. In genera, atwo-dimensiona analysisis needed
to treat this problem. Let I'(x,y) bean indicator function, equaling 1 if group | lives at

(x,y) and zero otherwise, for i=1,2. Then

DLR= ZJ]’I (%, Y)(R(x,y) — R,)dxdy, (17)

1=1°4

where A denotes the residential area of the city. Theintegration by partsyields

DLR = ZHI (X,y)RXx dxdy

= ) O )X '(x, y)f (x y)y
- ZAI Ty X W= ZJT dx dy (18)
Also
ATC = .UI (% y)f (X Y . (19)



Egs. (18) and (19) give an implicit relationship between DLR and ATC. If the two groups
have different linear transport cost functions, it is still the case that ATC=2DLR.

Thus, the results do extend to situations where a two-dimensional analysisis needed.
5. How do the results extend when thereis housing? Consider first the case where
housing is non-durable. The relationship between ATC and DLR remains unchanged.
Residents smply combine some of their composite good with their land to produce
housing. What about the relationship between differential housing rents (DHR) and
aggregate transport costs? When households derive utility from just housing and other

goods, the analog to the Muth condition, for the case of linear transport costs, is

= 20
F?H()H() (20)

where Ry(X) is the housing rent function and H(x) the quantity of housing consumed at x.
DHR = [[(R,(x) = R, (X))@, (x)dx, (21)
where @, (x)dxisthe floor area of housing between x and x+dx. Integration by parts gives

DHR = —J’OKR;(X)XGDH(x)dx

_J’ e )q: L(X) dx. (22)
Also
%X d‘D (X)D
ATC _IOW”(X) dx. SpH( X) = . (23)

Thus, thereis a completely analogous relationship between DHR and ATC as between DLR
and ATC. Once an immobile structureis built on apiece of land, the market land rent there
isnot defined sinceit is not possible to rent the land without the structure on it. Thus, with
durable housing, DLR is not well defined. The relationship between DHR and ATC does,

however, continue to apply with durable housing since housing rent remains well-defined.

10



6. The analysisthusfar hastreated trip demand as completely inelastic. Suppose instead

that the number of trips taken at x depends negatively on the location’ s accessibility:

n(x) =n(f(x)), n' <0. Then the Muth rule becomes

R(x) = % (24a)

and so

DLR = —J’;R’(x)cb(x)dx

I (?(f )(X)CD(x)dx (24b)
and
ATC =[] ”(i)(f§x)¢(x)dx (240)

Thus, the relationship between ATC and DLR is unaffected by elastic trip demand, except

that f(x) isinterpreted as per-trip transport costs at x.

3. Anaogous Relationships in Non-monocentric Cities

We have aready seen that our analysis extends to non-monocentric cities when all the
urban land area is devoted to residential land/housing. With identical households, “ distance
to the CBD” isreplaced by “accessibility”, and the analysis goes through as before. With
heterogeneous households, atwo-dimensional analysisisin genera necessary, and (18) and
(19) apply. Thedifficult aspect of the extension to non-monocentric citiesis the treatment
of non-residential land use, which we shall term generically commercia land use.

Consider the location decision of afirm. In making this decision, it takes into account
not only the accessibility of alternative locations, but also how wages and productivity vary
over location. Thus, not only differencesin transport costs, but a so differences in wages
and productivity are capitalized into land rents. The economics of the process was first

considered by Fujitaand Ogawa (1981), then by Roback (1982), and subsequently by

11



Sivitanidou and Wheaton (1992). The analysis below will draw heavily on the insights
provided by those papers and apply them to examine the relationship between urban
economic aggregates in citiesin which there is both commercial and residential land use.

To fix ideas, consider what Fujita and Ogawaterm a*“completely mixed urban
configuration” in which firms and households are completely interspersed, with each
household living right next to the firm where it works so that commuting costs are zero.
Firms benefit from the proximity of other firms, so that firms that are more centrally located
are more productive. Thistrandatesinto higher rents at more central locations. Theland
market is competitive. Consequently workers at more central |ocations have to pay higher
rents, and require higher wages to compensate them for the higher rent. What isthe
relationship between urban economic aggregatesin this city?

To smplify the analysis, the following assumptions are made: i) thecity islong and
narrow (of unit width), which permits one-dimensiond analysis; ii) there are spatialy-
attenuating Marshallian economies of scale, with each firm perceiving that it operates under
congtant returnsto scale, so that firm sizeisindeterminate; iii) nevertheless, for analytical
convenience, each firm is taken to occupy aunit area of land. x is measured so that x=0
corresponds to the city center.

Following Fujitaand Ogawa, alocation potential function is defined which measures
the productivity of alocation as afunction of proximity to other firms. To smplify, itis

assumed that the function P(x) has the general form

P() = [ n(y)D(x = y)dy, (25)
where n(y)isthe number of workersat y and D(|x - y}) is the distance-decay function, and
that output per unit area of commercia landatyis

a(x) = P(x)g(n(x)), g >0,9"<0. (26)
Let h(x) be the proportion of land at x used by households and b(x) be the proportion used
by business.

Now consider arepresentative firm’s profit function:

12



M(x) = a(x) —wx)n(x) = R,(x)
= P(x)g(n(x)) —w(x)n(x) = R,(x), (27)
where w(X) isthe wage rate at X and R,(X) isthe business bid rent. By assumption thereisa
completely mixed urban configuration in equilibrium. Thisimpliesthat production must be
equally profitable at al urban locations. Furthermore, free entry and exit of firmsis

assumed, which implies that equilibrium profits are zero. Then:

n(x): Pg,-w=0 (28a)
X P'g-wn-R, +(Pg, -w)n'=0 (28b)
[1=0: R, = Pg—wn. (28¢)

Eq. (28a) isthe labor-demand condition, (28b) the equal-profit-at-all-urban-locations
condition, and (28c) the zero-profit condition.
The representative worker’ s utility-maximization problemis

max U(C,T) st I+w(x)-R,(X)T-C=0

X T.C (29)

where | islump-sum income and since R, (x)istheresidential bid rent at x. Since by
assumption thereis a completely mixed urban configuration, there are workersliving at al
urban locations. Then
T:  ~“UR+U;=0 (30a)
x.  U(w-RT)=0 (30b)
Eqg. (30a) islot-size-choice condition, and (30b) the equal-utilities-at-all-urban-locations
condition.

There are three other equilibrium conditions:

n(0b(x) = 2 — 0 (with b(x) =1-h(x)) D1 U (31a)
T(x)

R°(x) - R(x) =0 3 U (31b)

R(-X) = R(X) = R,, (31c)

13



where U isthe set of the urban locations. Eq. (31a) indicatesthat at al urban locations, all

land is used and the number of workers employed there equals the number of workers
living there; (31b), that equilibrium in the land market requires that the residential bid rent
equal the commercial bid rent at all urban locations; and (31c) that at the urban boundary the
urban rent equals the agricultura rent.

Now

X

DLR = (RO)-R,)dx=2 I;(R(x) ~R,)dx (using (31b))

-2 IOXR(’)(X) xadx (integration by parts and (31c))

—2{ J’j R (x)b(x)xdx + J':R'(x)h(x)xdx}

X xw' i
P Efo (Pg-wn)bxac+ [ hxdxﬁ (using (28b) and (30b))

=-2 IjP’gbxdx : (using (31a)) (328)

The terms on the RHS is the capitalized agglomeration premium (CG), and is analogous to
the capitaized transport cost premium and the capitalized pollution discount introduced
earlier. Thus, (32) may be written succinctly as

DLR =CG. (32b)
Since there is no commuting, aggregate transport costs are of course zero.

There are still afew loose ends with respect to the characterization of equilibrium.
1. Thedisposition of land rents affects the equilibrium but not the relationship between
aggregates derived in the paper. For the sake of concreteness, however, assume that land
rents go to absentee landlords.
2. How are the population and/or the utility level of workers determined? To begin, take as
fixed the utility level. Given the utility level and the agricultural rent, the equilibrium wage

and lot size a the boundary locations, w(X) and T (X)respectively, can be solved for. From

(28a) and (28c), P(X) and n(X)can be solved. Then from (31a) b(X)can be solved for.

14



Now conjecture an equilibrium function n® (x)which from (25) yields P (x) and
P (x). From (28b) and (30b), w'(X) and R (X) can be ca culated, from which
w(X — dx) and R(X — dx) can be calculated, etc. Proceeding recursively to smaller and

smaller values of x and stopping at x = 0, yieldsn® (x). A function fi(x)which corresponds
to afixed point of this procedure is a candidate equilibrium.
3. A final equilibrium condition isthat the allocation corresponding to a candidate
equilibrium n(x)is consstent with a completely mixed urban configuration being the
equilibrium configuration. A necessary and sufficient candidate for thisis that no worker
have an incentive to work at alocation different from where heresides. Thisisequivaent to
the condition that |w’'(x)| < tat al urban locations, and will clearly be satisfied for
sufficiently larget.

Uniqueness of n(x) conditional on existence remainsto be established.

Now consider how locational productivity differentials are capitaized into wages and

rentsin such an equilibrium. From (28b)

Pg=wn+R]
w .
=wn+R :W’n+? (using (30b)
=w 51 + b O (using (31a))
1-b0
010
=wns—- 34a
WA r (349)
and P'g =wn+R =R(nT +1) (using (30b)
_ OO :
=R o0 (using (31a)) (34b)

Thus, the extent to which productivity differences are capitalized into rents compared to
wages depends on b, the proportion of land at that location in commercial use. From (34a)
and (34b):

15



wn=(1-b)P'g and R =bP'g. (35)
Define

E J'i Pgbde 2 I:Pgbdx (333)

to be gross urban output. Comparing (32a) and (33), and making use of (32b), yields

DLR _ —I:P'ngdX
[ I:Pgbdx

(33b)

which provides bounds on the ratio of DLR to gross output; in particular e3> DLR- E

wWhen = maxe, € = ming, and¢ = Px isthe easticity of productivity with respect
x(0,X) X[X0,X)

to distance from the city center.
The above analysis assumed that there are no restrictions on commercial and
residential density. Restrictions on residential density do not affect the analysis— (30b)

still applies. Neither do restrictions on commercial density — as characterized" by n(x).
Assume arestriction on maximum labor density, M. Consider theterm (Pg, —w)n’ =0 in

(28Db); at those locations where the density restriction binds, n' = 0, and at other
locationsPg, —w = 0. If, however, the density restriction varies over space, then
DLR = —2{ _[j P'gbdx — 2 I;(Pgn(ﬁ(x)) - W)W(X)bdX}

=CG +EB, (33¢)

where

EB = I_Z(Pgn(ﬁ(x)) — )T (x)bax (33d)

! We may imagine that afixed floor areais required for each worker. g(n) isthen the net product after
subtracting off the resources used to provide the floor area needed for n workers.

16



is the excess burden associated with the spatially varying component of the density
restriction.
Let us now turn to equilibrium configurationsin which residential and commercia

land are everywhere separated. Figure 2 displays a possible equilibrium land use pattern.

R C R C R

>« >« >« >« >« >4—>
| | | 1] |
X =N b, C, d, & b, ¢ 4, & b G
>« >« >«
Figure 2

L ocations are measured from the | eft to the right, with x=0 dencting the left boundary of the
city. Rdenotesresidential areaand C commercia area. Commercial and residential districts
areindexed from left to right. Define g, to be the |eft edge of acommercial zone and c, the
right edge.

It iswell-known and can be quite easily established by contradiction that no worker
travels all the way across a subcenter. Thus, all the workersliving to the west of a; work in
the commercial district between a; and c; etc. Furthermore, there is no cross commuting in
equilibrium. Thisimpliesthat thereisalocation in the interior of commercial district i, by ,
such that at all commercial locationsin the district to the left of it workerstravel to there
from left to right, and at al commercia locationsin the district to the right of it, workers
travel from right to left. Thisasoimpliesthat thereisalocation in theinterior of each
interior residentia district d; such that at al residential locations to the left of it workers
travel to the commercid district to their left, and at all residential locations to the right of it
workerstravel to the commercial district to their right. The resulting commuting directions
areindicated by the arrows at the bottom of the figure. These equilibrium conditions

considerably simplify the analysis. Then

17



0

DLR = f (R(x)-R,) dx+Z[L R(X) -R,) dx+J' R (X) - R)x}

Z{I R0 - R} + Z{j (RO ~R) + [/ (R Ry )ox. (30

Now
J'Oal(R(x) - R,)dx = (R(X)x)5 - Ioal R (X)xdx - R,a,
=R@)a - [ %dx -Ra, (37
Also,
I:(RJ(X) -R,)Jdx = (F*’b(X)X j 'R (x)xdx - R,(h —a)
=R(B)b ~R,(a)a - [ P'oxcx+ [ wxdx - Ry(b -a)

Between a and by, the wage has to compensate for the increase in transport cost: w'=t.

Thus,
J':(Rb(x) -R,)dx=R,(h)b -R,(a)a - f’ P'gxdx + J':tnxdx -R,(b -a).(37b)

Between b, and ¢, w'=—t. Thus:

[, (R()=Ry)dx =R (c)c - R(b)h - j: P [ truclx (379
J’ '(R(x) - R,)dx =R (d))d - R(c)c + J’ d R, (d -c) (37d)
R(X) - R,)dx = R(a.;)a.; —~R(d)d, —dx Ri(@,, —d) (37€)
J, ( ) Iail tx
J’ (R(x) - R,)dx = R(X)X = R(c,)c, J’ ﬁdx—R (X —C.). (37f)
Hence,
DLR = [ %dx - 1[J’:(tn —P'g)xdx—J’:(tn+P'g)xdx}

18



104 tx a+l tx D x X
+ +

29 700 ™ oo ®G LTg ™ (38)
Now,
1t
ATC I%dx+2[} X - a,ndx+I x)ndx}
+ 1|:|dt t(a1+1 J’ t(X Ck) X (39)
£ T(x) di T(x) a  T(X)
- _ Iath— + i[f:tnxdx —I: tnxd><}
K2 Od tx a tX D XX
2370 L oo B LT ™
I al x+z{ Itndx+I ctndx}
lD Ct 1a1+1 ii v
L w0 L T o L™ )
Now, J’Oal %dx = J’bc: ndx, etc. Substituting these relationshipsinto (39') yields
ATC = —[* - ax + [ "trxdx — [ tnxd%
-I (X) Iai J‘bi
k14 a IX x X
S T L T e “0
Comparing (38) and (40) yields
DLR +2{I ngdx+I P'gxdx} = ATC. (41)

Now, analogous to the case with the completely mixed urban configuration, we define the

capitalized agglomeration premium to be

k

CG = —Z[ f P’gxdx} . (42)

Substituting (41) into (40) yields
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DLR=CG + ATC. (43)
We have aready seen how density restrictions affect the analysis. What about
restrictions on land use? Suppose for example that commercial area 1l isrestricted in size

suchthat R (a)> R(a) and R (c,) > R(c,). Thenfrom (37a), (37b), and (37¢)

DLR =CG + ATC - (R(a) ~R(a))a, +(R,(c)) —R(c))c;. (44a)
In generd,
DLR=CG+ATC-DWL, (44b)

where DWL is the deadweight loss due to land use restrictions.
Now let usturn to capitalization results. Consider two locationse; and &, in

adjacent commercial areas 1 and 2:
R(e,) - R(e) = J':R;dx + f: Rdx + f R dx
_ by, o d t az_l €20, o
= 611(P g—w'n)dx +Icl?dx H, TdX *., (P'g—w'n)dx

Extensions— To Be Completed

i. Different groups — jobs, tastes, transport costs
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ii. Different industries

iii. Twodimensions
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iv. Mixed and separated areas

v. Extend to congestion
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vi. Capitalization into wages

vii. Explain CD

viii. Capitalization into rent
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Figure 1: The Mohring
Diagram




